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THE POLYLOG QUOTIENT AND THE GONCHAROV

QUOTIENT IN COMPUTATIONAL CHABAUTY-KIM

THEORY II

ISHAI DAN-COHEN AND DAVID CORWIN

Abstract. This is the second installment in a multi-part series
starting with [CDC]. Building on Dan-Cohen–Wewers [DCW2],
Dan-Cohen [DC], and Brown [Bro1], we push the computational
boundary of our explicit motivic version of Kim’s method in the
case of the thrice punctured line over an open subscheme of SpecZ.
To do so, we develop a refined version of the algorithm of [DCW2]
tailored specifically to this case. We also commit ourselves fully
to working with the polylogarithmic quotient. This allows us to
restrict our calculus with motivic iterated integrals to the so-called
depth-one part of the mixed Tate Galois group studied extensively
by Goncharov. An application was given in [CDC] where we veri-
fied Kim’s conjecture in an interesting new case.

1. Introduction

Work by Dan-Cohen–Wewers [DCW1, DCW2] and by Dan-Cohen
[DC] produced an algorithm, based on the Chabauty–Kim method, for
computing the integral points of P1zt0, 1,8u over open integer schemes
whose halting was, and remains, conditional on deep conjectures by
Kim and by Goncharov, among others.1 This algorithm restricted at-
tention to the polylogarithmic quotient of the unipotent fundamental
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1 Practical (and unconditional) methods for solving the S-unit equation predate
this work, and can be found, for instance, in de Weger [dW] who uses the theory
of logarithmic forms of Baker–Wüstholz [BW] (see also Everste–Győry [EG] for a
general discussion). A more recent approach, due to Känel–Matchke [vKM] is based
on the Shimura-Taniyama conjecture. Our primary purpose here is not to compete
with these other methods, but rather, to develop Kim’s theory in a special case, to
explore its interaction with the theory of mixed Tate motives and motivic iterated
integrals, and to provide new numerical evidence for Kim’s conjecture.
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2 ISHAI DAN-COHEN AND DAVID CORWIN

group πun
1

pXq, but minimized its reliance on the polylogarithmic quo-
tient with a view towards eventually constructing an algorithm for the
full unipotent fundamental group. The resulting algorithm (to quote
an anonymous referee) provides proof of concept. In terms of practical
applications, however, it is quite unwieldy.

Francis Brown [Bro1] introduced various new techniques which he
was able to use to construct functions for open subschemes of SpecZ
in several examples. His techniques capitalize on the relative simplic-
ity of SpecZ and of the polylogarithmic quotient, and inspired us to
attempt to construct a simpler algorithm, and to continue to push the
computational boundary, for open subschemes of SpecZ. Brown also
suggested (in private communication) that we might be able to replace
the full mixed Tate Galois group with a quotient tailored specifically
to the polylogarithmic quotient of the unipotent fundamental group.

In part one of this series [CDC] (currently expected to have three
parts), we worked out an example which goes beyond the examples of
[DCW1, DCW2, DC]. This example displayed several new and inter-
esting phenomena. It also helped us refine our methods, and led the
way to the work presented here.

In this second installment, we present an algorithm based on the ex-
ample considered in part I on the one hand, and based on Goncharov’s
investigations of the depth-1 quotient [Gon1] on the other.2 Let K be
a number field and let Z be either SpecK (a “number scheme”) or open
in SpecOK (an “open integer scheme”). Associated to the Goncharov

quotient, as we will call it (segment 2.3.2), is a Hopf subalgebra AGpZq
of the mixed Tate Hopf algebra ApZq of framed mixed Tate motives
over Z. This subalgebra already contains the extension spaces

K
pnq
2n´1

pZq “ Ext1ZpQp0q,Qpnqq Ă AnpZq,

and was studied extensively by Goncharov in connection with Zagier’s
conjecture relating special values of zeta functions of number fields to
polylogarithms. This eventually led to his depth filtration conjecture

[Gon2]; its depth-1 part says that AGpSpecKq is generated by Gon-
charov’s (unipotent) motivic polylogarithms Liui pxq (for i ě 1 and x

2 The remainder of the introduction presupposes some familiarity with the sur-
rounding literature (on mixed Tate motives, the unipotent fundamental group,
motivic iterated integrals, p-adic polylogarithms, Kim’s method, and Kim’s con-
jecture) as well as passing familiarity with the previously constructed algorithm
of [DCW2, DC], and focuses on comparing old with new. The reader who is un-
familiar with this material may wish to skip forward to section 2 (where some
of this background material is reviewed), or to go back to [DCW2] for a general
introduction.
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a K-point of P1zt0, 1,8u). Although Zagier’s conjecture, if stated in
terms of values of zeta functions, is tautological for Q, the depth-1 con-

jecture is still open even in this case. For our purposes we must refine
this conjecture somewhat with respect to ramification. The result-
ing integral depth-1 conjecture (§2.3.6) for open subschemes of SpecZ
is based on a study of the half-weight-2 part from [DCW1], and is of
interest, we hope, in its own right. Indeed, we believe that an investiga-
tion of this conjecture and an attempt to generalize it to higher number
fields (even in half-weight 2, where the case Z “ SpecK is known and
where the difference between ApZq and AGpZq is not yet visible) may
lead to near-term progress towards Goncharov’s conjecture.

Focusing attention on the Goncharov quotient presents several si-
multaneous advantages. Most obviously, the dimensions of the graded
pieces AG

n pZq are far smaller than those of ApZq. Correspondingly, if
our integral depth-1 conjecture holds, our search through the vast col-
lection of motivic iterated integrals for candidate basis elements may
be limited to the comparatively small set of n-logarithms. In turn,
working with n-logarithms allows us to avoid the complex combina-
torics of the Goncharov coproduct formula [Gon2, Theorem 1.2]. Less
obvious but perhaps equally important is that working with the Gon-
charov and polylogarithmic quotients allows us to make the geometry
of the “geometric algorithm” (which computes the scheme theoretic im-
age of the universal cocycle-evaluation map) fully explicit: we obtain
a homomorphism of polynomial Q-algebras given by an explicit family
of polynomials about which we learned from Brown. As a result, our
new algorithm is far simpler and more efficient than the algorithm of
[DCW2]. It is therefore reasonable and worth-while to give a more ex-
plicit construction, with the promise of actual Sage code and ensuing
numerical results (beyond those of [CDC]) in the near future.

While the Goncharov quotient holds much promise, it also presented
us with a challenge. Unlike the full mixed Tate Galois group, the
Goncharov quotient is not free, and so its coordinate ring AGpZq is
not a shuffle algebra. This threatened to send us looking through Gon-
charov’s intricate analysis for information (actual or conjectural) about
higher extension groups in the corresponding category of “Goncharov
motives”. Fortunately, as we discovered, by remembering the inclusion

AGpZq Ă ApZq

and working sometimes in AGpZq and sometimes in ApZq, we can avoid
direct confrontation with the structure of AGpZq.

A key observation for our work is that replacing the full mixed Tate
Galois group of Z by its Goncharov quotient does not shrink the p-adic
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analytic loci XpZpqn Ă XpZpq that our algorithm computes. Actually,
our loci are potentially larger than those that intervene in Kim’s con-
jecture [BDCKW]. One difference comes, of course, from considering
only the polylogarithmic quotient of the unipotent fundamental group
in place of the full unipotent fundamental group. The belief that we
should nevertheless have equality

XpZq “ XpZpqn for n sufficiently large(*)

has travelled down a somewhat bumpy road. Kim showed in [Kim1]
that the loci XpZpqn associated to the polylogarithmic quotient are
finite for sufficiently large n and in [Kim2] that the same holds for
open integer schemes associated to totally real number fields. Experts
expressed the hope (if only tentatively and quietly) that the polyloga-
rithmic quotient should be big enough for Kim’s conjecture. However,
upon completing our realization of the case Zr1{3s in [CDC], we dis-
covered by computing numerically that ´1 P XpZpq4 in that case, and
subsequently showed more generally that for Z “ SpecZr1{qs (for any
prime q ‰ p), we have

´1 P XpZpqn for all n.

This meant that (*) was in fact false as stated, since for q ‰ 2,
XpZr1{qsq “ H (so, in particular, does not contain ´1). Nevertheless,
we view this bump in the road as reflecting a particular interaction of
the polylogarithmic quotient with roots of unity, or, at the very least, as
a result of its symmetry-breaking nature. We may thus symmetrize our
loci with respect to the S3 action and, thus modified, expect property
(*) to hold after all.

There is also a second, less obvious difference between Kim’s loci and
ours. This too intervened already in [DC]. While Kim’s version may be
defined in terms of the scheme-theoretic image of a p-adic realization
map between nonabelian cohomology varieties over Qp, our algorithm
computes the scheme theoretic image of the rationally-defined universal
cocycle evaluation map, and only then pulls back the result to Qp. The
result is again a possible enlargement of the resulting loci. However,
as discussed in loc. cit., if the p-adic period conjecture holds, then
there is no such enlargement after all. Period conjecture or no period
conjecture, the final result is that our algorithm may be used to verify

Kim’s conjecture, but can have little bearing on any attempt to falsify
the conjecture.

Because of its relative simplicity, we find it appropriate to describe
the new algorithm in a somewhat more informal style than that of loc.
cit., which we hope will make the present article more approachable.
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A concrete case (“Zr1{3s in depth 4”), which provides new numerical
evidence for Kim’s conjecture, is worked out in [CDC]. Let us point out,
however, that that work should not be viewed as merely executing the
algorithm constructed in this work since the history is rather reversed:
as the numbering suggests, the example worked out in [CDC] came
first, and many of the ideas that went into constructing the present
algorithm first developed in working out the example.

Acknowledgements. We would like to thank Bjorn Poonen and Her-
bert Gangl for their interest and encouragement. We would like to
thank the referee for a careful reading and many helpful comments.

2. Conjectures and theorems

In this section, which doubles as a long introduction, we give pre-
cise statements of the conjectures on which our algorithm depends for
halting. We also announce the success of our algorithm in computing
the set of integral points and the conditional halting in a complemen-
tary pair of theorems (2.4.6) similar to the main theorems of [DC]. As
promised, we begin by summarizing background material; details may
be found in [DCW2, DC, CDC] and the references given there.

2.1. Mixed Tate motives and mixed Tate Galois group. Fix an
open subscheme Z Ă SpecZ and a prime p P Z. Write

S :“ SpecZzZ “ tq1, . . . , qsu.

We let K
pnq
m pZq denote the n-eigenspace for the Adams operations on

the rational Quillen K-group KmpZq b Q. Historically (due in large
part to the work of Borel [Bor1, Bor2]), it was known that

K
pnq
2n´1pZq “

"

Qxlogupq1q, . . . , logupqsqy n “ 1,

Qζupnq n odd ě 3,

and that all other Adams pieces vanish. Here, logupqiq and ζupnq are
certain special elements. Moreover, there were certain naturally defined
p-adic regulator maps

reg : K
pnq
2n´1

Ñ Qp

and
regplogupqiqq “ logppqiq

regpζupnqq “ ζppnq,

the p-adic logarithm and zeta value respectively.
The p-adic zeta values ζppnq (n odd ě 3) are known to be nonzero

for p regular. A small piece of the p-adic period conjecture asserts that
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the same holds for all primes p. See Examples 2.19 and Remark 2.20
of Furusho [Fur] for a discussion of this and related conjectures.

2.1.1. The theory of mixed Tate motives puts the K-groups above
inside a big Hopf algebra. To define it, let MTpZq denote the category
of mixed Tate motives unramified over Z. The category MTpZq is
Q-Tannakian; its simple objects up to isomorphism are precisely the
tensor powers of Qp1q. De Rham cohomology gives rise to a fiber
functor

dR˚ : MTpZq Ñ VectQ.

We have
HompQp0q,Qp0qq “ Q,

Ext1pQp0q,Qpnqq “ K
pnq
2n´1

pZq

and all other Ext groups ExtipQp0q,Qpnqq vanish. This means that
MTpZq is a mixed Tate category, and the results that follow are formal
consequences of the axioms; see, for instance, Appendix A of Goncharov
[Gon2].

There is a semi-direct product decomposition

πMT

1 pZq :“ AutbpdR˚q “ πun

1 pZq ¸ Gm

in which πun
1

pZq is free prounipotent with abelianization

(*) πun

1
pZqab “

à

ně1

Ext1pQp0q,Qpnqq_,

and ApZq :“ Opπun
1 pZqq is a shuffle algebra: in terms of homogeneous

generators

τ1, . . . , τs and σ3, σ5, σ7, . . .

(with τi in degree ´1 and σi in degree ´i) ApZq has vector space basis
 

fw
ˇ

ˇ w a word in τ1, . . . , τs, σ3, σ5, . . .
(

called a “shuffle basis” on which the “shuffle” product is given by

fw1fw2 “
ÿ

shuffles w of w1,w2

fw,

and the “deconcatenation” coproduct is given by

∆fw “
ÿ

w“w1w2

fw1 b fw2.

Equation (*) may be written dually as a family of exact sequences

(˚_) 0 Ñ Ext1pQp0q,Qpnqq Ñ An
∆1

ÝÑ
à

i`j“n i,jě1

Ai b Aj
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where ∆1 is the reduced coproduct :

∆1paq “ ∆paq ´ p1 b a ` a b 1q.

2.2. Unipotent fundamental group and motivic polylogarithms.

Let X “ P1

Zzt0, 1,8u. We use the tangent vector ~10 as base point. We
define πun

1 pXq to be the fundamental group Aut bpω0q of the Tannakian
category of unipotent connections on XQ at the fiber functor associ-

ated to ~10. Similarly, we define the path torsor associated to a point
x P XpZq by

πun

1
pX, 0, xq :“ Isombpω0, ωxq.

According to Deligne [Del], πun
1

pX, 0, xq is canonically trivialized by a
path xp

dR
0 P πun

1 pX, 0, xqpQq (see [DCW2, §3.1.7] and the references
given there). Moreover, πun

1
pXq is free prounipotent on two generators

e0, e1 representing monodromy about 0 and 1, respectively. Conse-
quently,

ApXq :“ Opπun

1 pXqq

is a shuffle algebra on the shuffle basis e0, e1. Deligne–Goncharov [DG]
(with subsequent different approaches, for instance, by Levine [Lev]
and Dan-Cohen–Schlank [DCS]) construct a natural action of πMT

1 pZq
on πun

1
pX, 0, xq.

Special elements Liunpxq P AnpZq were constructed by Goncharov
[DG]; these were called motivic polylogarithms in loc. cit. but are
called unipotent motivic polylogarithms by Francis Brown [Bro2] to
distinguish them from his somewhat different notion. (In fact the n-
logarithms (or polylogarithms) Liunpxq form a special class among the
more general multiple polylogarithms, which, in turn, are a special class
of (unipotent motivic) iterated integrals defined and studied in [Gon2]).
In the case of Z Ă SpecZ (rather than more general integer schemes)
these elements may be defined quite simply in terms of the action of
πMT
1

pZq on πun
1

pX, 0, xq and in terms of the special de Rham paths xp
dR
0

,
as we now recall.3

We abbreviate words in e0, e1 by writing words in 0 and 1, especially
when these appear as subscripts. We let o denote the orbit map associ-
ated to the de Rham path xp

dR
0

and we let τ denote the trivialization of
the path torsor πun

1
pX, 0, xq associated to the same path. Then Liunpxq

3 When Z Ă SpecOK , K a number field bigger than Q, the de Rham fiber functor
is no longer Q-rational. Instead, one must work with the canonical realization of
the unipotent fundamental group, which thus loses its Tannakian interpretation in
terms of connections. The ensuing construction of motivic polylogarithms, which
is due to Goncharov, is more complicated.
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is defined to be the composite map

(*) πun

1 pZq
o

ÝÑ πun

1 pX, 0, xq
„
ÝÑ
τ

πun

1 pXq
f10¨¨¨0ÝÝÝÑ A1

with n ´ 1 zeroes below the ‘f ’. (The intermediate map

κpxq :“ τ ˝ o

is a Gm-equivariant 1-cocycle and will play an important role below.)
The unipotent logarithm is defined similarly by using the one-letter
word ‘0’ and satisfies

Liu
1
pxq “ ´ logup1 ´ xq.

The unipotent special zeta value ζupnq is defined (using the tangential

end-point ´~11 in place of x) by

ζupnq :“ Liunp´~11q.

p-Adic integration gives rise to a ring homomorphism

perp : ApZq Ñ Qp

which extends the regulator maps and

perppLiunpxqq “ Lipnpxq

is the p-adic n-logarithm of x.

2.3. The polylog quotient and the Goncharov quotient. The
natural inclusion

X ãÑ Gm

gives rise to a map

πun

1 pXq Ñ πun

1 pGmq “ Qp1q.

Let N be the kernel. The polylog quotient is defined as

πPLpXq :“ πun

1 pXq{rN,Ns.

Let n
PLpXq :“ Lie πPLpXq. According to Proposition 16.13 of Deligne

[Del], nPLpXq is a sum of Tate motives. Hence πun
1 pZq acts trivially

on πPLpXq. Consequently, the projection κPLpxq of the cocycle κpxq
(associated to x P XpZq) to πPLpXq is simply a Gm-equivariant homo-
morphism

πun

1 pZq Ñ πPLpXq.

Lemma 2.3.1. The functions f0 and f1, f10, f100, . . . on πun
1

pXq factor
through πPLpXq and form a set of homogeneous coordinates on the
latter.
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Proof. After forgetting the πun
1

pZq action, npXq is just the free pronilpo-
tent Lie algebra on generators e0, e1, and the ideal associated to N is
generated by e1. So this is purely formal. �

We will denote the function f0 on πPLpXq by logu and the function
f10¨¨¨0 with pn ´ 1q zeroes by Liun.

2.3.2. Let n “ npZq “ Lie πun
1

pZq. We define the Goncharov quotient

by
n
GpZq :“ n{rnď´2, nď´2s.

We also consider the associated quotient πGpZq of πun
1

pZq and the as-
sociated Hopf subalgebra

AGpZq Ă ApZq.

Lemma 2.3.3. Every Gm-equivariant homomorphism

πun

1 pZq Ñ πPLpXq

factors through πGpZq.

Proof. Any degree zero graded homomorphism

npZq Ñ n
PLpXq

must send npZqď´2 to n
PLpXqď´2. But

rnPLpXqď´2, n
PLpXqď´2s “ 0. �

Proposition 2.3.4. The unipotent motivic polylogarithmic values Liui pxq
(x P XpZq) belong to AGpZq.

Proof. Returning to 2.2(*), we saw in lemma 2.3.1 that the function
f10¨¨¨0 factors through πPLpXq, and we saw in lemma 2.3.3 that the
cocycle κPLpxq factors through πGpZq. �

Proposition 2.3.5. The map

Z1pπun

1 pZq, πPLpXqqGm Ð Z1pπGpZq, πPLpXqqGm

induced by pulling back a Gm-equivariant cocycle along the projection

π1pZq ։ πGpZq

is bijective. In particular (given that we’re working with the poly-
logarithmic quotient of πun

1 pXq), replacing the full mixed Tate Galois
group πun

1
pZq by its Goncharov quotient will have no further effect on

the resulting loci XpZpqn.

Proof. Direct consequence of lemma 2.3.3. �
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We consider the following strengthening of the depth-1 part of Gon-
charov’s depth filtration conjecture [Gon2]. For any prime q, let

Ząq “ SpecZztprimes ď qu.

For any graded algebra A, we let Arďns denote the subalgebra generated
by elements of degree ď n.

Conjecture 2.3.6 (Integral depth-1 conjecture). For every prime qs
and every n P N, there exists a qM ě qs such that AG

rďnspZąqM q is

generated as a Q-algebra by the elements logupq1q for q1 prime ď qM ,
the elements ζupnq for n odd ě 3 and the elements Liui paq for n ě i ě 2

and a P XpZąqM q.

2.3.7. As an example, AGpSpecZq is spanned by ζupnq for n odd ě 3,
so the integral depth-1 conjecture holds for SpecZ.

2.3.8. Remark. Let us put this conjecture in context with a brief pre-
view of things to come. In section 4 below we construct an algorithm
that takes a natural number n and a prime number qs as input, and
that upon halting outputs two primes qs ď qM ă p and a family of
points ai,j P XpZąqM q, such that

(1) if the algorithm halts then tLiui pai,jqui,j forms an algebra basis
of AGpZąqM q in half-weights ď n, and

(2) if conjecture 2.3.6 holds, then the algorithm halts.

We emphasize that while the halting is conditional, the validity of the
output is unconditional. In particular, our algorithm may be used to
verify the conjecture experimentally up to any given bound on the
weight. Our choice to work with open subschemes of Z of the form
ZąqM (instead of searching through all open subschemes, as we do in
[DC]) means that the scope of our search, as we attempt to construct
a basis, is smaller. It has the disadvantage, however, that we may have
to increase the auxiliary prime p.

2.3.9. Remark. Let us further explain the role played by the scheme
ZąqM in our point-counting algorithm. For general Z, AGpZq may not
be generated by polylogarithms Liui paq with a P XpZq. For example, if
Z “ SpecZr1{qs for q a prime ‰ 2 then

AGpZq ‰ AGpZr1{qsq

(and AGpZr1{qsq is not even generated over AGpZq by logupqq) but

XpZq “ H.
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Moreover, we have no direct way of deciding if a given rational linear
combination of Liunpaq’s (a P XpQq) is unramified over Z (i.e. is con-
tained in ApZq). Our method, present already in a more general (but
less precise) form in [DC], is rather indirect. We first taper Z down
to a ZąqM . We then construct a polylogarithmic basis of AGpZąqM q
(up to a given weight). If we insist that our basis be compatible with
the extension spaces, we may then generate an associated shuffle basis.
We then construct a change-of-basis matrix which relates our polylog-
arithmic basis to our shuffle basis. Finally, we use our shuffle basis to
identify the subspace AGpZq Ă AGpZąqM q.4

2.3.10. Further to remark 2.3.9. Actually, since our change of basis ma-
trix is only a p-adic approximation, we can only identify the subspace
AGpZq inside AGpZąqM q up to given p-adic precision. This means that,
for all we know, the polylogarithmic basis we construct may only be
a linearly independent set of the right size, p-adically close to AGpZq.
This issue may be dealt with roughly as follows. We make sure that
our basis elements are sufficiently spread out (modifying if necessary)
to ensure that their projection onto AGpZq remains linearly indepen-
dent. We refer to the resulting basis as our “abstract basis” since its
definition is not constructive. We subsequently carry out all computa-
tions for both the abstract and the (“concrete”) polylogarithmic basis,
keeping track of the accumulated error.

Issues of this sort were already treated quite carefully in [DC], which
is consequently littered with double-tildes. Here we limit ourselves
to mentioning these issues only in passing, since they tend to cloud
the exposition and obscure the essential features of our construction.
Rather, we feel that these issues are best relegated to a future com-
putational article in which the algorithm presented here is given in a
sort of paragraph-style pseudo code, divorced entirely from its theoret-
ical backdrop. That article, we hope, will come along with Sage code
and a wealth of numerical results. In the meantime, in working out
small-scale examples with a human touch (as we did in [CDC]), these
issues can usually be circumvented by replacing p-adic approximations
of relations between values of polylogarithms by actual known relations
found in the literature about polylogarithms.5

4 However, there’s a caveat, which is why there’s a further remark, which should
be thought of as being in smaller print.

5 But here again there is a caveat, which is why there’s yet another remark, in
an even smaller font.
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2.3.11. Further to remark 2.3.10. Actually, this particular issue was
dealt with differently in [DC]. There, we completely avoided construct-
ing a basis of ApZq. Instead, after finding an open subscheme Zo Ă Z

(which plays the role played by our ZąqM ) and a basis of ApZoq, we
modified the universal evaluation map to allow coefficients in the larger
ApZoq. This meant that the difference between ApZq and ApZoq was
dealt with within the geometric algorithm. However, as we noticed
during our work on [CDC], this made our algorithm quite inefficient in
cases of interest. For instance, it meant that the geometric algorithm
for the case Z “ SpecZr1{qs must grow with q.

A different issue, which comes up only for larger number fields, was,
however, dealt with in a manner similar to that indicated in remark
2.3.10. When a basis for the extension spaces is not known, we are un-
able to construct one algorithmically. Instead, we construct a linearly
independent set p-adically close to the extension space in question and
proceed as indicated above.

2.4. Application to integral points. Let IBC “ per7 denote the map

SpecQp Ñ πun

1 pZq

induced by the period map (since it is essentially given by Besser-

Coleman Integration). Let πPL
ě´npXq denote the quotient by the nth

step of the descending central series. As explained in the proof of
Proposition 2 of Kim [Kim1], the functor from Q-algebras to sets

R ÞÑ Z1pπGpZqR, π
PL

ě´npXqRqGm “ HomGmpπGpZqR, π
PL

ě´npXqRq

of Gm-equivariant cocycles, is represented by an affine space

Z
1pπGpZq, πPL

ě´npXqqGm

over Q.6 Let ev
G denote the universal evaluation map

πGpZq ˆ Z
1
`

πGpZq, πPL

ě´npXq
˘Gm Ñ πGpZq ˆ πPL

ě´npXq

ev
Gpγ, φq “ pγ, φpγqq.

2.4.1. Upon taking Qp-points (as Q-schemes), the evaluation map fits
into a commuting square

XpZq //

κ

��

XpZpq

β

��
´

πGpZq ˆ Z1
`

πGpZq, πPL
ě´npXq

˘Gm

¯

pQpq
ev

G

//

´

πGpZq ˆ πPL
ě´npXq

¯

pQpq

6 A particularly concrete construction of the isomorphism to affine space is given
in [CDC, Corollary 3.11] and indicated in remark 7.4 below.
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sending

x
❴

κ

��

y
❴

β
��

´

IBC, κpxq
¯

✤

ev
G

//

¨

˚

˚

˚

˝

IBC,

¨

˚

˚

˚

˝

logppxq
Li

p
1
pxq

Li
p
2
pxq
...

˛

‹

‹

‹

‚

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

IBC,

¨

˚

˚

˚

˝

logppyq
Li

p
1
pyq

Li
p
2
pyq
...

˛

‹

‹

‹

‚

˛

‹

‹

‹

‚

which constitutes our computable cousin of “Kim’s cutter”.7

2.4.2. For us, the polylogarithmic Chabauty-Kim locus XpZpqn is a locally
analytic (or “Coleman analytic”) subspace of XpZpq. To define it, we take
the scheme theoretic image of ev

G, we pull back along β, and finally we
symmetrize with respect to the S3 action. This last step means that we
close the set of generators under the two operations F pzq ÞÑ

F p1 ´ zq, and F

ˆ

1

z

˙

.(*)

We also consider XpZq as a locally analytic subspace of XpZpq with reduced
structure.8

Conjecture 2.4.3 (Convergence of polylogarithmic loci). Let Z be an open
subscheme of SpecZ and let p be a closed point of Z. Then for n sufficiently
large we have an equality of locally analytic subspaces of XpZpq

XpZq “ XpZpqn.

(In particular, for such n, the points of XpZq are not double roots of the nth
Chabauty-Kim ideal.)

2.4.4. Remark. In segment 8.3 below, we complete the construction of an
algorithm which upon halting computes the locus XpZpqn to given preci-
sion; this is our loci algorithm. This algorithm proceeds in several steps. In
one of these, which we refer to as the geometric algorithm (§7), we compute
the scheme theoretic image of the map ev

G with respect to coordinates in-
duced by a shuffle basis for ApZq. In a second step, we use the change of
basis matrix constructed in the change of basis algorithm (§5) to convert the
resulting equations into equations in coordinates associated to the polylog-
arithmic basis constructed in our basis algorithm (§4). The remaining steps
amount to a straightforward application of Lip service [BdJ]. Pulling back
along β merely means replacing unipotent motivic polylogarithms by p-adic

7 We recall that the commutativity is a rather long story which, at least in
one possible approach, starts with Olsson’s nonabelian p-adic Hodge theory; see
[DCW2].

8 In [CDC] we use the notation XpZpqS3

n to distinguish this locus from the un-
symmetrized version considered previously.
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polylogarithms. The symmetrization was spelled out in 2.4.2(*). Finally,
the algorithm of loc. cit. allows us to obtain local power series expansions
to given p-adic and geometric precision.

2.4.5. Remark. In terms of the loci algorithm our point counting algorithm

from [DC] remains unchanged. We review its construction in segment 9
below, referring back to [DC] for details. In terms of the conjectures above
and the algorithm below, our point-counting theorem (which may equally be
called a point-finding theorem) is as follows. If Z is an open subscheme of
SpecZ in which the largest prime excluded is qM , we refer to ZąqM as the

tapered scheme associated to Z.

Theorem 2.4.6 (Point-counting). Let Z be an open subscheme of SpecZ.

(1) If the point-counting algorithm halts for the input Z, then its output
is equal to XpZq.

(2) Assume the conjectured nonvanishing of the p-adic zeta values ζppkq
(k odd ě 3). If the integral depth-1 conjecture (2.3.6) holds for the
tapered scheme associated to Z, and if convergence of polylogarith-
mic loci (2.4.3) holds for Z, then the point-counting algorithm halts
for the input Z.

Unlike in [DC], here we do not separate the proof of the point-counting

theorem from the construction of the point-counting algorithm. Rather, we
set ourselves the task of computing the data to be computed, and explain
in down to earth terms, how we go about computing algorithmically. Thus,
we consider the theorem to be proved as soon as the algorithm has been
constructed. This task occupies the remainder of the article.

3. Setup

3.1. We continue to work with an open subscheme Z of SpecZ and a prime
p P Z. Recall that πun

1 pZq denotes the unipotent part of the fundamental
group of mixed Tate motives unramified over Z and npZq denotes its Lie
algebra, which has a natural grading — we call the graded degree of a homo-
geneous element its half-weight. Recall that n

GpZq denotes the Goncharov
quotient of npZq and that

πGpZq “ exp nGpZq

denotes the associated quotient of πun
1

pZq. Recall that ApZq “ Opπun
1

pZqq
denotes the graded Hopf algebra of functions on πun

1
pZq, and that AGpZq

denotes the subalgebra associated to πGpZq.
Let

di “ dimQ n
GpZqi.

Let DG
n pZq denote the image of the product map

à

i`j“n, i,jě1

AG
i b AG

j Ñ AG
n .
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The Lie coalgebra LG :“ pnGq_ is equal to the quotient

LG “ AG
ą0{DG “ AG

ą0{pAG
ą0q2

of the augmentation ideal by its square.
Recall that UpZq “ ApZq_ denotes the completed universal enveloping

algebra of πun
1 pZq and, adding the decoration ‘G’ as usual, UGpZq “ AGpZq_

denotes the completed universal enveloping algebra of πGpZq.

Proposition 3.2. Any set of homogeneous elements of AG
ą0

which maps to
a basis of LG forms an algebra basis for AG.

Proof. After forgetting the counit and comultiplication, AG has the structure
of a graded free Q-algebra

AG “ QrSs

with S “
Ť8

i“1
and Si finite for each i. This is simply because AG is the

coordinate ring of a prounipotent group with Gm-action such that the graded
pieces of the abelianization are finite dimensional. Let I “ AG

ą0 denote the
ideal of QrSs of positively graded elements.

Let

S1 “
8
ď

i“1

S1
i

be a set of homogeneous elements of AG
ą0 which maps to a basis of LG “ I{I2

and let I 1 be the ideal of positively graded elements in QrS1s. Then the
induced map of Q-algebras

φ : QrS1s Ñ QrSs

preserves the grading and induces an isomorphism I 1{I 12 Ñ I{I2. Hence by
[DC, 3.1.1], φ is an isomorphism. �

3.3. Remark. Recall from §2.1 that the kernel En “ EnpZq of the reduced
coproduct on ApZqn is canonically isomorphic to the space

Ext1ZpQp0q,Qpnqq

of extensions in mixed Tate motives over Z. Similarly, the kernel EG
n “

EG
n pZq of the reduced coproduct on AG

n pZq is equal to a space of extensions
in the full subcategory of the category of mixed Tate motives consisting
of objects whose associated representation factors through the Goncharov
quotient. We will refer to such objects as “Goncharov motives”.

It follows directly from the definition however, that we have an equality
of spaces of extensions EG

n “ En; in the case at hand, both are spanned by
logarithms and by the motivic zeta elements ζupnq for n odd. Consequently,
the category of Goncharov motives must have nontrivial higher extension
groups. This complicates the structure of the Hopf algebra AG. As men-
tioned in the introduction, instead of analyzing its structure, we will work
inside of A.
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Let qM denote a prime sufficiently large compared to qs and n, and let
ZąqM denote the subscheme of SpecZ obtained by removing all primes ď
qM as above. After constructing a polylogarithmic algebra basis BG for
AGpZąqM q (which includes the zeta elements) in half-weights ď n, we will
extend our basis arbitrarily to an algebra basis B of ApZąqM q. We will then
define the generators σr, r odd ě 3, to be dual to the zeta elements relative
to the given choice of basis. We will then have according to proposition 3.2.3
of [DC],

UpZąqM q “ QxxtτquqďqM , tσru
r odd ě3

yy

but with the σr well defined only in the quotient

U ։ U
G.

3.4. Returning to X “ P1zt0, 1,8u, we recall that πun
1

pXq denotes the

unipotent fundamental group at the tangent vector ~10, and that πPLpXq
denotes its polylogarithmic quotient. We recall that the polylogarithmic
quotient has canonical coordinates, which we denote by logu,Liu1,Li

u

2, . . . , so
that

OpπPLpXqq “ Qrlogu,Liu1,Li
u

2, . . . s

with logu in degree 1 and Liui in degree i. Recall that in §2.2 we associated
to a Z-valued base-point a of X a 1-cocycle

κpaq : πun
1 pZq Ñ πPLpXq

and defined the (unipotent) motivic n-logarithm of a by

Liunpaq :“ κpaq7pLiunq.

More generally, if R is a Q-algebra and

c : πun
1 pZqR Ñ πPLpXqR

is a family of cocycles parametrized by SpecR, we set

Liunpcq :“ c7pLiunq,

an element of ApZq b R. Similarly, we set

logupcq :“ c7ploguq.

Proposition 3.5. We denote the reduced coproduct by ∆1. We have

∆1 Liun “
n´1
ÿ

i“1

ploguqi

i!
b Liun´i .

Proof. In view of the formula

pLiue0qm “ m! Liupe0qm ,

this is just the deconcatenation coproduct of shuffle coordinates on a free
prounipotent group. �
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Corollary 3.6. A similar formula holds for ∆1 Liunpcq for any cocycle c:

∆1 Liunpcq “
n´1
ÿ

i“1

plogupcqqi

i!
b Liun´ipcq,

as well as for ∆1 Liunpzq for any z P XpZq.

Proof. Since πun
1 pZq acts trivially on πPLpXq, a cocycle

c : πun
1 pZq Ñ πPLpXq

is simply a group homomorphism. This means c7 preserves coproducts.
Hence,

∆1 Liunpcq “ ∆1c7 Liun

“ pc7 b c7qp∆1 Liunq

“ pc7 b c7q

˜

n´1
ÿ

i“1

ploguqi

i!
b Liun´i

¸

“
n´1
ÿ

i“1

plogupcqqi

i!
b Liun´ipcq.

�

3.7. Remark. Corollary 3.6 may be upgraded in (at least) four different
ways: (1) by replacing c by a cocycle πun

1
pZq Ñ πun

1
pX,xq which is no longer

a homomorphism, (2) by further puncturing X at a finite number of rational
points, (3) by replacing Liun by the function πun

1
pX,xq Ñ A1

Q associated to

an arbitrary word in a basis of HdR
1 pXq, and (4) by replacing Q by a general

number field. The result (at least when c comes from a rational point y)
is Theorem 1.2 of Goncharov [Gon2], which has come to be known as the
Goncharov coproduct formula. As we mentioned in the introduction, one
advantage of working with n-logarithms is that we can make do with the
much simpler formula of Corollary 3.6.

3.8. Fix arbitrarily a set

Σ “
ď

iď´1

Σi

of homogeneous free generators for npZq. Any word w in the generators is
naturally an element of the completed universal enveloping algebra UpZq.
We denote the natural pairing

ApZq bQ UpZq Ñ Q

by x´,´y, and the same after base-change to any Q-algebra R.

Proposition 3.9. Continuing with the situation and the notation of seg-
ments 3.4, 3.8, fix natural numbers 0 ď r ă n and elements τ1, . . . , τr P Σ´1,
and σ P Σr´n. We then have

xLiunpcq, στ1 ¨ ¨ ¨ τry “ xLiurpcq, σyxlogupcq, τ1y ¨ ¨ ¨ xlogupcq, τry
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and all other values xLiunpcq, wy (w a word in Σ) vanish.

Proof. This formula appeared in a letter written by Francis Brown to I.
Dan-Cohen and is proved in [CDC, Proposition 3.10]. �

3.10. Definition. Let k be a field with an absolute value. We say that
vectors

v1, . . . , vd P kn

are ǫ-linearly independent if there exists a d ˆ d minor whose determinant
has absolute value ą ǫ.

3.11. Proposition. Let k be a field with an absolute value | ¨ | and ṽ1, . . . , ṽd
vectors in kn which are ǫ-linearly independent. Then there exists a number
ǫ1 ą 0, algorithmically computable from the data pǫ, ṽ1, . . . , ṽdq, which goes
to 0 as ǫ Ñ 0, and such that for any family v1, . . . , vd of vectors in kn, if

|vi ´ ṽi| ă ǫ1

for each i “ 1, . . . , d, then the vectors v1, . . . , vd are linearly independent.

Proof. The proof reduces to the case d “ n, to which we now restrict at-
tention. The algorithmic computability will remain implicit. Given v “
pv1, . . . , vdq, ṽ “ pṽ1, . . . , ṽdq as in the proposition, we can bound

|det v ´ det ṽ|

by a positive number δ which depends only on ǫ1 and on ṽ1, . . . , ṽd, and
decreases monotone to 0 as ǫ1 Ñ 0. We outline the construction. For each
i “ 1, . . . , n, we let ∆i denote the norm of the linear functional

detpṽ1, . . . , ṽi´1, ‚, ṽi`1, . . . , ṽnq.

Then there is a positive number δi (with the same properties as above) such
that the norm of the linear functional

detpv1, . . . , vi´1, ‚, ṽi`1, . . . , ṽnq

is bounded by ∆i ` δi whenever

|vj ´ ṽj| ă ǫ1
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for j “ 1, . . . , i´1. Setting ∆ equal to the maximum among ∆1`δ1, . . . ,∆d`
δd, we find that

|det v ´ det ṽ|

ď
d

ÿ

i“1

ˇ

ˇ detpv1, . . . , vi, ṽi`1, . . . , ṽdq ´ detpv1, . . . , vi´1, ṽi, . . . , ṽdq
ˇ

ˇ

“
d

ÿ

i“1

ˇ

ˇ detpv1, . . . , vi´1, vi ´ ṽi, ṽi`1, . . . , ṽdq
ˇ

ˇ

ď
d

ÿ

i“1

ˇ

ˇ detpv1, . . . , vi´1, ‚, ṽi`1, . . . , ṽdq
ˇ

ˇ ¨ |vi ´ ṽi|

ă
d

ÿ

i“1

p∆i ` δiq ¨ ǫ1

ď d ¨ ∆ ¨ ǫ1

whenever |vj ´ ṽj | ă ǫ1 for j “ 1, . . . , d. Thus, we set δ :“ d¨∆¨ǫ1 to complete
our outline of the construction of δ. The monotonicity of δ as a function of
ǫ1 ensures that ǫ1 ÞÑ δ can be inverted.

Turning to the proof of the proposition, we assume that det v ą ǫ and we
find that

|det v| ě |det ṽ| ´ |det v ´ det ṽ| ą ǫ ´
ǫ

2
“

ǫ

2
ą 0

whenever
|vj ´ ṽj | ă ǫ1pδ “ ǫ{2q

for j “ 1, . . . , d, as required. �

4. Basis for receding Z

We construct an algorithm which takes as input a prime qs and a natural
number n, and outputs two primes qs ď qM ă p and a doubly indexed family

tai,ju2ďiďn
1ďjďdi

.

For i odd, we will set ai,1 “ ~́11, so that

Liui pai,1q “ ζupiq.

The remaining elements ai,j are ZąqM -points of X. We name this algorithm
basis for receding Z. We first announce the meaning of the output in a
proposition. If A is a graded algebra, we let Arďns denote the subalgebra
generated by elements of graded degrees ď n. If A is a polynomial algebra,
we refer to a set of free generators as an algebra basis.
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Proposition 4.1. Suppose the algorithm basis for receding Z (mentioned
above and constructed in segments 4.2–4.3 below) halts on the input pqs, nq
and, upon halting, outputs the data

ˆ

qM , p, tai,ju2ďiďn
1ďjďdi

˙

.

Then the unipotent logarithms logu q for q prime ď qM , together with the
unipotent polylogarithms and zeta elements

Liui pai,jq

for 2 ď i ď n and 1 ď j ď di, form an algebra basis for AG
rďnspZąqM q.

In particular, the integral depth-one conjecture (2.3.6) holds for qs in half-
weights ď n. Additionally, the p-adic zeta values ζppmq for m odd P r3, ns
are nonzero.

4.2. Subalgorithm. We begin by constructing a subalgorithm that will be
applied recursively within the main algorithm. The input consists of

‚ two primes qM ă p,
‚ an ǫ P p´N,
‚ a height-bound b P N; we denote by XpZąqM qb Ă XpZąqM q the set

of elements of height ď b,
‚ a family of elements ai,j P XpZąqM qb such that the associated family

of motivic polylogarithms

Li,j “ Liui pai,jq

forms an algebra basis

B
G “ tLi,juiďn

for AG
rďnspZąqM q; we set L1,j “ logupqjq, and Li,1 “ ζupiq for i odd

ě 3.

The output is a function (in the form of a list or a “dictionary”) which
assigns to any a P XpZąqM qb, and any m ď n, an expansion of Liumpaq in the

monomial vector-space basis associated to the algebra basis BG to precision
ǫ. The construction is recursive in m.

4.2.1. In the presence of the basis BG, the Q-algebra AG
rďnspZąqM q may

be identified as a vector space with a space of vectors with entries in the
field Q of rational numbers equipped with the p-adic absolute value, and the
computations that follow are carried out there. As a matter of notation, we
let

A “ tAm,ju

denote the monomial vector space basis associated to the algebra basis BG,
numbered so that

Am,j “ Lm,j
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for j “ 1, . . . ,dim n
G
´m, and Am,j is a shuffle monomial in Lm1,j1 with m1 ă m

for j ą dimn
G
´m. For the base case of our recursive construction, we have

Liu1paq “ ´ logup1 ´ aq P AG
1 – Qtq1,...,qMu,

which we may expand in the logarithms logu qj by decomposing 1 ´ a as a
product of primes.

4.2.2. Assume we’ve expanded the polylogarithmic values Liuămpaq in our
basis for AG

rămspZąqM q up to precision ǫ. Our basis gives us in particular a

basis
A

1 “ A1 ˆ Am´1 Y A2 ˆ Am´1 Y ¨ ¨ ¨ Y Am´1 ˆ A1

for the direct sum of tensor products

AG
1 b AG

m´1 ` AG
2 b AG

m´2 ` ¨ ¨ ¨ ` AG
m´1 b AG

1 ,

and allows us to identify the latter with a space QN of vectors.
Assume m odd (the case m even is simpler). Recall from 2.1.1(˚_) that

in this case, the reduced coproduct ∆1 on AG
m is injective modulo the mo-

tivic zeta value ζupmq. Because of our imperfect approximations, ∆1 Liumpaq
may not quite be in the linear span of the images ∆1Am,j of the basis ele-
ments Am,j P AG

m. We may nevertheless project ∆1 Liumpaq onto the subspace
spanned by the ∆1Am,j (relative to the basis A1) and compute the coeffi-
cients:

∆1 Liumpaq “

dimAG
m

ÿ

j“2

cj∆
1
Am,j.

To do so, we expand each vector ∆1Am,j in the basis A1 to precision ǫ, and
we expand the new vector ∆1 Liumpaq in the basis A1 to precision ǫ as well.
We then set

cj :“ x∆1 Liumpaq,∆1
Am,jy

where the inner product is the standard inner product on QN .
This gives us all coefficients except for the coefficient c1 of ζupmq. To

determine the latter, we use the period map as follows. Letting Liǫmpaq, Aǫ
m,j

denote ǫ-approximations of the p-adic periods of Liumpaq, Am,j produced by
the algorithm of Besser–de Jeu [BdJ], we set

c1 :“
Liǫmpaq ´

řdimAG
m

j“2
cjA

ǫ
m,j

ζǫpmq

(decreasing ǫ if needed so as to achieve |ζǫpmq| ą ǫ). We then have the
expansion

Liumpaq „
ǫ

ÿ

cjAm,j

we hoped for. This completes the construction of the subalgorithm.
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4.3. Main algorithm. We now construct the main algorithm of this sec-
tion. Recall that we are given as input a prime qs and a natural number
n. Our primary goal is to construct a basis for AG

rďnspZąqM q using p-adic

approximations, where qM is a prime ě qs and p is a prime ą qM . Along
the way we will search for potential basis elements among the points

XpZąqM qb Ă XpZąqM q

of height ď b. Since there may not be enough of these points, we will
enthusiastically increase b while reluctantly considering the possibility of
increasing qM , and hence p. Our secondary goal is to ensure that our p-adic
approximations are good enough to witness the nonvanishing (known for p

regular, conjectured in general) of the p-adic zeta values ζppmq for m odd
P r3, ns.

Let I denote the set of quadruples pqM , p, b, ǫq with p ą qM ě qs primes,
b P N, and ǫ P p´N. Let J Ă I be a subset with the following properties. (1)
The projection of J onto the coordinate plane pb, ǫq defines ǫ as a decreasing
function of b. (2) There exists an increasing function b ÞÑ pb from the natural
numbers to the set of primes, such that for fixed pb, ǫq, the fiber of J above
pb, ǫq is equal to the set of all pairs of primes qM ă p ď pb in which p is the
next prime after qM . We arbitrarily impose an ordering on the set J .

4.3.1. Remark. Psychologically, we may imagine qM , p and b to be increasing

while ǫ decreases. However, it is important that after decreasing ǫ, we also
decrease qM and p. Thus, as the algorithm proceeds, we occasionally revisit
past primes in order to give them a second chance.

4.3.2. Remark. Given pqM , p, b, ǫq P J then, the algorithm attempts to verify
the nonvanishing of the p-adic zeta values and to build a basis for

AG
rďnspZąqM q

using the points of XpZąqM qb and using p-adic approximations of precision
ǫ. This may fail for several reasons. One reason is that an ǫ-approximation
of one of the p-adic zeta values ζppmq may equal 0. A second reason is that,
having potentially succeeded in constructing a partial basis, there may not
be another linearly independent polylogarithm available among the points of
XpZąqM qb and this may be because b is too small or because the entire set
of ZąqM -points XpZąqM q is too small. Finally, even if an appropriate choice
of next basis element can be found inside XpZąqM qb, our ǫ-approximations
may be too coarse to see the linear independence.

4.3.3. We now assume, in preparation for the recursive step, that we’ve
reached a data point pqM , p, b, ǫq P J . Assume further that we have con-
structed an algebra basis for AG

rămspZąqM q for some m ď n consisting of mo-

tivic logarithms, motivic zeta values, and motivic polylogarithms Liui pai,jq



THE POLYLOG QUOTIENT AND THE GONCHAROV QUOTIENT II 23

with ai,j P XpZąqM qb. Assume further that we’ve constructed a partial
algebra basis in weight m given by unipotent m-logarithms

L1 “ Liumpam,1q, . . . , Lr “ Liumpam,rq

(am,j P XpZąqM qb) which are linearly independent modulo the space DG
n of

decomposables. We choose arbitrarily a point a P XpZąqM qb and an ǫ P p´N

and consider adding L :“ Liumpaq to our basis. We use the subalgorithm
of segment 4.2 above to expand ∆1 of the decomposables in weight m, the
∆1Li, as well as our new candidate ∆1L “ ∆1 Liumpaq with p-adic precision ǫ

in our polylogarithmic basis
ď

i`j“m, i,jě1

Ai ˆ Aj

for the space
à

i`j“m, i,jě1

AG
i b AG

j

and check the result for ǫ-linear independence (ignoring L1 if m is odd).

‚ If the result is negative, we go on to the next quadruple pqM , p, b, ǫq P
J . If p has changed, we verify the nonvanishing of an ǫ-approximation
ζǫpmq of ζppmq for m odd P r3, ns, decreasing ǫ as needed.

‚ If the result is positive, we set am,r`1 equal to a and continue the
process.

We halt when we reach r “ dim n
G
m for each m ď n. This completes the

construction.

Proposition 4.4. Assume p regular (or nonvanishing of the p-adic zeta
values ζppmq for m odd ě 3). Assume the integral depth-1 conjecture (2.3.6)
holds for qM in half weights ď n. Then the algorithm of segment 4.3 halts.

5. Change of basis

5.1. We continue to work with the scheme ZąqM produced in §4 and we
drop the repeated argument ‘pZąqM q’ throughout this section. Recall that
Arďns Ă A denotes the subalgebra generated by elements of half-weight ď n,

and similarly for AG
rďns. Given our polylogarithmic algebra-basis

B
G
ďn “

n
ď

i“1

B
G
i

for AG
rďns, there exists an algebra basis Bďn “

Ťn
i“1

Bi for Arďns which

extends BG
ďn, as well as associated free generators

τ1, . . . , τM , σ3, σ5, σ7, . . .

of the Lie algebra n “ npZąqM q (in half-weights bounded below by ´n),
where we identify the latter with the set of Lie-like elements in the com-
pleted universal enveloping algebra (c.f. remark 3.3 above). We detail the
construction of this algebra basis, in notation chosen to accord with [DC,
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§3.1]. Let PG
ďn Ă BG

ďn denote the subset obtained by removing the extension
classes (i.e. the logarithms and zeta elements). In half-weight 1 we set

P1 “ P
G
1 “ H.

In half-weight i ě 2 we extend the set PG
i (by choosing arbitrary linearly

independent elements of Ai Ă A) to a linearly independent subset Pi of Ai

which spans a linear complement to the subspace

Ei ‘ Di Ă Ai

spanned by extensions and decomposables. Set

Ei :“

$

&

%

tlogu q1, . . . , log
u qMu i “ 1

ζupiq i ą 1 odd
H i ą 1 even,

Eďn :“
n

ď

i“1

Ei, Pďn :“
n

ď

i“1

Pi,

and
Bďn :“ Eďn Y Pďn.

Let τi be the element of U´1 (half-weight ´1 part of the completed universal
enveloping algebra) dual to logu qi relative to the basis

B1 “ tlogu q1, . . . , log
u qMu

of A1. For q “ qi a prime ď qM , we sometimes write τq in place of τi.
Let Ar denote the set of monomials of half-weight r in the set Bďn Ă A.

For r odd (3 ď r ď n) let σr be the element of U´r dual to ζuprq relative to
the vector space basis Ar of Ar. Then according to propositions 3.2.2 and
3.2.3 of [DC],

Arďns “ QrBďns.

as Q-algebras, and the τq, σr form free generators as hoped.9

5.2. If w is a word in the generators τq, σr, and A is an element of the
vector-space basis for AG generated by the polylogarithmic algebra basis
(i.e. a monomial in BG

ďn), then the value

xA, wy P Q

is independent of the choice of basis for A beyond the polylogarithmic basis
constructed for AG.

We now construct an algorithm which takes as input a polylogarithmic
basis, a word w in the generators τq, σr, an element A of the vector space
basis generated by the algebra basis, and an ǫ, and computes xA, wy to
precision ǫ. The construction is a dévissage in three steps. An example is
worked out for instance in §7.6.3 of [DCW2] as well as in [CDC].

9 The resulting algebra basis Bďn is a mixture of concrete polylogarithmic el-
ements of AG which we have constructed algorithmically on the one hand, with
abstract elements of A on the other hand, whose construction does not intervene
in the algorithm. If we were to separate our construction of the algorithm from our
verification that its output has the desired meaning, then these last elements would
serve as a mere book-keeping device in the construction.
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5.2.1. If A “ A1A2 is a product of two or more algebra-basis elements, we
use the relationship

xA1
A

2, wy “ xA1 b A
2, µpwqy

between the shuffle product on A and the coproduct µ on its completed
universal enveloping algebra U repeatedly to reduce to the case that A “ L

is itself an algebra-basis element.

5.2.2. The values xL,wy for L a logarithm, an n-logarithm, or a zeta value
obey the following rules. We have

xlogu a, τqy “ vqpaq

(the q-adic valuation of a) and all other values xlogu a,wy vanish. We have

xLiu1 a, τqy “ x´ logup1 ´ aq, τqy “ ´vqp1 ´ aq.

By proposition 3.9, we have

xLiun a, τ1 ¨ ¨ ¨ τny “ xLiu1 a, τ1yxlogu a, τ2y ¨ ¨ ¨ xlogu a, τny,

and
xLiun a, σrτ1 ¨ ¨ ¨ τsy “ xLiur a, σryxlogu a, τ1y ¨ ¨ ¨ xlogu a, τsy

(r ` s “ n), and all other values xLiun a,wy vanish. Finally, by definition

xζupnq, σny “ 1

and all other values xζupnq, wy vanish. Using these formulas, we reduce to
the computation of the values xLiurpaq, σry, noting, however, that Liurpaq may
not be an algebra basis element.

5.2.3. We use the method of §4.2 to expand Liurpaq in our polylogarithmic
basis in half-weight r to precision ǫ. We have thus reduced to the case that
A “ L is again an algebra-basis element, while w “ σr is a one-letter word.
Finally, by our very definition of σr, we have

xL, σry “

"

1 if L “ ζuprq, and
0 otherwise.

This completes the construction of the algorithm.

5.3. Remark. Given w P U´k a word in the generators τp, σr (with k ď n),
we let fw P Ak denote the dual element relative to the basis consisting of
such words. In terms of the resulting shuffle basis, the above computations
can be rewritten as follows:

logu q “ fτq ,

ζupnq “ fσn ,

and

Liui paq “
ÿ

xLiur a, σryvq1paq ¨ ¨ ¨ vqspaqfστq1 ¨¨¨τqs `
ÿ

vq0paq ¨ ¨ ¨ vqipaqfτq0 ¨¨¨τqi

(a “ ai,j , r ` s “ i).
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6. Basis for Z Ă SpecZ arbitrary

6.1. We now consider Z Ă ZąqM arbitrary. At this point we have a polylog-
arithmic basis tAi,ju for AG

rďnspZąqM q, a shuffle basis tfwu for all of ApZąqM q

(both in bounded weights ď n), and a matrix M expanding the former in
the latter to precision ǫ, which we think of as the matrix associated to the
inclusion

AG
ďnpZąqM q Ă AďnpZąqM q

(where the subscript ď n refers to the vector subspace of elements in graded
degrees ď n) relative to the polylogarithmic basis on the source and the shuf-
fle basis on the target. Relative to the shuffle basis, AďnpZq Ă AďnpZąqM q
is the hyperplane spanned by fw with w not involving the generators τq for
primes q P Z. Pulling back via M , we obtain a system of linear equations.
We may then construct a basis for the space of solutions by basic methods
of linear algebra. The result is a vector space basis AG of AG

ďnpZq.

7. Geometric algorithm

7.1. The geometric algorithm takes as input a finite set

Σ´1 “ tτ1, . . . , τsu

and a natural number n, and outputs a finite set

tF a
1 , . . . , F

a
Nu

of elements of the polynomial algebra

Qrtfλuλ, log
u,Liu1,Li

u

2, . . . ,Li
u

ns

where λ ranges over the set of Lyndon words in the (suitably ordered) set

Σ “
n

ď

i“1

Σ´i

where Σ´i contains one element σi for i odd ě 3 and no elements for i even.
(The superscript ‘a’ stands for abstract.)

7.2. This algorithm is independent of the previous algorithms, and its halt-
ing is unconditional. We first explain the meaning of its output. Let πunpΣq
be the free prounipotent group on the set Σ with Gm-action induced by
placing Σi in graded degree i. Let n “ npΣq be its Lie algebra — the free
pronilpotent Lie algebra on the set Σ. Let n

GpΣq be the quotient

n
GpΣq :“ n{rnď´2, nď´2s,

let πGpΣq be the associated quotient of πunpΣq and let AGpΣq “ OpπGpΣqq
be the associated Hopf algebra. There is a canonical isomorphism

ApΣq :“ Opπun
1 pΣqq “ Qrtfλuλs,

hence an inclusion
AGpΣq Ă ApΣq “ Qrtfλuλs.
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Let n
PL
ě´n be the graded Lie algebra

n
PL
ě´n “ Qp1q ˙

n
ź

i“1

Qpiq

(with Qpiq placed in graded degree ´i) and let πPL
ě´n denote the associated

unipotent Q-group. Let

logu “ f0, Liu1 “ f1, Liu2 “ f10, . . . Liun “ f10¨¨¨0

denote shuffle coordinates on πPL
ě´n associated to its presentation as a quo-

tient
πunpe0, e1q ։ πPL

ě´n

of the free prounipotent group on two generators e0, e1. Endow πPL
ě´n with

the trivial πGpΣq-action. Let ev
G
n pΣq denote the evaluation map

πGpΣq ˆ Z1pπGpΣq, πPL
ě´nqGm Ñ πGpΣq ˆ πPL

ě´n.

ev
G
n pΣqpγ, cq “ pγ, cpγqq.

Then the functions F a
1 , . . . , F

a
N produced by the algorithm are contained in

AGpΣqrlogu,Liu1, . . . ,Li
u

ns

where they generate the ideal associated to the scheme theoretic image of
ev

G
n pΣq.

7.3. We now construct the algorithm. As a corollary of proposition 3.9
above, we find in [CDC, Corollary 3.11] that the full cocycle evaluation map

evnpΣq : πunpΣq ˆ Z1
`

πunpΣq, πPL
ě´n

˘Gm Ñ πunpΣq ˆ πPL
ě´n

(i.e. without passing to the Goncharov quotient) is given in coordinates by
the map of finite type polynomial algebras over Q

Qrtfλuλ, tΦρ
Λ

uwtpρq“wtpΛqs Ð Qrtfλuλ, log
u,Liu1,Li

u

2, . . . ,Li
u

ns,

(where λ ranges over Lyndon words in the generators τ , σ of πun
1

pZq, Λ

ranges over the set of polylogarithmic words in e0, e1 of weight ď n, and ρ

ranges over the set of generators τ , σ of πun
1 pZq) given by

ÿ

τPΣ´1

fτΦ
τ
0 Ðß logu

and
ÿ

τ1, . . . , τr P Σ´1

σ P Σ´s

r ` s “ n

1 ď s ď n

fτ1¨¨¨τrσΦ
τ1
0

¨ ¨ ¨Φτr
0
Φσ
0 ¨ ¨ ¨ 01
loomoon

s

Ðß Liun .

Since
Z1

`

πGpΣq, πPL
˘Gm “ Z1

`

πunpΣq, πPL
˘Gm

,
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the scheme theoretic image of evGn pΣq is the same as the scheme theoretic
image of the composite

πunpΣq ˆ Z1
`

πunpΣq, πPL
ě´n

˘Gm Ñ πunpΣq ˆ πPL
ě´n Ñ πGpΣq ˆ πPL

ě´n.

In terms of coordinate rings, this means restricting the map evnpΣq7 to the
subalgebra

AGpΣqrlogu,Liu1,Li
u

2, . . . ,Li
u

ns.

By proposition 3.2 (which, in turn, is a direct application of [DC, 3.1.1]), a
basis for the latter may be constructed out of the basis tfλu for πunpΣq by
elementary linear algebra. Subsequently, a set of generators for the kernel of

Qrtfλuλ, tΦρ
Λ

uwtpρq“wtpΛqs Ð AGpΣqrlogu,Liu1,Li
u

2, . . . ,Li
u

ns

may be constructed by standard methods of elimination theory. This com-
pletes our construction of the geometric algorithm.

7.4. Remark. If C is the universal cocycle

πun
1 pZq ˆ Z1

`

πun
1 pZq, πPLpXq

˘Gm Ñ πPLpXq ˆ Z1
`

πun
1 pZq, πPLpXq

˘Gm
,

then
Φ
ρ

0 ¨ ¨ ¨ 01
loomoon

n

pCq “ xLiunpCq, ρy

(this equality takes place inside the coordinate ring of Z1, or, in terms of
our shuffle basis, inside QrtΦρ

Λ
us). In other words, Φρ

0...01 corresponds to the
function on cocycles xLiunp?q, ρy.

8. Loci algorithm

In terms of the basis algorithms, the change of basis algorithm, and the
geometric algorithm, our loci algorithm is similar to the algorithm of [DC,
§4.2]; we repeat the construction, making adjustments as needed.

8.1. The loci algorithm takes as input an open subscheme Z Ă SpecZ,
a natural number n and an ǫ. As output, it returns a prime p P Z, a
polylogarithmic algebra basis BG

ďn of the polynomial ring AG
rďnspZq and a

family tFiui of elements of the polynomial ring

QrBG
ďn, log

u,Liu1, . . . ,Li
u

ns.

8.2. Before constructing the algorithm, we explain the meaning of its output
upon halting. There’s an obvious homomorphism

QrBG
ďn, log

u,Liu1, . . . ,Li
u

ns Ñ ColpXpZpqq

to the ring of Coleman functions. Let F
p
i denote the image of Fi. We

symmetrize the family tF p
i uiPI with respect to the S3 action as indicated in

segment 2.4.2 to obtain a bigger family tF p
j ujPJ . Then the family tF p

j ujPJ is

within ǫ of a set of generators for the ideal of ColpXpZpqq which defines the
(symmetrized) polylogarithmic Chabauty-Kim locus XpZpqn.



THE POLYLOG QUOTIENT AND THE GONCHAROV QUOTIENT II 29

8.3. The algorithm is constructed as follows. We run the geometric algo-

rithm (§7) on the set of symbols

Σ´1 “ tq1, . . . , qsu

with s equal to the number of primes excluded from Z. This gives us a
family tF a

i u of elements of the polynomial Q-algebra

Qrtfλuλ, log
u,Liu1,Li

u

2, . . . ,Li
u

ns.

Thus, the coefficients of F a
i are elements of the vector space Qrtfwus with

basis indexed by words w in the set tτ1, . . . , τs, σ´3, σ´5, . . . u. (In fact, by
their construction, the coefficients will belong to the subspace corresponding
to the Goncharov quotient.)

We run the algorithm basis for receding Z (§4) on the input pqs, nq to
obtain a pair of primes qs ď qM ă p and a polylogarithmic algebra basis

(*) ąqMB
G
ďn

(hence also an associated monomial vector space basis ąqMAG
ďn) of

AG
rďnspZąqM q.

We run the change of basis algorithm (§5) on the polylogarithmic algebra
basis (*) and we run the basis algorithm for arbitrary Z (§6) on the further
input Z. By elementary linear algebra, we obtain

(1) a polylogarithmic algebra basis BG
ďn for AG

rďnspZq, and

(2) for each element A of the associated vector space basis AG
ďn, an

associated vector MpAq in the vector space Qrtfwus.

We now expand the coefficients of each F a
i in the vectors MpAq to obtain a

family tFiu of elements of the polynomial ring

QrBG
ďn, log

u,Liu1, . . . ,Li
u

ns

as hoped. This completes the construction of the algorithm.

9. Point counting algorithm

9.1. Our root criterion algorithm from [DC, §5] combines standard methods
of Newton polygons together with a growth estimate obtained by Besser–de
Jeu [BdJ] to decide whether the number of zeroes of a p-adic power series in
a given ball is zero or one, given a sufficiently close approximation. We do
not repeat it here.

9.2. Our point-counting algorithm from [DC, §7] remains unchanged; we
nevertheless do repeat it for the reader’s convenience, while avoiding the
double tildes of loc. cit. as indicated in remark 2.3.10. This algorithm
takes as input an open subscheme Z of SpecZ and proceeds by running two
processes simultaneously. One process is simply a naive search for points of
XpZq. This produces a gradually increasing subset XpZqn Ă XpZq.
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The other process locates an appropriate prime p P Z and computes the
loci XpZpqn to given precision. It then verifies if it is possible, with the given
level of precision, to declare an equality

XpZqn “ XpZpqn.

9.3. We begin by running our basis algorithm. In addition to the polyloga-
rithmic basis of AG

rďnspZq which will remain fixed throughout the remainder

of the construction, this also gives us the auxiliary prime p.
Having done so, our algorithm searches through the set of triples pn,N, ǫq,

n,N P N, ǫ in a countable subset of Rą0 with accumulation point 0. After
each attempt, we increase n and N and decrease ǫ. To each such triple, our
algorithm assigns a set XpZqn of points of XpZq and a boolean. The boolean
output will be constructed in segments 9.4–9.7. If the boolean output is True,
then we output XpZqn. If the boolean output is False, then we continue the
search. To produce the set XpZqn, we simply search for points up to a
suitable hight-bound depending on n which goes to infinity with n. The
remainder of the construction concerns the boolean output.

9.4. We partition XpZpq into ǫ-balls, decreasing ǫ as needed to ensure that
each ball contains at most one element of the set XpZqn (our, potentially
incomplete, list of integral points). We run our loci algorithm to produce a
family tFiui of polylogarithmic functions on XpZpq.

9.5. We now focus our attention on an ǫ-ball B containing a rational rep-
resentative y P B. Using Lip service [BdJ], we expand each polylogarithmic
function Fi to arithmetic precision ǫ and geometric precision e´N about y.
In a technical step explained in the proof of theorem 7.2.1 of [DC], we must
check that all nonzero coefficients are larger than ǫ, returning False if not.

9.6. Let b be the number of points (0 or 1) in XpZqn X B. We run the
root-criterion algorithm on the ball B, on the precision-levels N and ǫ, and
on each of the functions Fi, to verify if B contains no more than b roots.

9.7. We repeat steps 9.5-9.6 in each ball. This completes the construction
of the algorithm.
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