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Abstract. Uncertainty quantification has become increasingly more prominent in

nuclear physics over the past several years. In few-body reaction theory, there are

four main sources that contribute to the uncertainties in the calculated observables:

the effective potentials, approximations made to the few-body problem, structure

functions, and degrees of freedom left out of the model space. In this work, we

illustrate some of the features that can be obtained when modern statistical tools

are applied in the context of nuclear reactions. This work consists of a summary

of the progress that has been made in quantifying theoretical uncertainties in this

domain, focusing primarily on those uncertainties coming from the effective optical

potential as well as their propagation within various reaction theories. We use, as the

central example, reactions on the doubly-magic stable nucleus 40Ca, namely neutron

and proton elastic scattering and single-nucleon transfer 40Ca(d,p)41Ca. First, we

show different optimization schemes used to constrain the optical potential from

differential cross sections and other experimental constraints; we then discuss how

these uncertainties propagate to the transfer cross section, comparing two reaction

theories. We finish by laying out our future plans.
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1. Motivation

Uncertainty quantification has gained a great deal of prominence in nuclear theory over

the past several years. From ab initio methods to macroscopic theories, many groups are

tackling the broad challenge of including meaningful uncertainties on their theoretical

calculations [1, 2, 3, 4, 5, 6, 7, 8, 9]. Although standard χ2-minimization techniques and

covariance matrix propagation had been the standard for decades, Bayesian methods

have recently become the gold standard in uncertainty quantification, aimed at more

reliably reporting calculated uncertainties, particularly from parameter optimization,

e.g. [10]. Building off of these improvements, there has also recently been a push to

investigate techniques such as Gaussian Processes (GP) [11, 10, 12] and other machine

learning methods [10, 13, 14, 15, 16] to create emulators in addition to quantifying

uncertainties.

In few-body reaction theory, the typical means of quantifying uncertainties coming

from approximations made to the theory was to compare a calculated observable (such

as a differential cross section) to the same observable calculated using a more exact

theory [17, 18, 19, 20, 21]. This comparison, however, only indicates the relative

uncertainty between methods, not the absolute uncertainty on a calculation. Parametric

uncertainties were studied in much the same way - comparing calculations using different

parameterizations. However, these uncertainties can come from many sources. The four

main sources of uncertainty in few-body reaction theories are:

(i) effective potentials (the optical potential)

(ii) approximations made to the few-body problem

(iii) the structure functions used

(iv) degrees of freedom left out of the model space

Our group began to explore uncertainties within few-body reactions in the first special

issue of this journal aimed at bridging the gap between experiment and theory [22]. At

that point, the state-of-the-art in the field, as mentioned previously, was using standard

χ2 minimization to optimize the optical potential parameters fit elastic scattering data.

Subsequently, different parameterizations or models were compared based on relative

differences. Under this assumption, we found only 10-30% differences between various

optical model parameterizations, even for reactions on highly exotic nuclei, such as
132Sn(d,p)133Sn. Not only was this a basic arbitrary procedure to estimate uncertainties

in the optical model, it provided no avenue to quantify the uncertainties coming from

items (ii)–(iv).

In the meantime, the many studies on uncertainty quantification for few-body

reactions have greatly improved our understanding and helped establish the Bayesian

framework in this area. This is in line with improvements made in the broader nuclear

physics community. We will now briefly discuss each of the new developments and

provide more detail in the next sections of this paper. First, with regards to (i) the

optical potential, we have replaced the frequentist propagation of uncertainties [23] with
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a full Bayesian analysis [24]. This decision was strongly motivated by the direct detailed

comparison of the frequentist and Bayesian methods for reactions on stable targets [25].

For (ii) the approximations made to the few-body problem, we have compared the

distorted-wave Born approximation (DWBA) and the adiabatic wave approximation

(ADWA) using both the frequentist [26] and Bayesian [24] optimizations. Although

this comparison does not take into account the model defects in either approximation,

we are now able to determine whether these two models are consistent within the

uncertainties propagated from the optical model. With regards to (iii) and (iv), small

studies have been started to incorporate these uncertainties as well, particularly focusing

on the single-particle potential in transfer reactions and analyzing the change in the

uncertainties when a more exact few-body model is used.

In this paper, we highlight the improvements that have been made to uncertainty

quantification of few-body models with regards to the above four sources. First, we

outline the physical problem, the difference in philosophy between the frequentist

and Bayesian methods in our context, and the various reaction models that are used

throughout this work in Section 2. In Section 3, we discuss the improvements that have

been made to quantifying uncertainties coming from the parametrization of the optical

model potential; in Section 4, we show quantified differences in approximations made

to the few-body problem; in Section 5, we discuss the near-term progress that can be

made on the structure functions and adding degrees of freedom to the model space that

had previously been removed - both now in a Bayesian framework. Finally, we conclude

and give broad remarks about the next steps for uncertainty quantification in few-body

reaction theory in Section 6.

2. Reaction theory and statistical considerations

We focus on two methods of quantifying uncertainties which have seen a great deal of

use in nuclear physics both historically and recently: standard χ2 minimization and

covariance matrix propagation - referred to here as frequentist methods - and Bayesian

methods. In both cases, the main idea is to fit a theoretical model, σth(x) with free

parameters x, to a set of experimental data, σexp
i with experimental errors ∆σi.

The parameters, x, that we aim to optimize are those of the optical model, an

effective potential describing the interaction between a light projectile and a heavy

target. The optical potentials typically have real and imaginary terms,

U(r) = V (r) + iW (r) + iWs(R), (1)

where the imaginary term takes into account the loss of flux to reaction channels not

explicitly included in the model. The potentials contain three parts, a volume term,

surface term, and spin orbit term (in addition to the standard Coulomb term, e.g. [5],

when charged projectiles are considered). In the reaction models considered here, the

volume term contains a real and imaginary part parameterized as a Woods-Saxon,

V (r) = − Vo
1 + exp((r −Ro)/ao)

, (2)
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and

W (r) = − Wo

1 + exp((r −Rw)/aw)
, (3)

where Vo, Ro, and ao (W , Rw, and aw) are the depth, radius, and diffuseness of the real

(imaginary) term of the potential. The surface term, Ws(R), typically contains only an

imaginary term which is parametrized as the derivative of a Woods-Saxon (parameters

Ws, Rs and as). The spin-orbit term is also parametrized as a derivative of a Woods-

Saxon, but these parameters are typically held constant, because unpolarized elastic

scattering is not very sensitive to this piece of the interaction. In total, we have nine

free parameters (in each case, Ri = riA
1/3 where A is the mass of the target nucleus

and ri is the fitted parameter).

These parameters have historically been fitted separately for elastic scattering of

incident neutrons and protons as a function of the mass and charge of the target, and the

incident particle energy, e.g. [27, 28]. Such global parameterizations are able to provide

a fair description overall, but when considering one single data set, for a given target and

a given beam energy, it is common to improve upon the description obtained with global

potentials. This is the methodology that we employ in the current study: we begin with

a global optical model parametrization (typically the Bechetti and Greenlees (BG) [27])

for the initialization of the minimization procedure and optimize the parameters with

respect to a single reaction. We focus primarily on elastic scattering data, dσ/dΩ(θ)

but also discuss the effects of including total or reaction cross sections, σtot (for neutron

scattering) or σR (for proton scattering), and vector analyzing powers, Re(iT11(θ)). Note

that these observables are sometimes included in fitting global optical potentials (e.g.

[28]). We use experimental data where available; Table 1 contains the types of reactions,

the beam energies, and the original references for the experimental data used in the rest

of this work.

2.1. Reaction models

There are several reaction models that we consider in this work, all of which are not

computationally demanding. We should emphasize that although there are several

reaction models of higher complexity (e.g. [36, 37, 38, 39]) and a number of frameworks

for the optical potential that go well beyond the simple parameterization introduced in

Eq.(1) (e.g. [40, 41, 42]), it is critical to initially explore the new statistical tools with

simpler models that enable a full investigation of this statistical methodology.

For most of the cases that we study, we fit the optical potential parameters

to reproduce single-channel elastic scattering, which is calculated using partial wave

decomposition as explained in [43]. For each projectile-target angular momentum, the

S-matrix SL (where |SL|2 is the probability that the projectile gets absorbed by the

target) is obtained from solving the scattering equation and matching the solution to

the known asymptotic behavior. From there, all reaction observables can be calculated

(for details see Section 3.2 of [43]).
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Reaction Data type Energy (MeV) Citation
40Ca(n,n)40Ca dσ/dΩ(θ) 11.9 [29]
40Ca(n,n)40Ca dσ/dΩ(θ) 13.9 [29]
40Ca(n,n)40Ca Re(iT11(θ)) 13.9 [29]
40Ca(n,n)40Ca σtot 14.1 [30]
40Ca(p,p)40Ca dσ/dΩ(θ) 12.5 [31]
40Ca(p,p)40Ca dσ/dΩ(θ) 14.5 [31]
40Ca(p,p)40Ca Re(iT11(θ)) 14.5 [31]
40Ca(p,p)40Ca σR 14.48 [32]
40Ca(p,p)40Ca dσ/dΩ(θ) 26.3 [33]
40Ca(p,p)40Ca dσ/dΩ(θ) 27.5 [33]
40Ca(p,p)40Ca Re(iT11(θ)) 26.3 [33]
40Ca(p,p)40Ca σR 24.5 [34]
40Ca(d,d)40Ca dσ/dΩ(θ) 30.0 [35]

Table 1. Overview of the experimental data used in this work. First columns gives

the reaction at the energy listed in the third column. The second column lists the

type of data: dσ/dΩ(θ) for the differential cross section, Re(iT11(θ)) the analyzing

powers (polarization data), and σR/tot for either the reaction cross section or total

cross section. A reference for each data set is listed in the fourth column.

Here we consider two models to predict the single-neutron transfer cross section

for A(d, p)B, namely the one-step distorted-wave Born approximation (DWBA) and

the adiabatic-wave approximation (ADWA). In DWBA, the elastic scattering of the

incoming deuteron is described by an effective deuteron-target interaction, VdA. Instead

of solving the full three-body problem, the true three-body wave function is replaced

by the elastic channel (represented by the deuteron distorted wave multiplied by the

corresponding bound state of the deuteron) [43]:

TDWBA
post = 〈ΦnA(~rnA)χp(~Rf )|Vnp + ∆|Φnp(~rnp)χd~ki(

~Ri)〉, (4)

with Φnp(~rnp) the bound-state deuteron wave function, ΦnA(~rnA) the final bound-state

wave function of B, χd~ki(
~Ri) the distorted wave of the d+A system, χp(~Rf ) the distorted

wave of the proton interacting with B, Vnp the deuteron binding potential, and ∆ the

difference between the A + p and B + p optical potentials. Note that the coordinates

introduced in Eq. (4) are the standard Jacobin coordinates in the entrance (~rnp, ~Ri) and

exit (~rnA, ~Rf ) channels as in Ref.[43].

However, because of its small binding energy, it is likely that deuteron breakup will

occur in the field of the target, and this has been shown to influence other channels such

as the transfer [17]. For this reason, many reaction theories start from the three-body

n+ p+ A scattering problem, and solve with different levels of approximations.

Since solving the three-body scattering problem exactly (in a Faddeev formalism)

presents challenges and requires significant computational time, it is not feasible to use

these methods in the context of the Bayesian approach discussed in Section 2.3. Instead
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we use the adiabatic approximation of Johnson and Tandy [44] by considering that

the excitation energy of the deuteron is negligible compared to the beam energy. This

approximation leads to a simplified three-body equation:[
TR + VpA(~r, ~R) + VnA(~r, ~R)− (E − ε0)

]
Ψad(~r, ~R) = 0, (5)

where TR is the center of mass kinetic energy, VnA and VpA are the neutron-target and

proton-target optical potentials, E is the incident beam energy, and ε0 is the binding

energy of the deuteron. Furthermore, by considering a Weinberg expansion for Ψad(~r, ~R),

it is possible to integrate out the ~r variable in Eq. (5) and obtain a single-channel

scattering equation, greatly reducing the computational time [44]. The adiabatic wave

function is then used in the post-form transfer T-matrix,

TADWA
post = 〈ΦnA(~rnA)χp(~Rf )|Vnp|Ψad(~r, ~R)〉. (6)

This approach is usually referred to as the finite-range adiabatic wave approximation

(ADWA).

In both DWBA or ADWA, the transfer cross section is obtained from the norm

squared of the T-matrix.

2.2. Frequentist methods

In this work, we refer to standard χ2 minimization and propagation of the resulting

covariance matrix as frequentist methods. This type of optimization has been the

standard in the field for many decades. The goal is to describe a true function σ(θ) with

a model σ(x, θ) that has N free parameters, x1, x2, ...xN . To constrain these parameters,

we have a set of M experimental data pairs, {(θ1, σ1), (θ2, σ2)...(θM , σM)}, each of which

has an associated experimental uncertainty, ∆σi. The typical assumption is that the

experimental values are uncorrelated with one another,

σexp
i = σ(θi) + εi, (7)

where each εi is normally distributed,

εi ∼ N (0, (∆σi)
2). (8)

In matrix form, this is written, σexp ∼ N (σ,Σ), where Σ is an M ×M matrix with

(∆σi)
2 on the diagonal. The residuals between the experimental values and the theory

predictions, σexp
i − σ(x, θi), are also normally distributed as N (0,Σ). Maximizing

the likelihood function for x is equivalent to minimizing the corresponding objective

function,

χ2
UC =

M∑
i=1

(σexp
i − σ(x, θi))

2

(∆σi)2
, (9)

where UC stands for uncorrelated. Equation (9) is proportional to the standard χ2

function, and its minimization leads to the determination of a best fit set of parameters,

x̂UC . The 95% confidence intervals around σ(x̂UC , θ) can be constructed by assuming
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that the true parameter values are distributed normally around the best-fit parameter

set, so parameters can be drawn from

N (x̂,Cp) ∼ exp[(x− x̂UC)TCp(x− x̂UC)] (10)

where Cp is the N ×N parameter covariance matrix. The goodness of fit is taken into

account by scaling this covariance matrix by

s2 =
χ2
UC

M −N
. (11)

Then Cp in Eq. (10) is replaced by s2Cp.

However, if we consider differential elastic cross sections as calculated in the

standard manner using a partial wave decomposition, where the use of the Legendre

polynomials inherently correlates the cross section at each angle, we can explore a

different approach to include these correlations in the fitting procedure. We can then

introduce a correlated χ2 function:

χ2
C =

M∑
i=1

M∑
j=1

Wij(σ
exp
i − σ(x, θi))(σ

exp
j − σ(x, θj)), (12)

where Wij are the (ij)th elements of the inverse of the data covariance matrix defined

as

W = (Cm + Σ)−1, (13)

with Cm being the model covariance matrix between the angles of the experimental data

points and Σii = (∆σi)
2. To calculate the model covariance matrix, parameter sets in the

optical model are randomly sampled around the initial parametrization and run through

the model. Cm is then explicitly calculated as the covariance between each of the angles

included in the fitting procedure. The elements of Cm do not have to be positive, leading

to interference between the different angles in the model, and therefore, χ2
C < χ2

UC . In

addition, because the model correlation matrix is not normalized, χ2/M ≤ 1 is no longer

the definition of a good statistical fit.

To construct the 95% confidence intervals, once the best-fit set of parameters, x̂UC
or x̂C , is determined, parameter sets are sampled from Eq. (10), where Cp and s2 are

determined from either the uncorrelated or correlated χ2, and run through the model.

At each evaluated angle, the top 2.5% and bottom 2.5% of the calculations are removed

to leave 95% intervals.

2.3. Bayesian methods

In contrast to frequentist methods, where the fundamental interpretation is that out

of a list of options, one must occur, Bayesian statistics give the probability of a single

occurrence independent of all others. In addition, with Bayesian methods, we are able

to introduce prior information in the statistical formulation, compare two theories, or

even mix models, all within a consistent framework. We give a brief overview in the

following section, but more details can be found in [45, 46].
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For a hypothesis, H, (in this work, a given model with some set of free parameters)

that is constrained by some experimental data, D, Bayes’ theorem is written as

p(H|D) =
p(H)p(D|H)

P (D)
, (14)

where the prior, p(H), is information that is known about the model before seeing the

experimental data, and the likelihood, p(D|H) contains information about the goodness

of fit between the model and the data, here a standard normal distribution, exp−χ2/2.

For our χ2 function, we only consider the uncorrelated χ2 of Eq. (9). Bayes’ theorem

allows for the calculation of the posterior distribution, p(H|D), which is the most likely

probability distribution of the fitting parameters conditional on the experimental data.

The last piece of Eq. (14) is p(D), the Bayesian evidence which typically consists of a

weighted sum over all possible hypotheses - or models.

Often, the Bayesian evidence is difficult or nearly impossible to calculate directly,

so Monte Carlo methods are used to sample the posterior distribution directly. Here, we

use the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) [47, 48]. We begin

with an initial set of optical model parameters xi from which the prior, p(Hi), and

likelihood, p(D|Hi), are calculated. A new set of parameters is sampled from a normal

distribution, xf ∼ N (xi, εx0), where ε is a scaling factor that controls the step size

through parameter space. From the updated parameter space, xf , the new prior and

likelihood are calculated, p(Hf ) and p(D|Hf ). This new parameter set is accepted if the

following condition is fulfilled:

p(Hf )p(D|Hf )

p(Hi)p(D|Hi)
> R, (15)

where R is a random number between 0 and 1. If xf is accepted, it becomes the initial

parameter set, and a new random set of parameters is drawn. If Eq. (15) is not fulfilled,

the parameter set xf is rejected and a new parameter set is drawn from N (xi, εx0). This

process continues until a predetermined number of parameter sets have been accepted.

Initially, there is no guarantee that the initial parameter set is within the targeted

posterior distribution. For this reason, we need a burn-in period where a certain number

of parameter sets, Nburn−in, are discarded, regardless of whether or not these sets were

accepted by the Monte Carlo condition of Eq. (15). The end of the burn-in is signified

by a likelihood and parameter distributions that oscillate around a mean value and

are not consistently increasing or decreasing. After the burn-in period, each accepted

parameter set is directly correlated to the parameter sets accepted before it. To remove

this dependency, we do not record a certain number of accepted parameters, Nthin

between each recorded parameter set.

Confidence intervals in Bayesian statistics are calculated slightly differently than

confidence bands in the frequentist method. In this case, 95% confidence intervals are

defined by the smallest interval, [a, b], where

b∫
a

p(Hi|D)dxi = 0.95 (16)
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for a given variable xi. In practice, because our parameters are sampled numerically

from the MCMC, the integral becomes a sum. These intervals define the region where

we believe, with a 95% probability, that the true value of the cross section or optical

potential parameters fall.

2.4. Numerical details

There are several optical potentials that are needed to calculate the single-nucleon

transfer cross sections using DWBA or ADWA. In this work, we focused on calculating

the 40Ca(d,p)41Ca transfer cross section in the ground state (g.s.) at 28.4 MeV. In

DWBA, the deuteron-target interaction is needed at the incident deuteron energy. For

ADWA, the neutron-target and proton-target potentials are needed which we take at

half the deuteron energy. For both calculations, we additionally require the potential

between the proton and the 41Ca at an energy E −Q, where E is the incident deuteron

energy and Q is the Q-value of the reaction. However, scattering data on 40Ca is more

readily available than data on 41Ca - and there is very little difference between the optical

potentials on these two targets - so we constrain this channel based on 40Ca-p scattering

data, as in all of our previous studies [23, 24, 26, 25, 49]. These data are summarized in

Table 1 in addition to listing the other data sets that we will later use to explore further

constraints on the optical potential. For all of the elastic scattering angular distribution

data and total reaction cross sections, we take the experimental uncertainty to be 10%.

In Section 3.4, we will also consider the vector analyzing powers. For those, we also

take the uncertainty to be 10% except in cases where the value of the analyzing power

at a given angle is less than 5% of the maximum value across all angles (e.g. when the

analyzing power is very close to zero). For these cases, we take the uncertainty to be

5% of the maximum value. This provides a lower bound of the error, in line with real

data.

For the uncorrelated frequentist calculations, we initialize each of the parameters

with the Becchetti-Greenlees (BG) [27] optical potential parameters for neutron and

proton scattering and the An-Cai (AC) [50] optical potential for deuteron scattering.

With the χ2 minimization, it is possible that the parameters can fall into a minimum

that is outside of the physical range of these parameters. To prevent that, we fix some of

the parameters during the optimization (typically those of the imaginary volume term).

The potential for the incoming proton at 14.5 MeV in the frequentist optimizations

was initialized with the incoming neutron parameters to ensure that the geometry was

similar for both neutrons and protons.

The Bayesian optimization is also initialized from the BG potential parameters. In

this case, we also must define a shape for the prior distributions. As in our previous

works, we take independent Gaussian priors for each of the optical potential parameters,

centered at the Becchetti-Greenlees parameter values with a width of 100% of those

values. This is a very wide prior, but it allows the data to drive the optimization,

instead of being driven by the shape of the prior. These assumptions about the shape
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of the prior were explored in [24].

The frequentist minimizations for elastic scattering use sfresco, a best fit program

using the MINUIT routines [51], packaged with fresco [52]. The Bayesian statistical tools

were developed from scratch as wrapper codes that call fresco, sfresco [52] and nlat

[53]. We will refer these wrappers collectively as QUILTR, Quantified Uncertainties

In Low-energy Theory for Reactions.

3. The optical potential

Most of our efforts over the past several years have concentrated on constraining the

parameters of the optical potential; we present a summary of the results of these studies

here. Although the type of studies described in Sections 3.1-3.3 have been published in

some form in recent years, in this work we bring all the features together, and apply these

to a single new case (reactions on 40Ca) with consistent assumptions, both regarding

the experimental data and the statistical methods.

We use experimental data from three reactions, 40Ca(p,p), 40Ca(n,n), 40Ca(d,d)

to constrain the optical potentials needed to calculate the single-neutron transfer cross

section, 40Ca(d,p)41Ca(g.s.) using both DWBA and ADWA with the data outline in

Table 1. As most of the comparisons in this field has historically been performed using

frequentist methods, we first compare the frequentist methods using the uncorrelated

and correlated χ2 functions of Eqs. (9) and (12).

3.1. Confidence intervals for angular distributions

In Fig. ??, we show the 95% confidence intervals for the uncorrelated (UC, blue) and

correlated (C, red) fits for all incident and outgoing channels needed for the DWBA

and ADWA calculations, (a) 40Ca(n,n) at 13.9 MeV, (c) 40Ca(p,p) at 14.5 MeV, (e)
40Ca(p,p) at 26.3 MeV, and (g) 40Ca(d,d) at 30.0 MeV. In addition, in panels (b), (d),

(f), and (g) we show the corresponding uncertainty on the differential cross sections

defined as ε = ∆σ/σ, where ∆σ is the width of the 95% confidence interval and σ is the

best-fit cross section.

We see, in all cases, the confidence intervals for the correlated fits are at least as

large (but in most cases larger) than those for the uncorrelated fits. This increase is

seen even though the χ2 values are at least 5 times smaller in the correlated best fit

compared to the uncorrelated best fit, due to the inclusion of the angular covariance

matrix in the definition of χ2
C in Eq. (12). The addition of this covariance matrix also

allows the best fit the flexibility of not going through all of the data points, which is

why we see the data outside of the confidence intervals, in particular for both proton-

scattering reactions, in Fig. ?? (c) and (e). The standard, uncorrelated χ2 minimization

requires that for every data point above the best fit, there is a data point below the

best fit; this restriction is loosened when the angular covariance matrix is introduced in

the correlated χ2 optimization.
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In Fig. ??, we calculate the percentage of the experimental data that falls within

various confidence intervals for the elastic-scattering reactions shown in Fig. ??. If the

confidence intervals truthfully reproduced the uncertainties, X percent of the data would

fall within the X percent confidence intervals, indicated by the solid black lines. The

uncorrelated confidence intervals consistently over-predict the uncertainties for small

values of the confidence intervals, below ∼ 50%. For the neutron and proton scattering,

the trends in the uncorrelated optimization are flat compared to the solid black line. The

correlated optimization systematically over-predicts the uncertainty in each case except

for proton scattering at 14.5 MeV, panel (b). While over-predicting the uncertainty

provides a more conservative estimate, the trends in Fig. ?? are not the same across

the four scattering cases.

These results highlight some of the shortcomings of the frequentist methods.

The uncorrelated and correlated confidence intervals do not consistently predict

the uncertainties. Although the uncorrelated confidence intervals give a more true

representation of the uncertainties at the 1σ level – 68% – for nucleon scattering on
40Ca, as shown here, in [25], we found that the uncorrelated frequentist optimization

consistently underpredicted the uncertainties on the elastic scattering cross sections.

Thus, this test should be performed for each reaction of interest. The model covariance,

as included in χ2
C , is somewhat arbitrarily defined, pointing to possible limitations of the

formulation, and we ultimately do not advocate for including model correlations in this

manner. In addition, these types of frequentists methods assume that the uncertainties

can be described as a Gaussian distribution in parameter and observable space, which

is not generally the case. Particularly, this is not true for our reaction model where

the dependence of the observable (differential cross section) on the parameters (optical

potential) is strongly non-linear.

For these reasons, we have also implemented a Bayesian optimization algorithm for

fitting the optical potential. The Bayesian results (B) are compared to the frequentist

uncorrelated and correlated results in Figs. ?? and ??: green lines or green triangles.

For the Bayesian calculations, the error ε is defined again as ε = ∆σ/σ, where ∆σ is

still the width of the 95% confidence interval but now σ is the mean value of the cross

sections within the 95% confidence interval.

In all cases, the confidence intervals and related uncertainties obtained with the

Bayesian approach are larger than their frequentist counterparts (green compared

to blue). Particularly at the lower uncertainty values, the uncorrelated frequentist

optimization more accurately predicts the uncertainties, but if we want to look at higher

confidence values – such as 2σ or 95% confidence – the truthfulness of the uncorrelated

falls off, and the Bayesian optimization becomes more reliable. In this work and our

previous studies, we look at 95% confidence intervals, at which point the frequentist

methods tend to underpredict the uncertainties and the Bayesian optimization is more

truthful. The discrepancies between the optimization methods are also seen in the

propagation of the optical model uncertainties to the single-nucleon transfer cross

sections, as will be discussed in Sec. 4. These characteristics are not unique to nucleon
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scattering on 40Ca, and other targets are discussed in [25].

3.2. Correlations in parameter space

It is worth also discussing the differences between the minima and correlations in

parameter space among the three methods. In Table 2, we show the best-fit parameters

for the uncorrelated and correlated frequentist fits along with the average parameter

values from the accepted Bayesian samples. We note that, especially in the imaginary

volume term, many of the parameters have to be fixed in order to prevent the

minimum from going into unphysical regions of the parameter space when the frequentist

optimization is used. These parameters are shown in italics in Table 2. However, the

real volume term is fairly similar between the three optimization schemes, meaning

that they all lead to similar minima, the biggest differences being the geometries of

the potentials. Moreover, particularly in the frequentist optimization, the parameters

tend to be highly correlated, leading to similar elastic-scattering cross sections, even

when the geometry is not the same. We can also constrain the Bayesian optimization

to have the same parameters fixed (at the same values) as the uncorrelated frequentist

optimization, and when this is done, we find essentially the same minima between the

two routines. We then conclude that the prior distribution – especially a very wide

Gaussian prior, as we use here – does not strongly affect the minima that are found

in the Bayesian optimization and does not necessarily keep the minimum closer to the

starting parameter set. The Bayesian optimization procedure is data-driven (or driven

by the likelihood) rather than being driven by the prior distribution, and the Bayesian

procedure allows the parameters to remain in the physical region of the parameter space,

while adding a very minimal constraint with the prior distribution.

In the bottom half of Table 2, we list the widths of the parameter distributions,

either from the parameter covariance matrix for the frequentist calculations or the

standard deviation of the set of accepted parameters for the Bayesian calculations.

In most cases, the Bayesian parameters widths are larger than both the uncorrelated

and correlated frequentist widths. The largest difference is for the correlated frequentist

optimization, where sometimes the imaginary surface parameters are wider than the

parameters found in the Bayesian optimization. Noticeably, the optimization of
40Ca(p,p) at 14.5 MeV is the only case where all of the Bayesian parameter widths

are larger than the correlated frequentist parameters, and this is the only case where

the Bayesian confidence intervals are larger than the correlated confidence intervals

across the full angular range.

There is a high level of degeneracy in the parameter space, both continuous and

discrete, due to the fact that different sets of optical parameters can provide the same

elastic scattering distribution. One way to address this degeneracy is to introduce new

parameters resulting from a combination of optical potential parameters that would

remove the degeneracy. This is not our approach. In fact, because we choose to use

wide priors, we explore a wide region of parameter space, with all its degeneracies,
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and allow for multimodal posteriors. Our uncertainty intervals thus have no biases

toward one or another minimum. Nevertheless, by construction the priors do not favor

unphysical value for the parameters, avoiding issues with negative values for radii and

diffuseness.
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In addition, the correlations between the parameters from the four elastic-scattering

optimizations are shown in Fig. ??. To focus on the differences in the correlations

and not the parameter values, the correlations have been normalized such that each

mean is zero and the width of the distribution is one. Circular distributions indicate

uncorrelated parameters while the more oval distribution indicate more correlated (or

anti-correlated) parameter pairs. Historically, the optical model parameters had been

found to be extremely correlated [43], and these correlations can be seen in the blue and

red distributions of the uncorrelated and correlated parameters. On the other hand, the

Bayesian optimization shows very few correlations, except between the depth and radius

of the real volume potential. This lack of correlation was also seen in [25] and indicates

that strong correlations may have been induced by the χ2 minimization procedure.

Now that we have seen the uncertainties coming from the optical potential with

the constraints coming from fitting the differential cross sections, we find that these

uncertainties are so large as to be almost unusable. The uncertainties that we have

found in all studied cases have varied anywhere from 20% to over 100% - and are not

any smaller when they are propagated to the single-nucleon transfer cross sections.

Therefore, we have also been exploring ways to reduce the uncertainties in the optical

potential. In the next two subsections, we discuss further experimental constraints to

shrink the uncertainties on the optical potential - and the resulting uncertainties on the

elastic scattering and transfer cross sections.

3.3. Other experimental constraints on the optical potential

Next we explore experimental conditions for elastic-scattering measurements, with the

intent of reducing the uncertainties. Here we include tests on the angular range of the

data fitted and the effects of including a second set of elastic angular distributions,

obtained at a nearby energy.

The angular range of the data included in the optimization procedure in [49], tested

whether fitting only angles forward of 100◦ or fitting a reduced set of angular data (where

every other angular data point was removed) produced significant differences in the

width of the uncertainty interval. Because of the correlations between the differential

cross section at various angles, due to the partial wave decomposition, constrains at

one angle are propagated to other angles. Consistent with that, we find that we do not

gain more information with a denser angular grid, and constraining backwards angles

expectedly only affects the backward angle uncertainty.

Instead, we turn to including a second set of elastic-scattering data at a nearby

energy. There are two ways to include this second set: 1) sequentially, where the

Bayesian optimization is run using the first set of data and the parameter posterior

distribution is used as the prior distribution to optimize over the second set of data, or

2) simultaneously, where the two data sets are both fed into the optimization routine at

the same time. When the two data sets are included sequentially, we find a very small

improvement in the uncertainties (decrease in the size of the confidence intervals), just
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as in [49]. However, while [49] shows a large improvement when the two data sets are

included simultaneously, in the cases studied here we find only a modest improvement.

This is illustrated in Fig. ??: a simultaneous fit (denoted multiple, red) is compared

to the fitting of only one data set (single, blue) in for 40Ca(n,n) at 13.9 MeV (a) and
40Ca(p,p) at 14.5 MeV (c). In panels (b) and (d), we show the percent uncertainty of

the confidence intervals, ε.

As is evident from the percent uncertainty in panels (b) and (d) for the neutron

scattering and proton scattering respectively, no significant decrease in the uncertainty

is found when the second set of experimental data is included. In particular, for the

neutron scattering case, we actually see an increase of the uncertainties at backwards

angles. This increase is due to the discrepancies between the two data sets backwards

of 100◦ (shown as the black and grey symbols). In both cases, we used data that was

measured by the same group with the same experimental set-up, to remove as many

sources of systematic uncertainty as possible. The differences between the results here

and the results in our previous work [49] are mainly due to the use of mock data in the

previous work and real experimental data here. We discuss this further in Section 3.5.

3.4. Including a variety of reaction observables

Within the Bayesian framework, we can study how various additional experimental

constraints can impact - and hopefully reduce - the uncertainties in the optical potential.

The first experimental constraint that we explore is adding other reaction data to the

fitting procedure. We will start first considering vector analyzing powers, Re(iT11), and

then add total or reaction cross sections, σtot or σR. The combined χ2 applies equal

weights to the different sets of data. Although the vector analyzing powers should be

more sensitive to the spin-orbit part of the potential than the differential cross sections

or the total and reaction cross sections, for consistency within this work, we still only

optimize the volume and surface terms of the optical potential.

In Fig. ??, we show the differential cross sections (left column) and analyzing

powers (right column) when only the differential cross section is fit (blue), only the

polarization is fit (red), and both are fit simultaneously (green) for 40Ca(n,n) at

13.9 MeV and 40Ca(p,p) at 14.5 MeV. First, we notice that in (a) and (c) the best

representation of the data is when only the differential cross section is fit; likewise, in

panels (b) and (d), the best representation of the polarization data is when only the

polarization data is included in the optimization. These are the sorts of difficulties

that can arise when addressing the real problem, with real data. In both the neutron

and proton scattering cases, we see that the minima are shifted significantly from the

differential cross section to the polarization minimum. When both observables are

included in the Bayesian optimization (green regions), the confidence intervals and

posterior distributions typically fall somewhere between the minima from the elastic

cross section and polarization, as for 40Ca(p,p) at 14.5 MeV in Fig. ??(c) and (d).

However, as for 40Ca(n,n) at 13.9 MeV, in panels (a) and (b), we find that the confidence
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intervals when both observables are included in the fitting process are similar in shape to

the confidence intervals when only the analyzing power is included in the optimization.

The authors in [29], [31], and , [33] all found that for 40Ca-nucleon scattering reactions,

an optical potential of the form that we are investigating here (e.g. local, energy-

dependent, and non-relativistic) was not sufficient to describe both their differential cross

section data and polarization data simultaneously. These joint optimizations should be

studied for other targets.

We have also considered the effect of including total or reaction cross sections along

with polarization. In [49], we found that adding the reaction or total cross section into

the Bayesian optimization routine did not offer an improvement on the uncertainties,

when compared to the use of the full angular distribution. In that work, mock data was

used and thus the total (reaction) cross section did not contain additional information to

the differential cross section over all angles (by construction that total cross section was

exactly the integral of the angular distribution included in the fit already). Although

here we are using real data, we have chosen cases for which the angular distributions

have full coverage, and therefore again, when including total (reaction) cross sections to

the likelihood, the reduction on the uncertainties is minimal.

3.5. Differences between mock data and measured data

Some of the results presented in this section are significantly different than those

obtained in [49], particularly when multiple energies were included in the optimization.

We had previously found that fitting data at two nearby energies reduced the uncertainty

on the differential cross section by as much as - and sometimes more than - 50%. Those

results were calculated using mock data generated from the Koning-Delaroche optical

potential [28] to ensure that we could remove any difficulties coming from discrepancies

in experimental data (such as the error in the normalization, the incident energies not

lining up, etc.). In Fig. ??, we show the single and multiple optimization for 40Ca(n,n)

at 13.9 MeV and 40Ca(p,p) at 14.5 MeV using mock data: confidence intervals in panels

(a) and (c) and the percentage uncertainty in (b) and (d). Comparing this figure with

Fig. ?? - same calculation but with real experimental data - we see that the uncertainties

are smaller when mock data are used compared to the case when real experimental data

are used. In both cases though, we do not see the same degree of reduction in the

uncertainty when a second energy is included in the optimization process.

However, in [49], we also found that the uncertainty was strongly dependent on the

percent difference between the two energies that are included in the fit. There was a

greater impact at higher incident energies and when the two energies included were ∼
10% apart (if the difference in energies were higher the two minima would be too different

as the optical potentials are strongly energy dependent, if it were lower it would offer

no extra information to the optimization procedure). With real experimental data we

cannot control this. Indeed, the existing data for this case is slightly farther apart than

10%, which may also contribute to the differences seen here compared to [49]. Having



Recent advances in the quantification of uncertainties in reaction theory 18

a targeted experimental study to measure elastic scattering at two close energies could

help us understand if these results are due to using real experimental data (not mock

data) or from the percent difference between the two incident energies.

4. Solving the few-body scattering problem

Using the potential parameters that led to the cross sections shown in Fig. ??,

we can propagate the uncertainties to the single-neutron transfer cross section,
40Ca(d,p)41Ca(g.s.) at 28.4 MeV. In this section, we consider two different three-

body approximations to (d, p) reaction, as discussed in Section 2, namely the distorted-

wave Born approximation (DWBA) and the adiabatic wave approximation (ADWA). In

DWBA, the incoming channel requires the deuteron-target distorted wave while ADWA

requires as input the proton-target and neutron-target distorted waves. We compare

DWBA and ADWA using both the uncorrelated frequentist and Bayesian optimizations,

Fig. ?? (a) and (b) respectively. Typically, a spectroscopic factor would be extracted

by normalizing the calculation to the data at forward angles. However, because there is

no data near this incident energy to compare to, we consider the spectroscopic factors

in each case to be unity and focus on the differences in the shape of the resulting cross

sections.

When the optical potential uncertainties are propagated through each reaction

formulation, we see a significant difference in shape of the angular distributions between

the DWBA and ADWA calculations, for both the frequentist and Bayesian techniques.

However, depending on the angular range over which the experimental data would be

measured, these calculations would still be difficult to distinguish, unless a detailed

angular distribution could be measured between zero and 40 degrees. For stable

targets, this is certainly feasible, but when considering reactions with unstable beams

where the experimental errors are typically larger and the angular coverage is reduced

due to the reaction being measured in inverse kinematics, these two models will

become increasingly difficult to distinguish. (Comparisons between the uncorrelated and

correlated frequentist optical potentials show similar angular dependence for the DWBA

and ADWA calculations, but the confidence intervals are significantly wider when the

correlated fit is propagated, as would be expected from the confidence intervals on the

elastic scattering in Fig. ??). It is clear that the larger uncertainties on the elastic

scattering calculations translate to larger uncertainties on the transfer cross section,

even though these uncertainties are propagated in a non-linear fashion.

5. The overlap function and interplay of other degrees of freedom

The last two items to consider are the overlap functions and the interplay of degrees of

freedom that are left out of the model space. For single-nucleon transfer reactions, when

we discuss the overlap function, we are thinking in particular of the bound-state wave

function between the target and the transferred nucleon. Typically, this interaction is
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assumed to have a Woods-Saxon shape with a standard geometry and a depth that

reproduces the nucleon-target binding energy. In [22], we showed that changing the

geometry while keeping the binding energy fixed could drastically change the resulting

transfer cross section, by a factor of two or more at the peak of the angular distribution.

These differences were seen when the radius parameter was changed from 1.1 fm to 1.3

fm. Between the two cases that were studied, the changes were larger in the more exotic

target, 132Sn, compared to the stable target, 48Ca.

We would like to study the uncertainties in the description of the bound state in

a Bayesian manner. One option to incorporate these uncertainties would be to sample

the geometry of the single-particle potential, constrained by narrow prior distributions

for the radius and diffuseness, and imposing that the potential depth reproduces the

binding energy. But one could also use constraint of other known properties. The

asymptotic normalization coefficient (ANC) provides one such constraint. Previous

reaction studies have shown that breakup cross sections are scaled by the ANC squared

[54, 55]. Since the ANC can be calculated microscopically for light nuclei [56] and

can be extracted unambiguously from peripheral reactions for many other nuclei [57],

the ANC constrain could strongly reduce the ambiguity in the singe-particle potential.

The effects of using the ANC as a constraint can be quantified with the current tools

(similarly to what was done in [49]). Were this to provide a significant constraint on

the single-particle potential, it would give a strong motivation to develop a program to

measure this quantity for a variety of heavy nuclei. In addition, the overlap function can

be extracted from the one-body density matrix (OBDM) [58, 59, 60], which has already

been calculated for the 40Ca target studied in this work. Extracting the uncertainties on

the overlap function using both of these methods could provide an interesting comparison

between the two constraints.

The last source of uncertainty in few-body reactions discussed in Section 1 comes

from the degrees of freedom left out of the model space. The most obvious source of this

uncertainty is the reduction of the many-body model space to a few-body problem. If one

could compare exact many-body calculations directly with the few-body calculations,

it would allow us to construct an emulator to connect the few-body to the many-body

calculations (which typically contains an uncertainty estimate such as from a Gaussian

Process [61]). Unfortunately, this is currently not possible for any but the lightest

systems and given the computational scale of ab-initio reaction calculations it would

take an unfeasibly long time.

Instead, what can be done effectively is to test different levels of approximations

in the few-body models. We have begun to explore the differences between DWBA

and ADWA calculations, two of the few-body approximations that are commonly made.

The study discussed in Sec. 4 explores the differences in the uncertainty interval of

the predicted cross sections when one used deuteron optical potential uncertainties

versus nucleon optical potential uncertainties. A quantitative comparison of ADWA

and DWBA can be performed more systematically using Bayesian evidence, as will be

discussed briefly in the conclusions.
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In the framework of model comparison, ADWA and DWBA are not relatable in

the sense that they are not nested: one is not a simplification of the other. It is best to

first consider nested models. In that context, the coupled-channel Born approximation

(CCBA) is a useful model, because one can easily switch of the coupling to the inelastic

state and reduce the model to DWBA. With the Bayesian machinery that we have put

in place, we can systematically study the effects that the addition of inelastic scattering

channels has on the widths and means of the confidence intervals for the cross sections.

This starting point would enable the development of the methodology needed for more

complex comparisons where one model is not just a subset of another.

6. Outlook

In this overview, we have described, using the example of 40Ca elastic scattering

and transfer reactions, recent progress made on quantifying uncertainties in few-body

reaction theory. We have shown the development from frequentist χ2 minimization

methods and covariance matrix propagation to a full Bayesian analysis in determining

and propagating uncertainties in effective interactions. In addition, under these two

frameworks, we can now directly compare how uncertainties are propagated from these

interactions when various approximations to the few-body model are made, namely

between the distorted-wave Born approximation and the adiabatic wave approximation.

Although much work has been done, there are many exciting opportunities ahead.

The long-term vision for the future of this work involves using Bayesian methodology

along two major interacting thrusts: the first concerns experimental design and second

is focused on improving theory itself (one might call it theory design). In this

section we discuss the overarching vision and specific developments that are needed

for implementing that vision.

One tool that we have identified as necessary to implement this long-term vision

is calculating the Bayesian evidence for various theories. Described briefly in Sec.

2.1, the Bayesian evidence is the denominator in Bayes’ theorem, Eq. (14), which

is a weighted sum over all possible models and provides a formal way of evaluating

relative probabilities of different models. Bayesian evidence is a numeric formulation of

Occam’s razor - a systematic way of showing that a simpler model which reproduces the

data should be favored over a more complex model. However, computing the Bayesian

evidence typically requires an integral over all of a model’s parameter space, a potentially

computationally demanding task, particularly as the models become more complex. In

addition, the interpretation of the value of the evidence is not always straight-forward.

Still, being able to calculate the Bayesian evidence is an important development for our

long-term uncertainty quantification vision.

In the first thrust of experimental design, there are many controllable conditions

in reaction experiments (beam energy, angular range, target, etc.), and the tools

developed thus far can help in determining those conditions that produce optimum

sensitivity to the quantities of interest, e.g. as in [62]. The work in [49] is the
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first step along this direction, but other tools should be considered when assessing

what combination of observables contains most information. Tools such as Principle

Component Analysis (PCA) and Bayesian evidence have been successfully applied in

other areas, e.g. [8, 11, 46, 63], and should be studied in the context of nuclear reactions.

The Bayesian methodology here discussed can also be extremely useful in improving

theoretical models. So far, due to computational considerations, the models used have

been very simple (optical model, DWBA, and ADWA). However, we understand that

there is important physics that these models do not contain. Ultimately, we want to

increase the complexity of the models, matching the state of the art in theory to the

degree called for by the data. In other words, the model should be as sophisticated at the

data requires. In addition, as we include more and more data in our analysis, there will

be an increasing demand on the physics included in the model to be able to describe all

observables simultaneously with the same accuracy. In order to start down this path,

we will need quantitative and reliable methods for model comparison. An essential

tool for performing model comparisons in the Bayesian world is the Bayesian evidence.

Also, model mixing is the natural sequence from model comparison, as a robust way to

incorporate the best aspects of each theory. Both of these developments, though, pose

specific challenges that still need to be addressed. What to do when the models are

not nested, and moreover when the models do not contain similar parameters? What

are the most efficient and accurate methods to perform numerical integrals over a large

parameter space? These are questions that must be investigated to ensure a robust

development in this area.
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