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THE COHOMOLOGY OF UNRAMIFIED RAPOPORT-ZINK

SPACES OF EL-TYPE AND HARRIS’S CONJECTURE

ALEXANDER BERTOLONI MELI

Abstract. We study the l-adic cohomology of unramified Rapoport-Zink
spaces of EL-type. These spaces were used in Harris and Taylor’s proof of
the local Langlands correspondence for GLn and to show local-global compat-
ibilities of the Langlands correspondence. In this paper we consider certain
morphisms, Mantb,µ, of Grothendieck groups of representations constructed
from the cohomology of the above spaces, as studied by Harris and Taylor,
Mantovan, Fargues, Shin, and others. Due to earlier work of Fargues and Shin
we have a description of Mantb,µpρq for ρ a supercuspidal representation. In
this paper, we give a conjectural formula for Mantb,µpρq for ρ an admissible
representation and prove it when ρ is essentially square integrable. Our proof
works for general ρ conditionally on a conjecture appearing in Shin’s work.
We show that our description agrees with a conjecture of Harris in the case of
parabolic inductions of supercuspidal representations of a Levi subgroup.

1. Introduction

Our goal in this paper is to give a description of the l-adic cohomology of unrami-
fied Rapoport-Zink spaces of EL-type. These spaces are moduli spaces of p-divisible
groups associated to unramified Weil-restrictions of general linear groups and can
be thought of as generalizations of Lubin-Tate spaces.

This work generalizes, for these particular spaces, the Kottwitz conjecture stated
in [RV14, Conj 7.3]. The Kottwitz conjecture describes the supercuspidal part of the
l-adic cohomology of Rapoport-Zink spaces, and is known in the cases we consider
by work of Shin [Shi12, Cor 1.3]. We prove our description of this cohomology is
compatible with a conjecture of Harris [Har01, Conj 5.4], generalizing the Kottwitz
conjecture to parabolic inductions of supercuspidal representations.

Our result describes the cohomology of these Rapoport-Zink spaces as a formal
alternating sum (indexed by certain root theoretic data) of representation-theoretic
constructions including the local Langlands correspondence, parabolic inductions,
and Jacquet modules.

We prove our result inductively using two formulas from the literature. The first
of these is Shin’s averaging formula [Shi12, Thm 7.5] which is proven using Manto-
van’s formula [Man05, Thm 22]. Mantovan’s formula connects the cohomology of
Rapoport-Zink spaces, Igusa varieties and Shimura varieties. The second formula
is the Harris-Viehmann conjecture of [RV14, Conj 8.4] which relates the cohomol-
ogy of so-called non-basic Rapoport-Zink spaces to a product of Rapoport-Zink
spaces of lower dimension. A proof of this conjecture is expected to appear in a
forthcoming paper of Scholze.

To carry out our induction, we prove combinatorial analogues of the above for-
mulas phrased purely in terms of root-theoretic data. Interestingly, we are able to
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2 ALEXANDER BERTOLONI MELI

prove these analogues for general quasisplit reductive groups, though at present we
can only connect them to the cohomology of Rapoport-Zink spaces of unramified
EL-type. To do so in other cases, one would need to generalize Shin’s averaging
formula.

We now describe our main results more precisely. We fix an algebraic closure
Qp of Qp. We study Rapoport-Zink spaces of unramified EL-type which we denote
Mb,µ. These are moduli spaces of p-divisible groups coming from an unramified
EL-datum consisting of

(1) a finite unramified extension F Ă Qp of Qp,
(2) a finite dimensional F vector space V which defines the group

G “ ResF {Qp
GLpV q,

(3) a G
Qp

-conjugacy class of cocharacters tµu, with µ : Gm Ñ G
Qp

, and such

that the weights of µ are elements of t0, 1u.
(4) an element b of a finite set BpG,µq which defines a group Jb that is an inner

twist of a Levi subgroup Mb of G.

Roughly one can think of b, µ as specifying the Newton and Hodge polygons of a
p-divisible group and Jb as the automorphism group of the isocrystal b.

Let Qur
p denote the maximal unramified extension of Qp inside Qp, and let

yQur
p denote its completion. Then the spaces Mb,µ are formal schemes over yQur

p .

One constructs a tower of rigid spaces Mrig
U,b,µ over the generic fiber M

rig
b,µ of Mb,µ,

where the index U runs over compact open subgroups of GpQpq. Associated to
such a tower we have a cohomology space rH‚pG, b, µqs which is an element of the
Grothendieck group GrothpGpQpqˆJbpQpqˆWEtµuG

q of admissible representations

of GpQpq, JbpQpq and WEtµuG
, where the latter group is the Weil group of the reflex

field, EtµuG
, of tµu. This construction can be thought of as an alternating sum of

a direct limit over U Ă G of l-adic cohomology groups with the actions of GpQpq
and JbpQpq arising from Hecke correspondences and isogenies of p-divisible groups,
respectively. We refer to §3.1 for a precise definition.

The cohomology object rH‚pG, b, µqs gives rise to a map of Grothendieck groups

MantG,b,µ : GrothpJbpQpqq Ñ GrothpGpQpq ˆ WEtµuG
q

which maps a representation ρ to the alternating sum of the JbpQpq-linear Ext
groups of rH‚pG, b, µqs and ρ.

The map MantG,b,µ has been studied by many authors. Harris and Taylor [HT01]
used this construction to prove the local Langlands correspondence for general linear
groups. It also appears naturally in Mantovan’s work relating the cohomology of
Shimura varieties, Igusa varieties, and Rapoport-Zink spaces [Man05]. Fargues
studied MantG,b,µ for basic b in some EL and PEL-cases in [Far04]. Shin combined
Mantovan’s formula with his trace formula description of the cohomology of Igusa
varieties to prove instances of local-global Langlands compatibilities [Shi11].

In [Shi12], Shin proved an averaging formula for MantG,b,µ which is key to our
work. He defined a map

Redb : GrothpGpQpqq Ñ GrothpJbpQpqq

which up to a character twist is given by composing the un-normalized Jacquet
module

JacGP op

b
: GrothpGpQpqq Ñ GrothpMbpQpqq
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with the Jacquet-Langlands map of Badulescu [Bad1]

LJ : GrothpMbpQpqq Ñ GrothpJbpQpqq.

Shin uses global methods and so necessarily works with a large but inexplicit class
of representations which he denotes accessible. This set loosely consists of those
representations isomorphic to the p-component of an automorphic representation
appearing in the cohomology of a certain unitary similitude group Shimura variety.
In particular, the essentially square integrable representations in GrothpGpQpqq are
accessible.

In what follows r´µ is a finite dimensional representation of pG¸WEtµuG
which re-

stricts to the representation of highest weight ´µ on pG, and LL is the semisimplifed
local Langlands correspondence from [HT01]. Shin shows the following result.

Theorem 1.0.1 (Shin’s Averaging Formula). Assume π is an accessible represen-
tation of GpQpq. Then

ÿ

bPBpG,µq

MantG,b,µpRedbpπqq “ rπsrr´µ ˝ LLpπq|WEtµuG
s,

where the above formula is correct up to a Tate twist which we omit for clarity and
rπsrρs is our notation for an element π b ρ P GrothpGpQpq ˆ WEtµuG

q.

Additionally we have the conjecture of Harris and Viehmann which allows us
to write MantG,b,µ for non-basic b (b is basic when it corresponds to an isocrystal
with a single slope) in terms of MantG1,b1,µ1 such that G1 is a general linear group of
smaller rank than G. This conjecture was formulated in work of [Har01] and [RV14]
and is expected to be proven in forthcoming work of Scholze. In what follows, Ind
is the un-normalized parabolic induction functor.

Conjecture 1.0.2 (Harris-Viehmann).

MantG,b,µ “
ÿ

pMb,µ1qPIG,µ

Mb,b
1

IndGPb
pbk

i“1MantMb1
i
,b1

i,µ
1
i
q,

where we omit a Tate twist which we discuss at length in §3.2. The finite set IG,µ
Mb,b1

is described in Proposition 2.5.5.

Shin’s averaging formula and the Harris Viehmann conjecture allow one to com-
pute MantG,b,µ ˝ Redb recursively. The latter lets us compute MantG,b,µ for non-
basic b given that we know MantG1,b1,µ1 for G1 of lower rank and the former lets
us compute MantG,b,µ for the unique basic b P BpG,µq if we know it for all non-
basic b P BpG,µq. One of our main results is to give a non-recursive description of
MantG,b,µ ˝ Redb which we now describe.

Let G “ ResF {Qp
GLpV q as before, choose a rational Borel subgroup B of G,

and a rational maximal torus T Ă B Ă G. Then we consider pairs pMS , µSq
where MS Ă T is a Levi subgroup of a parabolic subgroup PS containing B, and
µS P X˚pT q is dominant as a cocharacter of MS . We call a pair of the above form
a cocharacter pair for G.

We associate to a cocharacter pair pMS , µSq the map of representations rMS, µSs :
GrothpGpQpqq Ñ GrothpGpQpqˆWEtµSuMS

q, which up to a character twist is given

by

π ÞÑ rpIndGPS
˝ rµSs ˝ JacGP op

S
qpπqs
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and
rµSs : GrothpMSpQpqq Ñ GrothpMSpQpq ˆ WEtµSuMS

q

given by
π ÞÑ rπsrr´µS

˝ LLpπqs

Then our main result, which follows from Theorem 3.3.7 in this paper is

Theorem 1.0.3. Suppose MantG,b,µ corresponds to a tower of unramified Rapoport-
Zink spaces of EL-type. We assume that the Harris-Viehmann conjecture is true.
Then if ρ P GrothpGpQpqq is essentially square-integrable, we have

MantG,b,µpRedbpρqq “
ÿ

pMS ,µSqPRG,b,µ

p´1qLMS,Mb rMS, µSspρq,

where RG,b,µ is a collection of cocharacter pairs with a combinatorial definition and

p´1qLMS,Mb is an easily determined sign.

Shin conjectures ([Shi12, Conj 8.1]) that the averaging formula holds for all
admissible representations of GpQpq. If this were indeed the case, then our result
would also immediately hold for all admissible representations of GpQpq.

A crucial part of the proof of the above theorem is the following unconditional
result, which is perhaps interesting in its own right.

Theorem 1.0.4 (Imprecise version of Theorem 2.5.4 and Corollary 2.5.8 of our
paper). For general quasisplit G and a cocharacter µ (not necessarily minuscule),
combinatorial analogues of Shin’s formula and the Harris-Viehmann conjecture hold
true.

This result suggests that perhaps the combinatorics of cocharacter pairs is related
to MantG,b,µ in cases more general than Rapoport-Zink spaces of unramified EL-
type. However, we caution the reader that the existence of nontrivial L-packets and
nontrivial endoscopy in more general groups will likely complicate the situation.

In §4 of the paper, we use our combinatorial formula to prove the EL-type
cases of a conjecture of Harris ([Har01, Conj 5.4]). This conjecture describes
MantG,b,µpIGM pρqq for ρ a supercuspidal representation of MpQpq for M a Levi
subgroup of G. In this case, IGM denotes normalized parabolic induction. In par-
ticular, we show the following result, which is stated as Conjecture 4.0.4 in our
paper.

Theorem 1.0.5 (Harris conjecture). We assume that Shin’s averaging formula
holds for all admissible representations of GpQpq and that the Harris-Viehmann
conjecture is true. Let ρ be a supercuspidal representation of MpQpq. Then up to
a precise character twist and sign which we omit for clarity,

MantG,b,µpLJpIMb

M pρqqq “ rIGM pρqs

»
– à

pM,µ1qPRel
G,µ

M,b

r´µ1 ˝ LLpρq

fi
fl

for an explicit set of cocharacter pairs RelG,µ
M,b.

We prove our result for IGM pρq not necessarily irreducible and b not necessarily
basic, which is a generalization of what Harris conjectured for the G we consider.

Finally, in Appendix A we give an example to show that for general representa-
tions ρ, one cannot hope for an expression as simple as that in Harris’s conjecture.
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2. Cocharacter Formalism

In this section we define and study the notion of a cocharacter pair. This notation
will be used in the third and fourth sections of this paper, where we describe the
cohomology of certain Rapoport-Zink spaces in terms of cocharacter pairs. We
endeavor to use a similar notation to [Kot97].

This section is divided into five subsections. These are structured so that the first
contains the basic definitions and the fourth and fifth subsections contain the most
important results. The second and third subsections prove a number of technical
lemmas that the reader may want to skip at first and refer to as necessary.

2.1. Notation and Preliminary Definitions. For the remainder of this section,
we fix G a connected quasisplit reductive group defined over Qp. This is a sig-
nificantly more general setting than we will need for applications in this paper.
However, we choose to work in this generality because doing so is both conceptu-
ally clearer and potentially useful for future applications. The ideas in §5 of [Kot97]
might allow one to remove the quasisplit assumption, but we do not attempt this
here as it is unnecessary for the applications. Moreover, Kottwitz’s study of the set
BpGq in that section relies on understanding the quasisplit case first.

Remark 2.1.1. The reader will notice that most of this section makes sense over an
arbitrary field. The assumption that we work over Qp is used in section 2.4 when
we connect cocharacter pairs to the set BpGq defined by Kottwitz. However, in §5.1
of [Kot97], Kottwitz shows that over Qp, the set BpGq is parametrized by a disjoint

union of sets of the form X˚pZpyMSqΓq` for MS a standard Levi subgroup of G.
These latter sets make sense over general fields and one could make sense generally
of all the results of this section by replacing BpGq with the sets parametrizing it.

Since G is quasisplit, we can pick a Borel subgroup B Ă G defined over Qp and
a maximal split torus A Ă B of G. We choose T to be a maximal torus defined
over Qp satisfying A Ă T Ă B. We define X˚pAq and X˚pAq respectively to be the
character and cocharacter groups of A

Qp
.

The group G has a relative root datum pX˚pAq,Φ˚pG,Aq, X˚pAq,Φ˚pG,Aqq,
where Φ˚pG,Aq and Φ˚pG,Aq respectively denote the set of relative roots and
relative coroots of G and the torus A. Our choice of Borel subgroup B determines
a decomposition Φ˚pG,Aq “ Φ˚pG,Aq`

š
Φ˚pG,Aq´ of positive and negative roots

and a subset ∆ Ă Φ˚pG,Aq` of simple roots. Analogous statements are also true
for the coroots. The set of parabolic subgroups P Ą B defined over Qp are called
standard parabolic subgroups. We define PS to be the unique standard parabolic
subgroup such that Φ˚pPS , Aq “ Φ˚pG,Aq` Y pΦ˚pG,Aq´ X SpanZpSqq. There is
an inclusion preserving bijection between the set of standard parabolic subgroups
and subsets of ∆ given by S ÞÑ PS .
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We let NS be the unipotent radical of the standard parabolic subgroup PS . It is
a standard result that there exists a connected reductive subgroup M Ă PS so that
the natural map M Ñ PS{NS is an isomorphism. In particular, this gives us a Levi
decomposition PS “ MNS and the subgroup M is called a Levi subgroup of PS .
The subgroup M is not unique but any two Levi subgroups of PS are conjugate by
an element of NS . However, we have fixed a maximal torus T and there is a unique
Levi subgroup MS containing T . The subgroup MS is constructed explicitly as the
centralizer CGpZq, where Z Ă T is the connected component of the intersection of
the kernels of the roots in S. We refer to the Levi subgroups MS that we produce
in this way as standard Levi subgroups.

Define

A :“ X˚pAq.

We have the closed rational Weyl chamber

CQ “ tx P AQ : xx, αy ě 0, α P ∆u.

We define for each standard Levi subgroup,

AMS,Q :“ tx P AQ : xx, αy “ 0, α P Su,

and denote the strictly dominant elements of AMS,Q by

A
`
MS ,Q “ tx P AQ : xx, αy “ 0, α P S, xx, αy ą 0, α P ∆zSu,

and we have ž

MS

A
`
MS ,Q “ CQ.

There is a partial ordering of AQ given by µ ĺ µ1 if µ1 ´µ is a non-negative rational
combination of simple roots.

Definition 2.1.2. We define a cocharacter pair for a group G (relative to some
fixed choice of T and B defined over Qp) to be a pair pMS , µSq such that MS Ă G

is a standard Levi subgroup and µS P X˚pT q satisfies xµS , αy ě 0 for each positive
absolute root α of T in the Lie algebra of MS,Qp

. Positivity for absolute roots is

determined by the Borel subgroup B which we have fixed.
We denote the set of cocharacter pairs for G by CG.

Remark 2.1.3. We caution the reader that the cocharacter µS need not be an
element of X˚pAq, even though MS is defined over Qp.

We could define cocharacter pairs more canonically as the set of equivalence
classes of pairs pM,µq such that M is a Levi subgroup of G defined over Qp and
µ is a cocharacter of M . Two pairs pM,µq, pM 1, µ1q are equivalent if M,M 1 are
conjugate in GQp

and µ, µ1 are conjugate in MQp
. We choose not to do this as

in practice we will often need to work with the unique dominant cocharacter in a
conjugacy class relative to a fixed based root datum.

Let Γ “ GalpQp{Qpq. Since we have assumed T and B are defined over Qp,
Γ acts on T

Qp
and B

Qp
. This gives us a natural left action of Γ on X˚pT q given

explicitly by pγ ¨µqpgq “ γpµpγ´1pgqq for µ P X˚pT q and γ P Γ. We get an analogous
left action on X˚pT q and one can easily check that the pairing X˚pT qˆX˚pT q Ñ Z

is Γ invariant under these actions.
We have

X˚pT qΓ “ A.
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Indeed, a Γ-invariant cocharacter µ factors through the identity component of T Γ,
where T Γ is the subscheme defined by T ΓpQpq “ T pQpqΓ. But the identity compo-
nent of T Γ is the torus A. Conversely any cocharacter of A induces a Γ-invariant
cocharacter via the natural inclusion A ãÑ T .

Given µ P X˚pT q, we construct an element µΓ of AQ as follows:

µΓ “
1

rΓ : Γµs

ÿ

γPΓ{Γµ

γpµq

where Γµ is the stabilizer of µ in Γ. Then µΓ P X˚pT qΓQ “ AQ.

Given a standard Levi subgroupMS , we let W
rel
MS

denote the relative Weyl group

of MS. The group W rel
MS

is defined to be the subgroup of the relative Weyl group,

W rel, that is generated by the reflections corresponding to simple roots in S.

Definition 2.1.4. We define a map

θMS
: X˚pT q Ñ AQ,

given by

θMS
pµq “

1

|W rel
MS

|

ÿ

σPW rel

MS

σpµΓq.

We are now ready to describe a formalism that will prove useful in studying the
cohomology of certain Rapoport-Zink spaces. Crucial to everything that follows is
a partial ordering on the set CG of cocharacter pairs for G.

Definition 2.1.5. We define a partial ordering on CG which we denote by the
symbol ď. Unfortunately, our definition is somewhat indirect: we first define when
pMS2

, µS2
q ď pMS1

, µS1
q for MS2

Ă MS1
(equivalently S2 Ă S1) and S1zS2 contains

a single element (in other words, MS2
is a maximal proper Levi subgroup of MS1

).
We then extend the relation to all cocharacter pairs by taking the transitive closure.

Let MS2
,MS1

be standard Levi subgroups of G such that MS2
Ă MS1

and
S1zS2 is a singleton. For cocharacter pairs pMS2

, µS2
q, pMS1

, µS1
q P CG, we write

pMS2
, µS2

q ď pMS1
, µS1

q if µS2
is conjugate to µS1

in MS1Qp
and θMS2

pµS2
q ą

θMS1
pµS1

q. We then take the transitive closure to extend to a partial ordering on
CG.

The following example shows that the above definition depends on the assump-
tion that S1zS2 is a singleton.

Example 2.1.6. Consider G “ GL4 with T the diagonal torus and B the upper
triangular matrices. We can pick a basis for X˚pT q of cocharacters pei defined so
that peipgq is the diagonal matrix with 1 in every position except for the ith, which
equals g. Then we can identify an element of X˚pT q with its coordinate vector in
this basis. Finally, we use additional parenthesis to indicate the product structure
of the standard Levi subgroup MS . Using this notation, the set of cocharacter pairs
that are less than or equal to pGL4, p12, 02qq is given in the diagram at the start of
Appendix A.

In particular, we see that pGL4
1, p1qp1qp0qp0qq ď pGL4, p12, 02qq since we have a

chain of cocharacter pairs where each Levi subgroup is maximal in the next:

pGL4
1, p1qp1qp0qp0qq ď pGL1 ˆ GL2 ˆ GL1, p1qp1, 0qp0qq

ď pGL3 ˆ GL1, p12, 0qp0qq ď pGL4, p12, 02qq.
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However, it is not the case that pGL4
1, p1qp0qp1qp0qq ď pGL4, p12, 02qq even though

θGL4

1
pp1, 0, 1, 0qq ą θGL4

pp1, 1, 0, 0qq and the cocharacters are conjugate in G.
Finally, we remark that the fact that all the related cocharacter pairs in the

above example have equal (as opposed to just conjugate) cocharacters is very much
a result of us choosing a fairly small group G. Even for G “ GL5, this is not the
case.

Definition 2.1.7. We define a cocharacter pair pMS , µSq for G to be strictly de-
creasing if θMS

pµSq P A
`
MS ,Q. We denote by SD Ă CG the strictly decreasing

elements of CG and by SDµ (for dominant µ P X˚pT q) the strictly decreasing ele-
ments pMS , µSq P CG such that pMS , µSq ď pG,µq.

Remark 2.1.8. The θMS
map can be thought of as associating a tuple of slopes

to a cocharacter pair. Then the strictly decreasing cocharacter pairs with Levi
subgroup MS are the ones whose slope tuple lies in the image of the Newton map
ν : BpGqMS

Ñ AMS ,Q. The above statement is made precise by Proposition 2.4.3.

2.2. An Alternate Characterization of the Averaging Map. The following
two subsections consist of a collection of lemmas developing the theory of the map
θMS

and the set of strictly decreasing elements SD of CG.
In this section, we give an alternate description of the map θMS

. To do so, we
will need several properties of cocharacters and root data which we record in the
following lemma. For this lemma only, we consider T and G defined over a more

general class of fields so that these results also apply to the complex dual groups pT
and pG.

Lemma 2.2.1. Let F Ą Q be a field and F an algebraic closure. Let G be a con-
nected quasisplit reductive group defined over F . Suppose that T Ă G is a maximal
torus defined over F and that the group scheme TF admits an action defined over

F by a finite group Λ. Let X˚pTΛq denote the characters of the subgroup scheme
of Λ-fixed points of TF . The anti-equivalence of categories between tori and finitely
generated free Abelian groups given by TF ÞÑ X˚pT q induces an action of Λ on
X˚pT q. We then have the following.

(1) There is a unique isomorphism X˚pTΛq – X˚pT qΛ such that the following
diagram commutes.

X˚pT q X˚pTΛq

X˚pT qΛ

res

proj

(2) Let MS Ă G be a standard Levi subgroup. Let W abs
MS

,W rel
MS

denote the

absolute and relative Weyl groups of MS and let Γ “ GalpF {F q. Then
WMS ,rel acts on X˚pT qΓ via its natural identification with A and Γ acts on

X˚pT qWMS,abs since for w P WMS ,abs, and γ P Γ, and µ P X˚pT qWMS,abs ,
we have wpγpµqq “ γpγ´1pwqpµqq “ γpµq. Then the identity map on X˚pT q
induces an isomorphism of groups

pX˚pT qWMS,absqΓ – pX˚pT qΓqWMS,rel

(3) The natural map X˚pT qΛQ ãÑ X˚pT qQ ։ X˚pT qQ,Λ induces an isomorphism

X˚pT qΛQ – X˚pT qΛ,Q.
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Proof. The functor T ÞÑ X˚pT q is an anti-equivalence between the categories of
diagonalizable groups over F and finitely generated Abelian groups. The diagram
for the universal property for Λ-invariants is that of Λ-coinvariants but with all the
arrows reversed. Thus, there must exist a unique isomorphism between X˚pTΛq
and X˚pT qΛ that makes the diagram

X˚pT q X˚pTΛq

X˚pT qΛ

res

proj

commute. This proves p1q.
In [Kot84, Lem 1.1.3], Kottwitz proves that the identity map on X˚pT q induces

an isomorphism

pX˚pT qΓq{W rel
MS

– pX˚pT q{W abs
MS

qΓ.

Thus, to prove p2q, we need only show that this isomorphism gives a bijection of the
singleton orbits. This will give an isomorphism of groups (not just sets) between
pX˚pT qWMS,absqΓ and pX˚pT qΓqWMS,rel that is induced from the identity map on
X˚pT q.

Kottwitz’s isomorphism maps the W rel
MS

-orbit of µ P X˚pT qΓ to its W abs
MS

orbit in

X˚pT q. Thus, it suffices to show that if µ P X˚pT qΓ is invariant by W rel
MS

then it is

also invariant by W abs
MS

. If µ is invariant by W rel
MS

, then the pairing of µ with each
relative root of MS is 0. Thus the image of µ lies in the intersection of the kernels
of the relative roots of MS which is ZpMSq X A. Therefore, µ is invariant under
the action of W abs

MS
.

Finally, we note that the proof of Kottwitz uses the fact that the intersection of

the absolute Weyl chamber C
abs

Q with the image of X˚pAq in X˚pT q gives the rela-

tive Weyl chamber CQ. Indeed, this follows easily from the fact that the restriction
of the set of absolute simple roots ∆abs relative to our choice of B and T equals the
set of relative simple roots ∆ (see Proposition B.0.1). An analogous fact is known
for the Weyl chambers in the character group X˚pT q (see Proposition B.0.3) but
this seems to be much more subtle.

For p3q, we need to construct an inverse to the map

X˚pT qΛQ ãÑ X˚pT qQ ։ X˚pT qQ,Λ.

Take rµs P X˚pT qQ,Λ for µ P X˚pT qQ. Then

1

Λ

ÿ

λPΛ

λpµq P X˚pT qΛQ

is independent of the choice of lift of rµs to X˚pT qQ and gives an inverse to the
map above. �

Let AMS
be the maximal split torus in the center of MS . Then

X˚pAMS
qQ – AMS ,Q.

We now prove a lemma that we will need to use to describe the alternate charac-
terization of θMS

.
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Lemma 2.2.2. (1) There is a natural isomorphism X˚pZpyMSqΓqQ – AMS,Q

defined via a series of canonical identifications.

(2) The isomorphism in p1q coincides with the one constructed in §4.4.3 of
[Kot97].

Proof. We prove p1q first. By Lemma 2.2.1, we have the following isomorphisms.

X˚p pTW abs

MS
,ΓqQ – X˚p pT qQ,W abs

MS
,Γ “ X˚pT qQ,W abs

MS
,Γ

– X˚pT q
W abs

MS
,Γ

Q – X˚pT q
Γ,W rel

MS

Q

– X˚pAMS
qQ – AMS ,Q.

We explicate the isomorphism X˚pT q
Γ,W rel

MS

Q – X˚pAMS
qQ. This follows from the

isomorphism X˚pAqW
rel

MS – X˚pAMS
q which we now describe. Suppose we have µ P

X˚pAqW
rel

MS . Equivalently, for each relative root α of LiepMSq, we have σαpµq “ µ

(where σα is the reflection in the Weyl group corresponding to α). Since σαpµq “
µ ´ xµ, αyα̌, this is equivalent to xµ, αy “ 0 for all relative roots α of LiepMSq,
which in turn is equivalent to the statement that impµq Ă

Ş
α

kerα. Finally, this is

equivalent to impµq Ă ZpMSq X A. Since the image of a cocharacter is connected,
we in fact have that µ P X˚pAMS

q.
To finish the argument, we need to construct an isomorphism

X˚pZpyMSqΓqQ – X˚p pTW abs

MS
,ΓqQ.

Note that it is necessary to take the tensor product with Q here as ZpyMSq and
pTW abs

MS need not be isomorphic.
It suffices to show that

X˚pZpyMSqqQ – X˚p pTW abs

MS qQ.

The group ZpyMSq is equal to the intersection of the kernels of the roots of yMS and

so X˚pZpyMSqq is identified with X˚p pT q{R where R is the Z-module spanned by

the roots of yMS . By Lemma 2.2.1, X˚p pTW abs

MS q – X˚p pT qW abs

MS

“ X˚p pT q{D where

D is the Z module spanned by wpµq ´ µ for every w P W abs
MS

and µ P X˚p pT q. Since

ZpyMSq Ă pTW abs

MS , we have a natural surjection

X˚p pTW abs

MS q ։ X˚pZpyMSqq.

By our previous discussion, the kernel of this map is R{D. Thus, to prove our claim,

it suffices to show that R{D is finite. But if α is a root of yMS , then σαpαq´α “ ´2α.
Thus 2R Ă D and so we have the desired result.

We now show p2q. The map in [Kot97, §4.4.3] is defined as follows:

AMS,Q Ñ X˚pT qQ “ X˚p pT qQ
res

ÝÝÑ X˚pZpyMSqΓqQ,

where the final map is restriction of characters. By Lemma 2.2.1 (1), this last map
is the same as the composition

X˚p pT qQ Ñ X˚p pT qQ,W abs

MS
,Γ – X˚p pTW abs

MS
,ΓqQ – X˚pZpyMSqΓqQ,
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Thus, by applying Lemma 2.2.1 and the proof of Lemma 2.2.2, we get that the
entire map is given by

AMS ,Q – X˚pT q
Γ,W rel

MS

Q – X˚pT q
W abs

MS
,Γ

Q – X˚pT qQ,W abs

MS
,Γ,

– X˚p pTW abs

MS
,ΓqQ – X˚pZpyMSqΓqQ.

We observe that this is the inverse of what we wrote down above. �

We are now ready to give our alternate characterization of the map θMS
.

Proposition 2.2.3. [Alternate Characterization of θMS
] The map θMS

that was
introduced in Definition 2.1.4 is equal to the composition

X˚pT q “ X˚p pT q
res

ÝÝÑ X˚pZpyMSqΓq Ñ X˚pZpyMSqΓqQ – AMS ,Q Ă AQ,

where the final isomorphism is the one described in Lemma 2.2.2.

Proof. We recall Definition 2.1.4 where θMS
is defined to be the composition

X˚pT q Ñ X˚pT qΓQ Ñ X˚pT q
Γ,W rel

MS

Q Ă AQ,

where both maps are averages over the relevant group. As we now show, this is the
same as the composition

X˚pT q Ñ X˚pT q
W abs

MS

Q Ñ X˚pT q
W abs

MS
,Γ

Q – X˚pT q
Γ,W rel

MS

Q Ă AQ,

where the first two maps are averages and the third is as in Lemma 2.2.1 (2). Indeed
for µ P X˚pT q,

1

|W rel
MS

|

ÿ

wPW rel

MS

ÿ

γPΓ

wpγpµqq,

is invariant by W abs
MS

by Lemma 2.2.1 (2) and so equals (keeping in mind that

W rel
MS

Ă W abs
MS

by Corollary B.0.2)

1

|W abs
MS

|

ÿ

wPW abs

MS

ÿ

γPΓ

wpγpµqq “
1

|W abs
MS

|

ÿ

wPW abs

MS

ÿ

γPΓ

γpwqpγpµqq

“
1

|W abs
MS

|

ÿ

wPW abs

MS

ÿ

γPΓ

γpwpµqq “
1

|W abs
MS

|

ÿ

γPΓ

ÿ

wPW abs

MS

γpwpµqq.

Now, we consider the following commutative diagram.

X˚pT qQ X˚pT q
W abs

MS

Q X˚pT q
W abs

MS
,Γ

Q

X˚pT qQ,W abs

MS

X˚pT q
W abs

MS

Q,Γ

X˚pT qQ,W abs

MS
,Γ

avg avg

avg avg

avg
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The commutativity essentially follows from the definition of the averaging maps.
The benefit of this is that now we can write θMS

as the composition of

X˚pT q Ñ X˚pT qW abs

MS

Ñ X˚pT qW abs

MS
,Γ Ñ X˚pT qQ,W abs

MS
,Γ

Ñ X˚pT q
W abs

MS

Q,Γ Ñ X˚pT q
W abs

MS
,Γ

Q – X˚pT qΓ,W
rel

MS Ă AQ

where we no longer need to base change the first three spaces to Q because denom-
inators are not introduced in the maps until later.

Using the equality between cocharacters of T and characters of pT , we rewrite
this as

X˚pT q “ X˚p pT q Ñ X˚p pT qW abs

MS

Ñ X˚p pT qW abs

MS
,Γ Ñ X˚p pT qQ,W abs

MS
,Γ

Ñ X˚p pT q
W abs

MS

Q,Γ Ñ X˚p pT q
W abs

MS
,Γ

Q “ X˚pT q
W abs

MS
,Γ

Q – X˚pT qΓ,W
rel

MS Ă AQ.

Now we invoke Lemma 2.2.1 p1q to get that the above composition is equal to

X˚pT q “ X˚p pT q
res

ÝÝÑ X˚p pTW abs

MS
,Γq Ñ X˚p pTW abs

MS
,ΓqQ – X˚p pT qQ,W abs

MS
,Γ

Ñ X˚p pT q
W abs

MS

Q,Γ Ñ X˚p pT q
W abs

MS
,Γ

Q “ X˚pT q
W abs

MS
,Γ

Q – X˚pT qΓ,W
rel

MS Ă AQ.

The final step is to observe that we have a commutative diagram

X˚p pTW abs

MS
,Γq X˚p pTW abs

MS
,ΓqQ

X˚pZpyMSqΓq X˚pZpyMSqΓqQ.

res „

Thus, the previous expression equals

X˚pT q “ X˚p pT q
res

ÝÝÑ X˚p pTW abs

MS
,Γq

res
ÝÝÑ X˚pZpyMSqΓq Ñ X˚pZpyMSqΓqQ

– X˚p pTW abs

MS
,ΓqQ – X˚p pT qQ,W abs

MS
,Γ Ñ X˚p pT q

W abs

MS

Q,Γ

Ñ X˚p pT q
W abs

MS
,Γ

Q “ X˚pT q
W abs

MS
,Γ

Q – X˚pT qΓ,W
rel

MS Ă AQ.

comparing with Lemma 2.2.2, we can rewrite θMS
as

X˚pT q “ X˚p pT q
res
ÝÝÑ X˚pZpyMSqΓq Ñ X˚pZpyMSqΓqQ – AMS ,Q Ă AQ

as desired.
�

We record the following useful corollary of the ideas discussed in the above
argument.

Corollary 2.2.4. Suppose that µ, µ1 P X˚pT q are conjugate in MS,Qp
. Then

θMS
pµq “ θMS

pµ1q.

Proof. By the observation at the start of Proposition 2.2.3, θMS
is equivalently

defined as the composition

X˚pT q Ñ X˚pT q
W abs

MS

Q Ñ X˚pT q
W abs

MS
,Γ

Q – X˚pT q
Γ,W rel

MS

Q Ă AQ.

In particular, µ and µ1 are mapped to the same element under the first map in the
above composition. �
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2.3. Strictly Decreasing Cocharacter Pairs. In this section, we prove a num-
ber of properties of strictly decreasing cocharacter pairs and their relation to the
partial order we defined in Definition 2.1.5. As always, we let σα denote the reflec-
tion in the relative Weyl group corresponding to the relative root α.

Lemma 2.3.1. If x P AQ is dominant, then

y “
1

|W rel
MS

|

ÿ

σPW rel

MS

σpxq

is also dominant. If in addition, xx, αy ą 0 for some α P ∆zS, then we also have
xy, αy ą 0.

Proof. For the first part of the lemma, we claim that if we can show that xσpxq, αy ě
0 for each σ P W rel

MS
and α P ∆zS, then we are done. This follows because if a

collection of cocharacters pair non-negatively with α, then so will their average.
Thus for α P ∆zS, we get xy, αy ě 0. For α P S, we automatically have xy, αy “ 0
since 0 “ y ´ σαpyq “ xy, αyα̌.

Pick α P ∆zS. Then the root group of α is contained in the unipotent radical
NS of PS . The group NS is normalized by MS . In particular, for any σ P W rel

MS
,

the root group of σ´1pαq is contained in NS and hence σ´1pαq is also a positive
root. Thus xσpxq, αy “ xx, σ´1pαqy ě 0 as desired.

To prove the second part, we notice since xx, αy ą 0, the term in y corresponding
to σ “ 1 has positive pairing with α. Since all the other terms have non-negative
pairing with α, we must have that xy, αy ą 0. �

Lemma 2.3.2. If x as in the previous lemma is dominant, then

1

|W rel
MS

|

ÿ

σPW rel

MS

σpxq ĺ x

Proof. It suffices to show that for any σ P W rel
MS

, we have σpxq ĺ x. This is a
standard fact ([Bou68, Ch6 1.6.18, p. 158]). �

Corollary 2.3.3. Let pMS , µSq P SD be a strictly decreasing cocharacter pair and
let pMS1 , µS1 q P CG and suppose that pMS , µSq ď pMS1 , µS1 q. Then pMS1 , µS1 q P SD.

Proof. We need to show that for each β P ∆zS1, that xθMS1 pµS1 q, βy ą 0. By 2.2.4,
θMS1 pµS1 q “ θMS1 pµSq. Further, we observe that

θMS1 pµSq “
1

|W rel
MS1

|

ÿ

σPW rel

M
S1

σpθMS
pµSqq.(1)

Since θMS
pµSq is dominant by assumption and satisfies xθMS

pµSq, βy ą 0, we can
apply 2.3.1 to get the desired result. �

The following easy uniqueness result is quite useful.

Lemma 2.3.4. Let pMS1
, µS1

q, pMS2
, µS2

q, pMS1
2
, µS1

2
q P CG. Suppose further that

pMS1
, µS1

q ď pMS2
, µS2

q, that pMS1
, µS1

q ď pMS1
2
, µS1

2
q. If MS2

“ MS1
2
, then

pMS2
, µS2

q “ pMS1
2
, µS1

2
q.

Proof. By definition, µS1
, µS2

, µS1
2
are all conjugate in MS2

. But also, µS2
and µS1

2

are dominant in the absolute root system. Thus they are equal. �
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We now define the notion of a cocharacter pair being strictly decreasing relative
to a Levi subgroup.

Definition 2.3.5. Let MS Ĺ MS1 be standard Levi subgroups of G. We say
pMS , µSq is strictly decreasing relative to MS1 if xθMS

pµSq, αy ą 0 for α P S1zS.

Remark 2.3.6. Recall that by construction, xθMS
pµSq, αy “ 0 for α P S. Thus,

pMS , µSq P SD exactly when it is strictly decreasing relative to G.

Lemma 2.3.7. Let pMS1
, µS1

q, pMS1
1
, µS1

1
q P CG be cocharacter pairs such that

pMS1
, µS1

q ď pMS1
1
, µS1

1
q. Let MS2

Ą MS1
be a standard Levi subgroup of G and

suppose pMS1
, µS1

q is strictly decreasing relative to MS2
. Then pMS1

1
, µS1

1
q is strictly

decreasing relative to MS1
1

YS2
.

Proof. We first reduce to the case where MS1
is a maximal Levi subgroup of MS1

1

(i.e. S1
1 “ S1 Y tαu for some α P ∆zS1). To do so, we recognize that the relation

pMS1
, µS1

q ď pMS1
1
, µS1

1
q definitionally implies that there is a finite sequence of

cocharacter pairs

pMS1
, µS1

q “ pMS0 , µS0q ď ... ď pMSk , µSkq “ pMS1
1
, µS1

1
q

where each MSi is a maximal Levi subgroup of MSi`1 . Thus, if we prove the lemma
in the maximal Levi subgroup case, we can inductively prove it in the general case.

We now assume that MS1
Ă MS1

1
is a maximal Levi subgroup so that S1

1 “
S1 Y tαu for some α P ∆zS1. We need to show that xθMS1

1

pµS1
1
q, βy ą 0 for each

β P S1
1 Y S2zS1

1. First note that any such β is an element of S2zS1. By Corollary
2.2.4, since µS1

and µS1
1
are conjugate in MS1

1
, we have θMS1

1

pµS1
q “ θMS1

1

pµS1
1
q.

Thus we are reduced to showing xθMS1
1

pµS1
q, βy ą 0 for β P S2zS1.

Note that since pMS1
, µS1

q is strictly decreasing relative to MS2
, we have

θMS1
pµS1

q is dominant relative to the root datum of MS2
and xθMS1

pµS1
q, βy ą 0.

Therefore, by Equation (1) and Lemma 2.3.1, xθMS1
1

pµS1
q, βy ą 0 as desired. �

Proposition 2.3.8. Let pMS , µSq P CG and suppose it is strictly decreasing relative
to some standard Levi subgroup MS1 Ą MS. Then there is a unique pMS1 , µS1 q P CG
such that pMS, µSq ď pMS1 , µS1 q. We call pMS1 , µS1 q the extension of pMS , µSq to
MS1.

In the case where S1 “ S Y tαu for α P ∆zS, the converse is true. Specifically,
if pMS , µSq P CG and there exists pMS1 , µS1 q P CG satisfying pMS1 , µS1 q ě pMS , µSq
with S1 “ S Y tαu, then pMS , µSq is strictly decreasing relative to MS1 .

Proof. We begin by proving the first statement. Uniqueness follows from Lemma
2.3.4. For existence, we first reduce to the case where MS is a maximal Levi
subgroup of MS1 . Suppose we have proven the proposition in this reduced case.
We might then try to prove the general case by iteratively applying the reduced
case of the proposition to a chain of standard Levi subgroups MS “ MS0

Ă ... Ă
MSk

“ MS1 such that each is maximal in the next. Such a chain clearly exists,
but to apply the reduced case of the proposition we need to show that if we have
constructed a cocharacter pair pMSi

, µSi
q ě pMS , µSq then pMSi

, µSi
q is strictly

decreasing relative to MS1 . This follows from Lemma 2.3.7.
Now, we let µS1 be the unique conjugate of µS which is dominant in MS1 . If we

can show that θMS1 pµS1 q ă θMS
pµSq, then pMS1 , µS1 q will satisfy the conditions of
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the proposition. By Corollary 2.2.4 and Equation (1),

θMS1 pµS1 q “ θMS1 pµSq “
1

|WMS1 |

ÿ

σPWM
S1

σpθMS
pµSqq,

so we can reduce to showing that

1

|WMS1 |

ÿ

σPWM
S1

σpyq ă y,

for any y satisfying xy, αy ą 0 for α P S1zS and xy, αy “ 0 for α P S. Any such y is
dominant in the root datum of MS1 and so by Lemma 2.3.2,

1

|WMS1 |

ÿ

σPWM
S1

σpyq ĺ y.

Further, the above equation cannot be an equality because y has positive pairing
with each root of S1zS while 1

|WM
S1 |

ř
σPWM

S1

σpyq has 0 pairing with these roots.

To prove the converse, suppose that pMS , µSq ď pMS1 , µS1 q and S1 “ S Y tαu for
some α P ∆zS. Then by Corollary 2.2.4

θMS1 pµS1 q “ θMS1 pµSq “
θMS

pµSq ` σαpθMS
pµSqq

2
,

and so

θMS
pµSq ´ θMS1 pµS1 q “

θMS
pµSq ´ σαpθMS

pµSqq

2
“

1

2
xθMS

pµSq, αyα̌.

Since by assumption θMS1 pµS1 q ă θMS
pµSq, it follows that xθMS

pµSq, αy ą 0. �

Remark 2.3.9. Note that the converse of the above proposition is not true in the
general case.

Corollary 2.3.10. Fix a standard Levi subgroup MS and roots α1, α2 P ∆zS. Sup-
pose we have cocharacter pairs pMS , µSq, pMSYtα1u, µSYtα1uq, pMSYtα1,α2u, µSYtα1,α2uq P
CG satisfying

pMS , µSq ď pMSYtα1u, µSYtα1uq ď pMSYtα1,α2u, µSYtα1,α2uq

and that pMS, µSq is strictly decreasing relative to MSYtα2u.
Then the extension of pMS, µSq toMSYtα2u, which we denote pMSYtα2u, µSYtα2uq,

satisfies

pMS , µSq ď pMSYtα2u, µSYtα2uq ď pMSYtα1,α2u, µSYtα1,α2uq

Proof. By the second statement of Proposition 2.3.8, we have that pMS , µSq is
strictly decreasing relative to MSYtα1u. Then by Lemma 2.3.7, pMSYtα2u, µSYtα2uq
is strictly decreasing relative to MSYtα1,α2u. Thus by Proposition 2.3.8, we have
pMSYtα2u, µSYtα2uq ď pMSYtα1,α2u, µSYtα1,α2uq as desired. �

Proposition 2.3.11. Let S Ă S1 Ă S2 be subsets of ∆ and suppose pMS , µSq, pMS2
, µS2

q P
CG with

pMS , µSq ď pMS2
, µS2

q

and pMS , µSq is strictly decreasing relative to MS1
. Then the unique extension

pMS1
, µS1

q of pMS, µSq to MS1
satisfies

pMS1
, µS1

q ď pMS2
, µS2

q.
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Proof. Since pMS , µSq ď pMS2
, µS2

q, there is an increasing chain of cocharacter
pairs pMS , µSq “ pMS0 , µS0q ď ... ď pMSk , µSkq “ pMS2

, µS2
q such that each

standard Levi subgroup is maximal in the next. The content of this proposition is
that we can pick a chain such that pMS1

, µS1
q appears. By Lemma 2.3.7, we can

assume that MS is maximal in MS1
. Let α be the unique element of S1zS.

Pick a chain of cocharacter pairs pMS , µSq “ pMS0 , µS0q ď ... ď pMSk , µSkq “
pMS2

, µS2
q as above. Chains of cocharacter pairs are determined by an ordering on

the roots in S2zS “ tα1, ..., αku, such that the Si “ SY tα1, ..., αiu. The root α ap-
pears in this chain so α “ αi for some i. If i “ 1 we are done. Otherwise, we consider
pMSi´2 , µSi´2q ď pMSi´1 , µSi´1q ď pMSi , µSiq. By Lemma 2.3.7, pMSi´2 , µSi´2q is
strictly decreasing relative to MSi´2Ytαu and so by Corollary 2.3.10 (applied so that
pMSi´2 , µSi´2q takes the place of pMS , µSq in Corollary 2.3.10), we get a new chain
of cocharacter pairs between pMS , µSq and pMS2

, µS2
q where we switch the posi-

tions of α, αi´1 in the corresponding ordering of S2zS. By repeating this argument,
we can construct a chain where α “ α1, which is what we need. �

The preceding propositions give us the following picture. Given a cocharacter
pair pMS , µSq we check which simple roots α satisfy xθMS

pµSq, αy ą 0. Suppose
there are n such simple roots. Then we get 2n standard Levi subgroups containing
MS corresponding to adding different subsets of these simple roots. The cochar-
acter pair pMS , µSq has a unique extension to each of the Levi subgroups and the
poset lattice of these co-character pairs can be thought of as the graph of an n

dimensional cube in the following way. The vertices of the cube are the 2n cochar-
acter pairs extending pMS , µSq that we have just constructed. For two such pairs
pMS1

, µS1
q, pMS2

, µS2
q, we draw an edge between the two corresponding vertices if

either S1 Ă S2 and |S2zS1| “ 1, or S2 Ă S1 and |S1zS2| “ 1. We can upgrade
this graph to a directed graph by stipulating that an edge between pMS1

, µS1
q and

pMS2
, µS2

q is directed from pMS1
, µS1

q to pMS2
, µS2

q if pMS2
, µS2

q ă pMS1
, µS1

q.
Finally, note that for any two pairs pMS1

, µS1
q and pMS2

, µS2
q corresponding to

vertices in the above cube, we have pMS2
, µS2

q ď pMS1
, µS1

q if and only if there
is a directed path in the cube travelling from the vertex of pMS1

, µS1
q to that of

pMS2
, µS2

q.

2.4. Connection With Isocrystals. We now investigate the relation between
strictly decreasing cocharacter pairs and Kottwitz’s theory of isocrystals with ad-
ditional structure. See [Kot97] for omitted details on the theory of isocrystals.

An isocrystal is a pair pV,Φq where V is a finite dimensional yQur
p vector space

and Φ : V Ñ V is an additive transformation satisfying Φpavq “ σpaqΦpvq for

a P yQur
p , v P V and σ the arithmetic Frobenius morphism. As before, let G be a

connected quasisplit reductive group defined over Qp and consider the set of isomor-
phism classes of exact b-functors from ReppGq to Isoc, the category of isocrystals.

Such isomorphism classes are classified by H1pWQp
, GpyQur

p qq which we denote BpGq
(where WQp

is the Weil group of Qp).

In §4.2 of [Kot97], Kottwitz constructs the Newton map ν : BpGq Ñ CQ and the

Kottwitz map κ : BpGq Ñ X˚pZp pGqΓq. An element of BpGq is uniquely determined
by its image under these maps.

We say that the standard Levi subgroup MS is associated to b P BpGq if νpbq P
A

`
MS,Q

. Henceforth, we will often denote the standard Levi subgroup associated to
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b by Mb. Notice that many elements of BpGq could be associated to the same Levi
subgroup. We call b basic if Mb “ G. We write

BpGq “
ž

SĂ∆

BpGqMS

such that BpGqMS
consists of those b P BpGq associated to MS. We denote by

BpMSq` the maximal subset of BpMSq such that νpBpMSq`q Ă CQ. In §5.1 of
[Kot97], Kottwitz uses the Kottwitz map for MS to construct canonical bijections

BpGqMS
– BpMSq`

MS
– X˚pZpyMSqΓq`(2)

where Kottwitz constructs a canonical isomorphism

X˚pZpyMSqΓqQ – AMS ,Q(3)

and X˚pZpyMSqΓq` denotes the subset of X˚pZpyMSqΓq mapping to A
`
MS,Q

. In fact,
Kottwitz shows that the composition of the above isomorphisms gives the Newton
map

BpGqMS
Ñ A

`
MS ,Q ãÑ CQ.

For a further discussion of Equation (3), we refer the reader to Lemma 2.2.2.
We now prove an important lemma that will be used to relate the set BpGq to

the strictly decreasing elements of CG.

Lemma 2.4.1. Fix a standard Levi subgroup MS of G and let pMS , µSq P SD.
Then θMS

pµSq P νpBpGqMS
q.

Proof. We first describe the set νpBpGqMS
q. By Equations (2) and (3), the set

νpBpGqMS
q is equal to the image of X˚pZpyMSqΓq` in AMS ,Q. Thus, to prove

this lemma, it suffices to show that θMS
factors through the map X˚pZpyMSqΓq ãÑ

X˚pZpyMSqΓqQ – AMS ,Q where the isomorphism is as in Equation (3) or Lemma
2.2.2. Then, since pMS , µSq is strictly decreasing, the factoring of θMS

will map µS

to an element of X˚pZpyMSqΓq` as desired. That θMS
factors in this way follows

from the alternate characterization of θMS
given in Proposition 2.2.3. �

Definition 2.4.2. Fix µ P X˚pT q. Then we recall the following definition of
Kottwitz [Kot97, §6.2]:

BpG,µq :“ tb P BpGq : νpbq ĺ θT pµq, κpbq “ µ|
Zp pGqΓu.

Now we prove the key result of this section, which permits us to associate an
element of BpGq to each strictly decreasing cocharacter pair.

Proposition 2.4.3. We have a natural map

T : SD Ñ BpGq

defined as follows. Let pMS , µSq P SD. Then there exists a b P BpGq so that
κpbq “ µS |

ZpĜqΓ and νpbq “ θMS
pµSq. We note that by construction, b is unique.

Then we define T ppMS , µSqq “ b. Furthermore, we show that

T pSDµq Ă BpG,µq.

Proof. We first define b. Note that since pMS , µSq is strictly decreasing, θMS
pµSq P

A
`
MS,Q

. By Proposition 2.2.3, it follows that µS |
Zp yMSqΓ P X˚pZpyMSqΓq` and so

we can define b to be the element of BpGq corresponding to µS |
Zp yMSqΓ under the
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isomorphism BpGqMS
– X˚pZpyMSqΓq` of Equation (2). Recall that the composi-

tion of this isomorphism with Equation (3) induces the Newton map restricted to
BpGqMS

. Thus, we have θMS
pµSq “ νpbq. Equation (4.9.2) of [Kot97] implies that

κpbq “ µS |
ZpĜqΓ .

It remains to show that if pMS , µSq P SDµ then the element b P BpGq that we
have constructed lies in the set BpG,µq. For this, we need to show that νpbq “
θMS

pµSq ĺ θT pµq.
We claim that θT pµq ľ θT pµSq. After all, by ([Bou68, Ch6 1.6.18, p. 158]), we

have µ ľ µS . Then the claim follows from Corollary B.0.4.
Now we claim that θT pµSq is dominant in the relative root system of MS . To

prove the claim, we first observe that µS is dominant relative to the absolute root
system of MS. As above, the Galois group Γ preserves the Weyl chamber corre-
sponding to the positive absolute roots given by B. Thus, γpµSq is dominant for
each γ P Γ, and so θT pµSq is dominant relative to the absolute roots of MS . The
intersection of the closed positive Weyl chamber for the absolute root datum of MS

with AQ is the Weyl chamber for relative root datum of MS (cf. proof of Lemma
2.2.1 p2q ). Thus, θT pµSq is dominant with respect to the relative roots as desired.

Finally, we apply Lemma 2.3.2 and Equation (1) to get

θT pµSq ľ θMS
pµSq,

which finishes the proof. �

Question 2.4.4. Can one describe the image

T pSDµq Ă BpG,µq?

Fix G “ GLn with T and B the diagonal maximal torus and upper trian-
gular Borel subgroup respectively. Suppose µ has weights 1 and 0. Then we
claim T pSDµq “ BpG,µq. Indeed, pick any b P BpGLn, µq. Then without loss
of generality, νb “ ppa1{b1qx1b1 , ..., par{brqxrbr q for some ai, bi P N such that ai{bi
is written in reduced form. Then let M be the standard Levi subgroup isomor-
phic to GLx1b1 ˆ ... ˆ GLxrbr and embedded diagonally. Since b P BpGLn, µq,

we must have that µ “ p1

rř
i“1

xiai

, 0
n´

rř
i“1

xiai

q. Finally, we define µ1 P X˚pT q
by µ1 “ p1x1a1 , 0x1b1´x1a1 , ..., 1xrar , 0xrbr´xrar q. Then we note that µ1 is domi-
nant in the root system of M so that pM,µ1q P CG. Moreover, θM pµ1q “ νb so
that pM,µ1q P SD. Then since µ1 and µ are conjugate in GLn, it is easy to see
that pM,µ1q ď pGLn, µq. In conclusion, we have shown that pM 1, µ1q P SDµ and
T ppM 1, µ1qq “ b as desired.

On the other hand for different choices of µ, we can have T pSDµq Ĺ BpG,µq.
For instance, let G “ GL3, let µ “ p2, 0, 0q, and let b P BpG,µq be such that
νb “ p1, 1{2, 1{2q. Then it is easy to check that T pSDµq does not contain b.

2.5. The Induction and Sum Formulas. We are now ready to prove our main
theorems on cocharacter pairs. We begin by defining some key subsets of CG, the
set of cocharacter pairs for G. In this section we fix a dominant µ P X˚pT q and
b P BpG,µq.

Definition 2.5.1. We define the sets TG,b,µ and RG,b,µ as follows:

TG,b,µ :“ T ´1pbq X SDµ
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and

RG,b,µ “ tpMS1
, µS1

q P CG : pMS1
, µS1

q ď pMS2
, µS2

q for some pMS2
, µS2

q P TG,b,µu.

Definition 2.5.2. Let ZxCGy denote the free Abelian group generated by the set
of cocharacter pairs for G.

We define MG,b,µ P ZxCGy by

MG,b,µ “
ÿ

pMS ,µSqPRG,b,µ

p´1qLMS,Mb pMS , µSq

such that for MS1
Ă MS2

, LMS1
,MS2

is defined to be |S2zS1|.

Remark 2.5.3. We observe that for pMS , µSq P SD, if T ppMS , µSqq “ b, then
MS “ Mb.

We will show in Theorem 3.3.7 that at least in the case where G is an unramified
restriction of scalars of a general linear group, MG,b,µ is related to the cohomol-
ogy of Rapoport-Zink spaces for G. Thus one expects there to be a combinatorial
analogue of the Harris-Viehmann conjecture (Conjecture 3.2.1). We call this com-
binatorial analogue the induction formula. Perhaps the more surprising result is
that there is also an analogue of Shin’s averaging formula (which we call the sum
formula) [Shi12, Thm 7.5]. We first prove the sum formula.

Theorem 2.5.4 (Sum Formula). The following holds in ZxCGy:
ÿ

bPBpG,µq

MG,b,µ “ pG,µq.

Proof. We need to show that ÿ

bPBpG,µq

MG,b,µ “ pG,µq,

or equivalently ÿ

bPBpG,µq

ÿ

pMS ,µSqPRG,b,µ

p´1qLMS,Mb pMS , µSq “ pG,µq.

We prove this equality by counting how many times a given cocharacter pair
shows up on the left-hand side. The pair pG,µq shows up exactly once in the
left-hand sum as an element of RG,b,µ for b the unique basic element of BpG,µq.
SupposepMS, µSq P CG is some other cocharacter pair. Then define

YpMS ,µSq “ tb P BpG,µq : pMS , µSq P RG,b,µu.

We are reduced to showing ÿ

bPYpMS,µSq

p´1qLMS,Mb “ 0.(4)

Our general strategy will be to show that the left-hand side of equation 4 vanishes
for each pMS , µSq ă pG,µq by inducting on the size of ∆zS. However, in the case
that pMS , µSq P SDµ, we can prove the vanishing without an inductive argument.
We show this first before discussing the induction.

Suppose now that pMS, µSq P SDµ. By Corollary 2.3.3, every pair pMS1 , µS1 q P
CG satisfying pMS , µSq ď pMS1 , µS1 q ď pG,µq is strictly decreasing and thus by
Proposition 2.4.3, we have T ppMS1 , µS1 qq P BpG,µq. These are precisely the ele-
ments b P BpG,µq so that pMS , µSq P RG,b,µ. By the discussion after Proposition
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2.3.11, we can associate the graph of a cube to the set of pMS1 , µS1 q such that each
cocharacter pair is a vertex. To the vertex associated to pMS1 , µS1 q we attach the

sign p´1q
LMS,M1

S . We note that adjacent vertices in this graph will have opposite
signs since if pMS1 , µS1 q and pMS2 , µS2 q have adjacent vertices, then the cardinality
of S1 and S2 differs by 1. Now, it is a standard fact that if we associate an element
of t1,´1u to each vertex of the graph of an n-dimensional cube for n ě 1 so that
adjacent vertices have opposite signs, then the sum of all the signs is 0. This implies
that the left-hand side of Equation (4) vanishes in the strictly decreasing case.

Now we discuss the inductive argument. The base case will be for pairs pMS , µSq ă
pG,µq satisfying |∆zS| “ 1. The second statement of Proposition 2.3.8 implies
that in this case pMS , µSq is strictly decreasing relative to G, which means that
pMS , µSq P SDµ. Thus, the base case is proven by the previous paragraph.

We now discuss the inductive step. Suppose pMS , µSq ă pG,µq. If pMS , µSq is
strictly decreasing, then we are done by the above. Suppose now that pMS , µSq
is not strictly decreasing. We claim that pMS , µSq must be strictly decreasing
with respect to at least some standard Levi subgroup of G that properly contains
MS. After all, since pMS , µSq ă pG,µq, there must exist at least some α P ∆zS and
pMSYtαu, µSYtαuq P CG so that pMS, µSq ď pMSYtαu, µSYtαuq. Then by Proposition
2.3.8, this implies that pMS , µSq is strictly decreasing relative to MSYtαu.

Thus, let MS1 be the maximal standard Levi subgroup of G such that pMS , µSq
is strictly decreasing relative to MS1 . We can write S1 “ S Y tα1, ..., αnu where
αi ‰ αj for i ‰ j and each αi P ∆zS. We denote by X the n-cube of cocharacter
pairs above pMS , µSq as in the discussion after Proposition 2.3.11.

We claim that ÿ

bPYpMS,µSq

p´1qLMS,Mb

“ ´
ÿ

pMS1 ,µS1 qPXztpMS ,µSqu

ÿ

bPYpM
S1 ,µS1 q

p´1qLM
S1 ,Mb .

Given this claim, we see that to finish the proof, it suffices to show that the right-
hand side is identically 0. However, the right-hand side consists of a sum of a
number of terms similar to the left-hand side but for pairs pMS1 , µS1 q in place of
pMS , µSq. Note that each S1 is strictly larger than S and thus we are done by
induction.

We now prove the claim. Moving all the terms to one side, we need only show
that ÿ

pMS1 ,µS1 qPX

ÿ

bPYpM
S1 ,µS1 q

p´1qLM
S1 ,Mb “ 0.

Fix b P BpG,µq. Then it suffices to show the contribution from b in the above
formula vanishes. Thus, we must show

ÿ

pMS1 ,µS1 qPXXRG,b,µ

p´1qLM
S1 ,Mb “ 0.(5)

We examine the structure of X X RG,b,µ when it is nonempty. If we can show
that the cocharacter pairs in this set form a sub-cube of X of positive dimension,
then we will be done by the standard fact that if we place alternating signs on the
vertices of a cube and add up all the signs we get 0.

Clearly, any pMS1 , µS1 q P X X RG,b,µ must satisfy MS Ă MS1 Ă Mb. The
subset of X satisfying this latter property forms a sub-cube of X since its elements
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are indexed by subsets of SbzS, where Sb is the subset of ∆ corresponding to Mb

in the standard way (note that by Lemma 2.3.4, there is at most one element of
XXRG,b,µ for each standard LeviMS1). Moreover, this latter set cannot form a cube
of dimension 0 for then we would have MS “ Mb and so X X RG,b,µ “ tpMS , µSqu
which would imply that pMS , µSq is strictly decreasing contrary to assumption.

Thus to finish the proof, we need only show that every pMS1 , µS1 q such that

(1) MS Ă MS1 Ă Mb,

(2) pMS , µSq ď pMS1 , µS1 q,

(3) pMS , µSq is strictly decreasing relative to MS1 ,

satisfies pMS1 , µS1 q ď pMb, µbq for some pMb, µbq P TG,b,µ. Since we assumed that
XXRG,b,µ ‰ H, then in fact there is an pMb, µbq P TG,b,µ with pMS , µSq ď pMb, µbq.
Then the desired result follows from Proposition 2.3.11. �

We now turn to the induction formula. Fix a standard Levi subgroup MS of G.
Then our choice of maximal torus T and Borel subgroup B of G provides us with
natural choices B XMS and T of a Borel subgroup and maximal torus of MS . This
allows us to define the set CMS

of cocharacter pairs for MS . There is a natural
inclusion

iGMS
: CMS

ãÑ CG.(6)

The image of this inclusion is precisely the set of cocharacter pairs pMS1 , µS1 q where
S1 Ă S. This inclusion preserves the partial ordering of cocharacter pairs. The
strictly decreasing elements of CMS

map to the elements of CG which are strictly
decreasing relative to MS .

Now choose a b P BpG,µq and rational Levi MS such that Mb Ă MS Ă G. We
have a unique b1 P BpMbq

`
Mb

corresponding to b under the isomorphism given by

Equation (2). The inclusion Mb Ă MS induces a map

BpMbq Ñ BpMSq.

Let bS be the image of b1 under this map.
The following definition will be important in relating cocharacter pairs of a group

G to those of a standard Levi. Compare with [RV14, Equation (8.1)].

Definition 2.5.5. Let MS be a standard Levi subgroup of G, let µ P X˚pT q be a
dominant cocharacter and choose b P BpG,µq. We take bS P BpMSq as constructed
in the previous paragraph and define the set

I
G,µ
MS ,bS

“ tpMS , µSq P CMS
: bS P BpMS , µSq, µS is conjugate to µ in Gu.

We first check the following transitivity property of IG,µ
MS ,bS

.

Proposition 2.5.6. Fix pG,µq P CG and b P BpG,µq. Suppose MS2
and MS1

are
standard Levi subgroups of G such that Mb Ă MS2

Ă MS1
. Then

I
G,µ
MS2

,bS2

“ tpMS2
, µS2

q P CMS2
: pMS2

, µS2
q P I

MS1
,µS1

MS2
,bS2

for some pMS1
, µS1

q P I
G,µ
MS1

,bS1

u.

Proof. We show each set is a subset of the other. Take pMS2
, µS2

q P I
G,µ
MS2

,bS2

. Let

µS1
be the unique dominant cocharacter conjugate to µS2

inMS1
. Then we consider

pMS1
, µS1

q as an element of CMS1
and just need to show that bS1

P BpMS1
, µS1

q
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since we already know that bS2
P BpMS2

, µS2
q by assumption. Thus, we need only

show that νpbS1
q ď θT pµS1

q and κpbS1
q “ µS1

|
Zp zMS1

qΓ .

We prove the inequality first. By assumption, νpbS2
q ĺ θT pµS2

q and by Equa-
tions (2) and (3), νpbS1

q “ νpbq “ νpbS2
q. Since µS1

and µS2
are conjugate in MS1

and µS1
is dominant, it follows from [Bou68, Ch6 1.6.18, p. 158] that µS2

ĺ µS1
.

Then, by Corollary B.0.4 it follows that θT pµS2
q ĺ θT pµS1

q in the relative root
system. Combining all this data, we get

νpbS1
q “ νpbS2

q ĺ θT pµS2
q ĺ θT pµS1

q,

as desired.
To prove κpbS1

q “ µS1
|
Zp zMS1

qΓ
, we note that by Equation (4.9.2) of [Kot97] and

the fact that bS2
P BpMS2

, µS2
q, we have

κpbS1
q “ µS2

|
Zp zMS1

qΓ
.

Then µS1
and µS2

are conjugate in MS1
so there exists a w P W abs

MS1

so that

wpµ1q “ µ2. This implies that µ1 and µ2 are conjugate in zMS1
and in particular

equal when restricted to ZpzMS1
q. This implies the desired equality.

To show the converse inclusion, we start with pMS2
, µS2

q P I
MS1

,µS1

MS2
,bS2

for some

pMS1
, µS1

q P I
G,µ
MS1

,bS1

and need to show that bS2
P BpMS2

, µS2
q and that µS2

is

conjugate to µ in G. But pMS2
, µS2

q P I
MS1

,µS1

MS2
,bS2

implies that bS2
P BpMS2

, µS2
q and

also that µS2
is conjugate to µS1

in MS1
. Further, pMS1

, µS1
q P I

G,µ
MS1

,bS1

implies

that µS1
is conjugate to µ in G. Thus, µS2

is conjugate to µ in G as desired. �

The set I
G,µ
MS ,bS

will primarily be useful because it allows us to relate the set
TG,b,µ to analogous constructions in MS . This is encapsulated in the following
proposition.

Proposition 2.5.7. Fix MS, µ and b as in Definition 2.5.5. The natural inclusion
iGMS

: CMS
ãÑ CG of Equation (6) induces a bijection

ž

pMS ,µSqPIG,µ

MS,bS

TMS ,bS ,µS
– TG,b,µ

Proof. We first show that

iGMS
p

ž

pMS ,µSqPIG,µ

MS,bS

TMS ,bS,µS
q Ą TG,b,µ.

Since Mb Ă MS , it follows from the discussion after Equation (6) that

TG,b,µ Ă iGMS
pCMS

q.

Thus, pick an arbitrary element of TG,b,µ of the form iGMS
pMb, µbq for pMb, µbq P

CMS
. The cocharacter pair iGMS

pMb, µbq is strictly decreasing, and therefore so
is pMb, µbq P CMS

. By Proposition 2.3.8 we can find pMS , µSq P CMS
such that

pMb, µbq ď pMS , µSq. Observe that since iGMS
pMb, µbq ď pG,µq, the cocharacter

µb is conjugate to µ in G and therefore µS must be as well by construction. If
we can show that T ppMb, µbqq “ bS , then we will be done because by Proposition

2.4.3, this implies that bS P BpMS, µSq and so therefore that pMS , µSq P I
G,µ
MS ,bS

and pMb, µbq P TMS ,bS ,µS
.
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By assumption, T piGMS
pMb, µbqq “ b P BpG,µq. Recall that the map T is defined

so that a strictly decreasing pMb, µbq P CG which satisfies pMb, µbq ď pG,µq is

mapped first to the element µb|ZpyMbqΓ
P X˚pZp xMbq

Γq`. Then, this element is

identified with an element of BpGq via the isomorphisms of Equation (2):

X˚pZp xMbqqΓq` – BpMbq
`
Mb

– BpGqMb
,

where the second isomorphism above is induced by the inclusion Mb ãÑ G. We
have the commutative diagram

BpMbq BpMSq

BpGq

where each map is induced from the inclusion of groups. By definition, the element
b1 P BpMbq

` maps to b P BpGq and bS P BpMSq respectively. Thus, we see that by
construction, T ppMb, µbqq “ bS.

Conversely, suppose pMb, µbq P TMS ,bS ,µS
for some pMS , µSq P I

G,µ
MS ,bS

. Since

b1 P BpMbq
`
Mb

, it follows from the definition of bS and TMS ,bS ,µS
that µb|ZpyMbqΓ is

an element of X˚pZp xMbq
Γq`. This implies that iGMS

pMb, µbq P SD. By Proposition

2.3.8, we have an extension of iGMS
pMb, µbq to G, and since µb and µ are conjugate

in G by assumption, it follows that this extension is pG,µq so that iGMS
pMb, µbq ď

pG,µq. It follows from these facts that iGMS
pMb, µbq P TG,b,µ.

Finally, we remark that for distinct pMS , µSq, pMS , µ
1
Sq P I

G,µ
MS ,bS

the sets TMS ,bS ,µS

and TMS ,bS ,µ1
S
are indeed disjoint by Lemma 2.3.4. �

As a corollary of this result, we have the induction formula.

Corollary 2.5.8 (Induction Formula). We continue using the notation of the pre-
vious proposition. The natural map

iGMS
: CMS

ãÑ CG,

induces a map

iGMS
: ZxCMS

y ãÑ ZxCGy,

which gives an equality
ÿ

pMS ,µSqPIG,µ

MS,bS

iGMS
pMMS ,bS,µS

q “ MG,b,µ.

Proof. It follows from Proposition 2.5.7 that the map iGMS
induces a bijection

ž

pMS ,µSqPIG,µ

MS,bS

RMS ,bS,µS
– RG,b,µ.

We remark that for distinct pMS , µSq, pMS , µ
1
Sq P I

G,µ
MS ,bS

we have RMS ,bS ,µS
X

RMS ,bS ,µ1
S

“ H by Lemma 2.3.4.
The corollary then follows from the definition of MG,b,µ. �

This result can be thought of as an analogue of the Harris-Viehmann conjecture
which we discuss in the next section.
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In the cases we are interested in, we will also need a description of how cochar-
acter pairs behave with respect to products.

Suppose G “ G1 ˆ ...ˆGk and T “ T1 ˆ ...ˆTk such that Ti is a maximal torus
for Gi. Then

X˚pT q – X˚pT1q ‘ ... ‘ X˚pTkq,

and any standard Levi subgroup admits a product decomposition

MS – MS1
ˆ ... ˆ MSk

,

such that Ti Ă MSi
Ă Gi. Then any cocharacter pair pMS , µSq of G corresponds

to a tuple of cocharacter pairs

ppMS1
, µS1

q, ..., pMSk
, µSk

qq P CG1
ˆ ... ˆ CGk

,

in the obvious way. The pair pMS , µSq P CG is strictly decreasing if and only if
each pair pMSi

, µSi
q P CGi

is, and if T ppMS , µSqq “ b P BpG,µq, then we also have
TippMSi

, µSi
qq “ bi P BpGi, µiq where Ti is the map T defined for the group Gi.

Thus, b ÞÑ pb1, ..., bkq under the natural bijection

BpGq – BpG1q ˆ ... ˆ BpGkq.

We record the following proposition

Proposition 2.5.9. We use the notation of the previous two paragraphs.
The natural bijection

CG – CG1
ˆ ... ˆ CGk

,

induces bijections

TG,b,µ – TG1,b1,µ1
ˆ ... ˆ TGk,bk,µk

,

and

RG,b,µ – RG1,b1,µ1
ˆ ... ˆ RGk,bk,µk

.

Further, under the natural isomorphism ZxCGy – ZxCG1
y b ... b ZxCGk

y we have

MG,b,µ “ MG1,b1,µ1
b ... b MGk,bk,µk

.

3. Cohomology of Rapoport-Zink spaces and the Harris-Viehmann
Conjecture

In this section, we define the Rapoport-Zink spaces we will work with and show
how we can describe their cohomology using the language developed in the previous
section. We also give a statement of the Harris-Viehmann conjecture, and explain
the necessity of a small correction to the conjecture. We follow [Far04], [Shi12],
and [RV14].

The theory necessarily involves several choices of signs. This is often a point
of confusion, so we describe our conventions here. We choose the cocharacter µ

appearing in the definition of Rapoport-Zink spaces to have non-negative weights,
in agreement with most authors. In this paper, we use the contravariant Dieudonne
functor, which means that our p-divisible groups will have isocrystals in the set
BpG,µq (as opposed to BpG,´µq for the covariant theory). This convention agrees
with that of [Far04] and [RV14], but [Shi12] uses the opposite convention. We use
the local Langlands correspondence for GLnpQpq as in [HT01, pg. 2]. In particular,
we normalize the local Artin map so that uniformizers correspond to geometric
Frobenius elements.
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3.1. Rapoport-Zink Spaces of EL-Type. We fix the following notation. Sup-
pose G is a reductive group defined over a field k and µ P X˚pGq. Then if H is
a subgroup of G such that µ factors through the inclusion X˚pHq ãÑ X˚pGq, we
denote by tµuH the Hpkq conjugacy class of µ and by EtµuH

the field of defini-

tion of tµuH (i.e the smallest extension of k so that each element of Galpk{EtµuH
q

stabilizes tµuH).
Now we define the Rapoport-Zink data we consider.

Definition 3.1.1. An unramified Rapoport-Zink datum of EL type is a tuple
pF, V, tµuG, bq where

(1) F is a finite unramified extension of Qp,
(2) V is a finite dimensional F vector space,
(3) G :“ ResF {Qp

pGLF pV qq,
(4) µ : Gm,Qp

Ñ GQp
is a cocharacter inducing a weight decomposition V b

yQur
p – V0 ‘ V1 where µpzq acts by zi on Vi,

(5) b P BpG,µq.

We fix a Borel subgroup B Ă G defined over Qp, a Qp-split torus A Ă G of
maximal rank in G and such that A Ă B, and a maximal torus T Ă B containing
A and defined over Qp. We can choose µ in the above definition so that it is
dominant relative to B.

Let X be a p-divisible group defined over Fp with an action of OF and such that
the isocrystal attached to X by the contravariant Dieudonne functor is isomorphic
to pVF , bσq. We consider the moduli functor Mb,µ such that for S a scheme over
OzQur

p
with p locally nilpotent, Mb,µpSq “ tpX, i, ρqu{ „. Where X is a p-divisible

group defined over S, i : OF Ñ EndF pXq, and ρ : X ˆ
Fp

S Ñ X is a quasi-isogeny

(S,X are the reductions modulo p).
By work of Rapoport and Zink [RZ96, Thm 3.25], the above moduli problem is

represented by a formal scheme over OzQur
p

which we also denote by Mb,µ. We have

the generic fiber M
rig
b,µ which is a rigid analytic space over yQur

p . Further, we get a

tower of coverings Mrig
b,µ,U of Mrig

b,µ for each compact open subgroup U Ă GpQpq.

For a fixed prime l ‰ p, we denote by Hj
c pMrig

b,µ,U ˆ yQur
p ,Qlq the etale cohomology

with compact supports. This is a Ql vector space which is a smooth representation
of JbpQpq ˆ WEtµuG

, where Jb is the inner form of the standard Levi subgroup Mb

associated to b (as constructed in §3.3 of [Kot97]) and WEtµuG
is the Weil group of

EtµuG
(for example see [RV14, Prop 6.1]).

We use the notation Grothp¨q for the Grothendieck group of admissible represen-
tations of topological groups. See §I.2 of [HT01] for the precise definition of these
Grothendieck groups.

Let Pb be the standard parabolic subgroup with Levi factor Mb and denote
the opposite parabolic by P

op
b . We define JG

P , JacGP to be the normalized and un-

normalized Jacquet module functors, and we define IGP , IndG
P to be the normalized

and un-normalized parabolic induction functors. Often, if M Ă P is the standard
Levi subgroup of P and we are taking IGP or IGP op to be a map of Grothendieck
groups, we will write IGM to remind the reader that these maps do not depend on
choice of P, P op when considered as maps of Grothedieck groups.
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In [Man05], Mantovan considers the following construction (see also [Shi12]). We
define a map

MantG,b,µ : GrothpJbpQpqq Ñ GrothpGpQpq ˆ WEtµuG
q,

by

MantG,b,µpρq “
ÿ

i,jě0

p´1qi`j limÝÑ
UĂGpQpq

ExtiJbpQpqpHj
c pMrig

b,µ,UˆQ̂ur
p ,Qlq, ρqp´dimM

rig
b,µ,U q.

In §6.2 of [Shi12] and §2.4 of [Shi11], Shin considers a map

Redb : GrothpGpQpqq Ñ GrothpJbpQpqq.

We follow the construction given in [Shi11]1. We define Redb by

π ÞÑ epJbqpLJ ˝ JGP op

b
pπq b δ

1

2

Pb
q,

where

LJ : GrothpMbpQpqq Ñ GrothpJbpQpqq,

is the map defined by Badulescu extending the inverse Jacquet-Langlands corre-
spondence (see [Bad07, Prop 3.2]) and epJbq is the Kottwitz sign as defined in
[Kot83].

We now describe the main result of [Shi12]. The cocharacter µ of G is a map
µ : Gm,Qp

Ñ
ś

τPHompF,Qpq

GLn,Qp
such that the weights in each GLn factor are 1s

or 0s. Thus we let pτ , qτ denote the number of 1 and 0 weights respectively in the
factor corresponding to τ .

The following formula is the main theorem in [Shi12, Thm 7.5].

Theorem 3.1.2 (Shin). We have the following equality for accessible representa-
tions in GrothpGpQpq ˆ WEtµuG

q.

ÿ

bPBpG,µq

Mantb,µpRedbpπqq “ rπsrr´µ ˝ LLpπq|WEtµuG
b | ¨ |´

ř
τ pτqτ {2s.

Loosely speaking, accessible representations in Shin’s paper are character twists
of the local components of global representations that can be found within the
cohomology of Shimura varieties. Shin shows that all essentially square-integrable
representations are accessible.

In this case LL is the semisimplified local Langlands correspondence (known by
the work of [HT01] for instance). The map r´µ is the algebraic representation of
pG ¸WEtµuG

Ă LG defined by Kottwitz ([Kot84, Lem 2.1.2]). It is characterized by

the fact that r´µ| pG is the irreducible representation of extreme weight ´µ and if

we take a Γ-invariant splitting of pG, then the subgroup WEtµuG
of LG acts trivially

on the highest weight vector of r´µ associated with this splitting.

1We believe the construction given before Lemma 6.2 of [Shi12] has a slight typo. There,

Redb is defined by π ÞÑ epJbqpLJ ˝ JacG
P

op
b

pπqq. As maps of Grothendieck groups, JacG
P

op
b

“

JG
P

op
b

b δ
1

2

P
op
b

“ JG
P

op
b

b δ
´

1

2

Pb
. But this is not equal to JG

P
op
b

pπq b δ
1

2

Pb
, which is the construction

given in [Shi11] that is compatible with [HT01].
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Remark 3.1.3. The Tate twist appearing on the right-hand side of the above formula
comes from the dimension formula for Shimura varieties and is equal to ´xρG, µy
where ρG is the half sum of the positive roots in G.

The above theorem is analogous to the sum formula for cocharacter pairs (The-
orem 2.5.4). The induction formula (Corollary 2.5.8) is related to the Harris-
Viehmann conjecture (Conjecture 3.2.1 in this document). A proof of this con-
jecture is expected to appear in forthcoming work of Scholze.

3.2. Harris-Viehmann Conjecture. We now state the Harris-Viehmann conjec-
ture following Rappoport and Viehmann in [RV14]. In this subsection, we return
to the notation of §2 so that in particular, G is a connected, quasisplit reductive
group defined over Qp.

Choose a dominant minuscule µ P X˚pT q (where we can consider µ as a cochar-
acter of G since T Ă G) and a b P BpG,µq . Associated to b, we have the standard
Levi subgroup Mb. Suppose we have a standard rational Levi subgroup MS so that
Mb Ă MS Ă G. We define b1, bS as we did before Definition 2.5.5.

In [RV14, Equation (6.2)], the authors associate a cohomological construction
to the triple pG, b, µq which they denote H‚ppG, rbs, tµuqq. This construction is a
map of Grothendieck groups: H‚ppG, rbs, tµuqq : GrothpJbpQpqq Ñ GrothpGpQpq ˆ
WEtµu

q and agrees with MantG,b,µ in the case above. We will denote this construc-

tion H‚pG, b, µq since we deal with dominant cocharacters instead of conjugacy
classes. Then they have the following conjecture.

Conjecture 3.2.1 (Harris-Viehmann). For ρ P GrothpJbpQpqq, we have the equal-
ity

H‚pG, b, µqrρs “
ÿ

pMS ,µSqPIG,µ

MS,bS

pIndGPS
H‚pMS , bS, µSqrρsq b r1sr| ¨ |xρG,µSy´xρG,µys,

in GrothpGpQpqˆWEtµuG
q. The parabolic induction only modifies the GrothpGpQpqq

parts of these representations.

Remark 3.2.2. We need to explain several things in the above conjecture. First
we explain why the right-hand side is a representation of WEtµuG

, second we check

that the conjecture satisfies a transitivity property, and third we give an example
justifying the extra character twist appearing in our formulation. This twist is not
present in the original formulation of the conjecture.

We first explain why the right-hand side is a representation of WEtµuG
. We start

with a general lemma.

Lemma 3.2.3. Suppose a group Λ acts on a finite set S. Suppose further that for
each s P V , we attach a vector space Vs and for each λ P Λ and s P S we have an
isomorphism

ips, λq : Vs Ñ Vλpsq.

We suppose further that ips, 1q is the identity map and that ipλ1psq, λ2q ˝ ips, λ1q “
ips, λ2λ1q. Then

À
sPS

Vs is naturally a representation of Λ.

Let ts1, ..., sku Ă S be a set of one representative from each Λ-orbit in S. Then

à
sPS

Vs –
kà

i“1

IndΛstabpsiqVsi ,
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where Ind refers to the induced representation (not parabolic induction).

Proof. The proof is clear from the definition of induced representation. �

Moreover, we record the following transitivity property for later use.

Lemma 3.2.4. Suppose that Λ acts on S as before. Let S1

š
...

š
Sk “ S be a

partition of S so that Λ acts on tS1, ..., Sku. Suppose we have for each s P S a vector
space Vs and isomorphisms ips, λq as above. Then by Lemma 3.2.3 we can consider
the stabpSiq Ă Λ representation VSi

“
À
sPSi

. For each λ P Λ, we get isomorphisms

ipSi, λq : VSi
Ñ VλpSiq. Thus, again by Lemma 3.2.3, we get a Λ representationÀ

i

VSi
. This representation is isomorphic to the Λ representation

À
sPS

Vs we get

from applying Lemma 3.2.3 to S.

Now we discuss the WEtµuG
-action in the Harris-Viehmann conjecture. Observe

that for µ P X˚pGq, if γ P WEtµuG
stabilizes tµuMS

then it also stabilizes tµuG so
that WEtµuMS

Ă WEtµuG
.

Now we claim that WEtµuG
acts on I

G,µ
MS ,bS

and that the stabilizer of pMS , µSq
under this action is WEtµuMS

. To prove the first part of the claim, we pick γ P

WEtµuG
and observe that since MS and PS are defined over Qp, we have γpMSq “

MS and γpµSq is dominant in MS . Thus pMS , γpµSqq P CMS
so we need only check

that bS P BpMS , γpµSqq and γpµSq „G µ. The first check follows from the fact that

θT pµSq “ θT pγpµSqq,

and

µS |
Zp yMSqΓ

“ γpµSq|
Zp yMSqΓ

.

The second check follows because γ stabilizes tµuG.
To prove the second part of the claim, we note that if µS “ γpµSq then γ

stabilizes tµSuMS
. Conversely, if γ stabilizes tµSuMS

then since it maps dominant
elements relative to MS to dominant elements, we must have γpµSq “ µS .

We observe that we have now shown that WEtµuG
acts on the collection of

Rapoport-Zink data pMS , bS, µSq for pMS , µSq P I
G,µ
MS ,bS

. By [RV14, Proposition

5.3.iv], these actions induce morphisms of the corresponding towers of rigid spaces
and therefore the spacesH‚pMS , bS , µSqrρs for ρ P GrothpJbpQpqq. Thus by Lemma
3.2.3 we get an action of WEtµuG

on the sum of vector spaces
ÿ

pMS ,µSqPIG,µ

MS,bS

H‚pMS , bS , µSqrρs,

and therefore on ÿ

pMS ,µSqPIG,µ

MS,bS

IndGPS
pH‚pMS , bS , µSqrρsq.

We remark that the character twist by ´dimM
rig
b,µ,U in the definition ofH‚pMS , bS, µSq

is not an obstacle to defining the WEtµuG
-action as the dimensions of the spaces

associated to pMS , bS, µsq and pMS , bS, γpµSqq are the same (for γ P WEtµuG
). Also

we observe that the twist by r1sr| ¨ |xρG,µSy´xρG,µys is harmless as it is constant over
orbits of WEtµSuG

. This concludes our discussion of the WEtµuG
action.
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We now check that the Harris-Viehmann conjecture is transitive. By this, we
mean that if we have standard Levi subgroups MS1

and MS2
of G such that Mb Ă

MS2
Ă MS1

Ă G, then first applying the conjecture to pG, b, µq and the inclusion
MS1

Ă G and then applying the conjecture to each resulting pMS1
, bS1

, µS1
q for

pMS1
, µS1

q P I
G,µ
MS1

,bS1

and the inclusion MS2
Ă MS1

should be the same as applying

the conjecture to pG, b, µq and the inclusion MS2
Ă G.

We need to check that the character twists match, that

I
G,µ
MS2

,bS2

“ tpMS2
, µS2

q P CMS2
: pMS2

, µS2
q P I

MS1
,µS1

MS2
,bS2

for some pMS1
, µS1

q P I
G,µ
MS1

,bS1

u.

and that the WEtµuG
actions are the same.

To check the characters match, it suffices to check that for pMS1
, µS1

q, pMS2
, µS2

q P
CG such that pMS2

, µS2
q ď pMS1

, µS1
q ď pG,µq, we have

xρG, µS2
y ´ xρG, µy “ pxρG, µS1

y ´ xρG, µyq ` pxρMS1
, µS2

y ´ xρMS1
, µS1

yq.

This reduces to showing the equality

xρGzMS1
, µS1

y “ xρGzMS1
, µS2

y,(7)

where ρGzMS1
is the half-sum of the absolute roots of G that are not roots of

MS1
. Since µS2

and µS1
are conjugate in MS1

, there exists a w P W abs
MS1

so that

wpµ1q “ µ2. Then the desired equality follows from the fact that the pairing x¨, ¨y
is W abs

MS1

-invariant and that W abs
MS1

stabilizes the set of positive absolute roots in G

but not MS1
. To prove this second fact, note that MS1

normalizes the unipotent
radical US1

of PS1
and that the roots of LiepUS1

q are precisely the positive absolute
roots of G that are not contained in MS1

.
The second check is precisely Proposition 2.5.6, and the third check follows from

Proposition 2.5.6 and Lemma 3.2.4.
Now we compute an example to illustrate the necessity of the extra Tate twist

in our statement of Conjecture 3.2.1. The following example is also discussed in
[Shi12, §8.3]

Example 3.2.5. Let n1 ă n2 be coprime positive integers and let G “ GLn1`n2
.

Fix T the standard maximal torus of diagonal matrices and B the Borel subgoup
of upper triangular matrices. Let µ be the minuscule cocharacter with weight
vector p12, 0n1`n2´2q and b P BpG,µq satisfying νb “ pp1{n1q

n1 , p1{n2q
n2q. Let

ρ1, ρ2 be supercuspidal representations of GLn1
pQpq,GLn2

pQpq respectively. Define
the standard Levi subgroup Mb “ GLn1

ˆ GLn2
, and consider the representation

π “ IGMb
pρ1 b ρ2q. We will be interested in computing MantG,b,µpRedbpπqq.

The key point is that we can use Shin’s formula (Theorem 3.1.2 of this paper)
and known cases of the Harris-Viehmann conjecture due to Mantovan ([Man08]) to
do this computation, even though the Harris-Viehmann conjecture is not known to
be true in the case of Mb since b is not of Hodge-Newton type.

We observe that there are only 3 elements b1 P BpG,µq that satisfy

MantG,b1,µpRedb1 pπqq ‰ 0.

After all, the fact that ρ1, ρ2 are supercuspidal and the geometric lemma of Bernstein-
Zelevinski (§2.11 of [BZ77]) forces Mb1 to be one of G,GLn1

ˆGLn2
,GLn2

ˆGLn1
.

In the case where Mb1 “ G, we also get 0 since LJpπq “ 0. Thus, if we write out
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Shin’s formula for our π, the only elements of BpG,µq whose terms contribute to
the left-hand side are b, b1, b2 where b is as before and b1, b2 are defined by

νb1 “ pp2{n1qn1 , 0n2q, νb2 “ pp2{n2qn2 , 0n1q.

Thus, we have Mb1 “ Mb “ GLn1
ˆ GLn2

and Mb2 “ GLn2
ˆ GLn1

. Note that
b1, b2 are both of Hodge-Newton type so that we can apply the results of Mantovan.

We have

MantG,b1,µpRedb1pπqq “ MantG,b1,µpLJpδ
1

2

Pb1
b JG

P
op

b1

IGMb1
pρ1 b ρ2qqq.

By the geometric lemma of Bernstein-Zelevinski (§2.11 of [BZ77]) we have that the
above equals

MantG,b1,µ1
pLJppρ1 b ρ2q b δ

1

2

Pb1
qq.

We recall that δPb1
“ p| ¨ |n2 ˝ detq b p| ¨ |´n1 ˝ detq and henceforth use the notation

ρpnq to mean p| ¨ |n ˝ detq b ρ. Thus, we can rewrite the above formula as

MantG,b1,µ1
pLJpρ1pn2{2qq b LJpρ2p´n1{2qqq.

Then applying the Harris-Viehmann formula we get that the above equals

IndG
Mb

pMantGLn1
,p12,0n1´2qpLJpρ1pn2{2qqq b MantGLn2

,p0n2qpLJpρ2p´n1{2qqqq.

(8)

Since ρ1 and ρ2 are supercuspidal, we can compute (by an easy application of Shin’s
formula for instance) that

MantGLn1
,p12,0n1´2qpLJpρ1pn2{2qqq “ rρ1pn2{2qsrrp´12,0n1´2q˝LLpρ1pn2{2qqb|¨|2´n1s,

and so Equation (8) becomes equal to

rπsrrp´12,0n1´2q ˝ LLpρ1pn2{2qq b | ¨ |2´n1 b rp0n2q ˝ LLpρ2p´n1{2qqs.

Pulling the twists through the r´µ maps, we get

rπsrprp´12,0n1´2q b rp0n2qq ˝ pLLpρ1q ‘ LLpρ2qq b | ¨ |2´n1´n2s.

Repeating this computation for the b2 term, we get

MantG,b2,µpRedb2pπqq

“ rπsrprp´12,0n2´2q b rp0n1qq ˝ pLLpρ2q ‘ LLpρ1qq b | ¨ |2´n1´n2 s.

We now compare these terms to the righthand side of Shin’s formula. There the
term is

rπsrr´µ ˝ LLpπq b | ¨ |2´n1´n2 s.

Now LLpπq “ LLpρ1q ‘ LLpρ2q. Thus, we can restrict r´µ to xMb Ă pG (we have
been ignoring the Galois part of LG in this example since G is a split group). Using
the theory of weights, we get

r´µ| xM “ rrp´12,0n1´2q b rp0n2qs ‘ rrp´1,0n1´1q b rp´1,0n2´1qs ‘ rrp0n1q b rp´12,0n2´2qs,

and so we see that the contributions for b1, b2 which we computed above will cancel
terms on the righthand side of Shin’s formula leaving us with

MantG,b,µpRedbpπqq “ rπsrprp´1,0n1´1qbrp´1,0n2´1qq˝pLLpρ1q`LLpρ2qqb|¨|2´n1´n2 s.

However, if the Harris-Viehmann conjecture without the extra Tate twist were to
hold for b, we would get

MantG,b,µpRedbpπqq “ MantG,b,µpLJpρ1pn2{2qq b LJpρ2p´n1{2qqq
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“ rπsrrp´1,0n1´1q b rp´1,0n2´1q ˝ pLLpρ1q ` LLpρ2qq| ¨ |1´n2 s.

Thus, we see the Tate twists do not agree.

In general, the righthand side of Shin’s formula has a twist of ´xρG, µy where
ρG is the half sum of the positive roots of G. Suppose now that b P BpG,µq and

b1 P BpMbq
` corresponds to b under Equation (2). Then for any pMb, µ

1q P I
G,µ
Mb,b1 ,

we would expect the Galois part of MantMb,b1,µ1 pρq for ρ P GrothpJbpQpqq to come
with a twist of ´xρMb

, µ1y. Then the Galois part of MantG,b,µpRedbpπqq for π P

GrothpGpQpqq would carry an extra twist of ´x
detpAdNb

pMbqq|T
2

, µ1y corresponding

to twisting JG
P

op

b

pπq by δ
1

2

Pb
in the definition of Redb . We note that

xρMb
, µ1y ` x

detpAdNb
pMbqq|T

2
, µ1y “ xρG, µ

1y,

Thus, we see that the difference between these Tate twists is

xρG, µ
1y ´ xρG, µy.

which is the twist in Conjecture 3.2.1

Remark 3.2.6. We note that in the Hodge-Newton case studied by Mantovan, µ “ µ1

(as in the notation of the previous paragraph) so that this extra twist vanishes,
agreeing with Mantovan’s results ([Man08, Corollary 5], cf. [RV14, Theorem 8.8]).

We now give an alternate version of the Harris-Viehmann conjecture that we will
use in numerous arguments in this paper. Suppose that G, b, µ are as in Theorem
3.1.2. The standard Levi subgroup Mb has a natural product decomposition

Mb “ M1 ˆ ... ˆ Mk

so that under the natural isomorphism

BpMbq – BpM1q ˆ BpMkq, b1 ÞÑ pb1
1, ..., b

1
kq,

each νpbiq has a single slope. Now pick pMb, µbq P I
G,µ
Mb,b1 . Then the local Shimura

variety datum pMb, b
1, µbq decomposes into a collection pM1, b

1
1, µb,1q, ..., pMk, b

1
k, µb,kq.

In §5.2.piiq of [RV14], the authors show that the local Shimura variety associated
to pMb, b

1, µbq is the product of those associated to pMi, b
1
i, µb,iq. Furthermore us-

ing the Kunneth formula (as in [Man08, p. 15]), we get that for ρ1 b ... b ρk P
GrothpM1pQpq ˆ ... ˆ MkpQpqq,

MantMb,b1,µb
pρ1 b ... b ρkq “ b

k
i“1MantGi,b

1
i,µb,i

pρiq,

as a representation of Mb ˆWEtµbuMb

(the group WEtµbuMb

acts diagonally through

the product WEtµb,1uM1

ˆ ... ˆ WEtµb,kuMk

).

Thus, we have the following alternate form of the Harris-Viehmann conjecture
for the Rapoport-Zink spaces we consider.

Conjecture 3.2.7 (Alternate Form of Harris-Viehmann Conjecture). We use the
notation of the previous paragraphs so that in particular, pG, b, µq comes from an
unramified Rapoport-Zink space of EL-type as in Definition 3.1.1. Then for any
ρ P GrothpJbpQpqq, we have the following equality in GrothpGpQpq ˆ WEtµuG

q:

MantG,b,µpρq “
ÿ

pMb,µbqPIG,µ

Mb,b
1

IndGPb
pb

k
i“1MantMb,b

1
i,µb,i

pρiqq b r1sr| ¨ |xρG,µby´xρG,µys.
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3.3. Proof of Theorem 1.0.3. The combination of the Harris-Viehmann conjec-
ture and sum formula allows us to relate the cohomology of Rapoport-Zink spaces
to the cocharacter pairs studied in §2. To do so, we attach a map of Grothendieck
groups to each cocharacter pair. We return to the notation of §3.1.

Fix a cocharacter pair pG,µq P CG. Suppose pMS , µSq P CG and satisfies µS „G

µ. We associate pMS , µSq to a map of representations

rMS, µSs : GrothpGpQpqq Ñ GrothpGpQpq ˆ WEtµSuMS

q,

given by

π ÞÑ pIndGPS
˝ rµSs ˝ pδPS

b JacGP op
S

qqpπq b r1sr| ¨ |xρG,µSy´xρG,µys,

with
rµSs : GrothpMSpQpqq Ñ GrothpMSpQpq ˆ WEtµuMS

q,

given by
π ÞÑ rπsrr´µS

˝ LLpπq|WEtµSuMS

b | ¨ |´xρMS
,µSys.

Remark 3.3.1. We note that the map rMS, µSs is only defined relative to a cochar-
acter pair pG,µq.

Remark 3.3.2. We observe an interesting property of the maps rMS , µSs. Fix pG,µq
and consider pMS , µSq such that µS „G µ. Since the normalized Jacquet module
and parabolic induction functors behave better with respect to the local Langlands
correspondence, it makes sense to rewrite rMS, µSs in terms of these maps. We get

rMS , µSs “ pIGMS
b δ

´ 1

2

PS
˝ rµSs ˝ pδ

1

2

PS
b JG

P
op

S
qq b r1sr| ¨ |xρG,µS´µys.

Note that the twists by the modular character cancel in the admissible part but do
not cancel in the Galois part. Thus, the total Tate twist of the Galois part is

xρG, µS ´ µy ´ xρMS
, µSy ´ x

detpAdNS
pMSqq|T

2
, µSy

“ ´xρG, µy.

This twist does not depend on pMS , µSq but rather only on pG,µq. Thus, as we will
see in the computations of the next section, it is possible for large cancellations to
occur in computations of MantG,b,µpρq for various ρ.

We now prove some lemmas relating to these maps before tackling the main
theorem.

Lemma 3.3.3. Let MS1
,MS2

be standard Levi subgroups of G satisfying MS2
Ă

MS1
. Consider the natural map

iGMS1

: CMS1
Ñ CG,

as defined in Equation (6). Let pMS2
, µS2

q P CMS1
. Suppose further that we have

fixed pairs pMS1
, µS1

q P CMS1
and pG,µq P CG so that µS2

„MS1
µS1

and µS2
„G µ.

Then for π P GrothpGQp
q,

iGMS1

prMS2
, µS2

sqpπq “ pIndG
PS1

˝rMS2
, µS2

s˝pδPS1
bJacGP op

S1

qqpπqbr1sr|¨|xρG,µS1
y´xρG,µys,

where we write

iGMS1

prMS2
, µS2

sq : GrothpGpQpqq Ñ GrothpGpQpq ˆ WEtµS2
uMS2

q,

to denote the map associated to iGMS1

ppMS2
, µS2

qq in the manner above.
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Proof. We first note that by transitivity of the Jacquet module and modulus char-
acter constructions, we have

δPS2
b JacGP op

S2

“ pδPS2
XM1

b Jac
MS1

P
op

S2

q ˝ pδPS1
b JacGP op

S1

q.

Hence, we just need to check that the twists on the Galois parts of both sides match.
By Remark 3.3.2, both twists are by ´xρG, µy �

Lemma 3.3.4. Suppose we are in the situation of Proposition 2.5.9 so that G “
G1 ˆ ... ˆ Gk is a connected reductive group with standard Levi subgroup MS “
MS1

ˆ ... ˆ MSk
. Fix cocharacter pairs pMS , µSq, pG,µq P CG with µS „G µ. The

bijection CG – CG1
ˆ...CGk

takes pMS , µSq to ppMS1
, µS1

q, ..., pMSk
, µSk

qq and pG,µq
to ppG1, µ1q, ..., pGk, µkqq and we have µSi

„Gi
µi. Then we define

b
k
i“1rMSi

, µSi
s : GrothpGpQpqq Ñ GrothpGpQpq ˆ WEtµSuMS

q

by

π1 b ... b πk ÞÑ rMS1
, µS1

spπ1q b ... b rMSk
, µSk

spπkq.

Then we have the following equality of homomorphisms of Grothendieck groups:

b
k
i“1rMSi

, µSi
s “ rMS, µSs

Proof. We have

b
k
i“1rMSi

, µSi
s “ b

k
i“1Ind

Gi

PSi
˝ rµSi

s ˝ pδPSi
b JacGi

P
op

Si

q b r1sr| ¨ |xρGi
,µSi

´µiys

“ IndGPS
˝ rµs ˝ pδPS

b JacGP op

S
q b r1sr| ¨ |

kř
i“1

xρGi
,µSi

´µiy
s

“ IndGPS
˝ rµs ˝ pδPS

b JacGP op

S
q b r1sr| ¨ |xρG,µS´µys

“ rMS, µSs.

�

For some finite subset C Ă CG, such that each pMS , µSq P C satisfies µS „G µ,
we would like to make sense of a sum

ÿ

pMS ,µSqPC

rMS, µSs.

This makes sense as a map GrothpGpQpqq Ñ GrothpGpQpq ˆ WEq where WE “Ş
pMS ,µSqPC

WEtµSuMS

. However, for our purposes, we would like to understand when

we can extend the image of this map to a representation in GrothpGpQpqˆWEtµuG
q.

Lemma 3.3.5. Fix a pair pG,µq P CG. Consider a finite subset C Ă CG such that
if pMS, µSq P C then µS „G µ. Furthermore, suppose that for each γ P WEtµuG

and

element pMS , µSq P C, we have pMS , γpµSqq P C. Then
ÿ

pMS ,µSqPC

rMS, µSs,

is a map

GrothpGpQpqq Ñ GrothpGpQpq ˆ WEtµuG
q

in a natural way.
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Proof. Our construction is analogous to that of Lemma 3.2.3. We fix ρ P GrothpGpQpqq
and give

VC “
à

pMS ,µSqPC

rMS, µSspρq,

the structure of a GpQpqˆWEtµuG
representation. Suppose that C “ C1

š
...

š
Cn

where each Ci is a single WEtµuG
-orbit. Then for each i, we give

VCi
“

à
pMS ,µSqPCi

rMS, µSspρq,

the structure of a GpQpq ˆ WEtµuG
-representation and then define the GpQpq ˆ

WEtµuG
-structure on VC to be the direct sum of the VCi

.
Suppose now that C contains a single WEtµuG

orbit. In this case, we will show
that à

pMS ,µSqPC

rMS, µSspρq,

can be given the structure of a GrothpGpQpq ˆ WEtµuG
q representation equal to

rIndGPS
pδPS

bJacGP op

S
pρqqsrr ˝LLpδPS

bJacGP op

S
pρqq|WEtµuG

b | ¨ |´xρG,µS´µy´xρMS
,µSys,

where r is the induced representation (not parabolic induction) given by

Ind
yMS¸WEtµuG

yMS¸WEtµSuMS

pr´µS
q,

for a fixed choice of pMS , µSq P C. The isomorphism class of r will not depend on
this choice.

We study the representation r. Fix representatives γ1, ..., γk P WEtµuG
{WEtµSuMS

so that γ1 “ 1. Then r is defined to be the sum of k copies of r´µS
indexed by

the γi and acted on by WEtµuG
in the standard way. We check that the ith copy

of r´µS
is a representation of yMS ¸ WEtγipµS quMS

and isomorphic to r´γipµSq. Let

Vi be the underlying vector space of the ith copy of r´µS
. Then Vi is naturally a

representation of yMS ¸ γiWEtµSuMS

γ´1
i “ yMS ¸ WEtγipµSquMS

.

Now suppose v P V1 is a weight vector of pT Ă yMS of weight µ1. Then we show

that p1, γiqv P Vi has weight γipµ
1q. After all, for t P pT , we have

rppt, 1qqpp1, γiqvq “ pt, γiqv

“ p1, γiqpγ´1
i ptq, 1qv

“ p1, γiqr´µS
ppγ´1

i ptq, 1qqpvq

“ p1, γiqµ
1pγ´1

i ptqqv

“ γipµ
1qptqp1, γiqv.

In particular, we have shown that Vi is irreducible of extreme weight ´γipµSq as

an yMS-representation (since r´µS
is irreducible of extreme weight ´µS as an yMS-

representation). It is a simple check similar to the above that WEtγipµS quMS

acts

trivially on the highest weight space of Vi. This proves that Vi is isomorphic to
r´γipµSq.
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In particular, this shows that we can give
à

γiPWEtµuG
{WEtµSuMS

r´γipµSq ˝ LLpδPS
b JacGP op

S
pρqq|WEtγipµS quMS

,

the structure of a WEtµuG
representation isomorphic to

r ˝ LLpδPS
b JacGP op

S
pρqq|WEtµuG

.

To conclude the proof, we just need to check that the |¨| twists on each rMS, γipµSqs-
term are the same. This follows because ρG and ρMS

are both invariant by WEtµuG
.
�

We would like to check the following:

Lemma 3.3.6. The sum MG,b,µ as in Definition 2.5.2 gives a map

rMG,b,µs : GrothpGpQpqq Ñ GrothpGpQpq ˆ WEtµuG
q,

where

rMG,b,µs :“
ÿ

pMS ,µSqPRG,b,µ

p´1qLMS,Mb rMS , µSs.

Proof. By Lemma 3.3.5, it suffices to show that MG,b,µ is invariant under the
natural action of WEtµuG

on ZxCGy. Pick γ P WEtµuG
. Since the action of γ on a

cocharacter pair fixes the standard Levi subgroup in the first factor, signs will not
be an issue and we will be done if we can check that RG,b,µ is γ-invariant. But if
pMb, µbq P TG,b,µ then it is a simple consequence of the definition of T that so is
pMb, γpµbqq. Furthermore if pMS , µSq ď pMb, µbq then pMS , γpµSqq ď pMb, γpµbqq
by definition of the partial order relation (remarking that θMS

pµSq “ θMS
pγpµSqq).

This shows that RG,b,µ is γ-invariant as desired. �

If we combine the previous lemma with Proposition 2.5.9, and Lemma 3.3.4 we
get

b
k
i“1 rMGi,bi,µi

s “ rMG,b,µs.(9)

We now prove the key result of this section which provides the connection be-
tween Mant and cocharacter pairs.

Theorem 3.3.7. Assume that the Harris-Viehmann conjecture is true for the gen-
eral linear groups we consider.

(1) We have the following equality of morphisms Groth2pGpQpqq Ñ Groth2pGpQpqˆ
WEtµuG

q:

MantG,b,µ ˝ Redb “ rMG,b,µs.

where Groth2pGpQpqq is defined to be the span of the essentially square
integrable representations in GrothpGpQpqq.

(2) Now assume further that Theorem 3.1.2 holds for all admissible represen-
tations of GrothpGpQpqq. Then the above equality holds as morphisms
GrothpGpQpqq Ñ GrothpGpQpq ˆ WEtµuG

q.

Proof. We prove the second statement first. We prove this result by induction on
the rank of X˚pT q.

If the rank of X˚pT q is 1, then BpG,µq is a singleton and so the result follows
from Theorem 3.1.2.
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Suppose the result holds for all non-basic b P BpG,µq with RkpX˚pT qq ď r.
Then by Theorem 3.1.2 and Theorem 2.5.4, the result holds for all b P BpG,µq
with RkpX˚pT qq ď r.

Finally, suppose the result holds for all b P BpG,µq with RkpX˚pT qq ď r. Then
suppose X˚pT q has rank r ` 1 and choose b P BpG,µq such that b is not basic. We
write Mb “ Mb1 ˆ ... ˆ Mbk . By the Harris-Viehmann formula,

MantG,b,µ ˝ Redb

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

pIndG
Pb

˝ bk
i“1MantMbi

,b1
i,µbi

˝ Redbq b r1sr| ¨ |xρG,µby´xρG,µys

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

pIndG
Pb

˝bk
i“1pMantMbi

,b1
i,µbi

˝Redb1
i
q˝pδPb

bJacGP op

b
qqbr1sr|¨|xρG,µby´xρG,µys.

By inductive assumption we get

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

pIndG
Pb

˝ bk
i“1rMMbi

,b1
i,µbi

s ˝ pδPb
b JacGP op

b
qq b r1sr| ¨ |xρG,µby´xρG,µys,

and now by Equation (9)

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

pIndGPb
˝ rMMb,b1,µb

s ˝ pδPb
b JacGP op

b
qq b r1sr| ¨ |xρG,µby´xρG,µys.

Finally, by Corollary 2.5.8 and Lemma 3.3.3

“ rMG,b,µs.

We must check that the WEtµuG
structure coming from Remark 3.2.2 is compatible

with that of Lemma 3.3.5. Pick ρ P GrothpGpQpqq. By inductive assumption and

Lemma 3.3.3, for each pMb, µbq P I
G,µ
Mb,b1 , the WEtµbuMb

-structures on

pIndGPb
˝ MantMb,b1,µb

˝ Redb1 ˝ pδPb
b JacGP op

b
qqpρq b r1sr| ¨ |xρG,µby´xρG,µys,

and

iGMb
prMMb,b1,µb

sqpρq,

are the same. Thus by Lemma 3.2.3, the WEtµuG
-structure on MantG,b,µpRedbpρqq

is a direct sum over the WEtµuG
-orbits of IG,µ

Mb,b1 of induced representations of the
form

Ind
WEtµuG

WEtµbuMb

iGMb
prMMb,b1,µb

sqpρq.

This WEtµuG
-structure matches the one on rMG,b,µs (coming from Lemma 3.3.5)

by the transitivity of the induced representation construction (see Lemma 3.2.4 for
instance).

We now prove the first statement of the theorem. To do so, we need to show that
if we restrict ourselves to the span of the essentially square integrable representa-
tions Groth2pGpQpqq Ă GrothpGpQpqq, then we can remove the first assumption. In
particular, these representations are accessible, so we have Theorem 3.1.2 uncondi-
tionally. In the above proof we need only observe that the Jacquet module JacGP oppρq
is a sum of essentially square integrable representations for ρ P Irr2pGpQpqq. Thus,

to get the result for Groth2pGpQpqq by induction, our inductive assumption need
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only hold for all Groth2pG1pQpqq for rkG1 ă rkG. This shows that under the con-
dition that the Harris-Viehmann conjecture is true in the cases we consider, the
theorem is true for essentially square integrable representations without any other
assumptions. �

4. Harris’s Generalization of the Kottwitz Conjecture (proof of
Theorem 1.5)

In this section, we discuss an explicit computation using the above results. In
particular, we prove that Shin’s formula for all admissible representations combined
with the Harris-Viehmann conjecture proves Harris’s conjecture for the general
linear groups considered in §3. This conjecture is distinct from the Harris-Viehmann
conjecture and is [Har01, Conj 5.4].

We begin by discussing the Kottwitz conjecture, which appears as [Shi12, Cor
7.7] in the cases we consider, and more generally as [RV14, Conj 7.3]. Fix G as
in section 3 of this paper and a cocharacter pair pG,µq such that µ is minuscule.
Let b P BpG,µq be the unique basic element. Now, consider ρ a representation of
JbpQpq such that JLpρq is a supercuspidal representation of GpQpq. Then

MantG,b,µpRedbpJLpρqqq “ MantG,b,µpρq,

but by Theorem 3.3.7, the lefthand side equals

rMG,b,µspJLpρqq.

Nowwe see that since JLpρq is supercuspidal, each term of the form rMS, µSspJLpρqq
is 0 when MS is a proper Levi subgroup of G. Thus,

MantG,b,µpρq “ rMG,b,µspJLpρqq “ rJLpρqsrr´µ ˝ LLpρq| ¨ |´xρG,µys.

This result is the Kottwitz conjecture for G. Alternatively, if b P BpG,µq is not
basic, then no cocharacter pairs with G as the Levi subgroup will appear in MG,b,µ

and so

MantG,b,µpρq “ 0.

Of course, these results are already known by [Shi12], but we review them as mo-
tivation for Harris’s conjecture.

We begin with the following useful definition.

Definition 4.0.1. Fix pG,µq P CG and b P BpG,µq. Let MS be a standard Levi

subgroup such that MS Ă Mb. We define the subset RelG,µ
MS ,b Ă CG as the set

tpMS , µSq P CG : DpMb, µbq P TG,b,µ with θMb
pµbq “ θMS

pµSq, µb „Mb
µSu.

The notation µS „Mb
µb is defined to mean that µS and µb are conjugate in Mb.

Note that we do not require pMS , µSq ď pG,µq or pMS , µSq ď pMb, µbq.

We record the following useful properties of RelG,µ
MS ,b.

Lemma 4.0.2. We use the same notation as in the previous definition. Then

RelG,µ
MS ,b “

ž

pMb,µbqPIG,µ

Mb,b
1

RelMb,µb

MS ,b1 .
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Proof. If pMS , µSq P RelG,µ
MS ,b, then there is an pMb, µbq P TG,b,µ such that θMb

pµbq “

θM pµSq and µS „Mb
µb. Then by Proposition 2.5.7, there is a unique pMb, µ

1q P

I
G,µ
Mb,b1 such that pMb, µbq P TMb,b1,µ1 and so pMS, µSq P RelMb,µb

MS ,b1 . The reverse
inclusion is analogous. �

Lemma 4.0.3. The set RelG,µ
MS ,b is invariant under the action of WEtµuG

.

Proof. If pMS , µSq P RelG,µ
MS ,b then we can find pMb, µbq P TG,b,µ with θMb

pµbq “

θMS
pµSq and µb „Mb

µS . By a similar argument to Lemma 3.3.6, we show that for
each γ P WEtµuG

, we have pMb, γpµbqq P TG,b,µ and θMS
pγpµSqq “ θMb

pγpµbqq and

γpµSq „Mb
γpµbq. This finishes the proof. �

Equipped with the above definition, we can now make the following restatement
and slight generalization of [Har01, Conj 5.4] for the G that we consider. Our
statement is a generalization because we consider non-basic b and do not assume
the representation IGMS

pρq is irreducible.

Conjecture 4.0.4 (Harris). Fix a b P BpG,µq and a standard Levi subgroup MS Ă
Mb. Then for ρ P GrothpMSpQpqq a supercuspidal representation, the following
representations are equal in GrothpGpQpq ˆ WEtµuG

q:

MantG,b,µpepJbqLJpδ
1

2

G,Pb
b IMb

MS
pρqqq

and

rIGMS
pρqs

»
—–

à

pMS ,µSqPRel
G,µ

MS,b

r´µS
˝ LLpρq|WEtµSuMS

| ¨ |´xρG,µy

fi
ffifl .

Here r´µS
is a representation of yMS ¸ WEtµSuMS

but the righthand side naturally

acquires the structure of a GpQpq ˆ WEtµuG
representation from Lemma 4.0.3 and

the proof of Lemma 3.3.5.
In particular, for b basic, this says that

MantG,b,µpRedbpI
G
MS

pρqqq “ rIGMS
pρqs

»
—–

à

pMS ,µSqPRel
G,µ

MS,b

r´µS
˝ LLpρq|WtµSuMS

| ¨ |´xρG,µy

fi
ffifl .

We will prove this conjecture assuming that Shin’s formula (Theorem 3.1.2 of
this paper) holds for all admissible representations.

We proceed by induction on the rank of T . The key observation will be that
Harris’s conjecture is compatible with the Harris-Viehmann conjecture and Shin’s
formula. We will first assume that IGMS

pρq is irreducible and later remove this
assumption.

The following proposition shows that Conjecture 4.0.4 is compatible with the
Harris-Viehmann conjecture (Conjecture 3.2.1).

Proposition 4.0.5. Fix b P BpG,µq non-basic and fix a standard Levi subgroup
MS of G satisfying MS Ă Mb. Pick ρ P GrothpMSpQpqq and suppose that IGMS

pρq
is irreducible. Suppose that Conjecture 4.0.4 for ρ holds for MantMb,b1,µb

for each

pMb, µbq P I
G,µ
Mb,b1 . Then Conjecture 4.0.4 holds for MantG,b,µ.
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Proof. We compute

MantG,b,µpepJbqLJpδ
1

2

G,Pb
b IMb

MS
pρqqq

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

IndGPb
pMantMb,b1,µb

pepJbqLJpδ
1

2

G,Pb
b IMb

MS
pρqqqq b r1sr| ¨ |xρG,µb´µys,

so by assumption

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

rIndGPb
pδ

1

2

G,Pb
bIMb

MS
pρqqs

»
—–

à

pMS ,µSqPRel
Mb,µb
MS,b1

r´µS
˝ LLpIMb

MS
pρqq|WEtµSuMS

| ¨ |S

fi
ffifl ,

where S “ ´xρMb
, µby ` xρG, µb ´ µy ´ x

detpAdNnpMbqq|T
2

, µby “ ´xρG, µy (following
the discussion in Remark 3.3.2). Now simplifying the above expression, we get

“
ÿ

pMb,µbqPIG,µ

Mb,b
1

rIGMS
pρqs

»
—–

à

pMS ,µSqPRel
Mb,µb
MS,b1

r´µS
˝ LLpIGM pρqq|WEtµS uMS

| ¨ |´xρG,µy

fi
ffifl .

Thus, we are reduced to showing that

RelG,µ
MS ,b “

ž

pMb,µbqPIG,µ

Mb,b
1

RelMb,µb

MS ,b1 .

This is just Lemma 4.0.2. �

With Proposition 4.0.5 in hand, it remains to show that if Conjecture 4.0.4 holds
for all non-basic b P BpG,µq then it holds for the basic b. The key to proving this
is Theorem 3.1.2.

We begin by making some observations about r´µ. Since we assumed IGMS
pρq

is irreducible, we have LLpIGMS
pρqq “ LLpρq and the image of this representation

lies inside LMS Ă LG. Thus, the term rr´µ ˝LLpIGMS
pρqq|WEtµuG

s depends only on

the restriction r´µ| yMS¸WEtµuG

. Since µ is assumed to be minuscule, we have the

following equality of yMS representations.

r´µ| yMS
“

à
pMS ,µSqPCG,µS„Gµ

r´µS
| yMS

.(10)

We further note that each r´µS
is a representation of yMS ¸ WEtµSuMS

. Since

tpMS, µSq P CG : µS „G µu is invariant under the natural action of WEtµuG
, it

follows from the proof of 3.3.5 that the right-hand side of the above equation can

be promoted to a representation of yMS ¸WEtµuG
so that 10 is an equality of WEtµuG

representations.
Now we recall the following subsets of W rel defined in §2.11 of [BZ77].

Definition 4.0.6. Let MS , NS be standard Levi subgroups of G. We define

WMS “ tw P W rel : wpMS X Bq Ă Bu,

WMS ,NS “ tw P W rel : wpMS X Bq Ă B,w´1pNS X Bq Ă Bu

We record the following lemma:
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Lemma 4.0.7. [BZ77, Lem 2.11] Suppose MS , NS are standard Levi subgroups
of G and w P WMS ,NS . Then wpMSq X NS and w´1pNSq X MS are standard Levi
subgroups.

Lemma 4.0.8. Suppose MS is a standard Levi subgroup of G. Then WMS contains
a unique representative of each left coset of W rel

MS
. Equivalently, pWMS q´1 contains

a unique representative of each right coset of W rel
MS

.

Proof. Suppose w P W rel. Then B1 “ w´1pBq is a Borel subgroup of G containing
the maximal torus T . Since B1 contains exactly one of each root and its negative,
B1 XMS is a Borel subgroup of MS. In particular, since B1 XMS, BXMS are both
Borel subgroups of MS containing T , there exists a wm P W rel

MS
so that

wmpB X MSq “ B1 X MS .

Then wwmpB XMSq “ B XMS Ă B, so that wwm P WMS . Thus the coset wW rel
MS

contains at least one element of WMS .
Suppose wwm, ww1

m P wW rel
MS

X WMS . In particular, ww1
m “ pwwmqpw´1

m w1
mq.

But wwm takes all positive roots of MS to positive roots of G, and equivalently,
negative roots of MS to negative roots of G. Thus, if w´1

m w1
m takes any positive

root of MS to a negative root of MS , then ww1
m cannot be an element of WMS . In

particular, this implies that w´1
m w1

m “ 1 which shows uniqueness. �

Lemma 4.0.9. Suppose MS is a standard Levi subgroup of G and x P A
`
Q,MS

and

w P W rel. Then wpxq “ x if and only if w P W rel
MS

.

Proof. Recall that by assumption, G is quasi-split over Qp and A is a split torus

of G of maximal rank. Pick g P NGpAqpQpq so that g projects to w P W rel “

NGpAqpQpq{ZGpAqpQpq. Then the equation wpxq “ x implies that g P ZGpxqpQpq.
The centralizer of a cocharacter is a Levi subgroup, and since x P A

`
Q,MS

, we have

ZGpxq “ MS. In particular, g P NMS
pAqpQpq and so w P W rel

MS
.

We remark that x is not a cocharacter, but that ZGpxq still makes sense as there
is an induced action of G on X˚pAqQ. �

We can now prove the following key proposition.

Proposition 4.0.10. Fix pG,µq P CG and suppose pMS , µSq P CG satisfies µS „G

µ. Then there exists a unique b P BpG,µq and a unique w P WMS ,Mb so that

pwpMSq, wpµSqq P RelG,µ

wpMSq,b.

Proof. We first discuss uniqueness. By assumption, wpMSq is a standard Levi
subgroup. Then w induces an equality wW rel

MS
w´1 “ W rel

wpMSq. In particular, W rel

acts on X˚pT q through Corollary B.0.2 and it follows that

wpθMS
pµSqq “ θwpMSqpwpµSqq.

Since pwpMSq, wpµSqq P RelG,µ

wpMSq,b, it follows that θwpMSqpwpµSqq is dominant in

the relative root system. In particular, θwpMSqpwpµSqq must be equal to the unique

element x in the W rel orbit of θMS
pµSq which is dominant in AQ. Now x P A

`
MS1 ,Q

for a unique MS1 . Since any pMb, µbq P TG,b,µ is definitionally strictly decreasing, it
follows that even though we can’t yet conclude the uniqueness of b, we have shown
that any other b1 must satisfy Mb1 “ Mb “ MS1 .
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Now, suppose we had w,w1 P WMS ,Mb such that

wpθMS
pµSqq “ x “ w1pθMS

pµSqq.

Then in particular, w1w´1 stabilizes x and so by Lemma 4.0.9, w1w´1 P W rel
Mb

.

So w and w1 are in the same right coset W rel
Mb

w. However, WMS ,Mb Ă pWMbq´1.

By Lemma 4.0.8, pWMbq´1 contains a unique representative of each right coset of
pWMbq´1 and so there is a unique w P pWMbq´1 satisfying wpθMS

pµSqq “ x. In
particular, this implies that w “ w1. Thus, we have shown that w is unique, if it
exists. There is exactly one µ1 P X˚pT q such that µ1 „Mb

wpµq and µ1 is dominant
in Mb. Then pMb, µ

1q P TG,b,µ for at most one b P BpG,µq. This shows uniqueness.
To prove existence, we again define x to be the unique dominant element in the

W rel-orbit of θMS
pµSq. Define MS1 “ ZGpxq and take the unique w P pWMS1 q´1

such that wpθMS
pµMS

qq “ x. We would like to show that w P WMS ,MS1 .
By definition,

wpMSq Ă wpZGpθMS
pµSqqq “ ZGpxq “ MS1 .

Suppose it is not the case that wpMS X Bq Ă B. In particular, w maps a positive
root r of MS to a root wprq of MS1 which is not positive. In particular, ´wprq is
positive and so w´1p´wprqq “ ´r is positive (since w P pWMS1 q´1). But this is
clearly a contradiction. Thus, in fact w P WMS ,MS1 .

By Lemma 4.0.7, wpMSq X MS1 “ wpMSq is a standard Levi. It remains to

show that pwpMSq, wpµSqq is a cocharacter pair and an element of RelG,µ

wpMSq,b. Now

if r is a positive root in the absolute root system of wpMSq, then xr, wpµSqy “
xw´1prq, µSy ě 0 (since pMS , µSq is a cocharacter pair and w´1prq is a posi-
tive root of MS). Thus, pwpMSq, wpµSqq is a cocharacter pair. By construction,
x “ θwpMSqpwpµSqq “ θMS1 pwpµSqq. Suppose µ1 P X˚pT q is the unique cochar-
acter conjugate to wpµSq in MS1 and dominant in MS1 . Then by Corollary 2.2.4,
pMS1 , µ1q is strictly decreasing and therefore pMS1 , µ1q P TG,b,µ for some b and so

pwpMSq, wpµSqq P RelG,µ

wpMSq,b. �

Corollary 4.0.11. Fix a cocharacter pair pG,µq P CG and a standard Levi subgroup
MS of G. For b P BpG,µq, define Wb by tw P WMS ,Mb : wpMSq Ă Mbu. Then the
previous lemma gives a bijection

tpMS , µSq P CG : µS „G µu –
ž

bPBpG,µq

ž

wPWb

RelG,µ

wpMSq,b.

Proof. By the construction in the previous proposition, it is clear that given an
pMS , µSq P CG we get an element of the right-hand side of the above equation.
Conversely, an element pwpMSq, µ1q of the right-hand side comes with a fixed w P Wb

and so we can recover pMS, w
´1pµ1qq on the left-hand side. �

We are now ready to finish the proof of Conjecture 4.0.4. By inductive assump-
tion we assume we’ve shown Conjecture 4.0.4 for G with maximal torus of rank
less than n. Then Proposition 4.0.5 implies that Conjecture 4.0.4 holds for G with
maximal torus of rank n in the case where b is not basic. It remains to prove
the basic case, for which it suffices to show that Theorem 3.1.2 is compatible with
Conjecture 4.0.4. We have

ÿ

bPBpG,µq

MantG,b,µpRedbpI
G
MS

pρqqq
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“
ÿ

bPBpG,µq

MantG,b,µpepJbqLJpδ
1

2

Pb
b JG

P
op

b
IGMS

pρqqq.

By the geometric lemma of [BZ77] and noting that WMS ,Mb defined with respect
to B is equal to the analogous set defined with respect to Bop, we have

JG
P

op

b
IGMS

pρq “
ÿ

wPWMS,Mb

IMb

M 1
b

pwpJMS

P 1op
S

pρqqq,

where M 1
S “ MS X w´1pMbq,M 1

b “ wpMSq X Mb. By the assumption that ρ is
supercuspidal we must have M 1

S “ MS and M 1
b “ wpMSq. In this case, we have

from the geometric lemma that wpMSq is a standard Levi subgroup. Thus we get
that the previous expression is equal to

ÿ

bPBpG,µq

MantG,b,µpepJbq
ÿ

wPWb

LJpδ
1

2

Pb
b IMb

wpMSqpwpρqqq,

where Wb Ă WMS ,Mb is the subset of w such that wpMSq Ă Mb. We now apply
Corollary 4.0.4 by inductive assumption to get

ÿ

bPBpG,µq

ÿ

wPWb

rIGwpMSqpwpρqqs

»
—–

à

pwpMSq,µ1qPRel
G,µ

wpMS q,b

r´µ1 ˝ LLpIGwpMSqpwpρqqq|WE
tµ1 uwpMS q

| ¨ |´xρG,µy

fi
ffifl .

By [BZ77, Thm 2.9], we have that

rIGwpMSqpwpρqqs “ rIGMS
pρqs,

and since IGMS
pρq is assumed to be irreducible, we have

LLpIGMS
pρqq “ LLpρq.

Finally, we note that WEtw´1pµ1quMS

“ WEtµ1uwpMS q
and we have an equality

rr´µ1 ˝ LLpwpρqq|WE
tµ1 uwpMS q

s “ rr´w´1pµ1q ˝ LLpρq|WE
tw´1pµ1quMS

s.

Thus the above expression becomes

ÿ

bPBpG,µq

ÿ

wPWb

rIGMS
pρqs

»
—–

à

pwpMSq,µ1qPRel
G,µ

wpMS q,b

r´w´1pµ1q ˝ LLpρq|WE
tw´1pµ1quMS

| ¨ |´xρG,µy

fi
ffifl .

By Corollary 4.0.11 this equals

rIGMS
pρqsr

à
pMS ,µSq:µS„Gµ

r´µS
˝ LLpρq|WEtµSuMS

| ¨ |´xρG,µys.

Finally, we apply the decomposition given by Equation (10) to get

rIGMS
pρqsrr´µ| yMS¸WEtµuG

˝ LLpρq|WEtµuG
| ¨ |´xρG,µys,

which is the desired result.
Finally, we show that Conjecture 4.0.4 holds even if IGMS

pρq is not irreducible.
Our verification that Conjecture 4.0.4 is compatible with the Harris-Viehmann
conjecture did not rely on the irreducibility of IGMS

pρq. Thus in the case where

we do not assume IGMS
pρq is irreducible, it would suffice to show that Conjecture

4.0.4 is true in the case where b is basic. If b is basic, then Mb “ G so we have

MantG,b,µpepJbqLJpδ
1

2

G,Pb
IMb

MS
pρqqq “ MantG,b,µpRedbpIGMS

pρqqq.
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This can now be computed by cocharacter pairs using the results of §3. If IGMS
pρq is

assumed to be irreducible, then for each cocharacter pair pMS1 , µS1 q of G, we have

rMS1 , µS1 spIGMS
pρqq “ pIndGPS1

˝ rµS1 sqpδ
1

2

PS
b JG

P
op

S1
IGMS

pρqq b r1sr| ¨ |xρG,µS1 ´µys

“ pIndGPS1
˝ rµS1 sqp

à
wPWρ

δ
1

2

PS1
b I

MS1

wpMSqpwpρqqq b r1sr| ¨ |xρG,µS1 ´µys,

where Wρ is the subset of w P WMS ,MS1 such that wpMSq Ă MS1 . Then the above
equals

rIGMS
pρqs

«
à

wPWρ

r´µS1 ˝ LLpwpρqq| ¨ |´xρG,µy

ff
.

Thus we see that applying various rMS1 , µS1 s to IGMS
pρq in the irreducible case

will always yield the same term of GrothpGpQpqq (namely rIGMS
pρqs) and so when

evaluating MantG,b,µpRedbpI
G
MS

pρqq as a sum of cocharacter pairs, the different
Galois terms must cancel to give Conjecture 4.0.4. Thus, if we can show that in
the reducible case, the GrothpGpQpqq part of each rMS1 , µS1 spIGMS

pρqq is fixed and
the Galois part is identical to the irreducible case, then Conjecture 4.0.4 must hold
for this case as well.

The first part of our previous computation did not depend on the irreducibility
of IGMS

pρq so we still have

rMS1 , µS1 spIGMS
pρqq “ pIndG

PS1
˝rµS1sqp

à
wPWρ

δ
1

2

PS1
bI

MS1

wpMSqpwpρqqqbr1sr| ¨ |xρG,µS1 ´µys.

Suppose now that I
MS1

wpMSqpwpρqq “ π1 ‘ ... ‘ πk. Then using that for all i, we have

LLpπiq “ LLpwpρqq,

rµS1 spI
MS1

wpMSqpwpρqqq “ ‘k
i“1rπisrr´µS1 ˝ LLpπiq b | ¨ |´xρM

S1 ,µS1 ys

“ ‘k
i“1rπisrr´µS1 ˝ LLpwpρqq b | ¨ |´xρM

S1 ,µS1 ys

“ rI
MS1

wpMSqpwpρqqsrr´µS1 ˝ LLpwpρqq b | ¨ |´xρM
S1 ,µS1 ys

Thus, the expression for rMS1 , µS1 spIGMS
pρqq becomes

rIGMS
pρqs

«
à

wPWMS,M
S1

r´µS1 ˝ LLpwpρqq| ¨ |´xρG,µy

ff
,

as desired.

Appendix A. Examples

In this section, we give an example to show that even in the unramified EL-type
case, we do not get an expression as simple as Harris’s conjecture for MantG,b,µpρq
for general ρ. We generally use the same notation as in the computation in Example
3.2.5.

Let G “ GL4, suppose µ has weights p12, 02q, and take b basic. Let T be the
diagonal maximal torus and B be the Borel subgroup of upper triangular matrices.
Then the set of cocharacter pairs less than or equal to pG,µq is as follows.
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pGL4, p12, 02qq

pGL3 ˆ GL1, p12, 0qp0qq pGL2
2, p12qp02qq pGL1 ˆ GL3, p1qp1, 02qq

pGL2 ˆ GL2
1, p12qp0qp0qq pGL1 ˆ GL2 ˆ GL1, p1qp1, 0qp0qq pGL2

1 ˆ GL2, p1qp1qp02qq

pGL4
1, p1qp1qp0qp0qq

Let ρ P GrothpGL1pQpqq and consider π the unique essentially square integrable
quotient of IG

GL4

1

pρb ρp1q b ρp2q b ρp3qq. We want to compute MantG,b,µpRedbpπqq.

We introduce some notation which will allow us to describe the answer to this
question. The results of §2 of [Zel80] show that IG

GL4

1

pρ b ρp1q b ρp2q b ρp3qq has

exactly 8 irreducible subquotients. If π1 is one such subquotient, then JG
Boppπ1q will

be a finite sum of representations of the form ρpλp0qq b ρpλp1qq b ρpλp2qq b ρpλp3qq
where λ is a permutation of t0, 1, 2, 3u. In particular, if Ω denotes the set of all
such permutations of ρ b ρp1q b ρp2q b ρp3q, then each permutation lies in the
Jacquet module of exactly one irreducible subquotient of IG

GL4

1

pρbρp1qbρp2qbρp3qq

so that the irreducible subquotients correspond to a partition of Ω. We use the
following shorthand: we define the notation p0123q to refer to the representation
ρp0q b ρp1q b ρp2q b ρp3q. Following Zelevinsky, our 8 irreducible subquotients
naturally correspond to vertices of a 3-dimensional cube, and so we denote them
by binary strings of length 3. Then if we denote the subset of Ω corresponding to
some subquotient π1 by Ωpπ1q,we have

Ωpr000sq “ tp3210qu

Ωpr100sq “ tp2310q, p2130q, p2103qu

Ωpr010sq “ tp3120q, p1320q, p1302q, p3102q, p1032qu

Ωpr001sq “ tp3201q, p3021q, p0321qu

Ωpr110sq “ tp1203q, p1023q, p1230qu

Ωpr101sq “ tp2013q, p2031q, p0213q, p0231q, p2301qu

Ωpr011sq “ tp3012q, p0312q, p0132qu

Ωpr111sq “ tp0123qu

In particular, our representation π corresponds to r111s under the above notation.
A tedious computation using Theorem 3.3.7 yields the following

Proposition A.0.1.

MantG,b,µpRedbpπqq “ r111sr ­LLpρq
2

p´7q ` ­LLpρq
2

p´6qs

´ pr110sr ­LLpρq
2

p´5qs ` r011sr ­LLpρq
2

p´5qsq

` r010sr ­LLpρq
2

p´4qs

´ r000sr ­LLpρq
2

p´3qs
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We finish by remarking that the set of cocharacter pairs less than or equal to
pG,µq has some special properties in the above case that make the general case
more complicated.

For instance, each TG,b,µ has at most a single element. However, if G has a
nontrivial action by Γ, this need not be the case.

In the case we consider, we have a single cocharacter pair for each Levi subgroup.
In general, this need not be the case. For instance, if G “ GL5, µ “ p13, 02q, then
pGL3 ˆ GL2, p13qp02qq, pGL3 ˆ GL2, p12, 0qp1, 0qq are both less than pG,µq.

Further, in the above example, each cocharacter pair pMS , µSq had the property
that µS was dominant as a cocharacter of G relative to B. In general this need not
be the case. In fact, pGL5

1, p1qp1qp0qp1qp0qq ď pGL5, p13, 02qq.

Appendix B. Relative Root Systems and Weyl Chambers

In this section we prove a fact about root systems that is needed in the text (for
instance in the proof of Proposition 2.4.3). We assume that G is a quasisplit group
over a field k of characteristic 0 and pick a separable closure ksep. We fix a split
k-torus A of maximal rank in G and choose a maximal torus T and Borel subgroup
B both defined over k and such that A Ă T Ă B. Associated to this data, we have
an absolute root datum

pX˚pT q,Φ˚pG, T q, X˚pT q,Φ˚pG, T qq,

and a relative root datum

pX˚pAq,Φ˚pG,Aq, X˚pAq,Φ˚pG,Aqq.

Our choice of B also gives sets ∆ of absolute simple roots and k∆ of relative simple
roots. Note that we also have a natural restriction map

res : X˚pT q Ñ X˚pAq,

and that by definition an absolute root in Φ˚pG, T q restricts to an element of
Φ˚pG,Aq Y t0u.

We record two standard consequences of our assumption that G is quasisplit.

Proposition B.0.1. Let G be quasisplit and use the notations as above. Then,

(1) The centralizer ZGpAq “ T ,
(2) We have resp∆q “ k∆. The key point being that no absolute simple root

restricts to the trivial character.

We have the following easy consequence on the structure of the Weyl group of
the relative root system. Recall that the absolute Weyl group W equals

NGpT qpksepq{ZGpT qpksepq,

and the relative Weyl group W rel is NGpAqpkq{ZGpAqpkq.

Corollary B.0.2. We have the following equality: W rel “ WΓ, where Γ “ Galpksep{kq.

Proof. It suffices to show that ZGpAq “ ZGpT q and that NGpAqpkq “ NGpT qpkq.
For the first equality, we note that by the quasisplit assumption, ZGpAq “ T “
ZGpT q. For the second equality, we note that any g P NGpAqpkq must also normalize
the centralizer of A which is T . Conversely, if g P NGpT qpkq then g normalizes the
unique maximal k-split sub-torus of T which is A. �
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Define the absolute Weyl chamber C
˚
Q Ă X˚pT qQ by tx P X˚pT qQ : xα̌, xy ě

0, α P ∆u and define the relative Weyl chamber kC
˚

Q Ă X˚pAqQ analogously. The
key result of this section is that

respC
˚
Qq “ kC

˚
Q.

Despite its simple statement, the author has been unable to locate a convenient
reference of this fact. For x P X˚pT qQ and α P ∆, we need to relate xqα, xy and

x ­respαq, respxqy. If we let σα P W be the reflection corresponding to the root α,
then we have

x ´ σαpxq “ xqα, xyα.(11)

and analogously for ­respαq. Thus it will suffice to relate σα and σrespαq.
Note that since B is defined over k, we have γp∆q “ ∆ for every γ P Γ. Moreover,

for each α P ∆, we have respγpαqq “ respαq. After all, Γ acts trivially on X˚pAqQ
and the restriction map is Γ-equivariant.

Now fix α P ∆ and let Wα be the subgroup of W generated by the elements σγpαq

for each γ P Γ. We claim that if we can find a nontrivial Γ-invariant element of Wα,
then it must equal σrespαq. To prove this, we first recall the construction of σα and
σrespαq (see [Bor91, pg 230]) for instance). Given a root α P Φ˚pG, T q we can define a

group Gα “ ZGpTαq where Tα “ kerpαq0 Ă T . Then NGα
pT qpksepq{ZGα

pT qpksepq
embeds into W and has a unique nontrivial element which is σα. Analogously,
we define Arespαq and Grespαq “ ZGpArespαqq. Then NGrespαq

pAqpkq{ZGrespαq
pAqpkq

embeds into W rel and has a unique nontrivial element that is identified with σrespαq.
Now, by Corollary B.0.2 we have

NGrespαq
pAqpkq{ZGrespαq

pAqpkq “ NGrespαq
pT qpkq{ZGrespαq

pT qpkq.

Thus to complete the proof of the claim, we need to show that

NGα
pT qpksepq{ZGα

pT qpksepq ãÑ NGrespαq
pT qpksepq{ZGrespαq

pT qpksepq.(12)

After all, the unique nontrivial Γ-invariant element of the group on the right is
σrespαq and the group on the left contains σα. Since we get the same equation if we
replace α everywhere with γpαq, this will imply that

Wα Ă NGrespαq
pT qpksepq{ZGres

pT qpksepq.

Now, Equation (12) follows from the fact that

ZGα
pT q “ ZGrespαq

pT q “ T

and

NGα
pT q Ă NGrespαq

pT q.

We are now interested in finding a nontrivial Γ-invariant element of the group
Wα defined above. In fact, Wα will be a finite Coxeter group and the element we
seek is the unique element of longest length. We need to compute this element
explicitly, which we now do. We treat two cases. Suppose first that the elements
of the Γ-orbit of σα commute pairwise. Then clearly the product

ś
γPΓ{stabpσαq

σγpαq

is Γ-invariant.
In the second case, suppose that the Γ-orbit of σα has precisely two elements

which we denote X and Y . Then we have pXY qk “ 1 for some k ě 2 which we
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assume to be minimal. If k is even, then pXY qk{2 is invariant and nontrivial and if
k is odd, then Y pXY qpk´1q{2 is invariant and nontrivial.

We now prove that any Γ action on the simple roots ∆ of G is a combination
of these cases. The action of Γ on ∆ induces an action on the associated (not
necessarily connected) Dynkin diagramD. Each γ P Γ maps connected components
of D to connected components and so there is an induced action of Γ on the set of
connected components π0pDq.

Now fix an α P ∆ and consider the Γ-orbit Γα of α. Suppose Di is a connected
component of D such that Di X Γα ‰ H. Then via the classification of connected
Dynkin diagrams, we see that ΓαXDi contains either a single node, 2 non-adjacent
nodes, 2 adjacent nodes, or 3 nodes where no two are adjacent. In particular, these
are all covered by the cases we considered above, so we can find an element wi of
Wα that is invariant by the action of stabpDiq Ă Γ. Then Γα consists of finitely
many disjoint copies of one of the above possibilities and so we see that

ś
i

wi is

Γ-invariant and an element of Wα and therefore equal to σrespαq. Equipped with
this description, we now give a proof of the main result of this section.

Proposition B.0.3. We continue to observe the assumptions made above. In
particular, G is a quasisplit group over k. Then the map res : X˚pT q ։ X˚pAq
induces an equality

respC
˚
Qq “ kC

˚
Q.

Proof. We first show that respC
˚
Qq Ă kC

˚
Q. Pick x P C

˚
Q and α P ∆. Then we need

to show that

x ­respαq, respxqy ě 0

or equivalently, that

respxq ´ σrespαqprespxqq

is a non-negative multiple of respαq. Note that res is WΓ-equivariant (where WΓ

acts as W res on X˚pAq). Thus, it suffices to show that

respx ´ σrespαqpxqq

is a non-negative multiple of respαq. Thus, we need to compute x ´ σrespαqpxq. We
do so using our description of σrespαq.

We first consider the case where the Γ-orbit of σα consists of pairwise commuting
elements. Equivalently, the elements of Γα are pairwise orthogonal. Then

σrespαq “ σαn
˝ ... ˝ σα1

for tα1, ..., αnu “ Γα. Since x is dominant in the absolute root system, we have

x ´ σαi
pxq “ aiαi
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for some ai ě 0. Then since αi is orthogonal to αj for i ‰ j, we have σαi
pαjq “ αj .

Thus,

x ´ σrespαqpxq “
nÿ

i“1

pσα1
˝ ... ˝ σαi´1

qpxq ´ pσα1
˝ ... ˝ σαi

qpxq

“
nÿ

i“1

pσα1
˝ ... ˝ σαi´1

qpx ´ σαi
pxqq

“
nÿ

i“1

pσα1
˝ ... ˝ σαi´1

qpaiαiq

“
nÿ

i“1

aiαi.

Thus in this case,

respx ´ σrespαqpxqq “ pa1 ` ... ` anqrespαq

and a1 ` ... ` an ě 0 as desired.
Now we consider the case where Γα “ tα, βu and α and β are adjacent in D and

connected by a single edge. Then σαpβq “ α ` β “ σβpαq. In this case, σrespαq “
σβ ˝ σα ˝ σβ . By assumption, we have that x ´ σαpxq “ aα and x ´ σβpxq “ bβ for
a and b non-negative. Thus,

x ´ σrespαqpxq “ px ´ σβpxqq ` σβpx ´ σαpxqq ` pσβ ˝ σαqpx ´ σβpxqq

“ bβ ` apα ` βq ` bα

“ pa ` bqpα ` βq,

which projects to 2pa ` bqrespαq and 2pa ` bq ě 0 as desired.
Finally, we must consider the case where Γα equals tα1, β1, ..., αn, βnu such that

αi and βi are connected by a single edge in D but for i ‰ j, neither αi nor βi are
connected to either αj or βj . We compute x´ pσβi

˝σαi
˝σβi

qpxq as in the previous
paragraph. Then if we let wi “ σβi

˝ σαi
˝ σβi

, we have

σrespαq “ w1 ˝ .. ˝ wn.

Now we can compute x ´ σrespαqpxq as in the commuting case, substituting wi for
σαi

. We see in this case that

respx ´ σrespαqpxqq “ 2pa1 ` b1 ` ... ` an ` bnqrespαq.

This concludes the proof that respC
˚

Qq Ă kC
˚

Q.
It remains to show that we actually have equality. We claim it suffices to

show that the fundamental weight δrespαq is an element of respC
˚

Qq. Recall that
δrespαq is the element in the Q-span of the relative roots defined so that the pair-

ing with ­respαq is 1 and the pairing is 0 with all the other relative simple co-
roots. To show the claim proves our result, we note there is a natural isomorphism
X˚pAqQ – X˚pA0qQ ˆ X˚pA1qQ where A0 is the maximal k-split central torus
and A1 is the identity component of the intersection of A with the derived sub-

group of G. Then kC
˚
Q corresponds under this identification to the product of

X˚pA0qQ with the projection of kC
˚

Q to X˚pA1q. Then we have a natural map

X˚pZpGq0qQ ։ X˚pA0qQ where ZpGq0 is the identity component of the center of

G and X˚pZpGq0qQ Ă C
˚
Q. Thus it suffices to show that respC

˚
Qq surjects onto
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the projection of kC
˚
Q to X˚pA1q. This latter space is identified with the set of

non-negative linear combinations of the fundamental relative weights, thus proving
the claim.

To prove that δrespαq is an element of respC
˚
Qq, we make use of an equivalent

description of δrespαq. It is the unique element in the Q-span of the relative roots
so that σrespβqpδrespαqq “ δrespαq for respαq and respβq distinct simple roots and
σrespβqpδrespαqq “ δrespαq ´ respβq when respαq “ respβq.

In the case where the elements of Γα are mutually orthogonal, we have by
the above characterization of fundamental weights that the absolute fundamen-
tal weight δα restricts to δrespαq. In the case where Γα has two elements that are
connected inD, then δα restricts to 2δrespαq. In the final case, δα restricts to 2δrespαq.
Thus, in all cases, we can find an element of X˚pT qQ that restricts to δrespαq. This
completes the proof. �

We record an important corollary of this proposition.

Corollary B.0.4. Suppose µ, µ1 P X˚pT qQ and µ ľ µ1. Let µΓ be the average of
µ over its Γ orbit. Then µΓ ľ µ1Γ in X˚pAqQ. We caution that the first inequality
means that µ ´ µ1 is a non-negative combination of absolute simple coroots, while
the second means that µΓ ´ µ1Γ is a non-negative combination of relative simple
coroots.

Proof. Recall that the action of Γ stabilizes q∆. Thus for each γ P Γ, we have
γpµq ľ γpµ1q and so also µΓ ľ µ1Γ in the absolute root system. Thus, we are reduced
to showing that if x P X˚pT qΓQ is a non-negative combination of simple absolute
coroots, then it is also a non-negative combination of simple relative coroots (under
the identification X˚pAqQ “ X˚pT qΓQ).

Equivalently, we need to show that if x has non-negative pairing with every

element of C
˚
Q, then x has non-negative pairing with every element of kC

˚
Q. This

is indeed equivalent because x has non-negative pairing with each element of C
˚

Q if
and only if it has non-negative pairing with each fundamental weight δα and this
is the case if and only if x is a non-negative combination of simple roots.

Finally, this equivalent statement is an immediate consequence of the proposi-
tion. �
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