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THE POLYLOG QUOTIENT AND THE GONCHAROV
QUOTIENT IN COMPUTATIONAL CHABAUTY-KIM
THEORY II

ISHAI DAN-COHEN AND DAVID CORWIN

ABSTRACT. This is the second installment in a multi-part series
starting with [CDC]|. Building on Dan-Cohen-Wewers [DCW2],
Dan-Cohen [DC], and Brown [Brol], we push the computational
boundary of our explicit motivic version of Kim’s method in the
case of the thrice punctured line over an open subscheme of Spec Z.
To do so, we develop a refined version of the algorithm of [DCW?2]
tailored specifically to this case. We also commit ourselves fully
to working with the polylogarithmic quotient. This allows us to
restrict our calculus with motivic iterated integrals to the so-called
depth-one part of the mixed Tate Galois group studied extensively
by Goncharov. An application was given in [CDC] where we veri-
fied Kim’s conjecture in an interesting new case.

1. INTRODUCTION

Work by Dan-Cohen-Wewers [DCW1, DCW2| and by Dan-Cohen
[DC| produced an algorithm, based on the Chabauty—Kim method, for
computing the integral points of P!\{0, 1, 0} over open integer schemes
whose halting was, and remains, conditional on deep conjectures by
Kim and by Goncharov, among others.! This algorithm restricted at-
tention to the polylogarithmic quotient of the unipotent fundamental
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1 Practical (and unconditional) methods for solving the S-unit equation predate
this work, and can be found, for instance, in de Weger [dW] who uses the theory
of logarithmic forms of Baker—Wiistholz [BW] (see also Everste-Gydéry [EG] for a
general discussion). A more recent approach, due to Kédnel-Matchke [vKM] is based
on the Shimura-Taniyama conjecture. Our primary purpose here is not to compete
with these other methods, but rather, to develop Kim’s theory in a special case, to
explore its interaction with the theory of mixed Tate motives and motivic iterated
integrals, and to provide new numerical evidence for Kim’s conjecture.
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group 7™ (X ), but minimized its reliance on the polylogarithmic quo-
tient with a view towards eventually constructing an algorithm for the
full unipotent fundamental group. The resulting algorithm (to quote
an anonymous referee) provides proof of concept. In terms of practical
applications, however, it is quite unwieldy.

Francis Brown [Brol]| introduced various new techniques which he
was able to use to construct functions for open subschemes of SpecZ
in several examples. His techniques capitalize on the relative simplic-
ity of SpecZ and of the polylogarithmic quotient, and inspired us to
attempt to construct a simpler algorithm, and to continue to push the
computational boundary, for open subschemes of SpecZ. Brown also
suggested (in private communication) that we might be able to replace
the full mixed Tate Galois group with a quotient tailored specifically
to the polylogarithmic quotient of the unipotent fundamental group.

In part one of this series [CDC| (currently expected to have three
parts), we worked out an example which goes beyond the examples of
[DCW1, DCW2, DC|. This example displayed several new and inter-
esting phenomena. It also helped us refine our methods, and led the
way to the work presented here.

In this second installment, we present an algorithm based on the ex-
ample considered in part I on the one hand, and based on Goncharov’s
investigations of the depth-1 quotient [Gonl] on the other.? Let K be
a number field and let Z be either Spec K (a “number scheme”) or open
in Spec Ok (an “open integer scheme”). Associated to the Goncharov
quotient, as we will call it (segment 2.3.2), is a Hopf subalgebra A%(Z7)
of the mixed Tate Hopf algebra A(Z) of framed mixed Tate motives
over Z. This subalgebra already contains the extension spaces

K 1(Z) = Ext4(Q(0), Q(n) = Au(2),
and was studied extensively by Goncharov in connection with Zagier’s
conjecture relating special values of zeta functions of number fields to
polylogarithms. This eventually led to his depth filtration conjecture
|Gon2[; its depth-1 part says that A%(Spec K) is generated by Gon-
charov’s (unipotent) motivic polylogarithms Li}(z) (for ¢ > 1 and x

2 The remainder of the introduction presupposes some familiarity with the sur-
rounding literature (on mixed Tate motives, the unipotent fundamental group,
motivic iterated integrals, p-adic polylogarithms, Kim’s method, and Kim’s con-
jecture) as well as passing familiarity with the previously constructed algorithm
of [DCW2, DCJ, and focuses on comparing old with new. The reader who is un-
familiar with this material may wish to skip forward to section 2 (where some
of this background material is reviewed), or to go back to [DCW2] for a general
introduction.
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a K-point of P\{0,1,0}). Although Zagier’s conjecture, if stated in
terms of values of zeta functions, is tautological for Q, the depth-1 con-
jecture is still open even in this case. For our purposes we must refine
this conjecture somewhat with respect to ramification. The result-
ing integral depth-1 conjecture (§2.3.6) for open subschemes of SpecZ
is based on a study of the half-weight-2 part from [DCW1|, and is of
interest, we hope, in its own right. Indeed, we believe that an investiga-
tion of this conjecture and an attempt to generalize it to higher number
fields (even in half-weight 2, where the case Z = Spec K is known and
where the difference between A(Z) and A%(Z) is not yet visible) may
lead to near-term progress towards Goncharov’s conjecture.

Focusing attention on the Goncharov quotient presents several si-
multaneous advantages. Most obviously, the dimensions of the graded
pieces AY(Z) are far smaller than those of A(Z). Correspondingly, if
our integral depth-1 conjecture holds, our search through the vast col-
lection of motivic iterated integrals for candidate basis elements may
be limited to the comparatively small set of n-logarithms. In turn,
working with n-logarithms allows us to avoid the complex combina-
torics of the Goncharov coproduct formula [Gon2, Theorem 1.2]. Less
obvious but perhaps equally important is that working with the Gon-
charov and polylogarithmic quotients allows us to make the geometry
of the “geometric algorithm” (which computes the scheme theoretic im-
age of the universal cocycle-evaluation map) fully explicit: we obtain
a homomorphism of polynomial Q-algebras given by an explicit family
of polynomials about which we learned from Brown. As a result, our
new algorithm is far simpler and more efficient than the algorithm of
[DCW2]|. It is therefore reasonable and worth-while to give a more ex-
plicit construction, with the promise of actual Sage code and ensuing
numerical results (beyond those of [CDC]) in the near future.

While the Goncharov quotient holds much promise, it also presented
us with a challenge. Unlike the full mixed Tate Galois group, the
Goncharov quotient is not free, and so its coordinate ring A%(Z7) is
not a shuffle algebra. This threatened to send us looking through Gon-
charov’s intricate analysis for information (actual or conjectural) about
higher extension groups in the corresponding category of “Goncharov
motives”. Fortunately, as we discovered, by remembering the inclusion

AY(Z) c A(Z)

and working sometimes in A%(Z) and sometimes in A(Z), we can avoid
direct confrontation with the structure of A%(7).

A key observation for our work is that replacing the full mixed Tate
Galois group of Z by its Goncharov quotient does not shrink the p-adic
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analytic loci X (Z,), < X(Z,) that our algorithm computes. Actually,
our loci are potentially larger than those that intervene in Kim’s con-
jecture [BDCKW]. One difference comes, of course, from considering
only the polylogarithmic quotient of the unipotent fundamental group
in place of the full unipotent fundamental group. The belief that we
should nevertheless have equality

(*) X(Z) = X(Zyp)n for n sufficiently large

has travelled down a somewhat bumpy road. Kim showed in [Kiml|
that the loci X(Z,), associated to the polylogarithmic quotient are
finite for sufficiently large n and in [Kim2| that the same holds for
open integer schemes associated to totally real number fields. Experts
expressed the hope (if only tentatively and quietly) that the polyloga-
rithmic quotient should be big enough for Kim’s conjecture. However,
upon completing our realization of the case Z[1/3] in [CDC], we dis-
covered by computing numerically that —1 € X (Z,), in that case, and
subsequently showed more generally that for Z = SpecZ|[1/q]| (for any
prime ¢ # p), we have

—1e X(Zy)n for all n.

This meant that (*) was in fact false as stated, since for ¢ # 2,
X(Z|1/q]) = & (so, in particular, does not contain —1). Nevertheless,
we view this bump in the road as reflecting a particular interaction of
the polylogarithmic quotient with roots of unity, or, at the very least, as
a result of its symmetry-breaking nature. We may thus symmetrize our
loci with respect to the S3 action and, thus modified, expect property
(*) to hold after all.

There is also a second, less obvious difference between Kim’s loci and
ours. This too intervened already in [DC]. While Kim’s version may be
defined in terms of the scheme-theoretic image of a p-adic realization
map between nonabelian cohomology varieties over Q,, our algorithm
computes the scheme theoretic image of the rationally-defined universal
cocycle evaluation map, and only then pulls back the result to Q,. The
result is again a possible enlargement of the resulting loci. However,
as discussed in loc. cit., if the p-adic period conjecture holds, then
there is no such enlargement after all. Period conjecture or no period
conjecture, the final result is that our algorithm may be used to verify
Kim’s conjecture, but can have little bearing on any attempt to falsify
the conjecture.

Because of its relative simplicity, we find it appropriate to describe
the new algorithm in a somewhat more informal style than that of loc.
cit., which we hope will make the present article more approachable.
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A concrete case (“Z[1/3] in depth 47), which provides new numerical
evidence for Kim’s conjecture, is worked out in [CDC]. Let us point out,
however, that that work should not be viewed as merely executing the
algorithm constructed in this work since the history is rather reversed:
as the numbering suggests, the example worked out in [CDC]| came
first, and many of the ideas that went into constructing the present
algorithm first developed in working out the example.

Acknowledgements. We would like to thank Bjorn Poonen and Her-
bert Gangl for their interest and encouragement. We would like to
thank the referee for a careful reading and many helpful comments.

2. CONJECTURES AND THEOREMS

In this section, which doubles as a long introduction, we give pre-
cise statements of the conjectures on which our algorithm depends for
halting. We also announce the success of our algorithm in computing
the set of integral points and the conditional halting in a complemen-
tary pair of theorems (2.4.6) similar to the main theorems of [DC]. As
promised, we begin by summarizing background material; details may
be found in [DCW2, DC, CDC]| and the references given there.

2.1. Mixed Tate motives and mixed Tate Galois group. Fix an
open subscheme Z < SpecZ and a prime p € Z. Write

S :=SpecZ\Z ={q1,.-.,qs}

We let K )(Z ) denote the n-eigenspace for the Adams operations on
the rational Quillen K-group K,,(Z) ® Q. Historically (due in large
part to the work of Borel [Borl, Bor2]), it was known that

(n) _ JQog"(q1), .-, 1og¥(qs))  n =1,
Kon-1(2) = { (l@cu(n) nodd > 3,

and that all other Adams pieces vanish. Here, log"(¢;) and (*(n) are
certain special elements. Moreover, there were certain naturally defined
p-adic regulator maps

reg : K\ | — Q,
and

reg(log*(¢;)) = log”(:)

reg(¢*(n)) = ¢"(n),

the p-adic logarithm and zeta value respectively.
The p-adic zeta values (P(n) (n odd > 3) are known to be nonzero

for p regular. A small piece of the p-adic period conjecture asserts that
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the same holds for all primes p. See Examples 2.19 and Remark 2.20
of Furusho [Fur| for a discussion of this and related conjectures.

2.1.1. The theory of mixed Tate motives puts the K-groups above
inside a big Hopf algebra. To define it, let MT(Z) denote the category
of mixed Tate motives unramified over Z. The category MT(Z) is
Q-Tannakian; its simple objects up to isomorphism are precisely the
tensor powers of @Q(1). De Rham cohomology gives rise to a fiber
functor

dR* : MT(Z) — Vect Q.
We have
Hom(Q(0),Q(0)) = Q,
Ext!(Q(0).Q(n) = K3, 4(2)
and all other Ext groups Ext'(Q(0),Q(n)) vanish. This means that
MT(Z) is a mized Tate category, and the results that follow are formal
consequences of the axioms; see, for instance, Appendix A of Goncharov
[Gon2].
There is a semi-direct product decomposition
m'N(Z) = Ant®(dR*) = 71(2) % G,,
in which 7"™(7) is free prounipotent with abelianization
(*) mN(Z)™ = @ Ext'(Q(0),Q(n))",
n=1
and A(Z) := O(m™(2)) is a shuffle algebra: in terms of homogeneous
generators
Tl Ts and 03,05,07, ...
(with 7; in degree —1 and o; in degree —i) A(Z) has vector space basis
{fw ‘ w a word in 7'1,...,7'3,0'3,0'5,...}
called a “shuffle basis” on which the “shuffle” product is given by
f w’ f w"” = Z f ws
shuffles w of w’,w”
and the “deconcatenation” coproduct is given by
Afw: Z fw’®fw”~
Equation (*) may be written dually as a family of exact sequences

(+V) 0 — Ext!(Q(0),Q(n)) — 4, 2> P A®A4,

i+tj=nij>1
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where A’ is the reduced coproduct:
A(a)=Ala) - (1®a+a®1).

2.2. Unipotent fundamental group and motivic polylogarithms.
Let X = PL\{0,1,c0}. We use the tangent vector 1, as base point. We
define 7" (X)) to be the fundamental group Aut®(wy) of the Tannakian
category of unipotent connections on Xg at the fiber functor associ-
ated to 1o. Similarly, we define the path torsor associated to a point
xe X(Z) by

(X, 0,7) := Isom®(wy, w,).
According to Deligne [Del], 71 (X, 0, z) is canonically trivialized by a
path ,pi® € (X, 0,2)(Q) (see [DCW2, §3.1.7] and the references
given there). Moreover, 7™ (X) is free prounipotent on two generators
g, €1 representing monodromy about 0 and 1, respectively. Conse-
quently,

A(X) == O(m"™(X))

is a shuffle algebra on the shuffle basis eg, e;. Deligne-Goncharov [DG]|
(with subsequent different approaches, for instance, by Levine [Lev]
and Dan-Cohen—Schlank [DCS|) construct a natural action of w7 (27)
on (X, 0, z).

Special elements Li)(z) € A,(Z) were constructed by Goncharov
[DG]; these were called motivic polylogarithms in loc. cit. but are
called unipotent motivic polylogarithms by Francis Brown [Bro2| to
distinguish them from his somewhat different notion. (In fact the n-
logarithms (or polylogarithms) Li} (z) form a special class among the
more general multiple polylogarithms, which, in turn, are a special class
of (unipotent motivic) iterated integrals defined and studied in [Gon2]).
In the case of Z < SpecZ (rather than more general integer schemes)
these elements may be defined quite simply in terms of the action of
T (Z) on (X, 0, x) and in terms of the special de Rham paths ,pi®,
as we now recall.?

We abbreviate words in eg, e; by writing words in 0 and 1, especially
when these appear as subscripts. We let o denote the orbit map associ-
ated to the de Rham path ,pd® and we let 7 denote the trivialization of
the path torsor 7" (X, 0, z) associated to the same path. Then Li} (z)

3 When Z < Spec Ok, K anumber field bigger than Q, the de Rham fiber functor
is no longer Q-rational. Instead, one must work with the canonical realization of
the unipotent fundamental group, which thus loses its Tannakian interpretation in
terms of connections. The ensuing construction of motivic polylogarithms, which
is due to Goncharov, is more complicated.
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is defined to be the composite map
* mR(Z) % w(X,0,7) S (X)L !

with n — 1 zeroes below the ‘f’. (The intermediate map
k(x):=Too

is a G,,-equivariant 1-cocycle and will play an important role below.)
The unipotent logarithm is defined similarly by using the one-letter
word ‘0" and satisfies

Lij(x) = —log"(1 — z).
The unipotent special zeta value (*(n) is defined (using the tangential
end-point —1; in place of x) by

¢*(n) = Liy(=11).

p-Adic integration gives rise to a ring homomorphism
per, : A(Z) = Qp

which extends the regulator maps and

per, (Li, () = Lij (z)
is the p-adic n-logarithm of x.

2.3. The polylog quotient and the Goncharov quotient. The
natural inclusion

X — G,
gives rise to a map
(X)) = m"(Gm) = Q(1).
Let N be the kernel. The polylog quotient is defined as
T (X) = m"(X)/[N, N].

Let n"*(X) := Lie 7™ (X). According to Proposition 16.13 of Deligne
[Del], n*L(X) is a sum of Tate motives. Hence 7}"(Z) acts trivially
on 7'H(X). Consequently, the projection kF(x) of the cocycle r(x)
(associated to x € X(Z)) to 7P%(X) is simply a G,,-equivariant homo-

morphism
m™(Z) — 7 (X).

Lemma 2.3.1. The functions fy and f1, fio, fi00,- .. on 7™ (X) factor
through 7'(X) and form a set of homogeneous coordinates on the
latter.
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Proof. After forgetting the 7" (Z) action, n(X) is just the free pronilpo-
tent Lie algebra on generators eg, e;, and the ideal associated to N is
generated by e;. So this is purely formal. O

We will denote the function f; on 7'%(X) by log" and the function
fi0..0 with (n — 1) zeroes by Li,.

2.3.2. Let n =n(Z) = Lien"(Z). We define the Goncharov quotient
by

n%(Z) = n/[nc g, ne o).
We also consider the associated quotient 7%(Z) of 7{®(Z) and the as-
sociated Hopf subalgebra

A(Z) < A(2).
Lemma 2.3.3. Every G,,-equivariant homomorphism
m(Z) — 7"H(X)
factors through 7¢(2).

Proof. Any degree zero graded homomorphism
n(Z) - n"(X)
must send n(Z)<_» to n?Y(X)< 5. But
[n7H(X) <2, ™ (X)<a] = 0. u
Proposition 2.3.4. The unipotent motivic polylogarithmic values Li}(x)

(x € X(Z)) belong to A%(Z).

Proof. Returning to 2.2(*), we saw in lemma 2.3.1 that the function
fi0..0 factors through 7'(X), and we saw in lemma 2.3.3 that the
cocycle xP¥(z) factors through 7%(7). O

Proposition 2.3.5. The map
ZN(m™(Z), 7" (X))*m « ZN(x(2), 77 (X))
induced by pulling back a G,,-equivariant cocycle along the projection
m(Z) - 7%(2Z)

is bijective. In particular (given that we’re working with the poly-
logarithmic quotient of 7™(X)), replacing the full mixed Tate Galois
group 7™ (Z) by its Goncharov quotient will have no further effect on
the resulting loci X (Z,),.

Proof. Direct consequence of lemma 2.3.3. O
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We consider the following strengthening of the depth-1 part of Gon-
charov’s depth filtration conjecture [Gon2|. For any prime ¢, let

Z-~, = Spec Z\{primes < ¢}.

For any graded algebra A, we let Aj,; denote the subalgebra generated
by elements of degree < n.

Conjecture 2.3.6 (Integral depth-1 conjecture). For every prime g
and every n € N, there exists a ¢y > ¢s such that A[ng](ZN]M) is
generated as a Q-algebra by the elements log"(q') for ¢’ prime < gy,
the elements (*(n) for n odd > 3 and the elements Li}(a) for n > i > 2
and a € X(Z~q,,)-

2.3.7.  As an example, A%(SpecZ) is spanned by ¢*(n) for n odd > 3,
so the integral depth-1 conjecture holds for Spec Z.

2.3.8. Remark. Let us put this conjecture in context with a brief pre-
view of things to come. In section 4 below we construct an algorithm
that takes a natural number n and a prime number ¢, as input, and
that upon halting outputs two primes ¢s < gy < p and a family of
points a; ; € X(Z-,,,), such that

(1) if the algorithm halts then {Li}(a;;)};; forms an algebra basis
of A%(Z~,,,) in half-weights < n, and

(2) if conjecture 2.3.6 holds, then the algorithm halts.
We emphasize that while the halting is conditional, the validity of the
output is unconditional. In particular, our algorithm may be used to
verify the conjecture experimentally up to any given bound on the
weight. Our choice to work with open subschemes of Z of the form
Z-,,, (instead of searching through all open subschemes, as we do in
[DC]) means that the scope of our search, as we attempt to construct
a basis, is smaller. It has the disadvantage, however, that we may have
to increase the auxiliary prime p.

2.3.9. Remark. Let us further explain the role played by the scheme
Z~q,, in our point-counting algorithm. For general Z, A%(Z) may not
be generated by polylogarithms Li}(a) with a € X(Z). For example, if
Z = SpecZ[1/q] for q a prime # 2 then

A%(Z) # A%(Z[1/q])
(and A%(Z[1/q]) is not even generated over A%(Z) by log"(q)) but
X(2)=g.
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Moreover, we have no direct way of deciding if a given rational linear
combination of Li}(a)’s (a € X(Q)) is unramified over Z (i.e. is con-
tained in A(Z)). Our method, present already in a more general (but
less precise) form in [DC], is rather indirect. We first taper Z down
to a Z.,,. We then construct a polylogarithmic basis of A%(Z,,,)
(up to a given weight). If we insist that our basis be compatible with
the extension spaces, we may then generate an associated shuffle basis.
We then construct a change-of-basis matrix which relates our polylog-

arithmic basis to our shuffle basis. Finally, we use our shuffle basis to
identify the subspace A%(Z) ¢ A%(Z~,,)."

2.3.10. Further to remark 2.3.9. Actually, since our change of basis ma-
trix is only a p-adic approximation, we can only identify the subspace
A%(Z) inside A%(Z~,,,) up to given p-adic precision. This means that,
for all we know, the polylogarithmic basis we construct may only be
a linearly independent set of the right size, p-adically close to A%(Z).
This issue may be dealt with roughly as follows. We make sure that
our basis elements are sufficiently spread out (modifying if necessary)
to ensure that their projection onto A%(Z) remains linearly indepen-
dent. We refer to the resulting basis as our “abstract basis” since its
definition is not constructive. We subsequently carry out all computa-
tions for both the abstract and the (“concrete”) polylogarithmic basis,
keeping track of the accumulated error.

Issues of this sort were already treated quite carefully in [DC|, which
is consequently littered with double-tildes. Here we limit ourselves
to mentioning these issues only in passing, since they tend to cloud
the exposition and obscure the essential features of our construction.
Rather, we feel that these issues are best relegated to a future com-
putational article in which the algorithm presented here is given in a
sort of paragraph-style pseudo code, divorced entirely from its theoret-
ical backdrop. That article, we hope, will come along with Sage code
and a wealth of numerical results. In the meantime, in working out
small-scale examples with a human touch (as we did in [CDC]), these
issues can usually be circumvented by replacing p-adic approximations
of relations between values of polylogarithms by actual known relations
found in the literature about polylogarithms.’

4 However, there’s a caveat, which is why there’s a further remark, which should
be thought of as being in smaller print.

5 But here again there is a caveat, which is why there’s yet another remark, in
an even smaller font.
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2.3.11. Further to remark 2.3.10. Actually, this particular issue was
dealt with differently in [DC]. There, we completely avoided construct-
ing a basis of A(Z). Instead, after finding an open subscheme Z° ¢ Z
(which plays the role played by our Z.,,,) and a basis of A(Z°), we
modified the universal evaluation map to allow coefficients in the larger
A(Z°). This meant that the difference between A(Z) and A(Z°) was
dealt with within the geometric algorithm. However, as we noticed
during our work on [CDC]|, this made our algorithm quite inefficient in
cases of interest. For instance, it meant that the geometric algorithm
for the case Z = SpecZ[1/q] must grow with q.

A different issue, which comes up only for larger number fields, was,
however, dealt with in a manner similar to that indicated in remark
2.3.10. When a basis for the extension spaces is not known, we are un-
able to construct one algorithmically. Instead, we construct a linearly
independent set p-adically close to the extension space in question and
proceed as indicated above.

2.4. Application to integral points. Let Ipc = per® denote the map
Spec Q, — m"(Z)

induced by the period map (since it is essentially given by Besser-
Coleman Integration). Let 2% (X) denote the quotient by the nth
step of the descending central series. As explained in the proof of
Proposition 2 of Kim [Kim1]|, the functor from Q-algebras to sets

R~ ZNx%(Z) g, w22, (X)p)®" = Hom®" (n%(Z) g, 7L, (X)r)
of G,,-equivariant cocycles, is represented by an affine space
Z'(n%(Z),m2k (X)) 5
over Q.5 Let ¢v® denote the universal evaluation map
7%(2) x Z'(7%(2), 7% (X))*" - 79(Z) x 72 (X)
v (7, 0) = (7, 6())-

2.4.1. Upon taking Q,-points (as Q-schemes), the evaluation map fits
into a commuting square

X(2) X(Zp)

J E

(76(2) x 2} (z9(2), 7EL,,(X)) ¥ ) (@) —5 (76(2) x 7EL, (X)) (@)

6A particularly concrete construction of the isomorphism to affine space is given
in [CDC, Corollary 3.11] and indicated in remark 7.4 below.
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sending

8
<

lI(jg;(a:) 15%;(?4)
(IBCM(HJ))T Inc, L%EZ% Isc, L?’Ez;

which constitutes our computable cousin of “Kim’s cutter”.”

2.4.2. For us, the polylogarithmic Chabauty-Kim locus X (Zp)y is a locally
analytic (or “Coleman analytic”) subspace of X(Z,). To define it, we take
the scheme theoretic image of ev”, we pull back along 3, and finally we
symmetrize with respect to the S3 action. This last step means that we
close the set of generators under the two operations F'(z) —

*) F(1—2), and F <1> .

z
We also consider X (Z) as a locally analytic subspace of X(Z,) with reduced
structure.

Conjecture 2.4.3 (Convergence of polylogarithmic loci). Let Z be an open
subscheme of SpecZ and let p be a closed point of Z. Then for n sufficiently
large we have an equality of locally analytic subspaces of X (Z,)

X(Z) = X(Zy)n.

(In particular, for such n, the points of X (Z) are not double roots of the nth
Chabauty-Kim ideal.)

2.4.4. Remark. In segment 8.3 below, we complete the construction of an
algorithm which upon halting computes the locus X(Z,), to given preci-
sion; this is our loci algorithm. This algorithm proceeds in several steps. In
one of these, which we refer to as the geometric algorithm (§7), we compute
the scheme theoretic image of the map ev” with respect to coordinates in-
duced by a shuffle basis for A(Z). In a second step, we use the change of
basis matrix constructed in the change of basis algorithm (85) to convert the
resulting equations into equations in coordinates associated to the polylog-
arithmic basis constructed in our basis algorithm (§4). The remaining steps
amount to a straightforward application of Lip service [BdJ]. Pulling back
along B merely means replacing unipotent motivic polylogarithms by p-adic

7 We recall that the commutativity is a rather long story which, at least in
one possible approach, starts with Olsson’s nonabelian p-adic Hodge theory; see
[DCW2].

8 In [CDC| we use the notation X (Z,)5% to distinguish this locus from the un-
symmetrized version considered previously.
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polylogarithms. The symmetrization was spelled out in 2.4.2(*). Finally,
the algorithm of loc. cit. allows us to obtain local power series expansions
to given p-adic and geometric precision.

2.4.5. Remark. In terms of the loci algorithm our point counting algorithm
from [DC| remains unchanged. We review its construction in segment 9
below, referring back to [DC]| for details. In terms of the conjectures above
and the algorithm below, our point-counting theorem (which may equally be
called a point-finding theorem) is as follows. If Z is an open subscheme of
SpecZ in which the largest prime excluded is qpr, we refer to Z-,,, as the
tapered scheme associated to Z.

Theorem 2.4.6 (Point-counting). Let Z be an open subscheme of Spec Z.

(1) If the point-counting algorithm halts for the input Z, then its output
is equal to X (Z).

(2) Assume the conjectured nonvanishing of the p-adic zeta values (P (k)
(k odd > 3). If the integral depth-1 conjecture (2.3.6) holds for the
tapered scheme associated to Z, and if convergence of polylogarith-
mic loci (2.4.3) holds for Z, then the point-counting algorithm halts
for the input Z.

Unlike in [DC], here we do not separate the proof of the point-counting
theorem from the construction of the point-counting algorithm. Rather, we
set ourselves the task of computing the data to be computed, and explain
in down to earth terms, how we go about computing algorithmically. Thus,
we consider the theorem to be proved as soon as the algorithm has been
constructed. This task occupies the remainder of the article.

3. SETUP

3.1.  We continue to work with an open subscheme Z of SpecZ and a prime
p € Z. Recall that 7i"(Z) denotes the unipotent part of the fundamental
group of mixed Tate motives unramified over Z and n(Z) denotes its Lie
algebra, which has a natural grading — we call the graded degree of a homo-
geneous element its half-weight. Recall that n®(Z) denotes the Goncharov
quotient of n(Z) and that

79(Z) = expn¥(2)
denotes the associated quotient of 7] (Z). Recall that A(Z) = O(n{"(2))
denotes the graded Hopf algebra of functions on 7{"(Z), and that A%(Z2)
denotes the subalgebra associated to 7 (Z).
Let
d; = dimg n®(2);.
Let DS (Z) denote the image of the product map
P A®AF — AS.

i+j=n,ij>1
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The Lie coalgebra L& := (n®)V is equal to the quotient
LY = A /DY = ASy/(AS)?

of the augmentation ideal by its square.

Recall that U(Z) = A(Z)Y denotes the completed universal enveloping
algebra of m{(Z) and, adding the decoration ‘G’ as usual, U%(Z) = A(Z)V
denotes the completed universal enveloping algebra of 7¢(Z).

Proposition 3.2. Any set of homogeneous elements of ASO which maps to
a basis of L& forms an algebra basis for A,

Proof. After forgetting the counit and comultiplication, A has the structure
of a graded free Q-algebra

A% =Q[s]
with S = U?il and S; finite for each i. This is simply because A® is the
coordinate ring of a prounipotent group with G,,-action such that the graded
pieces of the abelianization are finite dimensional. Let I = A%, denote the
ideal of Q[S] of positively graded elements.

Let
o0
s =15
i=1

be a set of homogeneous elements of Ago which maps to a basis of L& = I/I?
and let I’ be the ideal of positively graded elements in Q[S’]. Then the
induced map of Q-algebras

¢: Q"] — Q[S]

preserves the grading and induces an isomorphism I’/I"? — I/I?. Hence by
[DC, 3.1.1], ¢ is an isomorphism. O

3.3. Remark. Recall from §2.1 that the kernel E,, = E,,(Z) of the reduced
coproduct on A(Z), is canonically isomorphic to the space

Ext(Q(0), Q(n))

of extensions in mixed Tate motives over Z. Similarly, the kernel B¢ =
E%(Z) of the reduced coproduct on A%(Z) is equal to a space of extensions
in the full subcategory of the category of mixed Tate motives consisting
of objects whose associated representation factors through the Goncharov
quotient. We will refer to such objects as “Goncharov motives”.

It follows directly from the definition however, that we have an equality
of spaces of extensions E¢ = E,; in the case at hand, both are spanned by
logarithms and by the motivic zeta elements ¢*(n) for n odd. Consequently,
the category of Goncharov motives must have nontrivial higher extension
groups. This complicates the structure of the Hopf algebra A®. As men-
tioned in the introduction, instead of analyzing its structure, we will work
inside of A.
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Let ¢ps denote a prime sufficiently large compared to gs and n, and let
Z~q,, denote the subscheme of SpecZ obtained by removing all primes <
qu as above. After constructing a polylogarithmic algebra basis BE for
AY(Z~q,,) (Which includes the zeta elements) in half-weights < n, we will
extend our basis arbitrarily to an algebra basis B of A(Z~,,,). We will then
define the generators o, r odd > 3, to be dual to the zeta elements relative
to the given choice of basis. We will then have according to proposition 3.2.3

of [DC],
U(Z>qp) = UlATg}a<arr {0r}; 0dd 537
but with the o, well defined only in the quotient
U—Uuc.
3.4. Returning to X = P1\{0,1,00}, we recall that 7{%(X) denotes the
unipotent fundamental group at the tangent vector 1o, and that 7P (X)
denotes its polylogarithmic quotient. We recall that the polylogarithmic
quotient has canonical coordinates, which we denote by log", Li}, Li}, ..., so
that
O(x"(X)) = Q[log", L}, Lij, ... ]
with log" in degree 1 and Li} in degree i. Recall that in §2.2 we associated
to a Z-valued base-point a of X a l-cocycle

k(a) : T(Z) - 7P (X)
and defined the (unipotent) motivic n-logarithm of a by
Li* (a) := k(a)?(Li%).
More generally, if R is a Q-algebra and
¢ m(Z)p — 7PL(X)R
is a family of cocycles parametrized by Spec R, we set
Lit(¢) i= (L),
an element of A(Z) ® R. Similarly, we set
log"(c) := c*(log").
Proposition 3.5. We denote the reduced coproduct by A’. We have

n—1 uyg
ALY = (l(’% VoLt
i=1

7!
Proof. In view of the formula
<Li’éo)m = m! Li?eo)m7

this is just the deconcatenation coproduct of shuffle coordinates on a free
prounipotent group. O
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Corollary 3.6. A similar formula holds for A’Li}(c) for any cocycle ¢:

ALk () = 21 Le ) gLt (o),
as well as for A’ Li¥(z) for any z € X(Z).
Proof. Since 7{™(Z) acts trivially on 77%(X), a cocycle
c:m™(Z) - 77E(X)

is simply a group homomorphism. This means ¢ preserves coproducts.
Hence,

A'Li%(c) = ALY
= (@) (A'LY)
n—1 u\i
— (@) <Z (log ) ®Li2_i>

1=1

n—

n—1 Ul A
- Z %@Li“ (c).
i=1 '

O

3.7. Remark. Corollary 3.6 may be upgraded in (at least) four different
ways: (1) by replacing ¢ by a cocycle 7™ (Z) — #"(X, z) which is no longer
a homomorphism, (2) by further puncturing X at a finite number of rational
points, (3) by replacing Liy, by the function 7j"(X,z) — A}@ associated to
an arbitrary word in a basis of H{®(X), and (4) by replacing Q by a general
number field. The result (at least when ¢ comes from a rational point y)
is Theorem 1.2 of Goncharov [Gon2|, which has come to be known as the
Goncharov coproduct formula. As we mentioned in the introduction, one
advantage of working with n-logarithms is that we can make do with the
much simpler formula of Corollary 3.6.

==

i<—1
of homogeneous free generators for n(Z). Any word w in the generators is
naturally an element of the completed universal enveloping algebra U(Z).
We denote the natural pairing

A(Z)@U(Z) = Q
by (—, —), and the same after base-change to any Q-algebra R.

3.8. Fix arbitrarily a set

Proposition 3.9. Continuing with the situation and the notation of seg-
ments 3.4, 3.8, fix natural numbers 0 < r < n and elements 7,...,7. € 3_1,
and o € X,_,,. We then have

(Liy(c),om - - 7p) = (Lix(c), 0)Clog"(¢), 1) - - Clog*(¢), 70)
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and all other values (Li}(c), w) (w a word in ¥) vanish.

Proof. This formula appeared in a letter written by Francis Brown to I.
Dan-Cohen and is proved in [CDC, Proposition 3.10]. O

3.10. Definition. Let k£ be a field with an absolute value. We say that
vectors

V1y...,0g € K"
are e-linearly independent if there exists a d X d minor whose determinant
has absolute value > e.

3.11. Proposition. Let k be a field with an absolute value |-| and o1, ..., 94
vectors in k™ which are e-linearly independent. Then there exists a number
¢’ > 0, algorithmically computable from the data (e, v1,...,04), which goes
to 0 as € — 0, and such that for any family v1,...,vq of vectors in k", if

|UZ‘ — ZNJZ| < El
for each ¢ = 1,...,d, then the vectors v1,...,v4 are linearly independent.

Proof. The proof reduces to the case d = n, to which we now restrict at-
tention. The algorithmic computability will remain implicit. Given v =

(v1,...,v4), 0= (01,...,74) as in the proposition, we can bound
| det v — det 7|
by a positive number ¢ which depends only on € and on o1,...,74, and
decreases monotone to 0 as ¢ — 0. We outline the construction. For each
i=1,...,n, we let A; denote the norm of the linear functional
det(@h s 7{}72717 .7{}i+17 s 7’Dn)

Then there is a positive number §; (with the same properties as above) such
that the norm of the linear functional

det(vl, ceey Vi1, O,ZNJiJrl, e ,QNJ”)
is bounded by A; + é; whenever

"Uj —'lN)j < 6,
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forj =1,...,i—1. Setting A equal to the maximum among A1+4d1,...,Ag+
d4, we find that

| det v — det 7|
d
< Z|det(v1,... ,Ui,f}prl,... ,’[)d) —det(vl,... ,’Uifl,’f)i,... ,@d)|

~
—_

I
M=

’det@lw--yvi—lyvi —?71'7?7i+1,~-~,’l7d)‘
i=1
d
< ‘det(vl,...,Uifl,O,’DiH,...,’[)d)"|’UZ' Z~1Z|
=1
d
< DA+ )€
i=1
<d-A-¢€
whenever |v; —0;| < € for j =1,...,d. Thus, we set ¢ := d-A-€¢ to complete

our outline of the construction of §. The monotonicity of § as a function of
¢’ ensures that ¢ — § can be inverted.
Turning to the proof of the proposition, we assume that detv > € and we

find that
|det v| = | det o] — |det v — det 7| >e—§ = % >0
whenever
oy — 5] < (6 = ¢/2)
for j =1,...,d, as required. O

4. BASIS FOR RECEDING Z

We construct an algorithm which takes as input a prime g5 and a natural
number n, and outputs two primes ¢s < gy < p and a doubly indexed family

{aij}o<i<n-
1<j<d;

For 7 odd, we will set a; 1 = —_il, so that

Lij(ai1) = ¢*(2).
The remaining elements a; ; are Z~,,-points of X. We name this algorithm
basis for receding Z. We first announce the meaning of the output in a
proposition. If A is a graded algebra, we let Aj<,) denote the subalgebra

generated by elements of graded degrees < n. If A is a polynomial algebra,
we refer to a set of free generators as an algebra basis.
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Proposition 4.1. Suppose the algorithm basis for receding Z (mentioned
above and constructed in segments 4.2-4.3 below) halts on the input (gs,n)
and, upon halting, outputs the data

<QM7P7 {ai,j}2<z‘<n> .
1<j<d;
Then the unipotent logarithms log" ¢ for ¢ prime < ¢y, together with the
unipotent polylogarithms and zeta elements
Li (as,5)
for 2 < ¢ < nmand 1 < j < d;, form an algebra basis for A[ng](ZN]M).
In particular, the integral depth-one conjecture (2.3.6) holds for ¢, in half-

weights < n. Additionally, the p-adic zeta values ¢(P(m) for m odd € [3,n]
are nonzero.

4.2. Subalgorithm. We begin by constructing a subalgorithm that will be
applied recursively within the main algorithm. The input consists of

e two primes qps < p,
eaneep
a height-bound b € N; we denote by X(Z~4,,)s € X(Zg,,) the set
of elements of height < b,
a family of elements a; ; € X (Zg,,)» such that the associated family
of motivic polylogarithms
Lij = Lij(ai ;)

forms an algebra basis

B = {Li;}i<n
(Z>qp); we set Ly j = log"(g;), and L; 1 = ¢*(7) for ¢ odd

G
for A[gn]
> 3.

The output is a function (in the form of a list or a “dictionary”) which
assigns to any a € X (Zsq,,)», and any m < n, an expansion of Li}; (a) in the
monomial vector-space basis associated to the algebra basis BS to precision
€. The construction is recursive in m.

4.2.1. In the presence of the basis B®, the Q-algebra A[ng]<Z>QM) may
be identified as a vector space with a space of vectors with entries in the
field Q of rational numbers equipped with the p-adic absolute value, and the
computations that follow are carried out there. As a matter of notation, we
let
A= {AmJ}

denote the monomial vector space basis associated to the algebra basis BY,
numbered so that

Am,j = Lim,;
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G

s
for j > dimn€,,. For the base case of our recursive construction, we have

Ll’il(a) = —logu(l — a) IS A? ~ Q{QL---,qM}’

which we may expand in the logarithms log" ¢; by decomposing 1 — a as a
product of primes.

forj=1,...,dimn and A, ; is a shuffle monomial in L, j with m’ <m

4.2.2. Assume we've expanded the polylogarithmic values Li%, (a) in our
basis for A&m](Z>qM) up to precision €. Our basis gives us in particular a
basis

A/:Al XAm_l U.Ag X-Am—lu”‘U-Am—l ><_A1
for the direct sum of tensor products

AT QA |+ AT @AG +-+ A5 | ® AT,

and allows us to identify the latter with a space QV of vectors.

Assume m odd (the case m even is simpler). Recall from 2.1.1(%") that
in this case, the reduced coproduct A’ on Ai is injective modulo the mo-
tivic zeta value ¢*(m). Because of our imperfect approximations, A’ Li¥ (a)
may not quite be in the linear span of the images A’A,, ; of the basis ele-
ments A, ; € A% We may nevertheless project A’ Li% (a) onto the subspace
spanned by the A’A,, ; (relative to the basis A’) and compute the coeffi-

cients:
dim AG,
AL (a) = D A Ay
7j=2
To do so, we expand each vector A’A,, ; in the basis A’ to precision €, and
we expand the new vector A’Li¥ (a) in the basis A’ to precision € as well.
We then set
¢j = <(A'Li} (a), A Ay, 5>
where the inner product is the standard inner product on QV.

This gives us all coefficients except for the coefficient ¢; of ¢*(m). To
determine the latter, we use the period map as follows. Letting Li, (a), Ain, j
denote e-approximations of the p-adic periods of Li}, (a), Ay, ; produced by
the algorithm of Besser—de Jeu [BdJ], we set

Lipy(a) = 53057 ¢ A5

¢e(m)
(decreasing € if needed so as to achieve [(¢(m)| > €). We then have the
expansion

Cl =

Liy, (a) v ZCjAmJ

we hoped for. This completes the construction of the subalgorithm.
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4.3. Main algorithm. We now construct the main algorithm of this sec-
tion. Recall that we are given as input a prime ¢; and a natural number
n. Our primary goal is to construct a basis for A&n](ZMIM) using p-adic
approximations, where ¢ps; is a prime > ¢; and p is a prime > ¢p;. Along
the way we will search for potential basis elements among the points

X(Z>QM)b c X<Z>QM)

of height < b. Since there may not be enough of these points, we will
enthusiastically increase b while reluctantly considering the possibility of
increasing gps, and hence p. Our secondary goal is to ensure that our p-adic
approximations are good enough to witness the nonvanishing (known for p
regular, conjectured in general) of the p-adic zeta values (P(m) for m odd
€ [3,n].

Let I denote the set of quadruples (qas,p, b, €) with p > qpr = g5 primes,
beN, and e € p~. Let J c I be a subset with the following properties. (1)
The projection of J onto the coordinate plane (b, €) defines € as a decreasing
function of b. (2) There exists an increasing function b — p;, from the natural
numbers to the set of primes, such that for fixed (b,€), the fiber of J above
(b, €) is equal to the set of all pairs of primes ¢j; < p < pp in which p is the
next prime after qp;. We arbitrarily impose an ordering on the set J.

4.3.1. Remark. Psychologically, we may imagine g7, p and b to be increasing
while € decreases. However, it is important that after decreasing e, we also
decrease qpr and p. Thus, as the algorithm proceeds, we occasionally revisit
past primes in order to give them a second chance.

4.3.2. Remark. Given (qar,p,b,€) € J then, the algorithm attempts to verify
the nonvanishing of the p-adic zeta values and to build a basis for

A[Gsn] (Z>¢JM)

using the points of X(Z~,,,), and using p-adic approximations of precision
€. This may fail for several reasons. One reason is that an e-approximation
of one of the p-adic zeta values (P(m) may equal 0. A second reason is that,
having potentially succeeded in constructing a partial basis, there may not
be another linearly independent polylogarithm available among the points of
X(Zqy, )b and this may be because b is too small or because the entire set
of Z-q,,-points X (Z~g,,) is too small. Finally, even if an appropriate choice
of next basis element can be found inside X (Z~g,,)s, our e-approximations
may be too coarse to see the linear independence.

4.3.3. We now assume, in preparation for the recursive step, that we’ve
reached a data point (qas,p,b,€) € J. Assume further that we have con-
structed an algebra basis for A&m] (Z~q,,) for some m < n consisting of mo-

tivic logarithms, motivic zeta values, and motivic polylogarithms Li} (a; ;)
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with a;; € X(Z=q,,)p. Assume further that we've constructed a partial
algebra basis in weight m given by unipotent m-logarithms

Ly = Li% (ama), .., Ly = Li% (am.r)

(am,j € X(Z=q,,)p) Which are linearly independent modulo the space DS of
decomposables. We choose arbitrarily a point a € X(Z~,,,)s and an € € p N
and consider adding L := Li¥ (a) to our basis. We use the subalgorithm
of segment 4.2 above to expand A’ of the decomposables in weight m, the
A'L;, as well as our new candidate A’L = A’Li}} (a) with p-adic precision e
in our polylogarithmic basis

U .AiX.Aj

itj=m,ij=1
for the space
® Ao
itj=m,i,j=1
and check the result for e-linear independence (ignoring L; if m is odd).
e If the result is negative, we go on to the next quadruple (qas, p, b, €) €
J. If p has changed, we verify the nonvanishing of an e-approximation
¢¢(m) of ¢P(m) for m odd € [3,n], decreasing € as needed.
e If the result is positive, we set a,, 41 equal to a and continue the
process.

We halt when we reach r = dimn& for each m < n. This completes the
construction.

Proposition 4.4. Assume p regular (or nonvanishing of the p-adic zeta
values (P(m) for m odd > 3). Assume the integral depth-1 conjecture (2.3.6)
holds for gjs in half weights < n. Then the algorithm of segment 4.3 halts.

5. CHANGE OF BASIS

5.1.  We continue to work with the scheme Z-,,, produced in §4 and we
drop the repeated argument ‘(Z-,,,)" throughout this section. Recall that

Af<n] © A denotes the subalgebra generated by elements of half-weight < n,

G

and similarly for A[ T

I Given our polylogarithmic algebra-basis
n
i=1

for A&n], there exists an algebra basis B<, = |Ji_, B; for A[<pn) which

extends Bgn, as well as associated free generators
T1y++-yTM, 03,05,07, ...

of the Lie algebra n = n(Z-4,,) (in half-weights bounded below by —n),
where we identify the latter with the set of Lie-like elements in the com-
pleted universal enveloping algebra (c.f. remark 3.3 above). We detail the
construction of this algebra basis, in notation chosen to accord with [DC,
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§3.1|. Let Pgn c Bgn denote the subset obtained by removing the extension
classes (i.e. the logarithms and zeta elements). In half-weight 1 we set

P =PF = @.

In half-weight ¢ > 2 we extend the set PZ-G (by choosing arbitrary linearly
independent elements of A; — A) to a linearly independent subset P; of A;
which spans a linear complement to the subspace

spanned by extensions and decomposables. Set
{log" q1,...,log"qm} i=1 n n
& =14 C4) i>1lodd  Ecni=|]J& P<n:=JPi
%) 1> 1 even, i=1 i=1
and

Bgn = 5<n ) Pgn.
Let 7; be the element of &1 (half-weight —1 part of the completed universal
enveloping algebra) dual to log" ¢; relative to the basis

B1 = {log" q1,...,log" qu}
of Ay. For ¢ = ¢; a prime < gp7, we sometimes write 7, in place of 7.

Let A, denote the set of monomials of half-weight r in the set B¢, < A.
For r odd (3 < r < n) let o, be the element of U_, dual to (*(r) relative to
the vector space basis A, of A,.. Then according to propositions 3.2.2 and
3.2.3 of [DC],

A[én] = Q[B<x]-

as Q-algebras, and the 7,4, o, form free generators as hoped.?

5.2. If w is a word in the generators 7,4, o,, and A is an element of the
vector-space basis for A generated by the polylogarithmic algebra basis
(i.e. a monomial in Bgn), then the value
(AwyeQ

is independent of the choice of basis for A beyond the polylogarithmic basis
constructed for A,

We now construct an algorithm which takes as input a polylogarithmic
basis, a word w in the generators 7, o,, an element A of the vector space
basis generated by the algebra basis, and an €, and computes (A, w) to

precision €. The construction is a dévissage in three steps. An example is
worked out for instance in §7.6.3 of [DCW2| as well as in [CDC].

9 The resulting algebra basis B<, is a mixture of concrete polylogarithmic el-
ements of A® which we have constructed algorithmically on the one hand, with
abstract elements of A on the other hand, whose construction does not intervene
in the algorithm. If we were to separate our construction of the algorithm from our
verification that its output has the desired meaning, then these last elements would
serve as a mere book-keeping device in the construction.
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5.2.1. If A= A'A"is a product of two or more algebra-basis elements, we
use the relationship

(A A" w0y = (A @A, p(w))
between the shuffle product on A and the coproduct p on its completed

universal enveloping algebra U repeatedly to reduce to the case that A =L
is itself an algebra-basis element.

5.2.2. The values (L, w) for L a logarithm, an n-logarithm, or a zeta value
obey the following rules. We have

(log* a,7q) = vy(a)
(the g-adic valuation of a) and all other values (log" a,w) vanish. We have

(Lij a,7g) = (—log"(1 — a),7g) = —v4(1 — a).
By proposition 3.9, we have
it a, 1 -1y = LY a, 71 )log" a, 7o) - - - (log" a, 7, ),
and
Ait a,00m -+ 75y = Lk a, 00 )(log" a, 1) - - - (og" a, T4 )
(r+s =mn), and all other values (Li}, a, w) vanish. Finally, by definition

¢*(n),on) =1
and all other values (¢*(n),w) vanish. Using these formulas, we reduce to
the computation of the values (Li}(a), o, ), noting, however, that Li}(a) may
not be an algebra basis element.

5.2.3. We use the method of §4.2 to expand Li%(a) in our polylogarithmic
basis in half-weight r to precision e. We have thus reduced to the case that
A = L is again an algebra-basis element, while w = o, is a one-letter word.
Finally, by our very definition of o,., we have

(Lo — { 1if L =¢*(r), and

0 otherwise.
This completes the construction of the algorithm.

5.3. Remark. Given w € U_j a word in the generators 7,, o, (with k < n),
we let f,, € Aj denote the dual element relative to the basis consisting of
such words. In terms of the resulting shuffle basis, the above computations
can be rewritten as follows:

logu q= f Tq)

Cu(n) = fO’n?

and

Lij(a) = Z<Li¢ a,0r)q, (@) Vg, (@) fory oryy + Z Vgo (@) -+ Vg, (@) frog--ra;

(a=aij, r+s=1).
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6. BASIS FOR Z < SpecZ ARBITRARY

6.1. We now consider Z < Z-,, arbitrary. At this point we have a polylog-
arithmic basis {A; ;} for A[Gsn] (Z~q,, ), a shuffle basis { f,,} for all of A(Z~,,)

(both in bounded weights < n), and a matrix M expanding the former in
the latter to precision €, which we think of as the matrix associated to the
inclusion

Agn(Z>qM) = Aén(ZNIM)

(where the subscript < n refers to the vector subspace of elements in graded
degrees < n) relative to the polylogarithmic basis on the source and the shuf-
fle basis on the target. Relative to the shuffle basis, A<, (Z) € A<p(Z>qy,)
is the hyperplane spanned by f,, with w not involving the generators 7, for
primes g € Z. Pulling back via M, we obtain a system of linear equations.
We may then construct a basis for the space of solutions by basic methods
of linear algebra. The result is a vector space basis AY of AS (Z).

7. GEOMETRIC ALGORITHM

7.1. The geometric algorithm takes as input a finite set
Yo ={11,...,Ts}
and a natural number n, and outputs a finite set
{F{',...,F\}
of elements of the polynomial algebra
Q[{fa}r,log", Li}, Liz, . .., Liy ]

where A ranges over the set of Lyndon words in the (suitably ordered) set

5= O N
=1

where X_; contains one element o; for ¢ odd > 3 and no elements for i even.
(The superscript ‘a’ stands for abstract.)

7.2.  This algorithm is independent of the previous algorithms, and its halt-
ing is unconditional. We first explain the meaning of its output. Let 7" (X)
be the free prounipotent group on the set ¥ with G,,-action induced by
placing ¥; in graded degree i. Let n = n(X) be its Lie algebra — the free
pronilpotent Lie algebra on the set 3. Let nG(Z) be the quotient

nG(E) = n/[néf% n<*2]7
let 7%(X) be the associated quotient of 7'%(X) and let A%(X) = O(n% (%))
be the associated Hopf algebra. There is a canonical isomorphism
A(X) == 0(m™(2)) = Q[{f>}],

hence an inclusion

A%(2) € A(Z) = QU{AN]-
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Let n> » be the graded Lie algebra
nth, = Q(1) x H@

(with Q(i) placed in graded degree —i) and let 72" denote the associated
unipotent Q-group. Let

log" = fo, Lij = f1, Li; = fio, Liy = fio--0

denote shuffle coordinates on 7TP L

tient

» associated to its presentation as a quo-

T (eg, e1) = ToZ,

of the free proumpotent group on two generators eg, e;. Endow 7TPL with
the trivial 7¢(X)-action. Let ev$(X) denote the evaluation map

74(£) x ZM(x%(D),7Ek,) 0 — 79 (D) x 7ik,,.
e} (2)(7,¢) = (7, ¢(7))-
Then the functions FY', ..., F}y; produced by the algorithm are contained in
A%(2)[log", LiY, ..., Li*]
where they generate the ideal associated to the scheme theoretic image of

enl ().

7.3. We now construct the algorithm. As a corollary of proposition 3.9

above, we find in [CDC, Corollary 3.11] that the full cocycle evaluation map
e0,(5) : 7 () x 21 (7™ (D), 7LE, )" - 7(%) x 7L,

(i.e. without passing to the Goncharov quotient) is given in coordinates by
the map of finite type polynomial algebras over Q

Q[{f)\})\a {®7\}Wt(p)=wt(l\)] N @[{f)\})\a 10gu7 Ll’fa nga cee 7L12]7

(where A ranges over Lyndon words in the generators 7, o of nj"(Z), A
ranges over the set of polylogarithmic words in eq, e; of weight < n, and p
ranges over the set of generators 7, o of 7" (Z)) given by

D, fr®f < log!

TEX 1
and
Z fﬂ---'rracl)gl . (I)z)—rc;[)a. .01 « Li;lz .
Tl,...,TT»EE_l Hs,/_/

oEY g

r+s=n

1<s<n
Since

2! (79(), 7" = 21 (7 ™(x), 771) O,
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the scheme theoretic image of ev&(X) is the same as the scheme theoretic
image of the composite

ﬂ_un(z) « Zl (FUH(Z),T(QL_‘”)GM N ﬂ_un(z) x ng—ln N ﬂ.G(E) « ﬂ-gl—ln

In terms of coordinate rings, this means restricting the map ev,(X)* to the
subalgebra

A%(2)[log", Li¥, Lik, ..., Li%].
By proposition 3.2 (which, in turn, is a direct application of [DC, 3.1.1]), a
basis for the latter may be constructed out of the basis {fy} for 7%*(X) by
elementary linear algebra. Subsequently, a set of generators for the kernel of

Q[{f)\})u {q)x}wt(p):wt(/&)] N AG(E)[lOgu7 L11117 L1;7 s 7LllrIL]
may be constructed by standard methods of elimination theory. This com-
pletes our construction of the geometric algorithm.

7.4. Remark. If C is the universal cocycle
m(Z) x 2 (i (2), 7P (X)) — 7PE(X) x 21 (rfn(2), 7P (X)) O
then

@0...01(6) = (Liy(C), p)
—

(this equality takes place inside the coordinate ring of Z!, or, in terms of
our shuffle basis, inside Q[{®}}]). In other words, ®{ ,, corresponds to the
function on cocycles (Li%(?), p).

8. LOCI ALGORITHM

In terms of the basis algorithms, the change of basis algorithm, and the
geometric algorithm, our loci algorithm is similar to the algorithm of [DC,
§4.2|; we repeat the construction, making adjustments as needed.

8.1. The loci algorithm takes as input an open subscheme Z < SpecZ,
a natural number n and an e. As output, it returns a prime p € Z, a
polylogarithmic algebra basis Bgn of the polynomial ring A&n](Z ) and a
family {F;}; of elements of the polynomial ring

Q[BE,, log", Li%, ..., Li%.

8.2. Before constructing the algorithm, we explain the meaning of its output
upon halting. There’s an obvious homomorphism

Q[BE,,, log", LiY, ..., Li%] — Col(X(Z,))

to the ring of Coleman functions. Let FP denote the image of F;. We
symmetrize the family {F}};e; with respect to the S3 action as indicated in
segment 2.4.2 to obtain a bigger family {FJI-)}]‘GJ. Then the family {Fjp}jeJ is
within e of a set of generators for the ideal of Col(X(Z,)) which defines the
(symmetrized) polylogarithmic Chabauty-Kim locus X (Zp)y.
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8.3. The algorithm is constructed as follows. We run the geometric algo-
rithm (§7) on the set of symbols

Ya={q,...,qs}

with s equal to the number of primes excluded from Z. This gives us a
family {F?} of elements of the polynomial Q-algebra

Q[{f)\})u 10g“7 Lllllv L11217 ) LllrlL]
Thus, the coefficients of F? are elements of the vector space Q[{fw}] with
basis indexed by words w in the set {r,...,7s, 0_3,0_5,...}. (In fact, by
their construction, the coefficients will belong to the subspace corresponding
to the Goncharov quotient.)
We run the algorithm basis for receding Z (§4) on the input (gs,n) to
obtain a pair of primes ¢s; < qps < p and a polylogarithmic algebra basis

G
() >auBsn
(hence also an associated monomial vector space basis >qM-A(<;n) of
G
Alen)(Z>qur)-

We run the change of basis algorithm (§5) on the polylogarithmic algebra
basis (*) and we run the basis algorithm for arbitrary Z (§6) on the further
input Z. By elementary linear algebra, we obtain

(1) a polylogarithmic algebra basis BE,, for A&n](Z ), and
(2) for each element A of the associated vector space basis AZ,, an

associated vector M (\A) in the vector space Q[{fw}].

We now expand the coefficients of each F* in the vectors M (.A) to obtain a
family {F;} of elements of the polynomial ring

Q[BS,, log", Li¥, ..., Li%]

as hoped. This completes the construction of the algorithm.

9. POINT COUNTING ALGORITHM

9.1.  Our root criterion algorithm from [DC, §5] combines standard methods
of Newton polygons together with a growth estimate obtained by Besser—de
Jeu [BdJ] to decide whether the number of zeroes of a p-adic power series in
a given ball is zero or one, given a sufficiently close approximation. We do
not repeat it here.

9.2. Our point-counting algorithm from [DC, §7] remains unchanged; we
nevertheless do repeat it for the reader’s convenience, while avoiding the
double tildes of loc. cit. as indicated in remark 2.3.10. This algorithm
takes as input an open subscheme Z of SpecZ and proceeds by running two
processes simultaneously. One process is simply a naive search for points of
X (Z). This produces a gradually increasing subset X (Z2),, < X(Z).
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The other process locates an appropriate prime p € Z and computes the
loci X(Zy)y to given precision. It then verifies if it is possible, with the given
level of precision, to declare an equality

X(Z)p = X(Zp)n.

9.3.  We begin by running our basis algorithm. In addition to the polyloga-
rithmic basis of A&n](Z ) which will remain fixed throughout the remainder
of the construction, this also gives us the auxiliary prime p.

Having done so, our algorithm searches through the set of triples (n, N, ¢),
n, N € N, € in a countable subset of Ry with accumulation point 0. After
each attempt, we increase n and N and decrease €. To each such triple, our
algorithm assigns a set X (Z),, of points of X(Z) and a boolean. The boolean
output will be constructed in segments 9.4-9.7. If the boolean output is True,
then we output X (Z),. If the boolean output is False, then we continue the
search. To produce the set X(Z),, we simply search for points up to a
suitable hight-bound depending on n which goes to infinity with n. The
remainder of the construction concerns the boolean output.

9.4. We partition X (Z,) into e-balls, decreasing € as needed to ensure that
each ball contains at most one element of the set X(Z), (our, potentially
incomplete, list of integral points). We run our loci algorithm to produce a
family {F;}; of polylogarithmic functions on X (Z,).

9.5. We now focus our attention on an e-ball B containing a rational rep-
resentative y € B. Using Lip service |BdJ], we expand each polylogarithmic
function F; to arithmetic precision e and geometric precision e about .
In a technical step explained in the proof of theorem 7.2.1 of [DC], we must
check that all nonzero coefficients are larger than e, returning False if not.

9.6. Let b be the number of points (0 or 1) in X(Z), n B. We run the
root-criterion algorithm on the ball B, on the precision-levels N and €, and
on each of the functions Fj, to verify if B contains no more than b roots.

9.7. We repeat steps 9.5-9.6 in each ball. This completes the construction
of the algorithm.
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