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THE COHOMOLOGY OF UNRAMIFIED RAPOPORT-ZINK
SPACES OF EL-TYPE AND HARRIS’S CONJECTURE

ALEXANDER BERTOLONI MELI

ABSTRACT. We study the l-adic cohomology of unramified Rapoport-Zink
spaces of EL-type. These spaces were used in Harris and Taylor’s proof of
the local Langlands correspondence for GL, and to show local-global compat-
ibilities of the Langlands correspondence. In this paper we consider certain
morphisms, Mant ,,, of Grothendieck groups of representations constructed
from the cohomology of the above spaces, as studied by Harris and Taylor,
Mantovan, Fargues, Shin, and others. Due to earlier work of Fargues and Shin
we have a description of Mant, ,,(p) for p a supercuspidal representation. In
this paper, we give a conjectural formula for Manty ,(p) for p an admissible
representation and prove it when p is essentially square integrable. Our proof
works for general p conditionally on a conjecture appearing in Shin’s work.
We show that our description agrees with a conjecture of Harris in the case of
parabolic inductions of supercuspidal representations of a Levi subgroup.

1. INTRODUCTION

Our goal in this paper is to give a description of the I-adic cohomology of unrami-
fied Rapoport-Zink spaces of EL-type. These spaces are moduli spaces of p-divisible
groups associated to unramified Weil-restrictions of general linear groups and can
be thought of as generalizations of Lubin-Tate spaces.

This work generalizes, for these particular spaces, the Kottwitz conjecture stated
in [RV14, Conj 7.3]. The Kottwitz conjecture describes the supercuspidal part of the
l-adic cohomology of Rapoport-Zink spaces, and is known in the cases we consider
by work of Shin [Shil2, Cor 1.3]. We prove our description of this cohomology is
compatible with a conjecture of Harris [Har01, Conj 5.4], generalizing the Kottwitz
conjecture to parabolic inductions of supercuspidal representations.

Our result describes the cohomology of these Rapoport-Zink spaces as a formal
alternating sum (indexed by certain root theoretic data) of representation-theoretic
constructions including the local Langlands correspondence, parabolic inductions,
and Jacquet modules.

We prove our result inductively using two formulas from the literature. The first
of these is Shin’s averaging formula [Shi12, Thm 7.5] which is proven using Manto-
van’s formula [Man05, Thm 22]. Mantovan’s formula connects the cohomology of
Rapoport-Zink spaces, Igusa varieties and Shimura varieties. The second formula
is the Harris-Viehmann conjecture of [RV14, Conj 8.4] which relates the cohomol-
ogy of so-called non-basic Rapoport-Zink spaces to a product of Rapoport-Zink
spaces of lower dimension. A proof of this conjecture is expected to appear in a
forthcoming paper of Scholze.

To carry out our induction, we prove combinatorial analogues of the above for-
mulas phrased purely in terms of root-theoretic data. Interestingly, we are able to
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prove these analogues for general quasisplit reductive groups, though at present we
can only connect them to the cohomology of Rapoport-Zink spaces of unramified
EL-type. To do so in other cases, one would need to generalize Shin’s averaging
formula.

We now describe our main results more precisely. We fix an algebraic closure
@ of Q,. We study Rapoport-Zink spaces of unramified EL-type which we denote
M, ,,. These are moduli spaces of p-divisible groups coming from an unramified
EL-datum consisting of

(1) a finite unramified extension F' = Q, of Q,,

(2) a finite dimensional F vector space V which defines the group
G = Resp/g, GL(V),

(3) a G@—conjugacy class of cocharacters {u}, with u : G,,, — G@, and such
that the weights of u are elements of {0, 1}.

(4) an element b of a finite set B(G, p) which defines a group J, that is an inner
twist of a Levi subgroup M, of G.

Roughly one can think of b, i as specifying the Newton and Hodge polygons of a
p-divisible group and J; as the automorphism group of the isocrystal b.

Let Q" denote the maximal unramified extension of Q, inside @, and let
@ET denote its completion. Then the spaces M, are formal schemes over @;\r .
One constructs a tower of rigid spaces Mﬁ%) ., over the generic fiber MZfﬁ of M ,,,
where the index U runs over compact open subgroups of G(Q,). Associated to
such a tower we have a cohomology space [H*(G, b, 11)] which is an element of the
Grothendieck group Groth(G(Qp) x J,(Qp) x W, ) of admissible representations
of G(Qp), J»(Qp) and W, ., where the latter group is the Weil group of the reflex
field, Ey,;, of {}. This construction can be thought of as an alternating sum of
a direct limit over U < G of [-adic cohomology groups with the actions of G(Q,)
and J,(Qp) arising from Hecke correspondences and isogenies of p-divisible groups,
respectively. We refer to §3.1 for a precise definition.

The cohomology object [H*(G, b, )] gives rise to a map of Grothendieck groups

Mantg p , : Groth(J(Qp)) — Groth(G(Qp) x WE{MG)

which maps a representation p to the alternating sum of the J,(Qp)-linear Ext
groups of [H*(G, b, )] and p.

The map Mantg 3, has been studied by many authors. Harris and Taylor [HT01]
used this construction to prove the local Langlands correspondence for general linear
groups. It also appears naturally in Mantovan’s work relating the cohomology of
Shimura varieties, Igusa varieties, and Rapoport-Zink spaces [Man05]. Fargues
studied Mantg ,,, for basic b in some EL and PEL-cases in [Far04]. Shin combined
Mantovan’s formula with his trace formula description of the cohomology of Igusa
varieties to prove instances of local-global Langlands compatibilities [Shill].

In [Shil2], Shin proved an averaging formula for Mant¢ s, which is key to our
work. He defined a map

Redy, : Groth(G(Q,)) — Groth(J,(Q,))

which up to a character twist is given by composing the un-normalized Jacquet
module

Jacgbop : Groth(G(Qp)) — Groth(My(Qp))
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with the Jacquet-Langlands map of Badulescu [Badl]
LJ : Groth(My(Q,)) — Groth(J,(Qy)).

Shin uses global methods and so necessarily works with a large but inexplicit class
of representations which he denotes accessible. This set loosely consists of those
representations isomorphic to the p-component of an automorphic representation
appearing in the cohomology of a certain unitary similitude group Shimura variety.
In particular, the essentially square integrable representations in Groth(G(Q,)) are
accessible. R

In what follows r_,, is a finite dimensional representation of G' WE{M}G which re-

stricts to the representation of highest weight —u on G , and LL is the semisimplifed
local Langlands correspondence from [HTO01]. Shin shows the following result.

Theorem 1.0.1 (Shin’s Averaging Formula). Assume 7 is an accessible represen-
tation of G(Qy). Then

Z Mantg p . (Redy (7)) = [7][r—, OLL(?T)|WE{MG]a
beB(G,u)

where the above formula is correct up to a Tate twist which we omit for clarity and
[7][p] is our notation for an element X p € Groth(G(Qp) x Wk, ).

Additionally we have the conjecture of Harris and Viehmann which allows us
to write Mantg 3, for non-basic b (b is basic when it corresponds to an isocrystal
with a single slope) in terms of Mante p v such that G’ is a general linear group of
smaller rank than G. This conjecture was formulated in work of [Har01] and [RV14]
and is expected to be proven in forthcoming work of Scholze. In what follows, Ind
is the un-normalized parabolic induction functor.

Conjecture 1.0.2 (Harris-Viehmann).

Mantg p,, = Z Ind§, (®F_Mantag,, 47 1),

G,
(My )T,

where we omit a Tate twist which we discuss at length in §3.2. The finite set Iﬂcjfb”b,
is described in Proposition 2.5.5.

Shin’s averaging formula and the Harris Viehmann conjecture allow one to com-
pute Mantg  , o Redy recursively. The latter lets us compute Mantg 3, for non-
basic b given that we know Mantg i ;v for G’ of lower rank and the former lets
us compute Mantg p ,, for the unique basic b € B(G, ) if we know it for all non-
basic b € B(G, 11). One of our main results is to give a non-recursive description of
Mantg s, 0 Red, which we now describe.

Let G = ResF/QPGL(V) as before, choose a rational Borel subgroup B of G,
and a rational maximal torus T < B < G. Then we consider pairs (Mg, ps)
where Mg < T is a Levi subgroup of a parabolic subgroup Ps containing B, and
is € X4 (T) is dominant as a cocharacter of Mg. We call a pair of the above form
a cocharacter pair for G.

We associate to a cocharacter pair (Mg, pus) the map of representations [ Mg, us] :
Groth(G(Q,)) — Groth(G(Q,) x WE{“S}NIS ), which up to a character twist is given
by

7> [(Indf, o [pis] o JacGen) ()]



4 ALEXANDER BERTOLONI MELI

and
[ps] : Groth(Ms(Qp)) — Groth(Ms(Qyp) x WE{MS}MS)
given by
™ [w][rops o LL(m)]
Then our main result, which follows from Theorem 3.3.7 in this paper is

Theorem 1.0.3. Suppose Manta b, corresponds to a tower of unramified Rapoport-
Zink spaces of EL-type. We assume that the Harris-Viehmann conjecture is true.
Then if p € Groth(G(Q,)) is essentially square-integrable, we have

Mant b, (Reds(p)) = > (—1)Fus M [ Mg, us](p),
(Ms,ps)ERG,b,u

where Ra b, @5 a collection of cocharacter pairs with a combinatorial definition and
(—1)LMS~Mb is an easily determined sign.

Shin conjectures ([Shil2, Conj 8.1]) that the averaging formula holds for all
admissible representations of G(Q,). If this were indeed the case, then our result
would also immediately hold for all admissible representations of G(Qj).

A crucial part of the proof of the above theorem is the following unconditional
result, which is perhaps interesting in its own right.

Theorem 1.0.4 (Imprecise version of Theorem 2.5.4 and Corollary 2.5.8 of our
paper). For general quasisplit G and a cocharacter p (not necessarily minuscule),
combinatorial analogues of Shin’s formula and the Harris- Viehmann conjecture hold
true.

This result suggests that perhaps the combinatorics of cocharacter pairs is related
to Mantg,p,,, in cases more general than Rapoport-Zink spaces of unramified EL-
type. However, we caution the reader that the existence of nontrivial L-packets and
nontrivial endoscopy in more general groups will likely complicate the situation.

In §4 of the paper, we use our combinatorial formula to prove the EL-type
cases of a conjecture of Harris ([Har01, Conj 5.4]). This conjecture describes
Mantg . (I$(p)) for p a supercuspidal representation of M(Q,) for M a Levi
subgroup of GG. In this case, IACj denotes normalized parabolic induction. In par-
ticular, we show the following result, which is stated as Conjecture 4.0.4 in our

paper.
Theorem 1.0.5 (Harris conjecture). We assume that Shin’s averaging formula
holds for all admissible representations of G(Qp) and that the Harris-Viehmann

conjecture is true. Let p be a supercuspidal representation of M(Qp). Then up to
a precise character twist and sign which we omit for clarity,

Mante,p,.(LJ (17" (p))) = (15 (p)] @  rwoLL(p)
(M, ")eRel Gt

.. . G,
for an explicit set of cocharacter pairs Rely,.

We prove our result for II\C/:[(p) not necessarily irreducible and b not necessarily
basic, which is a generalization of what Harris conjectured for the G we consider.

Finally, in Appendix A we give an example to show that for general representa-
tions p, one cannot hope for an expression as simple as that in Harris’s conjecture.
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2. COCHARACTER FORMALISM

In this section we define and study the notion of a cocharacter pair. This notation
will be used in the third and fourth sections of this paper, where we describe the
cohomology of certain Rapoport-Zink spaces in terms of cocharacter pairs. We
endeavor to use a similar notation to [Kot97].

This section is divided into five subsections. These are structured so that the first
contains the basic definitions and the fourth and fifth subsections contain the most
important results. The second and third subsections prove a number of technical
lemmas that the reader may want to skip at first and refer to as necessary.

2.1. Notation and Preliminary Definitions. For the remainder of this section,
we fix G a connected quasisplit reductive group defined over QQ,. This is a sig-
nificantly more general setting than we will need for applications in this paper.
However, we choose to work in this generality because doing so is both conceptu-
ally clearer and potentially useful for future applications. The ideas in §5 of [Kot97]
might allow one to remove the quasisplit assumption, but we do not attempt this
here as it is unnecessary for the applications. Moreover, Kottwitz’s study of the set
B(G) in that section relies on understanding the quasisplit case first.

Remark 2.1.1. The reader will notice that most of this section makes sense over an
arbitrary field. The assumption that we work over QQ, is used in section 2.4 when
we connect cocharacter pairs to the set B(G) defined by Kottwitz. However, in §5.1
of [Kot97], Kottwitz shows that over Qp, the set B(G) is parametrized by a disjoint
union of sets of the form X”‘(Z(]\//:I';)F)+ for Mg a standard Levi subgroup of G.
These latter sets make sense over general fields and one could make sense generally
of all the results of this section by replacing B(G) with the sets parametrizing it.

Since G is quasisplit, we can pick a Borel subgroup B < G defined over @, and
a maximal split torus A € B of G. We choose T to be a maximal torus defined
over Q,, satisfying A ¢ T' < B. We define X*(A) and X, (A) respectively to be the
character and cocharacter groups of A@.

The group G has a relative root datum (X*(A),d*(G, A), X« (A), D«(G, A)),
where ®*(G, A) and ®,(G, A) respectively denote the set of relative roots and
relative coroots of G and the torus A. Our choice of Borel subgroup B determines
a decomposition ®*(G, A) = &*(G, A)T [ [ 2*(G, A)~ of positive and negative roots
and a subset A c ®*(G, A)T of simple roots. Analogous statements are also true
for the coroots. The set of parabolic subgroups P o B defined over Q,, are called
standard parabolic subgroups. We define Ps to be the unique standard parabolic
subgroup such that ®*(Pg, A) = ®*(G, A)* U (P4(G, A)~ n Spany(S)). There is
an inclusion preserving bijection between the set of standard parabolic subgroups
and subsets of A given by S — Ps.
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We let Ng be the unipotent radical of the standard parabolic subgroup Ps. It is
a standard result that there exists a connected reductive subgroup M < Ps so that
the natural map M — Pg/Ng is an isomorphism. In particular, this gives us a Levi
decomposition Ps = M Ng and the subgroup M is called a Levi subgroup of Ps.
The subgroup M is not unique but any two Levi subgroups of Ps are conjugate by
an element of Ng. However, we have fixed a maximal torus 7" and there is a unique
Levi subgroup Mg containing 7. The subgroup Mg is constructed explicitly as the
centralizer C(Z), where Z < T is the connected component of the intersection of
the kernels of the roots in S. We refer to the Levi subgroups Mg that we produce
in this way as standard Levi subgroups.

Define

A = X* (A).
We have the closed rational Weyl chamber
Co={reAg:{r,a)=>0,ae A}
We define for each standard Levi subgroup,
Ans0:={reg:{z,a) =0, S},

and denote the strictly dominant elements of A . by

Q[LS)Q ={r ey :{z,a) =0,a€ S,{(z,a)y > 0, € A\S},

and we have
N _
HQ‘MS,@ = Co.
Ms

There is a partial ordering of g given by pu < g if 4/ — p is a non-negative rational
combination of simple roots.

Definition 2.1.2. We define a cocharacter pair for a group G (relative to some
fixed choice of T' and B defined over @Q,) to be a pair (Mg, g) such that Mg < G
is a standard Levi subgroup and ugs € X, (T) satisfies (g, @y = 0 for each positive
absolute root v of T in the Lie algebra of M 5Ty Positivity for absolute roots is
determined by the Borel subgroup B which we have fixed.

We denote the set of cocharacter pairs for G by Cg.

Remark 2.1.3. We caution the reader that the cocharacter pug need not be an
element of X, (A), even though Mg is defined over Q,.

We could define cocharacter pairs more canonically as the set of equivalence
classes of pairs (M, u) such that M is a Levi subgroup of G defined over Q, and
u is a cocharacter of M. Two pairs (M, pu), (M', ') are equivalent if M, M’ are
conjugate in Gg, and p,p' are conjugate in M@. We choose not to do this as
in practice we will often need to work with the unique dominant cocharacter in a
conjugacy class relative to a fixed based root datum.

Let I' = Gal(Q,/Q,). Since we have assumed T" and B are defined over Q,,
I' acts on Ty~ and Bg. This gives us a natural left action of I' on X (T') given
explicitly by (v-u)(g9) = v(u(y"1(g)) for p € X4(T) and v € T'. We get an analogous
left action on X*(7T') and one can easily check that the pairing X*(T) x X4 (T) — Z
is I' invariant under these actions.
We have
X (T)F =
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Indeed, a I'-invariant cocharacter p factors through the identity component of 7T,
where T is the subscheme defined by TT(Q,) = T(Q,)". But the identity compo-
nent of T is the torus A. Conversely any cocharacter of A induces a I'-invariant
cocharacter via the natural inclusion A — T.

Given pu € X, (T), we construct an element u of 2g as follows:

- 1
= (1)
N TS Ve;m T

where '), is the stabilizer of u in . Then u" € X, (T)g = 2.

Given a standard Levi subgroup Mg, we let W}{jls denote the relative Weyl group
of Mg. The group W}{jls is defined to be the subgroup of the relative Weyl group,
Wrel that is generated by the reflections corresponding to simple roots in S.

Definition 2.1.4. We define a map
HMS : X*(T) - Q[Q,
given by

Orrs(i) = —r= 30 o).

|”7rcl
M re
S UEWMIS

We are now ready to describe a formalism that will prove useful in studying the
cohomology of certain Rapoport-Zink spaces. Crucial to everything that follows is
a partial ordering on the set Cg of cocharacter pairs for G.

Definition 2.1.5. We define a partial ordering on Cs which we denote by the
symbol <. Unfortunately, our definition is somewhat indirect: we first define when
(Ms,, ns,) < (Mg, , us,) for Mg, € Mg, (equivalently Sy < S7) and S1\S2 contains
a single element (in other words, Mg, is a maximal proper Levi subgroup of Mg, ).
We then extend the relation to all cocharacter pairs by taking the transitive closure.

Let Msg,, Mg, be standard Levi subgroups of G such that Mg, < Mg, and
S1\S2 is a singleton. For cocharacter pairs (Ms,, is,), (Ms,, ps,) € Ca, we write
(MSQ7/'I’SQ) < (MS17/'LS1) if S, is conjugate to sy in MS1@ and 9]\452 (/1’52) >
Ons, (s, ). We then take the transitive closure to extend to a partial ordering on

Ca.

The following example shows that the above definition depends on the assump-
tion that S7\S2 is a singleton.

Example 2.1.6. Consider G = GL4 with T the diagonal torus and B the upper
triangular matrices. We can pick a basis for X, (T') of cocharacters é; defined so
that €;(g) is the diagonal matrix with 1 in every position except for the ith, which
equals g. Then we can identify an element of X (7") with its coordinate vector in
this basis. Finally, we use additional parenthesis to indicate the product structure
of the standard Levi subgroup Mg. Using this notation, the set of cocharacter pairs
that are less than or equal to (GLy4, (12,0?)) is given in the diagram at the start of
Appendix A.

In particular, we see that (GL7, (1)(1)(0)(0)) < (GLy, (12,0?)) since we have a
chain of cocharacter pairs where each Levi subgroup is maximal in the next:

(GLY, (1)(1)(0)(0)) < (GL1 x GLa x GLy, (1)(1,0)(0))
< (GL3 x GL1, (12,0)(0)) < (GLy, (12,0%)).
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However, it is not the case that (GL, (1)(0)(1)(0)) < (GLy, (12,0?)) even though
0crs((1,0,1,0)) > Ocr,((1,1,0,0)) and the cocharacters are conjugate in G.

Finally, we remark that the fact that all the related cocharacter pairs in the
above example have equal (as opposed to just conjugate) cocharacters is very much
a result of us choosing a fairly small group G. Even for G = GLs, this is not the
case.

Definition 2.1.7. We define a cocharacter pair (Mg, us) for G to be strictly de-
creasing if Oy (ps) € Ql]T/[s@. We denote by SD < Cg the strictly decreasing
elements of C¢ and by SD,, (for dominant p € X, (7)) the strictly decreasing ele-
ments (Mg, us) € Cq such that (Mg, us) < (G, p).

Remark 2.1.8. The 0p;, map can be thought of as associating a tuple of slopes
to a cocharacter pair. Then the strictly decreasing cocharacter pairs with Levi
subgroup Mg are the ones whose slope tuple lies in the image of the Newton map
v:B(G)ms — Ung,g- The above statement is made precise by Proposition 2.4.3.

2.2. An Alternate Characterization of the Averaging Map. The following
two subsections consist of a collection of lemmas developing the theory of the map
Orr and the set of strictly decreasing elements SD of Cg.

In this section, we give an alternate description of the map 0s,. To do so, we
will need several properties of cocharacters and root data which we record in the
following lemma. For this lemma only, we consider 7" and G defined over a more
generAal class of fields so that these results also apply to the complex dual groups T
and G.

Lemma 2.2.1. Let F 5 Q be a field and F an algebraic closure. Let G be a con-
nected quasisplit reductive group defined over F'. Suppose that T < G is a mazimal
torus defined over I’ and that the group scheme T admits an action defined over
F by a finite group A. Let X*(T?) denote the characters of the subgroup scheme
of A-fized points of T=. The anti-equivalence of categories between tori and finitely
generated free Abelian groups given by T — X*(T) induces an action of A on
X*(T). We then have the following.

(1) There is a unique isomorphism X*(T™) = X*(T) such that the following

diagram commutes.

X*(T) L X*(T™)
o ]
X*(T)a

(2) Let Ms © G be a standard Levi subgroup. Let WEPs, Wiel denote the
absolute and relative Weyl groups of Mg and let T = Gal(F/F). Then
Wass rel acts on X*(T)F via its natural identification with A and T' acts on
Xy (T)WVrsabs since for w € Warg abs, and v € T, and p € Xy (T)WMsoavs)
we have w(y(n)) = y(y~H(w) () = v(w). Then the identity map on X4 (T)
induces an isomorphism of groups

(X (T)WMSvabS)F >~ (X, (T)F)WMs,re1

(3) The natural map X, (T)(g — X4 (T)g — X«(T)g,a induces an isomorphism
Xu(T)§ = Xu(T)r-
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Proof. The functor T — X*(T') is an anti-equivalence between the categories of
diagonalizable groups over F and finitely generated Abelian groups. The diagram
for the universal property for A-invariants is that of A-coinvariants but with all the
arrows reversed. Thus, there must exist a unique isomorphism between X*(T)
and X*(T')a that makes the diagram

X*(T) —= X*(TH)

]

X*(T)a

commute. This proves (1).
In [Kot84, Lem 1.1.3], Kottwitz proves that the identity map on X (T") induces
an isomorphism

(X (T)1)/Wiiy = (Xu(T)/ W3PS

Thus, to prove (2), we need only show that this isomorphism gives a bijection of the
singleton orbits. This will give an isomorphism of groups (not just sets) between
(X4 (T)Wrsab)E and (X, (T)T)WMsel that is induced from the identity map on
X« (T).

Kottwitz’s isomorphism maps the W}{jls—orbit of e X4(T)' to its W;{‘/[b; orbit in
X (T). Thus, it suffices to show that if 4 € X (T)" is invariant by W}s. then it is
also invariant by W;{‘/[b; If w is invariant by W}{jls, then the pairing of u with each
relative root of Mg is 0. Thus the image of u lies in the intersection of the kernels
of the relative roots of Mg which is Z(Mg) n A. Therefore, p is invariant under
the action of Wﬁf;

Finally, we note that the proof of Kottwitz uses the fact that the intersection of
the absolute Weyl chamber aabs with the image of X, (A) in X, (T) gives the rela-
tive Weyl chamber Cg. Indeed, this follows easily from the fact that the restriction
of the set of absolute simple roots A" relative to our choice of B and T equals the
set of relative simple roots A (see Proposition B.0.1). An analogous fact is known
for the Weyl chambers in the character group X*(T') (see Proposition B.0.3) but
this seems to be much more subtle.

For (3), we need to construct an inverse to the map

X*(T)é - X*(T)Q —- Xy (T)Q,A-
Take [p] € X« (T)g,a for p € Xy (T)g. Then

AZ)\ € X )

AeA
is independent of the choice of lift of [u] to X« (T)g and gives an inverse to the

map above. ([l

Let Aprg be the maximal split torus in the center of Mg. Then
Xi(Ams)o = Ans 0

We now prove a lemma that we will need to use to describe the alternate charac-
terization of Op4.
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Lemma 2.2.2. (1) There is a natural isomorphism X*(Z(]T/[\S)F)Q =~ Arrs.0
defined via a series of canonical identifications.

(2) The isomorphism in (1) coincides with the one constructed in §4.4.3 of
[Kot97].

Proof. We prove (1) first. By Lemma 2.2.1, we have the following isomorphisms.

~

A~ abs
X*(TWMS7F)Q = X*(T)Q!WIZC}D;’F = X*(T)Q)Wabs T

Mg’
abs rel
= X0 = X
= Xi(Ams)o = Aus0-
rel
We explicate the isomorphism X*(T)(g,’WMS ~ X, (Ang)g- This follows from the

isomorphism X (A)Wﬁls =~ X, (A ) which we now describe. Suppose we have p €

X*(A)WX;IS. Equivalently, for each relative root a of Lie(Mg), we have o, (1) = p
(where o, is the reflection in the Weyl group corresponding to «). Since o4 (1) =
w — {p, ayd, this is equivalent to {u,a) = 0 for all relative roots a of Lie(Mg),
which in turn is equivalent to the statement that im(u) < () kera. Finally, this is

[e3%
equivalent to im(u) < Z(Mg) n A. Since the image of a cocharacter is connected,
we in fact have that p € X, (A, ).
To finish the argument, we need to construct an isomorphism

XH(Z(Ms)")g = X*(TVHET)q.

Note that it is necessary to take the tensor product with Q here as Z (]\//E) and

A~ abs
T"Ms need not be isomorphic.
It suffices to show that

X*(Z(Ms))g = X*(TV35)q.
The group Z (]\7;) is equal to the intersection of the kernels of the roots of ]\//E and

SO X*(Z(]T/[\S)) is identified with X*(f)/R where R is the Z-module spanned by
the roots of Mg. By Lemma 2.2.1, X*(YA”WI?}SS) ~ X*(f)wg/}) = X*(f)/D where
S

D is the Z module spanned by w(u) — p for every w € W;{‘/[b; and € X*(f) Since
Z(]\/4\5) c fWbess, we have a natural surjection
XH(TWIIS) - X*(2(Msg)).

By our previous discussion, the kernel of this map is R/D. Thus, to prove our claim,

it suffices to show that R/D is finite. But if av is a root of Mg, then oola)—a = —2a.
Thus 2R < D and so we have the desired result.
We now show (2). The map in [Kot97, §4.4.3] is defined as follows:

Anss,0 = X(T)g = X*(T)g = X*(Z(Ms)" ),

where the final map is restriction of characters. By Lemma 2.2.1 (1), this last map
is the same as the composition

X*(T)g — X* (D) r = X*(TVT)g = X*(Z(Ms) o,
S
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Thus, by applying Lemma 2.2.1 and the proof of Lemma 2.2.2, we get that the
entire map is given by

LWL Wik

Anss,0 = Xu(T)g = Xy(T)g = Xy (T)Q,WI"\‘/});,D

~ abs —_—
= X*(TWWs g = X*(Z(Ms) e
We observe that this is the inverse of what we wrote down above. ([l
We are now ready to give our alternate characterization of the map 6yy,.

Proposition 2.2.3. [Alternate Characterization of Ops] The map Oy, that was
introduced in Definition 2.1.4 is equal to the composition

Xa(T) = X*(T) 2% X*(Z(Ms)") — X*(Z(Ms)")o = Aurs 0 = Ao,
where the final isomorphism is the one described in Lemma 2.2.2.

Proof. We recall Definition 2.1.4 where 6, is defined to be the composition

X*(T)HX*(T) HX*(T) )

where both maps are averages over the relevant group. As we now show, this is the
same as the composition

abs abs rel
Wik Wips.T

Xu(T) = Xu(T)g ™5 = Xu(T)g o7 = Xu(T)y " M < g,

where the first two maps are averages and the third is as in Lemma 2.2.1 (2). Indeed

for pe X.(T),
|Wrcl| Z Z

'UUEW’rel ~ver
Mg

is invariant by Wips by Lemma 2.2.1 (2) and so equals (keeping in mind that
Wish « Wips by Corollary B.0.2)

e S S0 = e X St

s | weW b vel s | wewgps vel

IR

iz | weWjps el Vel weWjpe
Now, we consider the following commutative diagram.

bs abs
avg Wir, avg Wirs T
s Xy (T)Q s

X«(T)g (T)

Xa(T)g e X, (1) 55

Mg

(T)q, Wibs.D



12 ALEXANDER BERTOLONI MELI

The commutativity essentially follows from the definition of the averaging maps.
The benefit of this is that now we can write 0574 as the composition of

Xu(T) — X*(T)WI?/}); - X*(T)Wg,b;,r - X*(T)QW]‘\‘/}’;,F
Wabs Wabs 11—‘ rel
= X*(T)g ™ = Xu(T)g " = Xu(T)""s < g
where we no longer need to base change the first three spaces to Q because denom-
inators are not introduced in the maps until later.
Using the equality between cocharacters of T and characters of T, we rewrite
this as

Xu(T) = X¥(T) — X*(T)W;;;’; - X*(T)W;});,F - X*(T)Q,Wabs r

Mg’

~ WEpS ~ Wire.T

- X*(T)Q,?S - X*(T)@

Now we invoke Lemma 2.2.1 (1) to get that the above composition is equal to

abs §
= Xu(T)g "= = Xu(T)TWHS < 21g,

~ ~

Xo(T) = X*(T) 22 XHTWHT) - X* TV )g = X* (D) g wpe

abs abs
~ ~\WiPs D Wips,D

abs re
— XH(D)g s — XH(D)g 57 = Xu(T)g 7 = X ()T < g,

The final step is to observe that we have a commutative diagram
XH(IWIST) s X (TWHET)
Jres i
X*(Z(Ms)") —— X*(Z(Ms) )e.
Thus, the previous expression equals
Xa(T) = X*(T) 2 x*(TWHET) 12 X*(Z(Ms)") — X*(Z(Ms)")g

A NG

~117abs
> XH(TWis g = X*(T)Q,W;}SS,F — X*(T)gr
abs abs

~ Wi/s Wwi/s, T re
- XHD)g M = Xa(T)g 5 = X ()5 < 24g.
comparing with Lemma 2.2.2; we can rewrite 0, as
X (T) = X*(T) 225 X*(Z(Mg)") > X*(Z(Ms) )g = Anre0 < Ag

as desired.
O

We record the following useful corollary of the ideas discussed in the above
argument.

Corollary 2.2.4. Suppose that p,p' € X(T) are conjugate in Mgz Then
eMs (M) = 9Ms (/1'/)'

Proof. By the observation at the start of Proposition 2.2.3, 0/, is equivalently
defined as the composition

abs abs rel
Xu(T) = Xu(T)g 5 = Xu(T)g 57 = Xu(T)y " M < g

In particular, g and p' are mapped to the same element under the first map in the
above composition. (I
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2.3. Strictly Decreasing Cocharacter Pairs. In this section, we prove a num-
ber of properties of strictly decreasing cocharacter pairs and their relation to the
partial order we defined in Definition 2.1.5. As always, we let o, denote the reflec-
tion in the relative Weyl group corresponding to the relative root a.

Lemma 2.3.1. If z € /g is dominant, then

= Y o)

rel
|WMS | UEWX/?IS

is also dominant. If in addition, {x,a) > 0 for some o € A\S, then we also have
{y,ay > 0.

Proof. For the first part of the lemma, we claim that if we can show that {o(x),a) =
0 for each o € W}[;ls and a € A\S, then we are done. This follows because if a
collection of cocharacters pair non-negatively with «, then so will their average.
Thus for a € A\S, we get {y,a) = 0. For o € S, we automatically have (y,a) =0
since 0 = y — 04 (y) = {y, ).

Pick o € A\S. Then the root group of « is contained in the unipotent radical
Ng of Pg. The group Ng is normalized by Mg. In particular, for any o € W]{jls,
the root group of 0~!(a) is contained in Ng and hence o~!(a) is also a positive
root. Thus {(o(z),a) = {x,0 1 (a)) = 0 as desired.

To prove the second part, we notice since {x, ) > 0, the term in y corresponding
to 0 = 1 has positive pairing with a. Since all the other terms have non-negative
pairing with «, we must have that (y,a) > 0. O

Lemma 2.3.2. If x as in the previous lemma is dominant, then

1
— o(z) <z
|”7 els Z

oceWwrel
Mg

Proof. It suffices to show that for any o € Wil we have o(z) < x. This is a
standard fact ([Bou68, Ch6 1.6.18, p. 158]). O

Corollary 2.3.3. Let (Mg, us) € SD be a strictly decreasing cocharacter pair and
let (Mg:, ps) € Ca and suppose that (Mg, us) < (Mg, ps). Then (Mg, ps) € SD.

Proof. We need to show that for each § € A\S’, that (far,, (1s), 3) > 0. By 2.2.4,
Onrg, (s') = Ong, (1s). Further, we observe that

(1) 9Ms/(#5):|w% D1 o(Ous(ns)).

Mgl gewrel
s’

Since 04 (ps) is dominant by assumption and satisfies {fpr, (us), 8) > 0, we can

apply 2.3.1 to get the desired result. ([l
The following easy uniqueness result is quite useful.

Lemma 2.3.4. Let (Ms,, jis,), (Ms,, ps,), (Msy, psy) € Cg. Suppose further that

(M517/J'51) < (MSQ7/'I’SQ)7 that (MS17MS1) < (MSéullfSé)' If Ms, = MS;; then

(Mszhusz) = (MS§7/LS§)'

Proof. By definition, us,, pis,, j1s; are all conjugate in Msg,. But also, g, and g,
are dominant in the absolute root system. Thus they are equal. O
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We now define the notion of a cocharacter pair being strictly decreasing relative
to a Levi subgroup.

Definition 2.3.5. Let Ms < Mg be standard Levi subgroups of G. We say
(Mg, ng) is strictly decreasing relative to Mg if (Opr4(ps), @) > 0 for a € S'\S.

Remark 2.3.6. Recall that by construction, (s, (us),a) = 0 for a € S. Thus,
(Mg, us) € 8D exactly when it is strictly decreasing relative to G.

Lemma 2.3.7. Let (Ms,,ps,),(Ms;,pus;) € Cg be cocharacter pairs such that
(Ms,, pis,) < (Mgy,pusr). Let Ms, > Mg, be a standard Levi subgroup of G and
suppose (Ms, , jus,) is strictly decreasing relative to Ms,. Then (Mg, jsr) is strictly
decreasing relative to Mg; s, .

Proof. We first reduce to the case where Mg, is a maximal Levi subgroup of Mg,
(i.e. 8] = S1 U {a} for some o € A\Sy). To do so, we recognize that the relation
(Mg, ,ps,) < (M, st Mgy ) definitionally implies that there is a finite sequence of
cocharacter pairs

(Ms,, ps,) = (Mso, piso) < ... < (Mgn, psr) = (Msgy, psy)

where each Mg: is a maximal Levi subgroup of Mgi+1. Thus, if we prove the lemma
in the maximal Levi subgroup case, we can inductively prove it in the general case.

We now assume that Mg, < Mg is a maximal Levi subgroup so that S =
Sy U {a} for some a € A\S;. We need to show that <0MS£ (1sy),8) > 0 for each

B e S1 U S3\S7. First note that any such S is an element of S3\S;. By Corollary
2.2.4, since pug, and pg; are conjugate in Mg, we have Onr, (ps,) = O, (s;)-
1 1
Thus we are reduced to showing (O, (is, ), 3) > 0 for B € S5\ 5.
1

Note that since (Mg, , i1s,) is strictly decreasing relative to Mg,, we have
s, (s, ) is dominant relative to the root datum of Mg, and (O, (1s,), ) > 0.
Therefore, by Equation (1) and Lemma 2.3.1, {0, (s, ), ) > 0 as desired. O
1

Proposition 2.3.8. Let (Mg, us) € Co and suppose it is strictly decreasing relative
to some standard Levi subgroup Mg > Mg. Then there is a unique (Mg, pus') € Ca
such that (Mg, ps) < (Mgr, us). We call (Mg, ug/) the extension of (Mg, 1) to
Msg:.

In the case where S’ = S U {a} for a € A\S, the converse is true. Specifically,
if (Ms, us) € Cg and there exists (Mg, pus') € Ca satisfying (Mg, us') = (Mg, ps)
with S" = S U {a}, then (Mg, ps) is strictly decreasing relative to Mg .

Proof. We begin by proving the first statement. Uniqueness follows from Lemma
2.3.4. For existence, we first reduce to the case where Mg is a maximal Levi
subgroup of Mg/. Suppose we have proven the proposition in this reduced case.
We might then try to prove the general case by iteratively applying the reduced
case of the proposition to a chain of standard Levi subgroups Mg = Mg, < ... <
Ms, = Mg such that each is maximal in the next. Such a chain clearly exists,
but to apply the reduced case of the proposition we need to show that if we have
constructed a cocharacter pair (Mg,, ps,) = (Mg, ps) then (Msg,, pus,) is strictly
decreasing relative to Mg:. This follows from Lemma 2.3.7.

Now, we let us: be the unique conjugate of pg which is dominant in Mg. If we
can show that Ops,, (pus) < Oars(ps), then (Mg, psr) will satisfy the conditions of
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the proposition. By Corollary 2.2.4 and Equation (1),

1
oMs/ (,US/) = oMs/ (‘US) B W Z U(GMS (/LS))a
s’ UEWJWS,
so we can reduce to showing that
1
Tl a(y) <y,
|WMS’| UEV‘Z/}WS,

for any y satisfying {y,a) > 0 for a € S'\\S and {y,a) = 0 for a € S. Any such y is
dominant in the root datum of Mg/ and so by Lemma 2.3.2,
1
W 1 Z o(y) <.
Wi | iy,
Further, the above equation cannot be an equality because y has positive pairing
with each root of S\\S while W >, o(y) has 0 pairing with these roots.
s’ oeE ]\/[S/

To prove the converse, suppose that (Mg, us) < (Mg/, ps) and S’ = S u {a} for

some a € A\S. Then by Corollary 2.2.4

Oris (ps) + oa(Ons (1s))
2 b

Onrg, (psr) = Onrg, (ps) =
and so
Onrs (s) — 00 (Onrs (1 1 5
Onrrs (ps) — Onrg, (sr) = s (15) 5 (Ours (s)) _ 5(Onrs (), )i
Since by assumption Oy, (1s') < Ons(ps), it follows that (Oarg (us),ay >0. O

Remark 2.3.9. Note that the converse of the above proposition is not true in the
general case.

Corollary 2.3.10. Fiz a standard Levi subgroup Mg and roots ay, e € A\S. Sup-
pose we have cocharacter pairs (MS7 NS)? (MSu{a1}7 MSu{al})u (MSu{al,ozg}u /’LSU{(X1,O¢2}) €
Ca satisfying

(MSa ,US) < (MSu{oq}a ,uSu{oq}) < (MSu{ozhozg}v,UJSu{al,az})

and that (Mg, pus) is strictly decreasing relative to Mg ¢a,)-
Then the extension of (Mg, us) to Mg (a,y, which we denote (Mg (az), hSU{as})s
satisfies

(M37NS) < (MSu{a2}7/1*Su{a2}) < (MSu{al,OQ}aMSu{al,aQ})

Proof. By the second statement of Proposition 2.3.8, we have that (Mg, us) is
strictly decreasing relative to Mg {q,}. Then by Lemma 2.3.7, (Mg{as}, HSU{as})
is strictly decreasing relative to Mgy (a,,a,)- Thus by Proposition 2.3.8, we have

(MSu{a2}a,uSu{a2}) < (MSu{al,a2}v,uSu{a1,a2}) as desired. U
Proposition 2.3.11. Let S < S; < So be subsets of A and suppose (Mg, us), (Ms,, pis,) €
Ca with

(Ms, ps) < (Ms,, pis, )

and (Mg, ps) is strictly decreasing relative to Mg,. Then the unique extension
(Ms,, ps,) of (Mg, ps) to Mg, satisfies

(M51 ) ,UJS1) < (M52 ) ,u52)'
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Proof. Since (Mg, ps) < (Ms,, is,), there is an increasing chain of cocharacter
pairs (Mg, us) = (Mgo,pgo) < ... < (Mgr,puge) = (Msg,, 1us,) such that each
standard Levi subgroup is maximal in the next. The content of this proposition is
that we can pick a chain such that (Mg, , us,) appears. By Lemma 2.3.7, we can
assume that Mg is maximal in Mg,. Let a be the unique element of S1\S.

Pick a chain of cocharacter pairs (Mg, us) = (Mgo, pig0) < ... < (Mg, pigr) =
(Ms,, pis,) as above. Chains of cocharacter pairs are determined by an ordering on
the roots in S5\S = {az, ..., ax}, such that the S = S U {ay, ..., a;}. The root o ap-
pears in this chain so o = «; for some i. If i = 1 we are done. Otherwise, we consider
(MS'L—2,/,LS'L—2) < (Msi—l , fhgi-1) < (MSi,/LSi). By Lemma 2.3.7, (MSi—z,p,Si—z) is
strictly decreasing relative to Mgi—2 (o} and so by Corollary 2.3.10 (applied so that
(Mgi-2, pgi—2) takes the place of (Mg, ug) in Corollary 2.3.10), we get a new chain
of cocharacter pairs between (Mg, us) and (Ms,, pus,) where we switch the posi-
tions of o, ;1 in the corresponding ordering of S3\S. By repeating this argument,
we can construct a chain where o = o1, which is what we need. O

The preceding propositions give us the following picture. Given a cocharacter
pair (Mg, us) we check which simple roots « satisfy (O (1s), @) > 0. Suppose
there are n such simple roots. Then we get 2" standard Levi subgroups containing
Mg corresponding to adding different subsets of these simple roots. The cochar-
acter pair (Mg, ug) has a unique extension to each of the Levi subgroups and the
poset lattice of these co-character pairs can be thought of as the graph of an n
dimensional cube in the following way. The vertices of the cube are the 2" cochar-
acter pairs extending (Mg, ug) that we have just constructed. For two such pairs
(Ms,, ps,), (Ms,, 1s,), we draw an edge between the two corresponding vertices if
either S; < Sy and |S2\S1| = 1, or S < S; and |S1\S2| = 1. We can upgrade
this graph to a directed graph by stipulating that an edge between (Mg, , 1s, ) and
(Mszvﬂsz) is directed from (MS1 ) /1451) to (Mszvﬂsz) if (Mszvﬂsz) < (MS1 ) /1'51)'

Finally, note that for any two pairs (Mg, , us,) and (Ms,, s, ) corresponding to
vertices in the above cube, we have (Mg,, us,) < (Ms,, s, ) if and only if there
is a directed path in the cube travelling from the vertex of (Mg,, ps,) to that of

(M527/1452)'

2.4. Connection With Isocrystals. We now investigate the relation between
strictly decreasing cocharacter pairs and Kottwitz’s theory of isocrystals with ad-
ditional structure. See [Kot97] for omitted details on the theory of isocrystals.

An isocrystal is a pair (V, ®) where V is a finite dimensional @ vector space
and @ : V — V is an additive transformation satisfying ®(av) = o(a)®(v) for
a € @g\r,v € V and o the arithmetic Frobenius morphism. As before, let G be a
connected quasisplit reductive group defined over Q, and consider the set of isomor-
phism classes of exact ®-functors from Rep(G) to Isoc, the category of isocrystals.

Such isomorphism classes are classified by H*(Wg,,G (@“ )) which we denote B(G)
(where Wo, is the Weil group of Q).

In §4.2 of [Kot97], Kottwitz constructs the Newton map v : B(G) — Cg and the
Kottwitz map x : B(G) — X*(Z(G)T). An element of B(G) is uniquely determined
by its image under these maps.

We say that the standard Levi subgroup Mg is associated to b € B(G) if v(b) €
QIL&Q. Henceforth, we will often denote the standard Levi subgroup associated to
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b by My. Notice that many elements of B(G) could be associated to the same Levi
subgroup. We call b basic if M, = G. We write

B(G) = [ [ B(G)us
ScA

such that B(G)ysy consists of those b € B(G) associated to Ms. We denote by
B(Ms)" the maximal subset of B(Mg) such that v(B(Ms)T) = Cg. In §5.1 of
[Kot97], Kottwitz uses the Kottwitz map for Mg to construct canonical bijections

(2) B(G)as = B(Ms)jy, = X*(Z(Ms)")*
where Kottwitz constructs a canonical isomorphism
3) X*(Z(Ms)")o = 5.0

and X”‘(Z(]\/4\5)F)Jr denotes the subset of X*(Z(]T/[\S)F) mapping to QlL&Q. In fact,
Kottwitz shows that the composition of the above isomorphisms gives the Newton
map
B(G)MS - Q[;\L/[SQ — CQ.
For a further discussion of Equation (3), we refer the reader to Lemma 2.2.2.
We now prove an important lemma that will be used to relate the set B(G) to
the strictly decreasing elements of Cq.

Lemma 2.4.1. Fiz a standard Levi subgroup Mg of G and let (Mg, us) € SD.
Then Oy, (1s) € v(B(G)arg)-

Proof. We first describe the set v(B(G)as). By Equations (2) and (3), the set
v(B(G)as) is equal to the image of X*(Z(ME)FV in Apsg,0- Thus, to prove
this lemma, it suffices to show that 6, factors through the map X*(Z(]\/4\5)F) —
X*(Z(m)r)(@ =~ 2., where the isomorphism is as in Equation (3) or Lemma
2.2.2. Then, since (Mg, pg) is strictly decreasing, the factoring of 85, will map pg

to an element of X"‘(Z(]\//:I';)F)Jr as desired. That 0y, factors in this way follows
from the alternate characterization of 6, given in Proposition 2.2.3. g

Definition 2.4.2. Fix u € X,(T). Then we recall the following definition of
Kottwitz [Kot97, §6.2]:

B(G,p) :={be B(G) : v(b) < Or(p), £(b) = pl 5 gyr }-

Now we prove the key result of this section, which permits us to associate an
element of B(G) to each strictly decreasing cocharacter pair.

Proposition 2.4.3. We have a natural map
T :8D — B(G)
defined as follows. Let (Mg,us) € SD. Then there exists a b € B(G) so that

k(b) = 'LLS|Z(G)F and v(b) = Ops(ps). We note that by construction, b is unique.
Then we define T((Mg, ps)) = b. Furthermore, we show that

T(SD,) < B(G, ).

Proof. We first define b. Note that since (Mg, us) is strictly decreasing, 0y, (ps) €

QlLS@. By Proposition 2.2.3, it follows that “5|Z(1\TS)F € X”‘(Z(]T/[\S)F)Jr and so

we can define b to be the element of B(G) corresponding to MS|Z(1\73)F under the
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isomorphism B(G), = X"‘(Z(]T/[\S)F)Jr of Equation (2). Recall that the composi-
tion of this isomorphism with Equation (3) induces the Newton map restricted to
B(G)arg- Thus, we have 7, (ns) = v(b). Equation (4.9.2) of [Kot97] implies that
K(b) = MS|Z(C;)F'

It remains to show that if (Mg, us) € SD,, then the element b € B(G) that we
have constructed lies in the set B(G, ). For this, we need to show that v(b) =
Onts (1s) < O (p).

We claim that 07(u) > 0r(us). After all, by ([Bou68, Ch6 1.6.18, p. 158]), we
have p > pg. Then the claim follows from Corollary B.0.4.

Now we claim that 67 (ug) is dominant in the relative root system of Mg. To
prove the claim, we first observe that pug is dominant relative to the absolute root
system of Mg. As above, the Galois group I' preserves the Weyl chamber corre-
sponding to the positive absolute roots given by B. Thus, v(us) is dominant for
each v € T', and so f7(ug) is dominant relative to the absolute roots of Mg. The
intersection of the closed positive Weyl chamber for the absolute root datum of Mg
with g is the Weyl chamber for relative root datum of Mg (cf. proof of Lemma
2.2.1 (2) ). Thus, 07 (ps) is dominant with respect to the relative roots as desired.

Finally, we apply Lemma 2.3.2 and Equation (1) to get

O (ps) > O (ps),
which finishes the proof. O

Question 2.4.4. Can one describe the image
T(SD,) = B(G,pn)?

Fix G = GL, with T and B the diagonal maximal torus and upper trian-
gular Borel subgroup respectively. Suppose p has weights 1 and 0. Then we
claim 7(S8D,) = B(G, ). Indeed, pick any b € B(GLy,1). Then without loss
of generality, v, = ((a1/b1)™%, ..., (a,/b.)**) for some a;,b; € N such that a;/b;
is written in reduced form. Then let M be the standard Levi subgroup isomor-
phic to GLgp, X ... X GLy,p,. and embedded diagonally. Since b € B(GL,, i),

we must have that p = (11;1 WM,On Elmlal). Finally, we define y' € X.(T)
by p' = (17191 gzibi—wiar | qzear (zrbr—zrar) - Then we note that p' is domi-
nant in the root system of M so that (M,u') € Cq. Moreover, Oy (') = vp so
that (M, p') € SD. Then since p/ and p are conjugate in GL,, it is easy to see
that (M, ') < (GLy, ). In conclusion, we have shown that (M’,n') € SD,, and
T((M',u')) = b as desired.

On the other hand for different choices of y, we can have 7(SD,) < B(G, p).
For instance, let G = GLs, let u = (2,0,0), and let b € B(G, 1) be such that
vy = (1,1/2,1/2). Then it is easy to check that 7(SD,,) does not contain b.

2.5. The Induction and Sum Formulas. We are now ready to prove our main
theorems on cocharacter pairs. We begin by defining some key subsets of Cq, the

set of cocharacter pairs for G. In this section we fix a dominant p € X, (7T) and
be B(G,p).

Definition 2.5.1. We define the sets 7gp,, and Ra,p,,, as follows:
TG,b,,u = T_l(b) M SD#
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and
Rapu = {(Ms,, ps,) € Ca : (Ms,, pis,) < (Ms,, jus,) for some (Ms,, ps,) € T b}

Definition 2.5.2. Let Z(C¢) denote the free Abelian group generated by the set
of cocharacter pairs for G.
We define Mg, € Z{Cq) by

Ma o = > (—1)Fs3n (Mg, prs)
(Ms,us)ERG b1

such that for Ms, < Ms,, L, ms, is defined to be [S2\S51].

Remark 2.5.3. We observe that for (Mg, us) € SD, if T((Ms,ps)) = b, then
Mg = My,.

We will show in Theorem 3.3.7 that at least in the case where G is an unramified
restriction of scalars of a general linear group, Mg, is related to the cohomol-
ogy of Rapoport-Zink spaces for G. Thus one expects there to be a combinatorial
analogue of the Harris-Viehmann conjecture (Conjecture 3.2.1). We call this com-
binatorial analogue the induction formula. Perhaps the more surprising result is
that there is also an analogue of Shin’s averaging formula (which we call the sum
formula) [Shil2, Thm 7.5]. We first prove the sum formula.

Theorem 2.5.4 (Sum Formula). The following holds in Z{Cg):
Z Mapu = (G, p).

beB(G, )

Proof. We need to show that
Z Ma = (G, p),

beB(G, )

or equivalently

Z Z (—=1)FMsM (Mg, ps) = (G, ).

beB(G,p) (Ms,p1s)ERG,b,u

We prove this equality by counting how many times a given cocharacter pair
shows up on the left-hand side. The pair (G, u) shows up exactly once in the
left-hand sum as an element of R p,, for b the unique basic element of B(G, p).
Suppose(Ms, i) € Ce is some other cocharacter pair. Then define

}/(Msyus) = {b € B(G,’U) : (MSMUJS) € 7?'G.,b,,u}-

We are reduced to showing

(4) Z (_1)LMS,Mb - 0.

bEY(IWSwMS)

Our general strategy will be to show that the left-hand side of equation 4 vanishes
for each (Mg, ps) < (G, p) by inducting on the size of A\S. However, in the case
that (Mg, pus) € SD,,, we can prove the vanishing without an inductive argument.
We show this first before discussing the induction.

Suppose now that (Mg, ug) € SD,,. By Corollary 2.3.3, every pair (Mg, 1s/) €
Cq satistying (Mg, ps) < (Mg, pus/) < (G, p) is strictly decreasing and thus by
Proposition 2.4.3, we have 7 (Mg, us’)) € B(G, ). These are precisely the ele-
ments b € B(G, ) so that (Mg, ts) € Rap,,. By the discussion after Proposition
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2.3.11, we can associate the graph of a cube to the set of (Mg, ug/) such that each
cocharacter pair is a vertex. To the vertex associated to (Mg, us/) we attach the

sign (—1)LMS ‘Ms . 'We note that adjacent vertices in this graph will have opposite
signs since if (Mg, ug/) and (Mgr, pus») have adjacent vertices, then the cardinality
of S” and S” differs by 1. Now, it is a standard fact that if we associate an element
of {1,—1} to each vertex of the graph of an n-dimensional cube for n > 1 so that
adjacent vertices have opposite signs, then the sum of all the signs is 0. This implies
that the left-hand side of Equation (4) vanishes in the strictly decreasing case.

Now we discuss the inductive argument. The base case will be for pairs (Mg, pug) <
(G, ) satisfying |[A\S| = 1. The second statement of Proposition 2.3.8 implies
that in this case (Mg, ug) is strictly decreasing relative to GG, which means that
(Mg, ps) € SD,,. Thus, the base case is proven by the previous paragraph.

We now discuss the inductive step. Suppose (Mg, us) < (G, p). If (Mg, pug) is
strictly decreasing, then we are done by the above. Suppose now that (Mg, ug)
is not strictly decreasing. We claim that (Mg, ps) must be strictly decreasing
with respect to at least some standard Levi subgroup of G that properly contains
Msg. After all, since (Mg, pus) < (G, ), there must exist at least some o € A\S and
(MSu{oz}a ,USu{oz}) € Cq so that (Mg, pus) < (MSu{a}v /LSu{a})- Then by Proposition
2.3.8, this implies that (Mg, ps) is strictly decreasing relative to Mg (qy-

Thus, let Mg/ be the maximal standard Levi subgroup of G such that (Mg, us)
is strictly decreasing relative to Mg.. We can write S’ = S U {aq,...,ap,} where
a; # o for ¢ # j and each a; € A\S. We denote by X the n-cube of cocharacter
pairs above (Mg, us) as in the discussion after Proposition 2.3.11.

We claim that
Z (7 1)LMS M,

bEY(IWSvMs)

== 2 PINCHIEEES
(Mgr, s )EX\{(Ms,ps)} €Y (Mg pugr)

Given this claim, we see that to finish the proof, it suffices to show that the right-
hand side is identically 0. However, the right-hand side consists of a sum of a
number of terms similar to the left-hand side but for pairs (Mg, puss) in place of
(Mg, ps). Note that each S’ is strictly larger than S and thus we are done by
induction.

We now prove the claim. Moving all the terms to one side, we need only show

that
S8 e

(Ms/,pbs/)EX bEY(IWS/vMS/)
Fix b € B(G, u). Then it suffices to show the contribution from b in the above
formula vanishes. Thus, we must show

(5) ) (=1)Ms e = 0.
(Mgr,pgr)eXNRa b,

We examine the structure of X n Rqg,p,,, when it is nonempty. If we can show
that the cocharacter pairs in this set form a sub-cube of X of positive dimension,
then we will be done by the standard fact that if we place alternating signs on the
vertices of a cube and add up all the signs we get 0.

Clearly, any (Mg, pns) € X n Rap,, must satisfy Mg ¢ Mg < M. The
subset of X satisfying this latter property forms a sub-cube of X since its elements
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are indexed by subsets of Sp\S, where S is the subset of A corresponding to M
in the standard way (note that by Lemma 2.3.4, there is at most one element of
XNRa,p, for each standard Levi Mg/). Moreover, this latter set cannot form a cube
of dimension 0 for then we would have Mg = M and so X N Ra ., = {(Ms, p1s)}
which would imply that (Mg, ug) is strictly decreasing contrary to assumption.
Thus to finish the proof, we need only show that every (Mg, ug/) such that

(1) MS c MS/ (e Mb,
(2) (MS7MS) < (MSHNS’),

(3) (Ms, ps) is strictly decreasing relative to Mg,

satisfies (Mg, ns) < (My, pp) for some (My, ) € TG p,u- Since we assumed that
XnRapu # &, then in fact there is an (My, p1p) € T b, With (Mg, pg) < (My, ).
Then the desired result follows from Proposition 2.3.11. O

We now turn to the induction formula. Fix a standard Levi subgroup Mg of G.
Then our choice of maximal torus 7" and Borel subgroup B of G provides us with
natural choices B n Mg and T of a Borel subgroup and maximal torus of Mg. This
allows us to define the set Cjps, of cocharacter pairs for Mg. There is a natural
inclusion

(6) i%rs : Cus — Ca.
The image of this inclusion is precisely the set of cocharacter pairs (Mg, ug/) where
S’ < S. This inclusion preserves the partial ordering of cocharacter pairs. The
strictly decreasing elements of Cpr; map to the elements of Cq which are strictly
decreasing relative to Mg.

Now choose a b € B(G, p) and rational Levi Mg such that M, ¢ Mg < G. We
have a unique ¥’ € B(Mb)Lb corresponding to b under the isomorphism given by
Equation (2). The inclusion M, ¢ Mg induces a map

B(My) — B(Ms).

Let bg be the image of b’ under this map.
The following definition will be important in relating cocharacter pairs of a group
G to those of a standard Levi. Compare with [RV14, Equation (8.1)].

Definition 2.5.5. Let Mg be a standard Levi subgroup of G, let p e X« (T') be a
dominant cocharacter and choose b € B(G, ). We take bg € B(Mg) as constructed
in the previous paragraph and define the set

Iﬁﬁbs = {(Ms, ps) € Crs : bs € B(Mg, ug), ps is conjugate to p in G}.

We first check the following transitivity property of Iﬁ: bs-

Proposition 2.5.6. Fiz (G,u) € Cq and b € B(G, ). Suppose Mg, and Mg, are
standard Levi subgroups of G such that My < Mg, < Mg,. Then

G, My, p G,
IM;;,Z)SZ = {(MS27,UJS2) € CMS2 : (M52a,u52) € IMSS;bSS; fOT some (M517lu’51) € IM:wbsl}'

Proof. We show each set is a subset of the other. Take (Mg,, ps,) € Iﬁ: be, - Let
27792

1s, be the unique dominant cocharacter conjugate to pgs, in Mg,. Then we consider
(Ms,, ps,) as an element of Cprg, and just need to show that bs, € B(Ms,, us,)
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since we already know that bg, € B(Msg,, pis,) by assumption. Thus, we need only
show that v(bs,) < 0r(us,) and k(bs,) = “51|Z(1\7fs\1)r'

We prove the inequality first. By assumption, v(bs,) < 0r(us,) and by Equa-
tions (2) and (3), v(bs,) = v(b) = v(bs,). Since ug, and pg, are conjugate in Mg,
and pg, is dominant, it follows from [Bou68, Ch6 1.6.18, p. 158] that ug, < ps,-
Then, by Corollary B.0.4 it follows that 07 (us,) < 6r(us,) in the relative root
system. Combining all this data, we get

v(bs,) = v(bs,) < Or(ps,) < 0r(ps,),
as desired.
To prove k(bs,) = ps, |Z(1\75\)F7 we note that by Equation (4.9.2) of [Kot97] and
1
the fact that bg, € B(Mg,, uus,), we have

K’(bsl) = /L52|Z(1\75\1)F'
Then pg, and pg, are conjugate in Mg, so there exists a w € W]?/})ssl so that

w(p1) = po. This implies that p; and po are conjugate in J\//fs\l and in particular
equal when restricted to Z(Mg, ). This implies the desired equality.
. . . Ms,,
To show the converse inclusion, we start with (Mg,, ps,) € IMSS;;;:; for some

(Ms,,ps,) € Iﬁ:,bsl and need to show that bg, € B(Mg,, us,) and that ug, is

conjugate to p in G. But (Mg,, us,) € I]\Aﬁ;f:; implies that bs, € B(Ms,, pus,) and

also that pg, is conjugate to pg, in Mg,. Further, (Mg, ,us,) € 11?4:1 bs, implies
that pg, is conjugate to p in G. Thus, pg, is conjugate to p in G as desired. [

The set Iﬁ’s“bs will primarily be useful because it allows us to relate the set
Ta b, to analogous constructions in Mg. This is encapsulated in the following
proposition.

Proposition 2.5.7. Fix Mg, u and b as in Definition 2.5.5. The natural inclusion

i§1, 1 Cus — Ca of Equation (6) induces a bijection

]_[ TMsbss = Tapu

G,
(Ms,ps)ETyrl

Proof. We first show that
Zf/[s( ]_[ TMs,bs”us) = TGJML'

G,
(Ms,ps)ETyrl v

Since My ¢ Mg, it follows from the discussion after Equation (6) that
TG,b,,u = Z.%S (CMS)

Thus, pick an arbitrary element of 7g ., of the form i%s (My, ) for (My, pp) €
Cums. The cocharacter pair ’?43 (My, pp) is strictly decreasing, and therefore so
is (My, up) € Cprs. By Proposition 2.3.8 we can find (Mg, ps) € Carg such that
(My, pp) < (Mg, pus). Observe that since i (M, ) < (G, p), the cocharacter
up is conjugate to p in G and therefore pg must be as well by construction. If
we can show that 7 ((Mp, up)) = bg, then we will be done because by Proposition
2.4.3, this implies that bg € B(Mg, us) and so therefore that (Mg, us) € I]@’S’fbs
and (My, 11y) € Tazs bs s -
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By assumption, T (5, (Ms, i) = b € B(G, ). Recall that the map T is defined
so that a strictly decreasing (Mp, pip) € Ce which satisfies (M, pp) < (G, p) is
mapped first to the element “b|Z(1\/fb)F € X*(Z(]\//E;)F)Jr. Then, this element is
identified with an element of B(G) via the isomorphisms of Equation (2):

X*(Z(My))")* = B(My)3;, = B(G),,

where the second isomorphism above is induced by the inclusion M, — G. We
have the commutative diagram

B(Mb —— B MS

N l

where each map is induced from the inclusion of groups. By definition, the element
b € B(M,)" maps to b€ B(G) and bg € B(Mg) respectively. Thus, we see that by
construction, 7 ((Mp, up)) = bs.

Conversely, suppose (M, tp) € Targ ps,us for some (Mg, ug) € IMS pe- Since
b e B(Mb)}\L/[b, it follows from the definition of bg and Targ g, us that 'ub|Z(Mb)F is
an element of X*(Z(]\/i\b)F)’“. This implies that i} (Ms, u5) € SD. By Proposition
2.3.8, we have an extension of i%s (My, up) to G, and since up and p are conjugate
in G by assumption, it follows that this extension is (G, u) so that i (Mp, ) <
(G, ). Tt follows from these facts that i%;/[s (Mp, p1v) € Te b, -

Finally, we remark that for distinct (Ms, ns), (Ms, 1) € IJ@: bs the sets Targ s, s
and Tisg bs u, are indeed disjoint by Lemma 2.3.4. 0

As a corollary of this result, we have the induction formula.

Corollary 2.5.8 (Induction Formula). We continue using the notation of the pre-
vious proposition. The natural map

ZMS CMS - CG7
induces a map

s . Z<CMS> — Z<CG>,
which gives an equality

Z Z.%S (Muss ps,ns) = Ma b
(Ms,us)eLot

Mg,bg

Proof. 1t follows from Proposition 2.5.7 that the map iﬁs induces a bijection

]_[ RMsﬁbsﬁﬂs = ,R'Gyb-,#'

(MS lU‘S)GI]\/[S bg

We remark that for distinct (Mg, pus), (Ms, ps) € I]@’S’fbs we have R bg,ps N
RMs,bs,u’s = J by Lemma 2.3.4.
The corollary then follows from the definition of Mg p .. O

This result can be thought of as an analogue of the Harris- Viehmann conjecture
which we discuss in the next section.
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In the cases we are interested in, we will also need a description of how cochar-
acter pairs behave with respect to products.
Suppose G = G| X ... x Gy and T' = T} x ... x T} such that T; is a maximal torus
for G;. Then
Xo(T) =2 Xo(Th) D ... ® X (Th),
and any standard Levi subgroup admits a product decomposition
Mg ~ M51 X ..o X Msk,

such that T; ¢ Mg, < G;. Then any cocharacter pair (Mg, us) of G corresponds
to a tuple of cocharacter pairs

((MSI,,USI),..., (Mskv,usk)) ECG1 X ... X CGk’

in the obvious way. The pair (Mg, us) € Cg is strictly decreasing if and only if
each pair (Ms,, us,) € Cg, is, and if T((Ms, us)) = b€ B(G, i), then we also have
Ti(Ms,, us;)) = b; € B(G;, u;) where 7T; is the map T defined for the group G;.
Thus, b — (b1, ..., br) under the natural bijection

B(G) =~ B(Gy) x ... x B(Gg).
We record the following proposition

Proposition 2.5.9. We use the notation of the previous two paragraphs.
The natural bijection

Ca =Cq, X ... xCaq,,
induces bijections
TG,b,H = TGlxthl X ... X TGlmbk;Hk’
and
RG,b,M = RGhbhHl X ... X RGk7bk;Hk'
Further, under the natural isomorphism Z{Cqy = Z{Cq,) ® ... @ Z{Cq, ) we have

Ma o = Macy by @ o @ May by g -

3. COHOMOLOGY OF RAPOPORT-ZINK SPACES AND THE HARRIS-VIEHMANN
CONJECTURE

In this section, we define the Rapoport-Zink spaces we will work with and show
how we can describe their cohomology using the language developed in the previous
section. We also give a statement of the Harris-Viehmann conjecture, and explain
the necessity of a small correction to the conjecture. We follow [Far04], [Shil2],
and [RV14].

The theory necessarily involves several choices of signs. This is often a point
of confusion, so we describe our conventions here. We choose the cocharacter u
appearing in the definition of Rapoport-Zink spaces to have non-negative weights,
in agreement with most authors. In this paper, we use the contravariant Dieudonne
functor, which means that our p-divisible groups will have isocrystals in the set
B(G, 1) (as opposed to B(G, —pu) for the covariant theory). This convention agrees
with that of [Far04] and [RV14], but [Shil2] uses the opposite convention. We use
the local Langlands correspondence for GL,,(Q,) as in [HT01, pg. 2]. In particular,
we normalize the local Artin map so that uniformizers correspond to geometric
Frobenius elements.
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3.1. Rapoport-Zink Spaces of EL-Type. We fix the following notation. Sup-
pose G is a reductive group defined over a field k and p € X4 (G). Then if H is
a subgroup of G such that p factors through the inclusion X, (H) — X«(G), we
denote by {u}g the H(k) conjugacy class of i and by Ej,, the field of defini-
tion of {u}x (i.e the smallest extension of k so that each element of Gal(k/Ej,,,, )
stabilizes {u}m).

Now we define the Rapoport-Zink data we consider.

Definition 3.1.1. An unramified Rapoport-Zink datum of EL type is a tuple
(F,V,{u}c,b) where

(1) F is a finite unramified extension of Q,,

(2) V is a finite dimensional F' vector space,

(3) G :=Resp)qg,(GLr(V)),

(4) p: Gm,@ — G@ is a cocharacter inducing a weight decomposition V ®

@g\T >~ Vo @ V4 where pu(z) acts by 2° on V;,
(5) be B(G,p).

We fix a Borel subgroup B < G defined over Q,, a Qp-split torus A < G of
maximal rank in G and such that A ¢ B, and a maximal torus 7' B containing
A and defined over Q. We can choose p in the above definition so that it is
dominant relative to B.

Let X be a p-divisible group defined over F,, with an action of O and such that
the isocrystal attached to X by the contravariant Dieudonne functor is isomorphic
to (Vp,bo). We consider the moduli functor My, such that for S a scheme over
O@ with p locally nilpotent, M, ,(S) = {(X,4,p)}/ ~. Where X is a p-divisible
group defined over S, i : Op — Endp(X), and p: X XEE — X is a quasi-isogeny
(S, X are the reductions modulo p).

By work of Rapoport and Zink [RZ96, Thm 3.25], the above moduli problem is

represented by a formal scheme over (’)@;; which we also denote by M ,,. We have
P

the generic fiber Mziﬁ which is a rigid analytic space over (@;\T . Further, we get a

tower of coverings M;iz y of Mg_ii for each compact open subgroup U < G(Q,).

For a fixed prime [ # p, we denote by H? (Mzig U X ?, Qi) the etale cohomology

with compact supports. This is a Q; vector space which is a smooth representation
of Jp(Qp) % WE{M}G’ where Jp is the inner form of the standard Levi subgroup M,
associated to b (as constructed in §3.3 of [Kot97]) and W, . is the Weil group of
E{, (for example see [RV14, Prop 6.1]).

We use the notation Groth(-) for the Grothendieck group of admissible represen-
tations of topological groups. See §1.2 of [HT01] for the precise definition of these
Grothendieck groups.

Let P, be the standard parabolic subgroup with Levi factor M, and denote
the opposite parabolic by P;”. We define Jg, Jacg to be the normalized and un-
normalized Jacquet module functors, and we define Ig, Indg to be the normalized
and un-normalized parabolic induction functors. Often, if M < P is the standard
Levi subgroup of P and we are taking IS or I§,, to be a map of Grothendieck
groups, we will write I]\le to remind the reader that these maps do not depend on
choice of P, P°P? when considered as maps of Grothedieck groups.
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In [Man05], Mantovan considers the following construction (see also [Shil2]). We
define a map

Mantg p,, : Groth(J,(Qp)) — Groth(G(Qp) x WE,., ),
by

Mantg p,.(p) = Z (=)™ lim Ethlb(Q‘)(Hg(MZ,iﬁ,UXQﬁrv@)aP)(*dimMzz,Ul
4,720 UcG(Qp)

In §6.2 of [Shil2] and §2.4 of [Shill], Shin considers a map
Redy, : Groth(G(Q,)) — Groth(J,(Qyp)).
We follow the construction given in [Shill]'. We define Red; by

7o o)L 0 I (1) @ 3F,),

where
LJ : Groth(M(Qp)) — Groth(J»(Qy)),

is the map defined by Badulescu extending the inverse Jacquet-Langlands corre-
spondence (see [Bad07, Prop 3.2]) and e(J,) is the Kottwitz sign as defined in
[Kot83].

We now describe the main result of [Shil2]. The cocharacter u of G is a map
W Gm,@ — I GLnﬁQTp such that the weights in each GL,, factor are 1s

TeHom(F,Qp)

or 0s. Thus we let p;, g denote the number of 1 and 0 weights respectively in the
factor corresponding to 7.

The following formula is the main theorem in [Shil2, Thm 7.5].

Theorem 3.1.2 (Shin). We have the following equality for accessible representa-
tions in Groth(G(Qp) x Wk, ).

Z Manty, ,,(Redy (7)) = [7][r—, © LL(W)|WE{MG Q- |—ZT pqu/2]'
beB(G, 1)

Loosely speaking, accessible representations in Shin’s paper are character twists
of the local components of global representations that can be found within the
cohomology of Shimura varieties. Shin shows that all essentially square-integrable
representations are accessible.

In this case LL is the semisimplified local Langlands correspondence (known by
the work of [HTO01] for instance). The map r_, is the algebraic representation of
G We,. < L@ defined by Kottwitz ([Kot84, Lem 2.1.2]). It is characterized by
the fact that r_,|s is the irreducible representation of extreme weight —pu and if

we take a [-invariant splitting of G , then the subgroup WE{u}G of LG acts trivially
on the highest weight vector of r_,, associated with this splitting.

IWe believe the construction given before Lemma 6.2 of [Shil2] has a slight typo. There,
Redy is defined by 7 — e(Jp)(LJ o Janop (7)). As maps of Grothendieck groups, Janop =
b b

1 _1 1
JG,, ®82,, = JC,, ®5,2. But this is not equal to JC,, () ® §2 , which is the construction
Pbp PbOP Pbp Py, q Pbp( ) Py

given in [Shill] that is compatible with [HTO01].



THE COHOMOLOGY OF RAPOPORT-ZINK SPACES OF EL-TYPE 27

Remark 3.1.3. The Tate twist appearing on the right-hand side of the above formula
comes from the dimension formula for Shimura varieties and is equal to —{pg, p)
where pg is the half sum of the positive roots in G.

The above theorem is analogous to the sum formula for cocharacter pairs (The-
orem 2.5.4). The induction formula (Corollary 2.5.8) is related to the Harris-
Viehmann conjecture (Conjecture 3.2.1 in this document). A proof of this con-
jecture is expected to appear in forthcoming work of Scholze.

3.2. Harris-Viehmann Conjecture. We now state the Harris-Viehmann conjec-
ture following Rappoport and Viehmann in [RV14]. In this subsection, we return
to the notation of §2 so that in particular, G is a connected, quasisplit reductive
group defined over Q.

Choose a dominant minuscule p € X4 (T') (where we can consider y as a cochar-
acter of G since T < G) and a b € B(G, 1) . Associated to b, we have the standard
Levi subgroup My. Suppose we have a standard rational Levi subgroup Mg so that
My, c Mg < G. We define V', bg as we did before Definition 2.5.5.

In [RV14, Equation (6.2)], the authors associate a cohomological construction
to the triple (G, b, ) which they denote H*((G, [b], {¢})). This construction is a
map of Grothendieck groups: H*((G, [b], {1})) : Groth(J»(Q,)) — Groth(G(Q,) x
WE{u)) and agrees with Mantg 1, ,, in the case above. We will denote this construc-
tion H*(G,b,u) since we deal with dominant cocharacters instead of conjugacy
classes. Then they have the following conjecture.

Conjecture 3.2.1 (Harris-Viehmann). For p € Groth(J,(Qy)), we have the equal-
ity
H* (G, b, p)[p] = 2 (Ind, H* (Ms, bs, us)[p]) ® [L][| - [Persr=e],

G,
(MS>#S)EIM;,bS

in Groth(G(Qp)xWeg,,, ). The parabolic induction only modifies the Groth(G(Qy))

parts of these representations.

Remark 3.2.2. We need to explain several things in the above conjecture. First
we explain why the right-hand side is a representation of WE{MG , second we check
that the conjecture satisfies a transitivity property, and third we give an example
justifying the extra character twist appearing in our formulation. This twist is not
present in the original formulation of the conjecture.

We first explain why the right-hand side is a representation of Wg,,,.- We start
with a general lemma.

Lemma 3.2.3. Suppose a group A acts on a finite set S. Suppose further that for
each s € V, we attach a vector space Vs and for each X\ € A and s € S we have an
isomorphism

Z(S,)\) : ‘/5 - Vk(s)'
We suppose further that i(s,1) is the identity map and that i(A1(s), A2) oi(s, A1) =

i(s,A2)1). Then @ V; is naturally a representation of A.
sesS
Let {s1,...,8k} < S be a set of one representative from each A-orbit in S. Then

k
@9 Vs = @)1 Indé\tab(si)VSi ’
s€ i=
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where Ind refers to the induced representation (not parabolic induction,).
Proof. The proof is clear from the definition of induced representation. O

Moreover, we record the following transitivity property for later use.

Lemma 3.2.4. Suppose that A acts on S as before. Let S1[[..]] Sk = S be a
partition of S so that A acts on {S1, ..., Sk}. Suppose we have for each s € S a vector
space Vi and isomorphisms i(s, \) as above. Then by Lemma 3.2.3 we can consider
the stab(S;) < A representation Vs, = @ . For each A € A, we get isomorphisms

seS;
i(Si, A) + Vs, — Vs, Thus, again by Lemma 3.2.3, we get a A representation
@ Vs,. This representation is isomorphic to the A representation @ Vs we get
i seS
from applying Lemma 3.2.3 to S.

Now we discuss the WE{MG-action in the Harris-Viehmann conjecture. Observe
that for p € X4 (G), if v € Wk, stabilizes {u}rrs then it also stabilizes {u}a so
that WE{M} c WE{ .

Mg BYel

Now we claim that WE{MG acts on IAij:bs and that the stabilizer of (Mg, ug)

under this action is WE{M}M . To prove the first part of the claim, we pick v €
S

We. and observe that since Mg and Py are defined over Q,, we have v(Mg) =

Mg and v(ug) is dominant in Mg. Thus (Mg, v(us)) € Carg so we need only check
that bsg € B(Mg,v(ns)) and y(us) ~¢ p. The first check follows from the fact that

Or(ps) = Or(y(ps)),
and
,US|Z(1T/fS)F = FY(IU’S)|Z(]\/4TS)F'
The second check follows because «y stabilizes {{} .

To prove the second part of the claim, we note that if ug = v(us) then
stabilizes {us}rrs. Conversely, if v stabilizes {us} s then since it maps dominant
elements relative to Mg to dominant elements, we must have y(ug) = ps.

We observe that we have now shown that WE{M}G acts on the collection of
Rapoport-Zink data (Mg, bg, nus) for (Mg, us) € Iﬁ’s“bs. By [RV14, Proposition
5.3.1v], these actions induce morphisms of the corresponding towers of rigid spaces
and therefore the spaces H* (Mg, bs, p1s)[p] for p € Groth(J,(Qp)). Thus by Lemma
3.2.3 we get an action of We,,., on the sum of vector spaces

> H*(Ms,bs, pus)[p],

G,
(MS=#S)EIM;,bS

and therefore on

3 Ind%, (H*(Ms, bs, us)[p])-

G,
(MS>HS)EZM;,I>S

We remark that the character twist by fdimMzig ¢ in the definition of H* (Mg, bs, us)
is not an obstacle to defining the Wg,,, ., -action as the dimensions of the spaces
associated to (Mg, bs, pis) and (Mg, bs,y(us)) are the same (for v € Wg,,, ). Also

we observe that the twist by [1][|-|#e:#s>=<rc:1] is harmless as it is constant over
orbits of WE{MS}G' This concludes our discussion of the WE{M}G action.
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We now check that the Harris-Viehmann conjecture is transitive. By this, we
mean that if we have standard Levi subgroups Mg, and Mg, of G such that M, <
Mg, € Mg, < G, then first applying the conjecture to (G, b, 1) and the inclusion
Mg, < G and then applying the conjecture to each resulting (Mg, ,bs,, s, ) for
(Ms,, ps,) € IJC\;:I bs, and the inclusion Mg, < Mg, should be the same as applying
the conjecture to (G, b, 1) and the inclusion Mg, < G.

We need to check that the character twists match, that

G,u

. Ms, ps, G,
IMS2,bS2 = {(Mszvﬂsz) € CM52 : (M527/'l’52) € IMS2,bs2 for some (MSI7/J’SI) € IMSI.,bs1

and that the WE{MG actions are the same.
To check the characters match, it suffices to check that for (Mg, , s, ), (Ms,, pts,) €
Cq such that (Mg,, ps,) < (Mg, ps,) < (G, i), we have

(pas pis,) = <pa: iy = ((pas isy) = {pay ) + ((pus, s bsa) = Puts, s 11:))-
This reduces to showing the equality

(7) (pe\Ms,  1s1) = {PG\Ms, > 11S2);

where pg\nrg, Is the half-sum of the absolute roots of G that are not roots of
Ms,. Since ps, and pg, are conjugate in Mg, , there exists a w € Wffssl so that
w(p1) = po. Then the desired equality follows from the fact that the pairing <-, )
is W]?/});l -invariant and that Wffssl stabilizes the set of positive absolute roots in G
but not Mg,. To prove this second fact, note that Mg, normalizes the unipotent
radical Ug, of Ps, and that the roots of Lie(Ug, ) are precisely the positive absolute
roots of G that are not contained in Mg, .

The second check is precisely Proposition 2.5.6, and the third check follows from
Proposition 2.5.6 and Lemma 3.2.4.

Now we compute an example to illustrate the necessity of the extra Tate twist

in our statement of Conjecture 3.2.1. The following example is also discussed in
[Shil2, §8.3]

Example 3.2.5. Let n; < ny be coprime positive integers and let G = GLy,, 4n,-
Fix T the standard maximal torus of diagonal matrices and B the Borel subgoup
of upper triangular matrices. Let p be the minuscule cocharacter with weight
vector (12,0™7272) and b € B(G, p) satisfying v, = ((1/n1)"", (1/n2)"*). Let
p1, p2 be supercuspidal representations of GLy, (Qp), GLy, (Q,) respectively. Define
the standard Levi subgroup M, = GL,, x GL,,, and consider the representation
7 = I§] (p1 X p2). We will be interested in computing Mantg 5, (Reds ().

The key point is that we can use Shin’s formula (Theorem 3.1.2 of this paper)
and known cases of the Harris-Viehmann conjecture due to Mantovan ([Man08]) to
do this computation, even though the Harris-Viehmann conjecture is not known to
be true in the case of M, since b is not of Hodge-Newton type.

We observe that there are only 3 elements ' € B(G, 1) that satisfy

Manth/)H(Redb/(ﬂ')) # 0.

After all, the fact that p1, p2 are supercuspidal and the geometric lemma of Bernstein-
Zelevinski (§2.11 of [BZ77]) forces My to be one of G, GLy, X GLj,, GLy, x GLy, .
In the case where My = G, we also get 0 since LJ(mw) = 0. Thus, if we write out

L
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Shin’s formula for our 7, the only elements of B(G, 1) whose terms contribute to
the left-hand side are b, b1, b where b is as before and by, by are defined by

vy, = ((2/n1)"™,072), 1, = ((2/n2)"*,0™).
Thus, we have My, = M, = GL,, x GL,, and M;, = GL,, x GL,,. Note that

b1, by are both of Hodge-Newton type so that we can apply the results of Mantovan.
We have

1

Mant p, . (Reds, (7)) = Mantcp, u(LJ (07, ® J5or I3, (01 & p2)))-
By the geometric lemma of Bernstein-Zelevinski (§2.11 of [BZ77]) we have that the
above equals

1
Mantc; o, (LS (o1 B p2) @ 65, ).
We recall that dp, = (|- |"2 odet)x](|-|~"* odet) and henceforth use the notation
p(n) to mean (| - |™ o det) ® p. Thus, we can rewrite the above formula as
Mante b, uy (LI (p1(n2/2)) B LJ (p2(=n1/2))).
Then applying the Harris-Viehmann formula we get that the above equals
(8)
Ind§;, Mantgy,,  (12,0m-2)(LJ(p1(n2/2))) K Mantar, , (om) (L (p2(—n1/2)))).

Since p; and po are supercuspidal, we can compute (by an easy application of Shin’s
formula for instance) that

Mantcr,, (12,0m-2) (L (p1(n2/2))) = [p1(na/2)][r(_12,0n1-2)0LL(p1(n2/2))®]|* ™ ],
and so Equation (8) becomes equal to
[7][r(12,0m-2) © LL(p1(n2/2)) ® | - 7™ ® r(gn2) © LL(p2(—n1/2))].
Pulling the twists through the r_,, maps, we get
[71[(r(—12.0m1-2) B 7(0n2)) © (LL(p1) ® LL(p2)) ® | - [*7™7"2].

Repeating this computation for the by term, we get

Mantg b, (Reds, (7))
= [7][(r(12,0m2-2) ®7(0m1)) © (LL(p2) ® LL(p1)) ® | - [P 7"2].
We now compare these terms to the righthand side of Shin’s formula. There the

term is
[7][r—p o LL(m) @ - >~ 7"2].

Now LL(m) = LL(p1) ® LL(p2). Thus, we can restrict r_, to M, < G (we have
been ignoring the Galois part of “G in this example since G is a split group). Using
the theory of weights, we get

T*#|M\ = [T(,lz)onlfz) T(Onz)] (&) [T(,l)onlfl) T(,Longfl)] &) [T(Onl) T(712)0n272)],

and so we see that the contributions for by, bs which we computed above will cancel
terms on the righthand side of Shin’s formula leaving us with

Mantg b, . (Redy (7)) = [W][(T(—l,onlfl)7“(—1,0"2*1))O(LL(P1)+LL(P2))®|'|27m*n2]-

However, if the Harris-Viehmann conjecture without the extra Tate twist were to
hold for b, we would get

Mantgp,.(Redy (7)) = Mantep (L (p1(n2/2)) B9 LJ (p2(=n1/2)))
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= [mlfr1.gm 1) 71 gm0 (LL(p1) + LL(p2))] - "],
Thus, we see the Tate twists do not agree.

In general, the righthand side of Shin’s formula has a twist of —(p¢, u) where
pc is the half sum of the positive roots of G. Suppose now that b € B(G, ) and
b € B(Mp)* corresponds to b under Equation (2). Then for any (M, i) € I]@’b’fb/,
we would expect the Galois part of Mantag, »,,v(p) for p € Groth(J,(Qp)) to come

with a twist of —(pas,, ). Then the Galois part of Manteg p , (Redy (7)) for m €
Groth(G(Q,)) would carry an extra twist of —<w, u'y corresponding

1
to twisting J S, () by 67, in the definition of Red;, . We note that
b

ooty + (A

Thus, we see that the difference between these Tate twists is

'y =<pa, 1),

(pa, 1) = <Lpa -
which is the twist in Conjecture 3.2.1

Remark 3.2.6. We note that in the Hodge-Newton case studied by Mantovan, . =
(as in the notation of the previous paragraph) so that this extra twist vanishes,
agreeing with Mantovan’s results ([Man08, Corollary 5], cf. [RV14, Theorem 8.8]).

We now give an alternate version of the Harris-Viehmann conjecture that we will
use in numerous arguments in this paper. Suppose that G,b, i are as in Theorem
3.1.2. The standard Levi subgroup M has a natural product decomposition

Mb=M1><...><Mk
so that under the natural isomorphism
B(M)) = B(My) x B(My), b — (b, ... ),

each v(b;) has a single slope. Now pick (Mp, up) € Iﬁ;‘fb,. Then the local Shimura
variety datum (Mp, b, ) decomposes into a collection (My, b, fi6,1), -, (M, by, fio.1:)-
In §5.2.(i7) of [RV14], the authors show that the local Shimura variety associated
to (My, b, up) is the product of those associated to (M;, b}, 1 ;). Furthermore us-
ing the Kunneth formula (as in [Man08, p. 15]), we get that for p; X ... X pi, €
Groth(M;(Qp) % ... x M(Qp)),

Mant g, b, (pl o Xpr) = i'c:lMantGi-,b{p#b,i (pi)7

as a representation of My x WE{% Yar (the group WE{% 1, acts diagonally through
b b
the product WE{% X ... X WE{%,k}Mk ).

1My
Thus, we have the following alternate form of the Harris-Viehmann conjecture

for the Rapoport-Zink spaces we consider.

Conjecture 3.2.7 (Alternate Form of Harris-Viehmann Conjecture). We use the
notation of the previous paragraphs so that in particular, (G,b, ) comes from an
unramified Rapoport-Zink space of EL-type as in Definition 3.1.1. Then for any
p € Groth(Jy(Qp)), we have the following equality in Groth(G(Qp) x Wk, .):

Mantepu(p) = Y, Indg (& Mantag, by, (p:) @ [1][] - [~ Pew],

G,
(Mbvﬂb)ezM;b/
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3.3. Proof of Theorem 1.0.3. The combination of the Harris-Viehmann conjec-
ture and sum formula allows us to relate the cohomology of Rapoport-Zink spaces
to the cocharacter pairs studied in §2. To do so, we attach a map of Grothendieck
groups to each cocharacter pair. We return to the notation of §3.1.

Fix a cocharacter pair (G, ) € Cg. Suppose (Mg, pus) € Ce and satisfies pg ~¢
. We associate (Mg, 1s) to a map of representations

[MS7MS] . GrOth(G(Qp)) d GYOth(G(Qp) X WE{#S}MS )7

given by
> (Indg, o [us] © (Opy ® Jacen))(m) @ [1][| - |VeHer =P,
with
[ps] : Groth(Ms(Qp)) — Groth(Ms(Qyp) x WE{MMS ),
given by

e | LL(7T)|WE{MS}MS ®| - | Cors )],

Remark 3.3.1. We note that the map [Mg, pus] is only defined relative to a cochar-
acter pair (G, p).

Remark 3.3.2. We observe an interesting property of the maps [Mg, us]. Fix (G, 1)
and consider (Mg, pg) such that ps ~g p. Since the normalized Jacquet module
and parabolic induction functors behave better with respect to the local Langlands
correspondence, it makes sense to rewrite [Mg, ps] in terms of these maps. We get

1 1
[Ms. ps] = (I, ® 6p2 © [us] © (63, ® Jper)) @ [L][] - [P#5717].

Note that the twists by the modular character cancel in the admissible part but do

not cancel in the Galois part. Thus, the total Tate twist of the Galois part is

{pGy s — 1) — P, Sy — <det(AdN;(MS))|T N

= —(pa, 11)-
This twist does not depend on (Mg, ps) but rather only on (G, ). Thus, as we will
see in the computations of the next section, it is possible for large cancellations to
occur in computations of Mantg 4 ,,(p) for various p.

We now prove some lemmas relating to these maps before tackling the main
theorem.

Lemma 3.3.3. Let Mg,, Mg, be standard Levi subgroups of G satisfying Mg, <
Ms,. Consider the natural map

i%;/fsl :CMS1 — Cq,
as defined in Equation (6). Let (Ms,, j1s,) € Cng, - Suppose further that we have
fized pairs (Ms,, jis,) € Cng, and (G, 1) € Cg so that s, ~nmg, fs, and ps, ~G p.
Then for m e Groth(Gg,),
i%;/lsl ([Ms,, ps,])(7) = (Indgslo[M52, u52]o(5psl®Jacggf))(7r)®[1][|.|<Pc>usl>*<PG,#>],
where we write

if/lsl ([M527:u52]) : GrOth(G(QP)) - GrOth(G(QP) X WE{MSQ )7

Img,

to denote the map associated to ’?431 ((Ms,, 1s,)) in the manner above.
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Proof. We first note that by transitivity of the Jacquet module and modulus char-
acter constructions, we have

G Ms,
5PS2 @Jacpgg = (5Ps2f\M1 ®J3CPO§

o ) o ((SPS1 ®J3CIGD§§J)

Hence, we just need to check that the twists on the Galois parts of both sides match.
By Remark 3.3.2, both twists are by —(p¢, @) O

Lemma 3.3.4. Suppose we are in the situation of Proposition 2.5.9 so that G =
G1 X ... x G is a connected reductive group with standard Levi subgroup Mg =
Mg, x ... x Mg, . Fix cocharacter pairs (Mg, us), (G, 1) € Cq with us ~g u. The
bijection Cq = Cq, X...Cq,, takes (Mg, us) to (Ms,, ts,)s -y (Ms,, pts,)) and (G, p)
to ((G1,p1), -, (Gi, 1)) and we have ps, ~a, pi. Then we define

§:1[MS1‘7/1’S-L] : GrOth(G(QP)) - GrOth(G(QP) X WE{HS}MS)
by
T B B 7 [Msy s s, (1) B B [ Mg, s ] (7).
Then we have the following equality of homomorphisms of Grothendieck groups:
’IL'C:I[MSH/’LSZ'] = [Ms, /1*5]
Proof. We have
R [Ms,, ps,] = B Ind ! o [us,] o (ps, ® Jacen) @ [1][] - [Peersi ]

k
Zl<pci S, — i)
P

= Ind3, o [p] o (Ops ®JaC1GD§P) @ [1][] - | ]
= Ind%, o [u] o (9ps ®JaC1GD§P) ® [1][] - [SPormsr]
= [Ms, ps].
[l

For some finite subset C' < Cg, such that each (Mg, ug) € C satisfies pg ~¢ u,
we would like to make sense of a sum

Z [M57 MS] .
(Ms,ps)eC
This makes sense as a map Groth(G(Q,)) — Groth(G(Q,) x Wg) where Wg =
N WE{HS}IW . However, for our purposes, we would like to understand when
S

we can extend the image of this map to a representation in Groth(G(Qy) x Wg,,,, ., )-

Lemma 3.3.5. Fiz a pair (G, u) € Cq. Consider a finite subset C < Cq such that
if (Mg, us) € C then ps ~g . Furthermore, suppose that for each -y € WEMG and
element (Mg, us) € C, we have (Mg,~(us)) € C. Then

Z [MS7/1‘S]7
(Ms,pus)eC
1S a map
Groth(G(Qp)) - GrOth(G(QP) x WE{M}G)

in a natural way.
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Proof. Our construction is analogous to that of Lemma 3.2.3. We fix p € Groth(G(Qy))
and give

VC = @ [M57/J'S](p)7
(Ms,pus)eC

the structure of a G(Q,) x Wk, representation. Suppose that C' = Cy II--1ICn
where each Cj is a single WE{M}G—orbit. Then for each ¢, we give

VCi = @ [M57/J'S](p)7
(Ms,ps)eC;

the structure of a G(Q,) x Wg,,, -representation and then define the G(Q,) x
WE{MG—structure on V¢ to be the direct sum of the V.

Suppose now that C' contains a single WE{MG orbit. In this case, we will show
that

@  [Ms,pus]p),

(Ms,us)eC

can be given the structure of a Groth(G(Qp) x Wg,, ) representation equal to
[Ind, (5ps ® Jacer (p))][r o LL(3ps @ JacKer (p) |, ®|-| stz isr],

where 7 is the induced representation (not parabolic induction) given by

for a fixed choice of (Mg, us) € C. The isomorphism class of r will not depend on
this choice.
We study the representation r. Fix representatives 71, ..., 7% € WE{MG /WE{us}M
S

so that 74 = 1. Then r is defined to be the sum of k copies of r_,  indexed by
the ~; and acted on by Wg,, jo D the standard way. We check that the ith copy
of r_,g is a representation of Mg x We,, ) arg and isomorphic to r_,,(,s)- Let
Vi be the underlymg vector space of the ith h copy of r_,s. Then V; is naturally a

representation of Ms X %WE{us}M % Ms X WE{W(“S)}MS .

Now suppose v € V; is a weight vector of T c J\//[\S of weight y/. Then we show
that (1,7;)v € V; has weight (/). After all, for ¢ € T, we have

(¢, D)((1,7:)v) = (¢, 7i)v
= (L) (% (1), Do
= (L,yi)r—ps (v (t),l))(v)
= (Ly)' (1)
= %)), i)

In particular, we have shown that V; is irreducible of extreme weight —v;(us) as

an ]/\/[\s-representation (since r_, 4 is irreducible of extreme weight —pg as an Mg-
representation). It is a simple check similar to the above that WE{wus )ap. ACts
i s

trivially on the highest weight space of V;. This proves that V; is isomorphic to

T—yi(ps)-
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In particular, this shows that we can give

S Pri(us) © LL(Gps ® JacEer (p))|ws,.,

(hs)Img ’
VEWE LG B g g

the structure of a WE{u}G representation isomorphic to

T O LL(5PS ® JaCIGpéﬁp (p))|WE{Mc .

To conclude the proof, we just need to check that the |-| twists on each [Mg, v;(us)]-
term are the same. This follows because pg and pjsg are both invariant by Wb, -

We would like to check the following:

Lemma 3.3.6. The sum Mgy, as in Definition 2.5.2 gives a map
[Mgﬁb”u] : Groth(G(Qp)) — Groth(G(Qp) X WE{M}G)7

where

[Ma ] = Z (—1)Fus 2 [ Mg, ps].

(Ms,ps)ERG,b,u

Proof. By Lemma 3.3.5, it suffices to show that Mgy, ,, is invariant under the
natural action of Wg,, = on Z{Cq). Pick v € Wg,,, . Since the action of v on a
cocharacter pair fixes the standard Levi subgroup in the first factor, signs will not
be an issue and we will be done if we can check that Rg s, is y-invariant. But if
(Mp, 1) € Tcp,p then it is a simple consequence of the definition of 7 that so is
(My, (). Furthermore if (Mg, us) < (My, pp) then (Ms,y(us)) < (My, (1))
by definition of the partial order relation (remarking that @ar, (11s) = Oars (7(1s)))-
This shows that Rg ., is y-invariant as desired. g

If we combine the previous lemma with Proposition 2.5.9, and Lemma 3.3.4 we
get

9) Ky [Ma, ] = [Mapl-

We now prove the key result of this section which provides the connection be-
tween Mant and cocharacter pairs.

Theorem 3.3.7. Assume that the Harris- Viehmann conjecture is true for the gen-
eral linear groups we consider.

(1) We have the following equality of morphisms Groth?(G(Q,)) — Groth?*(G(Q,) x
WE{M}G )
Mantg p,, 0 Redy = [Map,u)-

where Groth?(G(Q,)) is defined to be the span of the essentially square
integrable representations in Groth(G(Qp)).

(2) Now assume further that Theorem 3.1.2 holds for all admissible represen-
tations of Groth(G(Qp)). Then the above equality holds as morphisms
Groth(G(Qp)) — Groth(G(Qy) x W, ).

Proof. We prove the second statement first. We prove this result by induction on
the rank of X (T).

If the rank of X, (T') is 1, then B(G, 1) is a singleton and so the result follows
from Theorem 3.1.2.
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Suppose the result holds for all non-basic b € B(G, p) with Rk(X,(T)) < 7.
Then by Theorem 3.1.2 and Theorem 2.5.4, the result holds for all b € B(G, u)
with Rk(X4(T)) < 7

Finally, suppose the result holds for all b € B(G, 1) with Rk(X4(T)) < r. Then
suppose X, (T) has rank  + 1 and choose b € B(G, 11) such that b is not basic. We
write My = My, x ... x My, . By the Harris-Viehmann formula,

Mantgyb# o Redy

= Z (IndIpr © ®§:1Manthi7b§,Hbi © Redb) ® [1]“ : |<pG”ub>7<pG1#>]

G,
(My 7#b)ezjw:b/

= Z (Indgb o®f:1(Manthi7b;7#bioRedb;)o(5pb®Jacgbop))®[1][|.|<pc,ub>—<pc,u>],

G,p
(Mb;Hb)eszyb/

By inductive assumption we get

=Y (mdf o® Mg, ] 0 (Br, ®Tacks)) @ [1]] - [0 —ro ],

G,
(Mbaﬂb)EIM;b/

and now by Equation (9)

= Z (Indgb o [Mag,pr ] © (0P, ® Jacg;p)) ® [1][] - |<PGuU<b>*<PGnU‘>]'

G,
(Mbnu'b)EIMbp:b/

Finally, by Corollary 2.5.8 and Lemma 3.3.3
= [Ma.pul-

We must check that the WE{MG structure coming from Remark 3.2.2 is compatible
with that of Lemma 3.3.5. Pick p € Groth(G(Q,)). By inductive assumption and

Lemma 3.3.3, for each (Mp, up) € Iﬂcjfb”b,, the WE{% -structures on
’ b

133
(Indgb o Mant s, i, © Redy o (6p, ® Jacg;p))(p) ® [1][] - |<pc’”l’>_<pg’“>]7

and

7;%;/[b ([MMb)blvﬂb])(p)7
are the same. Thus by Lemma 3.2.3, the Wg,,, _-structure on Mantcp, . (Redy(p))

is a direct sum over the Wg,,, -orbits of I]@’b" . of induced representations of the

form

WE{u}G

Ind i, Moty 1) (0)-

This Wpg,,, _-structure matches the one on [Mg ] (coming from Lemma 3.3.5)
by the transitivity of the induced representation construction (see Lemma 3.2.4 for
instance).

We now prove the first statement of the theorem. To do so, we need to show that
if we restrict ourselves to the span of the essentially square integrable representa-
tions Groth?(G(Q,)) < Groth(G(Q,)), then we can remove the first assumption. In
particular, these representations are accessible, so we have Theorem 3.1.2 uncondi-
tionally. In the above proof we need only observe that the Jacquet module J acgop (p)
is a sum of essentially square integrable representations for p € Irr? (G(Qp)). Thus,
to get the result for Groth®(G(Q,)) by induction, our inductive assumption need

WE{I»Lb }Mb
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only hold for all Groth?(G’(Q,)) for kG’ < rkG. This shows that under the con-
dition that the Harris-Viehmann conjecture is true in the cases we consider, the
theorem is true for essentially square integrable representations without any other
assumptions. ([l

4. HARRIS’S GENERALIZATION OF THE KOTTWITZ CONJECTURE (PROOF OF
THEOREM 1.5)

In this section, we discuss an explicit computation using the above results. In
particular, we prove that Shin’s formula for all admissible representations combined
with the Harris-Viehmann conjecture proves Harris’s conjecture for the general
linear groups considered in §3. This conjecture is distinct from the Harris-Viehmann
conjecture and is [Har01, Conj 5.4].

We begin by discussing the Kottwitz conjecture, which appears as [Shil2, Cor
7.7] in the cases we consider, and more generally as [RV14, Conj 7.3]. Fix G as
in section 3 of this paper and a cocharacter pair (G, u) such that p is minuscule.
Let b € B(G, u) be the unique basic element. Now, consider p a representation of
Jp(Qp) such that JL(p) is a supercuspidal representation of G(Q,). Then

Mantgyb#(Redb(JL(p))) = Mantgyb#(p),
but by Theorem 3.3.7, the lefthand side equals

[Mep,ul(JL(p)).

Now we see that since JL(p) is supercuspidal, each term of the form [Mg, us](JL(p))
is 0 when Mg is a proper Levi subgroup of G. Thus,

Mantc ,u(p) = [Map,ul (JL(p) = [TL(p)][r—p o LL(p)| - |~<H].

This result is the Kottwitz conjecture for G. Alternatively, if b € B(G, 1) is not
basic, then no cocharacter pairs with G as the Levi subgroup will appear in Mgy,
and so

Mante p,.(p) = 0.

Of course, these results are already known by [Shil2], but we review them as mo-
tivation for Harris’s conjecture.
We begin with the following useful definition.

Definition 4.0.1. Fix (G, u) € Cg and b € B(G, u). Let Mg be a standard Levi
subgroup such that Mg ¢ M. We define the subset Relfjg_’b c Cg as the set

{(Ms, ps) € Cq : I(My, up) € Tap,n With Onar, () = Onrs (1), o ~nr, ps}-

The notation pg ~a, (e is defined to mean that pg and p, are conjugate in M.
Note that we do not require (Mg, s) < (G, ) or (Mg, ps) < (M, fp)-

We record the following useful properties of Relfjg b

Lemma 4.0.2. We use the same notation as in the previous definition. Then

G, My, pp
Rel§" , = [T Renh.

G,
(Mbvﬂb)ezzwbpjb/
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Proof. If (Mg, pis) € Relfjg)b, then there is an (M, 1) € Ta,p,, such that Oar, (1) =
Orr(ps) and ps ~pr, te. Then by Proposition 2.5.7, there is a unique (My, i) €
II\C;V[):b’ such that (My, ) € Tam,p e and so (Mg, pg) € Relj\l\/dé’fg?. The reverse
inclusion is analogous. ([l

Lemma 4.0.3. The set Relgi[’gb 18 invariant under the action of WE{u}G'

Proof. It (Mg, us) € Relgi[’gyb then we can find (My, us) € Tap,u With O, () =
Onrrg (1) and pp ~pg, ps. By a similar argument to Lemma 3.3.6, we show that for
each v € Wg,, ., we have (My, (1)) € Ta o, and Onrs (v(ps)) = Oar, (v(1)) and
v(ps) ~n, v(pp). This finishes the proof. O

Equipped with the above definition, we can now make the following restatement
and slight generalization of [Har01, Conj 5.4] for the G that we consider. Our
statement is a generalization because we consider non-basic b and do not assume
the representation IACj[ S (p) is irreducible.

Conjecture 4.0.4 (Harris). Fiz a b€ B(G, ) and a standard Levi subgroup Mg <
My. Then for p € Groth(Mg(Qp)) a supercuspidal representation, the following
representations are equal in Groth(G(Qp) x Wg,,, )

Mantc,p.u(e(Jo) LI (68, p, ® Tng’ ()

and

[11?45 (n)] @ T_pg O LL(p)|WE{Hs)MS |- |*<PG”u>

G,
(Ms”us)ERClzwg’b

Here r_, g is a representation of]\//-[; X WE{us}M but the righthand side naturally
S

acquires the structure of a G(Q,) x Wey,,. representation from Lemma 4.0.8 and
the proof of Lemma 3.3.5.
In particular, for b basic, this says that

Mantg)bM(Redb(IAst (p))) = [IAC}S ()] (—D T_ps © LL(p)lW{us}MS |- |—<pc7u>

(Ms 7MS)ER611(51§,b

We will prove this conjecture assuming that Shin’s formula (Theorem 3.1.2 of
this paper) holds for all admissible representations.

We proceed by induction on the rank of T'. The key observation will be that
Harris’s conjecture is compatible with the Harris-Viehmann conjecture and Shin’s
formula. We will first assume that IACj[S (p) is irreducible and later remove this
assumption.

The following proposition shows that Conjecture 4.0.4 is compatible with the
Harris-Viehmann conjecture (Conjecture 3.2.1).

Proposition 4.0.5. Fiz b € B(G, u) non-basic and fix a standard Levi subgroup
Ms of G satisfying Mg < M. Pick p € Groth(Ms(Q,)) and suppose that IACj[S (p)
is irreducible. Suppose that Conjecture 4.0.4 for p holds for Mantys, v, for each
(My, up) € I]\Cj[’b*fb,. Then Conjecture 4.0.4 holds for Mantg p. ..
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Proof. We compute
1
Mantepu(e(3) LT (0 p, ® ()

= Z Indgb (Mantag, b, (e(Jp) LI (64 p, @ Iﬁ; (M) @ [1][| - [<Perro—m],

G,
(M 7Hb)EIM:b/

so by assumption

=Y WA 0T ()] @ oo LU, |1

G,p My, 1y
(My,up)eZ 0, (Ms,ps)eRel, 27

where S = —(par,, i) + {pa iy — py — (CHALLBDDIT S — (o iy (following
the discussion in Remark 3.3.2). Now simplifying the above expression, we get

= ) W) D s o LLUG ), | TP

G, My, 1y,
(Mbvﬂb)ezzwb’b/ (MS#'LS)ERQIMS,I,/

Thus, we are reduced to showing that
Gp  _ My,
Rel§" , = [T Reli.
(My,up)ET M

My, b/

This is just Lemma 4.0.2. O

With Proposition 4.0.5 in hand, it remains to show that if Conjecture 4.0.4 holds
for all non-basic b € B(G, p) then it holds for the basic b. The key to proving this
is Theorem 3.1.2.

We begin by making some observations about r_,. Since we assumed IACj[ S (p)
is irreducible, we have LL(I§;_ (p)) = LL(p) and the image of this representation
lies inside *Mg < LG. Thus, the term [r_, o LL(I{;, (p))|WE{u}c] depends only on

the restriction r_ Since p is assumed to be minuscule, we have the

1 |Mi>q\WE{“}G :
following equality of Mg representations.

(10) T_M|]\/4\S = (‘D T—us|1\?s'
(Ms,p15)ECG 15 ~G 1t

We further note that each r_,, is a representation of JT/[\S X Wgy, gy, .- Since
S

{(Mg,us) € Ca : pus ~g p} is invariant under the natural action of We,» it
follows from the proof of 3.3.5 that the right-hand side of the above equation can
be promoted to a representation of ]/\-/[; X WE{MG so that 10 is an equality of WE{MG
representations.

Now we recall the following subsets of W*®! defined in §2.11 of [BZ77].

Definition 4.0.6. Let Mg, Ng be standard Levi subgroups of G. We define
WMs = {we W™ : w(Mg n B) c B},
WMs:Ns — {4y e W™ . w(Ms n B) © B,w *(Ns n B) c B}

We record the following lemma:
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Lemma 4.0.7. [BZ77, Lem 2.11] Suppose Mg, Ng are standard Levi subgroups
of G and w e WMs:Ns_ Then w(Mg) n Ng and w™(Ng) n Mg are standard Levi
subgroups.

Lemma 4.0.8. Suppose Ms is a standard Levi subgroup of G. Then W™s contains
a unique representative of each left coset of W}{;ls Equivalently, (WMs)=1 contains

a unique representative of each right coset of W}{jls

Proof. Suppose w € W™, Then B’ = w™!(B) is a Borel subgroup of G containing
the maximal torus T'. Since B’ contains exactly one of each root and its negative,
B’ n Mg is a Borel subgroup of Mg. In particular, since B’ n Mg, B n Mg are both
Borel subgroups of Mg containing T, there exists a wy, € W]{jls so that

wm(B N MS) = B/ @) Ms.

Then ww,, (BN Mg) = Bn Mg < B, so that ww,, € W*s. Thus the coset wW}s.
contains at least one element of Ws

Suppose wwy,, ww}, € wWish A WMs. In particular, ww/, = (wwm,)(w,,'w),).
But ww,, takes all positive roots of Mg to positive roots of G, and equivalently,
negative roots of Mg to negative roots of G. Thus, if w;'w!, takes any positive
root of Mg to a negative root of Mg, then ww,, cannot be an element of WMs  In
particular, this implies that w,'w!/, = 1 which shows uniqueness. O

1

Lemma 4.0.9. Suppose Mg is a standard Levi subgroup of G and x € 2[6 Ms and
we W, Then w(x) = z if and only if w e W}{jls

Proof. Recall that by assumption, G is quasi-split over Q, and A is a split torus
of G of maximal rank. Pick g € Ng(A)(Q,) so that g projects to w € W™l =
Ng(A)(Qp)/Za(A)(Q,). Then the equation w(z) = x implies that g € Zg(x)(Qy).
The centralizer of a cocharacter is a Levi subgroup, and since x € 916 Mg We have
Zg(x) = Mg. In particular, g € Nazy (A)(Qp) and so w e WisL.

We remark that z is not a cocharacter, but that Zg () still makes sense as there
is an induced action of G on X, (A4)g. O

We can now prove the following key proposition.

Proposition 4.0.10. Fiz (G, u) € Cq and suppose (Mg, ps) € Ca satisfies ps ~a
w. Then there exists a unique b € B(G,pu) and a unique w € WMs:Mo 5o that
(w(Ms), w(pis)) € Rel%

(Ms),b
Proof. We first discuss uniqueness. By assumption, w(Mg) is a standard Levi
subgroup. Then w induces an equality wW}{jlsw_l = W;"(IMS). In particular, Wl

acts on X, (7T) through Corollary B.0.2 and it follows that
w(Ons (1s)) = Ow(ns) (w(ps))-

Since (w(Mg),w(us)) € Relgk’;\/[s)_’b, it follows that 6y,(azg)(w(is)) is dominant in
the relative root system. In particular, 6,,(ys)(w(is)) must be equal to the unique
element x in the W orbit of 6y, (ps) which is dominant in 2g. Now x € A} .0
for a unique Mg . Since any (My, up) € Ta b, is definitionally strictly decreasing, it
follows that even though we can’t yet conclude the uniqueness of b, we have shown

that any other b; must satisfy My, = My = Mg.
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Now, suppose we had w,w’ € WMs"M» guch that

w(Ous (1s)) = & = w'(Onrs (1s)).

Then in particular, w'w™"' stabilizes z and so by Lemma 4.0.9, w'w™! € W}{ji
So w and w' are in the same right coset Wjiflw. However, WMs:Mv < (7 Me)=1,
By Lemma 4.0.8, (W™»)~1 contains a unique representative of each right coset of
(WMe)=1 and so there is a unique w € (WM»)~! satisfying w(fus(ps)) = x. In
particular, this implies that w = w’. Thus, we have shown that w is unique, if it
exists. There is exactly one p’ € X, (T') such that ' ~pz w(p) and g/ is dominant
in My. Then (My, 1) € Tg b, for at most one b € B(G, ). This shows uniqueness.

To prove existence, we again define x to be the unique dominant element in the
Wrelorbit of @y, (us). Define Mg = Zg(x) and take the unique w e (WMs')~1
such that w(0ars (pars)) = . We would like to show that w e WMs:Ms,

By definition,

w(Ms) € w(Za(Oms(ns))) = Zo(x) = M.

Suppose it is not the case that w(Mg n B) < B. In particular, w maps a positive
root 7 of Mg to a root w(r) of Mg/ which is not positive. In particular, —w(r) is
positive and so w1l (—w(r)) = —r is positive (since w € (WMs")~1). But this is
clearly a contradiction. Thus, in fact w e WMs:Ms

By Lemma 4.0.7, w(Mgs) n Mg = w(Mg) is a standard Levi. It remains to

show that (w(Mg),w(us)) is a cocharacter pair and an element of Relg&ﬁ/ls - Now

if r is a positive root in the absolute root system of w(Mg), then {r,w(us)) =
(w™(r),psy = 0 (since (Mg, pg) is a cocharacter pair and w='(r) is a posi-
tive root of Mg). Thus, (w(Mg),w(usg)) is a cocharacter pair. By construction,
T = Oyms)(wlps)) = Oug, (w(ps)). Suppose p' € Xy (T) is the unique cochar-
acter conjugate to w(us) in Mg and dominant in Mg,. Then by Corollary 2.2.4,
(Mg, ') is strictly decreasing and therefore (Mg, ') € TG b, for some b and so

(w(Ms),w(ps)) € Relgil&s),b' .

Corollary 4.0.11. Fix a cocharacter pair (G, p) € Ca and a standard Levi subgroup
Ms of G. For be B(G, p), define Wy, by {we WMs:Mo . 4y(Mg) = My}. Then the
previous lemma gives a bijection

{(Ms,p,s) eCq: Hs ~a /J,} = H ]_[ Re]‘gil;\/[g),b'
beB(G,p) weW,

Proof. By the construction in the previous proposition, it is clear that given an
(Mg, us) € Ca we get an element of the right-hand side of the above equation.
Conversely, an element (w(Mg), u’) of the right-hand side comes with a fixed w € W}
and so we can recover (Mg, w™!(1)) on the left-hand side. O

We are now ready to finish the proof of Conjecture 4.0.4. By inductive assump-
tion we assume we’ve shown Conjecture 4.0.4 for G with maximal torus of rank
less than n. Then Proposition 4.0.5 implies that Conjecture 4.0.4 holds for G with
maximal torus of rank n in the case where b is not basic. It remains to prove
the basic case, for which it suffices to show that Theorem 3.1.2 is compatible with
Conjecture 4.0.4. We have

D, Mantg,(Redy(I5, ()
beB(G, )
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1
= D, Mantguu(e(S) LI (03, ® Jgen If7, (p))-
beB(G,up)

By the geometric lemma of [BZ77] and noting that Ws:Me defined with respect
to B is equal to the analogous set defined with respect to B°P, we have

FnIG )= Y DM ().
weWMs My
where M{ = Mg n w™' (M), M] = w(Mg) n M. By the assumption that p is
supercuspidal we must have Mg = Mg and My = w(Mg). In this case, we have

from the geometric lemma that w(Mg) is a standard Levi subgroup. Thus we get
that the previous expression is equal to

3 M,
Z Mantc,p .(e(Js) Z LJ(5p, ®Iw(MS)(w(p)))7
beB(G, 1) weWy

where W, ¢ WMs:Mev i5 the subset of w such that w(Mg) = M. We now apply
Corollary 4.0.4 by inductive assumption to get

> 2 oy (@) &, 7w © LL(IG 3y (w(p))) lws, | R

beB (G, ) weW,, (w(Ms),w)eRelSly, W)

y [BZ77, Thm 2.9], we have that

16 1y (w(o))] = 1 (0],
and since I§;_(p) is assumed to be irreducible, we have
LL(UIS,(p) = LL(p).
Finally, we note that WE{w*W))MS = WEW”w(Mp and we have an equality
[r—u’ © LL(w(p))|WE{H’)w(MS)] = [T—wfl(u’) © LL(p)|WE{w’1(u’)}MS
Thus the above expression becomes

Z Z IMS @ T w=1(w) o LL(p)|WE{w*1(u/)}M | . |_<PG>H>

beB(G,u) weW, (w(Ms)u)eRel3 il s

By Corollary 4.0.11 this equals
U@l @ rops o LL)we,, |- 1700,
(Ms,ps)ips~cp s

Finally, we apply the decomposition given by Equation (10) to get
S Ol wwe,  © LEDws,, |- 17009,
{r}a e

which is the desired result.

Finally, we show that Conjecture 4.0.4 holds even if I} (p) is not irreducible.
Our verification that Conjecture 4.0.4 is compatible with the Harris-Viehmann
conjecture did not rely on the irreducibility of IACj[S (p). Thus in the case where
we do not assume Ifj (p) is irreducible, it would suffice to show that Conjecture
4.0.4 is true in the case where b is basic. If b is basic, then M, = G so we have

Mantg p . (e (Jb)LJ(ég p A0t (p) = Mantg,, , (Redy (157, (p)))-
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This can now be computed by cocharacter pairs using the results of §3. If 1?45 (p) is
assumed to be irreducible, then for each cocharacter pair (Mg, pus:) of G, we have

[Ms', us'](I57, (p)) = (Ind§, o [1s]) (03, ® Tpop I (p) @ [A][] - [P #s1]

M ! ’—
= (ndz, o (s )( D 53, ® INE  (w(p) ® L[] - [Cors =],
weWp
where W), is the subset of w € Ws:Ms’ such that w(Mg) = Mg. Then the above
equals

(157 ()] GLV)V rpe o LL(w(p))| - |~Pe#

Thus we see that applying various [Mg/, pg] to IACsz (p) in the irreducible case
will always yield the same term of Groth(G(Q,)) (namely [If) (p)]) and so when
evaluating Mantg b, (Reds (1§}, (p)) as a sum of cocharacter pairs, the different
Galois terms must cancel to give Conjecture 4.0.4. Thus, if we can show that in
the reducible case, the Groth(G(Qp)) part of each [Mgr, us/](I§], (p)) is fixed and
the Galois part is identical to the irreducible case, then Conjecture 4.0.4 must hold
for this case as well.

The first part of our previous computation did not depend on the irreducibility
of I§;_(p) so we still have

(M, us' (IS5 (p)) = (IS, o [us ) @ 65, @I (w(p)) @ ][] [#ers ).
weW,

Mg/

w(Ms )(w(p)) =m @... ® 7. Then using that for all ¢, we have

Suppose now that [
LL(m;) = LL(w(p)),

[ns (1, (?\;fs)(w(l’))) =@ [m][r_p,, o LL(m;) ® | - |~ 5]
= @ [mi][r_puy 0 LL(w(p)) ® | - |~PMsr#57]

= [Iﬁ%s)(w(p))] [T‘_HS/ © LL(W(P)) ®| : |_<pMS’ ’“S'>]

Thus, the expression for [Ms:, pus](I5;,(p)) becomes

.| @ roug o LL@w(@)] - |74

weWMs>Mgr

as desired.

APPENDIX A. EXAMPLES

In this section, we give an example to show that even in the unramified EL-type
case, we do not get an expression as simple as Harris’s conjecture for Mante 5, (p)
for general p. We generally use the same notation as in the computation in Example
3.2.5.

Let G = GLy4, suppose i has weights (12,02), and take b basic. Let T be the
diagonal maximal torus and B be the Borel subgroup of upper triangular matrices.
Then the set of cocharacter pairs less than or equal to (G, ) is as follows.
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(GLy4, (12,0%))

(GL3 x GLy, (12,0)(0)) (GLZ, (12)(0%)) (GL; x GL3, (1)(1,02))
(GLy x GL2, (12)(0)(0)) (GLy x GLy x GLy, (1)(1,0)(0)) (GL2 x GLg, (1)(1)(0?))

|

(GL1, (1)(1)(0)(0))

Let p € Groth(GLl(Qp)) and consider 7 the unique essentially square integrable
quotient of [ GL4 (PR p(1) X p(2) K p(3)). We want to compute Mante p ,(Redy(7)).

We introduce some notation which will allow us to describe the answer to this
question. The results of §2 of [Zel80] show that I, GL4 (p X p(1) X p(2) X p(3)) has

exactly 8 irreducible subquotients. If 7/ is one such subquotient, then J§,, (7') will
be a finite sum of representations of the form p(A(0)) Xl p(A(1)) Xl p(A(2)) X p(A(3))
where A is a permutation of {0,1,2,3}. In particular, if Q denotes the set of all
such permutations of p Xl p(1) Xl p(2) X p(3), then each permutation lies in the
Jacquet module of exactly one irreducible subquotient of I GL4 (pXp(1)Xp(2)Xp(3))
so that the irreducible subquotients correspond to a partition of 2. We use the
following shorthand: we define the notation (0123) to refer to the representation
p(0) X p(1) X p(2) X p(3). Following Zelevinsky, our 8 irreducible subquotients
naturally correspond to vertices of a 3-dimensional cube, and so we denote them
by binary strings of length 3. Then if we denote the subset of Q corresponding to
some subquotient 7’ by Q(7’),we have

Q([000]) = {(3210)}

Q([100]) = {(2310), (2130), (2103)}

Q([010]) = {(3120), (1320), (1302), (3102), (1032)}
Q([001]) = {(3201), (3021), (0321)}

Q([110]) = {(1203), (1023), (1230)}

Q([101]) = {(2013), (2031), (0213), (0231), (2301)}
Q([011]) = {(3012), (0312), (0132)}

Q([111]) = {(0123)}

In particular, our representation m corresponds to [111] under the above notation.
A tedious computation using Theorem 3.3.7 yields the following

Proposition A.0.1.

Mantc, . (Reds (7)) = [LLL][LL(p) (=T7) + LL(p) (=6)]

— (MOJZL(p) (=5)] + [O[LL(p) (~5)])
[010][LL(p) (~4)]

— [000][ZL(p) (~3)]

—+
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We finish by remarking that the set of cocharacter pairs less than or equal to
(G, ) has some special properties in the above case that make the general case
more complicated.

For instance, each 7gp,, has at most a single element. However, if G' has a
nontrivial action by I, this need not be the case.

In the case we consider, we have a single cocharacter pair for each Levi subgroup.
In general, this need not be the case. For instance, if G = GLs, u = (13,02), then
(GL3 x GLa, (13)(0?)), (GL3 x GLg, (12,0)(1,0)) are both less than (G, ).

Further, in the above example, each cocharacter pair (Mg, ug) had the property
that pus was dominant as a cocharacter of G relative to B. In general this need not
be the case. In fact, (GL?, (1)(1)(0)(1)(0)) < (GLs, (13,02)).

APPENDIX B. RELATIVE ROOT SYSTEMS AND WEYL CHAMBERS

In this section we prove a fact about root systems that is needed in the text (for
instance in the proof of Proposition 2.4.3). We assume that G is a quasisplit group
over a field k of characteristic 0 and pick a separable closure k°¢P. We fix a split
k-torus A of maximal rank in G and choose a maximal torus 7' and Borel subgroup
B both defined over k and such that A — T' < B. Associated to this data, we have
an absolute root datum

(X*(T),®"(G,T), X(T),®+(G,T)),
and a relative root datum
Our choice of B also gives sets A of absolute simple roots and A of relative simple
roots. Note that we also have a natural restriction map
res: X*(T) — X*(A),
and that by definition an absolute root in ®*(G,T) restricts to an element of
*(G, A) u {0}.
We record two standard consequences of our assumption that G is quasisplit.

Proposition B.0.1. Let G be quasisplit and use the notations as above. Then,

(1) The centralizer Zg(A) =T,
(2) We have res(A) = ,A. The key point being that no absolute simple root
restricts to the trivial character.

We have the following easy consequence on the structure of the Weyl group of
the relative root system. Recall that the absolute Weyl group Wequals
Neg(T)(k*)/ Za(T) (k)
and the relative Weyl group W' is Ng(A)(k)/Za(A)(k).
Corollary B.0.2. We have the following equality: W' = W' where T' = Gal(k*? /k).

Proof. Tt suffices to show that Zg(A) = Zg(T) and that Ng(A)(k) = Ng(T)(k).
For the first equality, we note that by the quasisplit assumption, Zg(A) = T =
Za(T). For the second equality, we note that any g € Ng(A)(k) must also normalize
the centralizer of A which is T. Conversely, if g € Ng(T)(k) then g normalizes the
unique maximal k-split sub-torus of T which is A. O
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Define the absolute Weyl chamber ag c X*(T)g by {r € X*(T)qg : {&,z) >

0, € A} and define the relative Weyl chamber ’faa < X*(A)g analogously. The
key result of this section is that

res(aa) = kaa'
Despite its simple statement, the author has been unable to locate a convenient
reference of this fact. For © € X*(T)g and o € A, we need to relate (&, z) and

(res(a),res(x)). If we let o, € W be the reflection corresponding to the root «,
then we have

(11) x —oq(x) = (&, z)a.

and analogously for res(«). Thus it will suffice to relate o, and Ores(a)-

Note that since B is defined over k, we have v(A) = A for every v € I'. Moreover,
for each a € A, we have res(y(a)) = res(a). After all, I' acts trivially on X*(4)g
and the restriction map is I'-equivariant.

Now fix a € A and let W,, be the subgroup of W generated by the elements 0. (q)
for each v € I'. We claim that if we can find a nontrivial I'-invariant element of W,
then it must equal 0,e5(q). To prove this, we first recall the construction of o, and
Ores(a) (see [Bor91, pg 230]) for instance). Given aroot o € ®* (G, T') we can define a
group Go, = Zg(T,) where T, = ker(a)? = T. Then Ng_(T)(k*P)/Zq, (T)(k*P)
embeds into W and has a unique nontrivial element which is o,. Analogously,
we define Ares(a) and Gres(a) = ZG(Ares(a))' Then NGreS(a)(A)(k)/ZGreS(a) (A)(k)
embeds into W' and has a unique nontrivial element that is identified with Ores(a)-

Now, by Corollary B.0.2 we have

NGres(a) (A)(k)/ZGres(a) (A) (k) = NGres(a) (T)(k)/ZGres(a) (T) (k)
Thus to complete the proof of the claim, we need to show that
(12) NGa (T) (ksep)/ZGa (T) (ksep) - NGrOS(a) (T)(ksep)/ZGrCS(ﬂ) (T)(ksep)'

After all, the unique nontrivial T'-invariant element of the group on the right is
Ores(a) and the group on the left contains o,. Since we get the same equation if we
replace « everywhere with v(«), this will imply that

Wa € NG, (T)(R*P) ) Z,, (T) (RF).
Now, Equation (12) follows from the fact that
26 (T) = 26,0y (T) = T

reste (

and
Ne,(T) = Ne,yo) (T).

We are now interested in finding a nontrivial I'-invariant element of the group
W, defined above. In fact, W, will be a finite Coxeter group and the element we
seek is the unique element of longest length. We need to compute this element
explicitly, which we now do. We treat two cases. Suppose first that the elements

of the I'-orbit of g, commute pairwise. Then clearly the product I o
~eTl'/stab(oq)

(o)

is I'-invariant.
In the second case, suppose that the I'-orbit of o, has precisely two elements
which we denote X and Y. Then we have (XY)* = 1 for some k > 2 which we
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assume to be minimal. If k is even, then (XY)*/? is invariant and nontrivial and if
k is odd, then Y (XY)®*~1/2 is invariant and nontrivial.

We now prove that any I' action on the simple roots A of G is a combination
of these cases. The action of I' on A induces an action on the associated (not
necessarily connected) Dynkin diagram D. FEach v € T maps connected components
of D to connected components and so there is an induced action of I' on the set of
connected components 7o (D).

Now fix an o € A and consider the T'-orbit I'a of a. Suppose D? is a connected
component of D such that D’ nT'ae # . Then via the classification of connected
Dynkin diagrams, we see that T'an D? contains either a single node, 2 non-adjacent
nodes, 2 adjacent nodes, or 3 nodes where no two are adjacent. In particular, these
are all covered by the cases we considered above, so we can find an element w; of
W, that is invariant by the action of stab(D?) = T'. Then I'a consists of finitely
many disjoint copies of one of the above possibilities and so we see that [ w; is

3
[-invariant and an element of W, and therefore equal to 0,¢4o)- Equipped with
this description, we now give a proof of the main result of this section.

Proposition B.0.3. We continue to observe the assumptions made above. In

particular, G is a quasisplit group over k. Then the map res : X*(T) — X*(A)
induces an equality

res(aa) = ,Eg.

Proof. We first show that res(az,) c kaa- Pick z € ag and o € A. Then we need
to show that

(res(ar),res(x)) = 0
or equivalently, that
res(:v) — Ores(a) (res(:v))

is a non-negative multiple of res(a). Note that res is W -equivariant (where W'
acts as W' on X*(A)). Thus, it suffices to show that

res(x — Ores(a) (x))

is a non-negative multiple of res(«). Thus, we need to compute x — Ores(a) (x). We
do so using our description of oyeg(q)-

We first consider the case where the I'-orbit of o, consists of pairwise commuting
elements. Equivalently, the elements of I'a are pairwise orthogonal. Then

Urcs(a) =0q, ©...00q,
for {a1,...,an} = Ta. Since x is dominant in the absolute root system, we have

T — 0q,;(2) = a0



48 ALEXANDER BERTOLONI MELI

for some a; > 0. Then since «; is orthogonal to «; for ¢ # j, we have o4, (o;) = «;.
Thus,

(Cay © .. 000, 1 )(X) — (0ay ©...004;)(T)

I

N
Il
—

T — Ores(a) (I)

-+ 0 Uﬂfi—l)(x — Ouy (I))

I
Ingk
)

2
O

N
Il
—

0 0n,_, )(aia;)

I
1=
S
2
(@)

<.
=

3|

Thus in this case,
1e8(T — Opes(a) () = (a1 + ... + an)res(a)

and aj + ... + a, = 0 as desired.

Now we consider the case where F'a = {«, 8} and « and S are adjacent in D and
connected by a single edge. Then 0,(8) = a + 8 = og(a). In this case, Oyes(a) =
0p © 04 ©0g. By assumption, we have that © — 0o (z) = ac and x — og(x) = b for
a and b non-negative. Thus,

r — Urcs(a)(x) = (LL' - Uﬂ(x)) + U,@(:E - O—Ot(x)) + (UIB o O'a)(l' - O'B(.’IJ))
=06+ ala+ ) + ba
= (a+b)(a+p),

which projects to 2(a + b)res(«) and 2(a + b) > 0 as desired.

Finally, we must consider the case where I'a equals {aq, 81, ..., @, Bn} such that
«; and [; are connected by a single edge in D but for ¢ # j, neither «; nor g; are
connected to either a; or §;. We compute x — (0, 004, ©0p,)(x) as in the previous
paragraph. Then if we let w; = 0, 0 04, 0 0g,, we have

Urcs(a) = W1 ©..0Wp.

Now we can compute & — 0pes(q)(2) as in the commuting case, substituting w; for
Oa,;- We see in this case that

1e8(T — Opes(a) () = 2(a1 + by + ... + an + by)res(a).

This concludes the proof that res(aa) c ,ﬁg.

It remains to show that we actually have equality. We claim it suffices to
show that the fundamental weight d,e5(o) is an element of res(aa). Recall that
Ores(a) is the element in the Q-span of the relative roots defined so that the pair-
ing with res(a) is 1 and the pairing is 0 with all the other relative simple co-
roots. To show the claim proves our result, we note there is a natural isomorphism
X*(A)g = X*(Ao)g x X*(A")g where Ay is the maximal k-split central torus
and A’ is the identity component of the intersection of A with the derived sub-
group of G. Then ka& corresponds under this identification to the product of
X*(Ap)g with the projection of kaa to X*(A"). Then we have a natural map
X*(Z(G))g — X*(Ao)g where Z(G) is the identity component of the center of
G and X*(Z(G)%)q < 65. Thus it suffices to show that res(aa) surjects onto
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the projection of kaz) to X*(A’). This latter space is identified with the set of
non-negative linear combinations of the fundamental relative weights, thus proving
the claim.

To prove that 6eeq) is an element of res(aa), we make use of an equivalent
description of d,e4(q)- It is the unique element in the Q-span of the relative roots
0 that Ores(8)(Ores(a)) = Ores(a) for res(a) and res(f) distinct simple roots and
Ores(8) (Ores(a)) = Ores(a) — res(f) when res(ar) = res(f3).

In the case where the elements of ' are mutually orthogonal, we have by
the above characterization of fundamental weights that the absolute fundamen-
tal weight d, restricts to dye5(q). In the case where I'a has two elements that are
connected in D, then d, restricts to 20,e5(q)- In the final case, d,, restricts to 20,e5(q) -
Thus, in all cases, we can find an element of X*(7T')q that restricts to 0yeg(q)- This
completes the proof. O

We record an important corollary of this proposition.

Corollary B.0.4. Suppose pi, 1’ € X«(T)g and p > pi'. Let ub be the average of
w over its T' orbit. Then p' > p' in X4 (A)g. We caution that the first inequality
means that p — u' is a non-negative combination of absolute simple coroots, while
the second means that ' — p'v is a non-negative combination of relative simple
coroots.

Proof. Recall that the action of I' stabilizes A. Thus for each v € I', we have
y(p) = v(i') and so also u > p'T in the absolute root system. Thus, we are reduced
to showing that if € X, (T)(g, is a non-negative combination of simple absolute
coroots, then it is also a non-negative combination of simple relative coroots (under
the identification X4 (A)g = X« (T)g)-

Equivalently, we need to show that if z has non-negative pairing with every
element of 65, then z has non-negative pairing with every element of k@&. This

is indeed equivalent because x has non-negative pairing with each element of 65 if
and only if it has non-negative pairing with each fundamental weight §, and this
is the case if and only if x is a non-negative combination of simple roots.

Finally, this equivalent statement is an immediate consequence of the proposi-
tion. O
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