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Background: Separable interactions have a long history in nuclear physics. In the last few years, separable expansions have
been used to represent the optical potential between a nucleon (proton or neutron) and a target.

Purpose: We explore the non-local properties of these separable optical potentials as well as their convergence behavior.

Method: For a couple of cases, we use the generalized Ersnt-Shakin-Thaler scheme to generate separable interactions starting
from local optical potentials. We study the variation of the interaction with energy range and rank.

Results: We find that, overall the off-diagonal behavior of the converged separable interaction deviates from the Gaussian
form assumed by Perey and Buck. However, in the region surrounding the maximum depth the Gaussian form works
quite well. Focusing on this region, we study potentials describing neutron elastic scattering on 16O and 48Ca for beam
energies in the range of E =10-50 MeV and explore several measures of non-locality of the separable interactions.

Conclusions: When the energy range considered for generating the separable interaction is 0 ≤ Erange ≤ 50 MeV, the resulting
non-locality is large and target dependent. Contrarily, the nonlocality obtained including larger energy ranges in the
separable procedure is independent of the target and other details of the original local potential. We find that, even when
including in the expansion many support points with energy ranges 0 ≤ Erange ≤ 2400 MeV, the resulting potential
retains non-local behavior. Connections with microscopic optical potentials as well as other transformations used in the
nucleon-nucleon domain are made.

Keywords: nucleon elastic scattering, separable interactions, transfer nuclear reactions, optical potentials

I. INTRODUCTION

One of the greatest challenges in the physics of nu-
clei concerns the interactions themselves. Effective in-
teractions are developed to incapsulate the many de-
grees of freedom contained in the system. Much work
has been devoted to the development of both nucleon-
nucleon effective interactions [1], the so-called NN force,
and nucleon-nucleus effective interactions, referred to as
optical potentials (e.g. [2–4]). In this work we focus
on the latter, and in particular on their properties when
represented in separable form.

In the past, NN forces were derived phenomenologi-
cally with different levels of complexity (e.g. AV18 [5]
and Minnesota [6]). In the last two decades the field has
shifted toward generating these interactions in a more
controlled fashion through effective field theory (EFT)
[7]. Different transformations on NN forces have also
been proposed to enable greater efficiency when used in
many-body problems: these include Vlowk [8, 9] and Sim-
ilarity Renormalization Group methods [10]. In both of
these examples high-momentum components of the in-
teraction are shifted to low momentum off-diagonal be-
havior, while preserving the on-shell properties of the
interaction. When analyzed in coordinate space, these
transformations induce non-locality properties which do
not affect the two-body observables but can have an im-
pact in three- and more-body calculations. As will be
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discussed here, a similar situation can occur when con-
sidering nucleon-nucleus optical potentials.

Separable interactions have a long history in few-
nucleon physics (e.g. [11–13]). Because the three-
body Faddeev equations in momentum space [14] simplify
greatly when using separable interactions, this approach
was originally very popular. As computational capabili-
ties increased, the few-nucleon field evolved to using more
realistic non-separable interactions (e.g. [15, 16]). The
complications introduced by the infinite range Coulomb
force in the three-nucleon problem were handled sepa-
rately by screening and renormalization techniques [17].

For over a decade, the few-nucleon techniques have
been ported into nuclear reactions and in particular to de-
scribe deuteron induced reactions [18]. Deuteron induced
reactions are typically modeled as a three-body problem
n + p + A, the input being the effective nucleon-target
optical potentials. As was later realized, the Coulomb
screening method introduced by the Lisbon group [17]
could not be applied to deuteron induced reactions in-
volving heavy targets, due to the increased strength of
the Coulomb force [19]. It turns out that, by using a
separable representation for the optical potential, those
difficulties can be overcome [20]. As a result, in the last
few years separable interactions have made a come back
[21–23]. These developments use the Ernst, Shakin, and
Thaler scheme (EST) [24] to generate separable repre-
sentations for the nucleon optical potential.

While most optical potentials being used to interpret
nuclear reaction data are local [3, 4], separable interac-
tions with realistic truncations are intrinsically non-local.
Even though at the two-body level, the EST scheme en-
sures that scattering observables are exactly reproduced
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within a chosen energy range, this is not guaranteed
when using these interactions in the context of deuteron-
induced reactions, because the three-body equations will
pick up off-shell contributions. It has been shown that
local and non-local optical potentials can give rise to very
different transfer cross sections even if they are equiva-
lent at the two-body level [25–28]. It is therefore timely
to perform a dedicated study on the effect that the sepa-
rable EST transformation has on the properties of optical
potentials. This is precisely the goal of this work.

We study the scattering of neutrons on two closed shell
nuclei 16O and 48Ca at beam energies of experimental in-
terest, and explore the nonlocality properties of the sep-
arable interactions in coordinate space. This paper is
organized in the following way. In Section II we briefly
introduce the EST method and the standard Gaussian
non-locality form used to extract the non-local parame-
ter for the interaction. In Section III we present the re-
sults obtained for both targets and discuss these results
in the context of previous work. Finally, the conclusions
are presented in Section IV.

II. THEORETICAL CONSIDERATIONS

Deuteron induced reactions on intermediate to heavy
mass targets A are treated as three body problems con-
sisting of n+p+A. In such cases, the three-body dynam-
ics of the reaction is generated from the pairwise interac-
tions: Vnp reproducing the properties of the deuteron and
its continuum, and the nucleon optical potentials UnA
and UpA, typically describing nucleon scattering from the
target A. In general, these optical potentials are energy
dependent and contain an important imaginary term that
effectively takes into account the removal of flux from the
incident channel into other channels in the reaction that
are not explicitly included.

Although there have been many efforts to derive the
optical potential from first principles, the common prac-
tice is to use a larger set of elastic data to fit it [3, 4]. For
convenience these potentials are most often made local,
although isolated studies have been performed to include
nonlocality in these interactions [29]. For simplicity, in
this study, we focus on the neutron-target potentials, al-
though the results can be trivially generalized to proton-
target potentials.

To construct separable representations of the n−A op-
tical potentials UnA, the generalized EST scheme of [30]
is adopted. Although the original EST scheme focused
only on Hermitian potentials, the generalization pre-
sented in [30] extends its applicability to potentials that
are complex and energy dependent. Since this work fo-
cuses only on n − A interactions, we shall refer to these
as U and drop the nA subscript hereafter.

The key features of the generalized EST separable ex-
pansion can be summarized as follows. First, one defines

the states |ψ(+)
Ei
〉 and |ψ(−)

Ei
〉 , which are eigenstates of

the Hamiltonians H = H0 + U and H∗ = H0 + U∗, re-

spectively, with eigenvalues Ei ≥ 0 and H0 being the

free Hamiltonian. The states |ψ(+)
Ei
〉 are the usual scat-

tering wavefunctions fulfilling outgoing boundary condi-

tions, while the asymptotic behavior of |ψ(−)
Ei
〉 is that of

an incoming spherical wave. Second, the two-body po-

tential U is expanded using the basis states {|ψ(+)
Eiα
〉} and

{|ψ(−)
Eiα
〉}, leading to the partial wave separable potential

uα(E) =
N∑

i,j=1

|hiα〉λαij(E)〈h̃jα| , (1)

where |hiα〉 ≡ Uα(Ei)|ψ(+)
Eiα
〉, |h̃iα〉 ≡ U∗α(E)|ψ(−)

Eiα
〉, and

E is the two-body center of mass (c.m.) energy. Here
α ≡ {lj} denotes a single channel with l being the the
orbital angular momentum and j = |l±1/2| the total an-
gular momentum. The number of basis states N defines
the rank of the separable potential and the energy eigen-
values Ei are called EST support points. We note that
|hiα〉 and 〈h̃iα| are related to the half-shell transition (t)
matrix by

|hiα〉 = Uα(Ei)|ψ(+)
Eiα
〉 = tα(Ei)|pi〉 (2)

〈h̃iα| = 〈ψ(−)
Eiα
|Uα(Ei) = 〈pi|tα(Ei), (3)

where pi =
√

2µEi is the on-shell momentum, with µ
being the reduced mass. The absolute square of the on-
shell tmatrix elements relates directly to the cross section
for elastic scattering. The half-shell t matrix elements are
obtained in momentum space by solving the Lippmann-
Schwinger (LS) equation

tα(Ei)|pi〉 = Uα(Ei)|pi〉+ Uα(Ei)G0(Ei)tα(Ei)|pi〉. (4)

Negative energy EST support points can also be included
in the expansion, and in that case the bound state wave-
functions replace the incoming and outgoing scattering
states (see [23] for details).

Finally, one defines the coupling matrix λαij(E) by im-
posing the constraint

〈ψ(−)
Eiα
| Uα (E)|ψ(+)

Ejα
〉 = 〈ψ(−)

Eiα
|uα(E)|ψ(+)

Ejα
〉

=
N∑

n,m=1

〈ψ(−)
Eiα
|hnα〉λαnm(E)〈h̃mα|ψ(+)

Ejα
〉. (5)

This definition of λαij(E) ensures that the matrix elements
of the original potential U(E) and the separable potential
uα(E) between the basis states are identical for all ener-
gies E. For the special case where E corresponds to one
of the EST support points, Eq. (5) implies that the eigen-
states of H0 + u(Ei) coincide with those of H0 + U(Ei).
This guarantees that the wavefunctions obtained using
the original potential U are identical to the ones com-
puted with its separable representation u at the EST
support points. This is a crucial property of the origi-
nal EST scheme, and is by construction preserved in the
generalized expansion for complex potentials.
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III. RESULTS

We consider the energy dependent CH89 global opti-
cal potential [3] and apply the EST scheme to produce
separable forms. We analyze the properties of the result-
ing potential at two scattering energies, E = 5 MeV and
E = 20 MeV, which span beam energies of experimental
interest for applications involving transfer reactions. We
consider both the number of support points included in
the expansion (the rank N) and the energy range Erange
for the support points. Support points are chosen wisely
based on the structure of the two-body continuum. One
can consider that effectively in EST we are interpolating
the S-matrix S(E) (or T-matrix) and, as such, we need
to choose the set Ei that will enable the reproduction of
the original S(E).

In Table I the specifications of the EST parameters, in-
cluding the rank used in the expansions and the energies
corresponding to the support points, are provided. When
a range of energy is given, it means that an even spacing
of support points within that range were included. While
a rank N < 10 is usually sufficient to describe nucleon
scattering observables up to 20 MeV, a much higher rank
is needed to reach convergence of the potential matrix el-
ements uα(r′, r). Thus we performed calculations up to
N = 53. We find that the separable interactions obtained
depend strongly on the energy range included in the EST
procedure. Again, to fully explore this dependence, we
consider multiple values of Erange, going all the way up
to 2400 MeV.

The S-matrices generated with the separable interac-
tions agree with those obtained directly with the original
CH89 potential within their corresponding energy range
but expectedly fail to provide an accurate description
outside their energy range. Plotted in Fig. 1 is the real
part of the S-matrix resulting from separable interactions
with different Erange, for s-wave neutrons scattering off
48Ca.

Erange [MeV] N Support points Ei [MeV]

EST10-Ca 10 10 0.5 MeV ; 0.5-10

EST40-Ca 40 12 0.5, 7 MeV ; 7-40

EST400-Ca 400 14 0.5, 10, 30, 60, 100; 100-400

EST800-Ca 800 22 0.5, 10, 30, 60, 100; 100-800

EST1200-Ca 1200 27 0.5, 10, 30, 60, 100; 100-1200

EST1600-Ca 1600 35 0.5, 10, 30, 60, 100; 100-1600

EST2000-Ca 2000 45 0.5, 10, 30, 60, 100; 100-2000

EST2400-Ca 2400 53 0.5, 10, 30, 60, 100; 100-2400

TABLE I: The EST parameters for the n-48Ca separable po-
tentials. Erange specifies the highest support point used, and
N is the number of EST support points needed for conver-
gence with a given Erange. The specific energies of the sup-
port points are shown in the last column; when a range of
energy is given, it means that an even spacing of support
points within that range were included.

FIG. 1: [Color online] Real part of the S-matrix as a function
of the scattering energy for the various energy ranges con-
sidered in the EST expansion (example shown for 48Ca(n,n)
scattering ` = 0.

A. Radial dependence of the separable interaction

Next we consider the radial dependence of the sepa-
rable interactions. While the original CH89 optical po-
tential is local, the resulting separable interactions are
non-local. To best illustrate this we present in Figs. 2
and 3 the real part of the n-48Ca separable potential
Re[uα(r, r′)] for E =5 MeV and E =20 MeV respec-
tively. We show two relevant partial waves (Jπ = 1/2+

on the left panels and Jπ = 3/2− on the right panels)
as well as the two extreme cases for the energy range
(the lowest Erange = 10 MeV on the top and the highest
Erange = 2400 MeV on the bottom).

Several characteristics emerge from the analysis.

• First of all, the separable interactions for Jπ =
1/2+; ` = 0 have the minimum at r = 0, indepen-
dently of their rank or energy range. This is shown
in panels (a) and (c) of Figs. 2 and 3. Expectedly,
introducing the repulsion from the centrifugal bar-
rier shifts the minimum of the potential away from
r = 0 (shown in panels (b) and (d) for the partial
wave Jπ = 3/2−; ` = 1).

• Secondly, the potentials with smaller energy range
(shown in panels (a) and (b)) have strong off-
diagonal components. As we increase the energy
range included in the EST procedure, the off-
diagonal components shrink gradually toward the
diagonal. Ultimately the potentials with the high-
est energy range (shown in panels (c) and (d)) ap-
proach the diagonal form of the original CH89 po-
tential.

• Thirdly, the off-diagonal structures of the separa-
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FIG. 2: [Color online] Radial dependence of the real part of
the separable interaction obtained for 48Ca(n,n) at 5 MeV: (a)
Jπ = 1/2+ (Erange = 10 MeV); (b) Jπ = 3/2− (Erange = 10
MeV); (c) Jπ = 1/2+ (Erange = 2400 MeV); (d) Jπ = 3/2−

(Erange = 2400 MeV). The pale (yellow) and dark (blue)
colors correspond to the maxima and minima, respectively.
The color scale varies significantly between panels; in this
figure we focus only the geometry of the potentials.

ble interactions produced for E=5 MeV (Fig. 2) are
identical to those obtained for E=20 MeV (Fig. 3).
One should keep in mind that CH89 is energy de-
pendent and therefore one might expect the corre-
sponding separable interaction to be energy depen-
dent too. We will return to this point in Section
C.

The three broad features discussed before are persistent
throughout our investigations, whether looking into the
real or the imaginary parts of the potential, whether con-
sidering low or high angular momentum `. Also, the sep-
arable interactions generated for 16O(n,n)16O have the
same qualitative characteristics as those shown in Figs. 2
and 3.

In order to best quantify the off-diagonal properties,
we consider the separable potential cross-diagonals by
plotting Re[uα(r, r′)] as a function of (r − r′), while fix-
ing (r + r′), in the region where the potential has its
deep pocket. For ` = 1, we take (r + r′) such that the
cross diagonal curve goes through the minimum of each
potential. For ` = 0 these minima occur at the origin,
so we instead fix (r + r′) at 0.4 fm. In Fig. 4 we show
the cross-diagonal behavior for the ` = 0 potential for
neutrons on 48Ca at 5 MeV. A similar plot is shown in
Fig. 5 for ` = 1 neutrons on 48Ca also at 5 MeV.

Figs. 4a and 5a show the convergence of the potential
with rank for a fixed energy range Erange = 40 MeV.

FIG. 3: [Color online] Radial dependence of the real part of
the separable interaction obtained for 48Ca(n,n) at 20 MeV:
(a) Jπ = 1/2+ (Erange = 20 MeV); (b) Jπ = 3/2− (Erange =
20 MeV); (c) Jπ = 1/2+ (Erange = 2400 MeV); (d) Jπ =
3/2− (Erange = 2400 MeV). The pale (yellow) and dark (blue)
colors correspond to the maxima and minima, respectively.
The color scale varies significantly between panels; in this
figure we focus only the geometry of the potentials.

Results for N = 12 are already converged and the be-
havior of the cross diagonal in this deep pocket is ap-
proximately Gaussian. In contrast, Figs. 4b and 5b show
a very strong dependence of the cross diagonal potentials
with the energy range included when calculating the sep-
arable interaction. With increasing Erange, the interac-
tions become deeper and more localized. In addition, we
can analyze the cross-diagonal plots in the surface region,
when the interaction reaches its maximum (Figs. 4c and
5c). The cross-diagonal plots show a strong dependence
on the Erange. This behavior merits further inspection.

B. Non-locality behavior of the separable
expansion

In order to quantify the non-locality induced in the in-
teraction we use the form introduced by Perey and Buck
[29]. Perey-Buck assume that the nonlocality of the op-
tical potential is Gaussian:

UPB(r, r′) = exp

(
−
∣∣∣∣r− r′

β

∣∣∣∣2
)
UWS

(
r + r′

2

)
(6)

where UWS is a local Woods-Saxon form and β is the
nonlocality parameter.

The partial-wave-decomposed interaction takes the
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FIG. 4: [Color online] Cross diagonal of the real part of the
separable interaction obtained for 48Ca(n,n) at 5 MeV, Jπ =
1/2+: (a) comparing different ranks for Erange = 40 MeV,
with (r + r′) = 0.4 fm (b) comparing different Erange with
(r + r′) = 0.4 fm (c) comparing different Erange through the
potential maxima.

form (See [29]):

uPB` (r, r′) = 2i`

π
1
2 β
UWS( 1

2 (r + r′))

×j`(−i 2rr
′

β2 ) exp
(
− r2+r′2

β2

)
. (7)

In order to quantify the nonlocality, Eq.(7) was used to fit
the cross-diagonal shapes of Figs.4a and 5a and extract
the nonlocality parameter β. In the fits, an arbitrary
normalization was chosen and only the cross diagonal
behavior at a fixed r + r′ was considered. These fits
are shown by the black solid lines in Figs.4a and 5a for
48Ca(n,n) at 5 MeV.

We repeat this procedure for each Erange considered.
and find that, consistently, around the minimum, and
in the vicinity of (r − r′) = 0, the separable interaction
can be approximated by the functional form in Eq.(7).
However, outside the deep pocket of the potential, the
behavior is not well represented by the Perey and Buck
form and, for that reason, we also study other measures
of nonlocality. Particularly, we consider the distance be-
tween innermost roots ∆roots and the distance between
peaks ∆peaks of the interaction, along the cross diagonal
in the surface region depicted in Figs. 4(c) and 5(c).

FIG. 5: [Color online] Cross diagonal of the real part of the
separable interaction obtained for 48Ca(n,n) at 5 MeV, Jπ =
3/2−: (a) comparing different ranks for Erange = 40 MeV,
through the potential minima (b) comparing different Erange
through the potential minima (c) comparing different Erange
through the potential maxima.

The results for β as a function of Erange are compiled
in Figs. 6(a) and 7(a) for ` = 0 and ` = 1. We include all
cases considered, namely neutrons on 16O at 5 MeV (red
squares), 48Ca at 5 MeV (green diamonds), 16O at 20
MeV (blue circles), 48Ca at 20 MeV (yellow stars). The
values of β include an error bar corresponding to one
standard deviation obtained in the fit. In addition, Figs.
6b and 7b show the distance between maxima along the
cross diagonal ∆peaks and Figs. 6c and 7c show the dis-
tance between the innermost roots of the potential ∆roots

along the cross diagonal taken through the maxima of the
potential. Finally, the depths Udepth, defined as the min-
imum along the same cross-diagonal from which β is also
shown as a function of Erange in Figs. 6d and 7d.

We first focus on the energy dependence of the separa-
ble potential. Figs. 6 and 7 illustrate clearly that results
for the nonlocal parameters for E = 5 MeV are essen-
tially identical to those for E = 20 MeV (yellow stars are
on top of green diamonds and blue circles are on top of
red squares). As mentioned before, this may come as a
surprise given that CH89 is strongly energy dependent.
However, that energy dependence in the interaction is
included through the model space (namely Erange) and
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FIG. 6: [Color online] Non-locality properties as a function
of the energy range for ` = 0 interactions: a) the non-locality
parameter β; b) the distance between peaks ∆peaks (fm); the
distance between roots ∆roots (fm); the depth in the minimum
Udepth (MeV).

becomes encoded in the off-diagonal t matrix terms. It
was shown in [31] (see page 18), that the optical model
potential is intrinsically non-local and energy-dependent.
Imposing locality on the optical potential introduces an
additional form of energy dependence. The similarity of
the results at 5 MeV and 20 MeV reveals that the in-
trinsic energy dependence the optical model potential is
weak, which is consistent with the findings of Ref. [30]. In
that work it was observed that the t matrices obtained
with the energy-independent EST scheme [21] were in
close agreement with those obtained with the energy-
dependent scheme discussed in Section II [35].

Second, we examine the dependence of the nonlocal
behavior of the separable potential with the target. For

FIG. 7: [Color online] Non-locality properties as a function
of the energy range for ` = 1 interactions: a) the non-locality
parameter β; b) the distance between peaks ∆peaks (fm); the
distance between roots ∆roots (fm); the depth in the minimum
Udepth (MeV).

small values of the energy range, i.e., Erange < 50 MeV,
the results for 16O differ from those corresponding to
48Ca. This is not surprising since the CH89 potential
depends on the mass of the target. However, this dif-
ference vanishes as the energy range approaches hun-
dreds of MeV. In fact, for a given channel, the nonlocal-
ity is determined exclusively by the energy range. This
suggests a universal correlation between the nonlocality
and energy range. To understand how this universal-
ity arises we recall that the basis states for the EST ex-
pansion are given by the Lippmann-Schwinger equation
|ψEi
〉 = |pi〉 + G0(Ei)U(Ei)|ψEi

〉. The term containing
the potential is thus inversely proportional to the energy,
so that |ψEi

〉 = |pi〉 in the limit Ei → ∞. Therefore,
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the potential should approach a limit that is indepen-
dent of the details of the original interaction for large
energy ranges.

Thirdly, although qualitatively the same, these prop-
erties are quantitatively dependent on the partial wave
considered. In fact, when increasing the angular mo-
mentum, the deviation from the Gaussian form is more
pronounced. However, as mentioned before, around the
minimum, the Gaussian form is a good approximation.

While the non-locality parameter varies significantly
within the energy ranges considered, one does expect it to
go to zero when Erange →∞ because the original CH89
potential is local. To investigate this, we next consider
the functional dependence of β(Erange) and fit its Erange
dependence with to two trial functions, the first assuming
the behavior is exponential and the second assuming the
behavior is a power law:

β1(Erange) = a · exp(b · Ecrange) + d , (8)

β2(Erange) =
a

(Erange + b)c
+ d . (9)

(10)

The results for the exponential fit of neutrons on 16O
at 5 MeV are plotted in Figs. 6 and 7 (black solid
line). As expected, the results are mostly consistent with
β(Erange → ∞) = 0. However, the rate of convergence
differs strongly with angular momentum and is always
slower for the partial waves with higher angular momen-
tum. For the other nonlocality measures, the fits (solid
black lines in panels (b) and (c) of Figs. 6 and 7) assume
the same exponential form as for β, while for the depths
(solid black lines in Figs. 6(d) and 7(d)), the fit is linear.

The asymptotic value β(Erange →∞) = d for all cases
here considered are summarized in Table II. Note that in
all practical applications used before [23, 32], the range
considered was Erange = 50 MeV, and therefore the po-
tentials would exhibit strong non-locality.

C. Connection with other frameworks

Now that the properties of the nonlocal separable po-
tentials have been uncovered, it is useful to compare the

TABLE II: Parameters for the fits of β(Erange).

E (MeV) Target Type d (J = 1/2+) d (J = 3/2−)

5 16O Exponential 0.27 ± 0.05 -0.03 ± 0.60

Power Law -0.04 ± 0.23 -0.79 ± 0.85

20 16O Exponential 0.27 ± 0.05 -0.06 ± 0.62

Power Law -0.04 ± 0.24 -0.86 ± 0.88

5 48Ca Exponential 0.31 ± 0.06 0.29 ± 0.03

Power Law -0.09 ± 0.82 -0.07 ± 0.06

20 48Ca Exponential 0.31 ± 0.06 0.29 ± 0.03

Power Law -0.09 ± 0.83 -0.07 ± 0.06

separable EST to other approaches. We first discuss the
assumptions by Perey and Buck [29]. Perey and Buck
use a Gaussian form for the non-locality, estimate the
nonlocality parameter to be β = 0.85 fm and obtain the
remaining parameters of the interaction from fitting an-
gular distributions of neutrons scattering off 208Pb at 7
MeV and 14.5 MeV. The separable interaction we obtain
based on a global phenomenological potential for this en-
ergy range is β = 0.89 − 0.97 fm for ` = 0, consistent
with Perey and Buck’s assumptions. The value for the
nonlocal parameter is significantly larger for higher par-
tial waves, β = 1.46− 1.59 fm for ` = 1. It is important
to realize that the original Perey and Buck phenomeno-
logical interaction has no energy dependence nor target
dependence except for the standard radius scaling with
the mass).

Next we consider microscopic potentials such as [33,
34]. These are generated from a truncated many-body
framework which effectively impose an Erange in the cal-
culation of the optical potential. Although the behavior
of the microscopic optical potential is not Gaussian, the
overall shape of u(r, r′) cross-diagonals for the case of
48Ca [34] are similar to those shown in Fig. 5. The mi-

croscopic interaction exhibits β̂ ≈ 1 fm. For 16O [33], the
cross diagonals are sufficiently different that a quantita-
tive comparison makes no sense. If we use our separable
framework to determine the effective energy range in-
cluded in a given interaction, one would conclude that the
microscopic optical potentials of [33, 34] contain physics
in the region Erange < 10 MeV.

IV. CONCLUSIONS

Since the EST separable method is now being applied
to nucleon-nucleus optical potentials for nuclear reactions
calculations [21–23], it is important to understand in de-
tail the properties this procedure is inducing in the in-
teractions. Of particular importance is the nonlocality,
which has been shown to modify reaction observables.
With this goal in mind, we have performed a system-
atic study, for neutron scattering on two stable targets
(16O and 48Ca) at two beam energies E = 5 MeV and
E = 20 MeV. Starting from a local phenomenological op-
tical potential, we have generated separable interactions
that represent the neutron scattering process. We have
studied the convergence with the rank and the energy
range included in constructing the interaction.

We find that the separable procedure induces a large
nonlocality in the interaction when Erange < 50 MeV.
Morever, we observe that, even when including in the
expansion many support points with energy ranges up to
0 ≤ E ≤ 2400 MeV, the resulting potential retains non-
local behavior. This nonlocality becomes considerably
smaller as Erange is increased, eventually tending to zero
as Erange → ∞ as expected. While for small Erange
the magnitude of the nonlocality depends on the target,
this dependence is washed away for increasing Erange,
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following a universal curve. Focusing on the deep pocket
of the separable interaction, for all cases we find that the
nonlocality increases with angular momentum.

While there is a strong dependence of the separable op-
tical potential with Erange used to construct it, there is
virtually no dependence on the beam energy. The strong
energy dependence in the original phenomenological op-
tical potential disappears once nonlocality is allowed in
the interaction.

We also compare our results with other studies on non-
local optical potentials. We find that overall the separa-
ble interactions are not well described by the Gaussian
form used by Perey and Buck [29]. However, around the
minimum, they can be approximated by a Gaussian form
and for s-waves the magnitude of nonlocality we obtain
is similar to that assumed by [29]. We also compare our
interactions for 48Ca with those obtained from ab-initio
calculations [34].

In closing, it is useful to think about the EST proce-
dure in the context of renormalization group theory. In
[9], the effective potential is defined through the Block-
Horowitz equation. This equation explicitly re-sums all
the higher momentum modes while preserving the low-
energy momentum scattering amplitudes. Because the

effective interaction produced this way is energy depen-
dent, another transformation is needed to arrive at an in-
teraction that is only momentum dependent Vlowk(k, k′).
A direct comparison between EST and Vlowk is currently
not possible (because Vlowk has not been applied to op-
tical potentials) but could be very enlightenning. For
both the EST and Vlowk schemes, the potentials are con-
strained so that the bound and scattering states of the
original interaction are reproduced over a finite energy
range. As such, both techniques have the effect of shuf-
fling high momentum components into non-local behav-
ior of the effective interaction.
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