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Abstract

All aspects of transcription and its regulation involve dynamic events. How-
ever, capturing these dynamic events in gene regulatory networks (GRNs)
offers both a promise and a challenge. The promise is that capturing and
modeling the dynamic changes in GRNs will allow us to understand how
organisms adapt to a changing environment. The ability to mount a rapid
transcriptional response to environmental changes is especially important
in nonmotile organisms such as plants. The challenge is to capture these
dynamic, genome-wide events and model them in GRNs. In this review, we
cover recent progress in capturing dynamic interactions of transcription fac-
tors with their targets—at both the local and genome-wide levels—and using
them to learn how GRNs operate as a function of time. We also discuss re-
cent advances that employ time-based machine learning approaches to fore-
cast gene expression at future time points, a key goal of systems biology.
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1. INTRODUCTION

Unraveling the dynamic nature of gene regulatory networks (GRNs) is both a main promise and
a key challenge of systems biology. The promise is the ability to exploit time-series data to learn
the GRNs that drive dynamic genome-wide responses in a biological system. Doing so will allow
us to “achieve the final aim of kinetic research; namely, to obtain knowledge of the nature of the
reaction from a study of its progress,” as stated in 1913 by Leonor Michaelis and Maud Menten
(58, p. 8268; 85). In this review, we report the promise, progress, and challenges of capturing and
modeling dynamic events in GRNs.

Arguably, the most significant challenge is that our current understanding of how transcription
factors (TFs) direct GRNs comes from biochemical investigations that favor stable TF–target
gene interactions but largely miss transient ones. This review highlights studies which exploit
time-series data that capture dynamic TF–target gene binding and/or regulation events, used to
build or validate predictive GRN models. These time-based studies have revealed that transient
interactions inGRNs—important for dynamic responses to their environment—have largely been
missed by traditional methods that favor stable TF–target interactions.

20.2 Alvarez et al.

, .•
·�-

Review in Advance first posted 
on March 5, 2021. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

21
.7

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 N

ew
 Y

or
k 

U
ni

ve
rs

ity
 - 

B
ob

st
 L

ib
ra

ry
 o

n 
05

/2
7/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PP72CH20_Coruzzi ARjats.cls February 26, 2021 14:29

Single-molecule tracking ChIP-seq
DamID-seq
DAP-seq
Y1H

RNA-seq
(TF mutant or OX)
 
TARGET

Single TF-target
dynamics

Single TF,
genome-wide readout 

DNase-seq

ATAC-seq

Gene regulatory
network models

Multiple TFs,
genome-wide readout   

Ti
m

e

Milliseconds–seconds Minutes–hours Minutes–hours Minutes–hours
t t + 1

Validation/refinement

Prediction

A
ss

ay
s

A
lg

or
it

hm
s

FRAP

Single TF/single target Single TF/multiple targets Multiple TFs/multiple targets Network inference/refinement

TF binding TF regulation Chromatin Coexpression

dynGENIE3

Inferelator

DFG

Outpredict

1

1

1

1
1

1

1

3

2 4

5
56 7

1 32 4 5 6 7

a b c d

Figure 1

Overview of approaches to capture TF-target interaction dynamics. (a) Single TF–target gene dynamics. For a single TF (numbered
triangle), single-molecule tracking technology captures TF–target gene binding dynamics within a time frame of milliseconds to
seconds. See Figure 2 for more detail. (b) Single-TF genome-wide target readout. ChIP-seq, DamID-seq, and DAP-seq assays capture
the genome-wide relevance of single-TF binding within minutes to hours. RNA-seq and TARGET can capture TF-regulated genes
genome-wide for a single TF. See Figure 3 for more detail. (c) Multiple-TF genome-wide target readout. The genome-wide relevance
of multiple TFs can be captured in the same experimental setup by chromatin profiling assays such as DNAse-seq and ATAC-seq.
Multiple TFs can also be studied in parallel by ChIP-seq or TARGET. See Figure 4 for more detail. (d) Time-based gene regulatory
network modeling and validation. Machine learning algorithms can identify TF–target causality by time-series data. See Figure 5 for
more detail. Such time-based methods can also be used to infer gene expression at future time points (t + 1). Experimental data from
genome-wide studies of TF–target binding or regulation can be used as priors or to refine the network models using precision/recall
analysis. Abbreviations: ATAC-seq, assay for transposase-accessible chromatin using sequencing; ChIP-seq, chromatin
immunoprecipitation sequencing; DamID-seq, DNA adenine methyltransferase identification sequencing; DAP-seq, DNA affinity
purification and sequencing; DFG, dynamic factor graph; FRAP, fluorescence recovery after photobleaching; TARGET, transient assay
reporting on genome-wide effects of TFs; TF, transcription factor.

This review focuses on recent advances in time-based studies that capture and model the dy-
namics of TF–target interactions in plant GRNs. First, we review new technologies for capturing
the dynamics of TF–target interactions in vivo—at single target genes, drawing mostly from
studies in animals (Figure 1). Second, we review novel cell-based TF-perturbation methods in
Arabidopsis that enable the capture of transient TF–target interactions genome-wide, and evaluate
their impact on mediating rapid transcriptional responses (6, 11, 96). The increasing availability
of new experimental technologies for capturing TF–target interactions allows multiple assays to
be performed on a set of TFs, rather than individual TFs. These new data sets are facilitating the
construction of validated hierarchical GRNs on the basis of TF binding (92, 113) or TF-mediated
gene expression (20) (Figure 1). Indeed, such analysis can identify influential TFs at the top
of a temporal TF cascade whose modifications can have dramatic effects on downstream gene
regulation and the resulting phenotypes (20, 113, 128).
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SMT: single-molecule
tracking

Importantly, the decreasing cost of sequencing technologies has allowed researchers to gener-
ate high-resolution time-course data sets for TF–target gene interactions genome-wide (20, 113,
128). These data sets are aiding the development of new computational time-based methods that
can construct predictive GRNs. For example, machine learning strategies have been used to build
temporal biological networks (20, 128). Crucially, including time-series data as a dimension to
interrogate GRNs can even allow one to infer gene expression states at future time points, a main
goal of systems biology (25, 128) (Figure 1).

2. SINGLE TRANSCRIPTION FACTOR–TARGET GENE DYNAMICS

2.1. Molecular Mechanisms of Transcription Factor–Target Dynamics
and Its Effect on Gene Regulation

TF-binding sites at bona fide target genes are sparse in the genome compared with the number
of nonspecific TF-binding sites (55). How, then, do TFs find and bind to their specific sites in
the genome to coordinate rapid transcriptional responses? And how does this process play out dy-
namically in real time? Rapid changes in gene expression of multiple target genes simultaneously
are governed by the kinetic properties of TFs, which include their ability to rapidly diffuse within
the nucleus and their propensity to transiently bind to their genome-wide targets.

Methods that track the movement of individual TF molecules in vivo have provided insights
into how TF kinetics affect target binding and gene transcription. To date, methods for captur-
ing the dynamics of TF–target interactions in situ have been conducted mostly in animals (e.g.,
Drosophila), and they have only recently been applied in plants (26). Such approaches, including
single-molecule tracking (SMT), have revealed that TFs do not bind permanently to their target
cis-regulatory sites (70, 75, 89, 94). These in vivo assays, which typically track TF binding at a
single reporter gene, show that the residence time of a TF at a specific gene target lasts from hun-
dreds of microseconds to several seconds—just long enough to initiate transcription (70, 75, 89,
94) (Figure 2a). For example, the residence time for the mammalian TF p53 at its cis-regulatory
sites on a gene target is approximately 3.5 s, while for the glucocorticoid receptor (GR) it is 8.1 s
(89). TFs can also bind nonspecifically to DNA targets at noncanonical sites; however, this asso-
ciation is weak, resulting in residence times that are an order of magnitude shorter (75). Notably,
other techniques indicate that binding times could be much longer. For example, TF–DNA bind-
ing competition assays report that TF binding to a target gene can last for minutes or even hours
(46, 73).

Given that TFs bind to a target gene transiently in vivo, with residence times likely ranging
from milliseconds to minutes, only a small proportion of TFs within a nucleus are in the bound
state at any given time (8). Indeed, estimates based on SMT of steroid receptors in mice place
the fraction of TFs bound to DNA between 5% and 10% (94). Similarly, at any given moment,
not all available cis-regulatory sites for a particular TF are bound, especially when the number of
cis-regulatory sites vastly outnumbers the number of TF molecules (19). The effect this has on
transcriptional output is that the number of transcript molecules arising from a target locus is not
constant over time (16, 17, 70). Instead, it is stochastic,with transcription occurring in bursts whose
frequencies are dependent on the number of TF–target interactions as well as on the availability
of TF-related cofactors (12, 61, 66, 115). Stochasticity in transcriptional output not only has been
visualized at the single-molecule level (70) but also is reflected in the heterogeneity of genome-
wide expression profiles within single cells, as found by single-cell RNA sequencing (RNA-seq)
in plants (30) and other eukaryotes (22, 57).

Gene expression levels often change over time in response to environmental or developmen-
tal cues. At the molecular level, a change in the number of transcripts produced by a locus can
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Figure 2

The molecular mechanisms underlying TF–target binding dynamics. (a) TFs interact dynamically with their binding site in a target
gene; binding times last from milliseconds to minutes. Both the number of TF–target interactions and the time the TF spends residing
at the binding site can affect transcription output. (b) An increase in the concentration of a TF can increase the number of TF–target
binding events. Similarly, posttranslational modifications to a TF can increase residence time. Both scenarios result in an increase in
transcriptional output. (c) The hit-and-run transcription model. Here, a TF binds transiently to initiate transcription (the hit, ●1 ), while
its dissociation (the run, ●2 ) allows transcription to be maintained by TF2s (see Figure 3). (d) Some TFs display pioneer activity, where
their binding to closed chromatin (●3 ) alters its accessibility to allow TF2 binding (●4 ). Abbreviations: Pol, polymerase; TF, transcription
factor, TF2, secondary TF.

be achieved through either a change in the TF’s residence time at a gene target or a change in
the number of TF–target interactions (Figure 2b). TF–target residence times can be affected by
posttranslational modifications (75) or the presence of TF-binding partners (51, 75, 94), and an
increase in the TF residence time at a gene target can lead to an increase in transcriptional output.
Likewise, a change in the concentration of a TF can lead to a proportional change in the number
of TF–target binding events that initiate transcription of a target gene (8, 19) (Figure 2b).While
shorter TF residence times on a target gene are associated with weaker transcriptional output [an
effect referred to as treadmilling (73)], such rapid on–off TF–target gene binding is thought to
help reduce noise within gene expression systems (8, 45).

Notably, while elegant methods to track TF–target binding in vivo have provided detailed
insight into the dynamics of TF–target binding, such assays typically rely on a single reporter
gene. Consequently, techniques such as SMT cannot capture the impact that dynamic TF–target
interactions have genome-wide. Additionally, they do not show how multiple TFs combine to
regulate gene expression, which is required to model causal GRNs. These topics are discussed at
length below.

Other molecular mechanisms exist that allow an increase in transcriptional output to occur
without an increase in TF concentration. These mechanisms fall into two broad categories. The
first category aims to keep TFs localized as closely as possible to their binding site at a target
gene. This category includes (a) formation of large multimolecular assemblies that localize TFs
to particular cis-regulatory locations (38, 52, 88), (b) tethering of TFs by the target gene’s RNA
product (112), and (c) blocking of TF nuclear export (83). The second category aims to increase
the number of transcripts per TF–target binding event. For example, in so-called hit-and-run
transcription (discussed at length in the next section) (84), a TF need only bind its cis-regulatory
element briefly (the hit) to initiate transcription that continues after the run, where secondary TFs
(TF2s)are likely responsible for maintaining transcriptional output (6, 24, 96, 127) (Figure 2c).
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Pioneer TF: a TF
that binds and shifts
heterochromatin to
more accessible
chromatin, allowing
nonpioneer TFs to
bind

TAD: topologically
associated domains

DAP-seq: DNA
affinity purification
sequencing

2.2. The Role of Chromatin in Transcription Factor–Target Gene Dynamics

The genome is not a flat, naked DNA template poised for TF–target binding but rather a three-
dimensional landscape that TFs must navigate. The three-dimensional organization of chromatin
affects TF–target gene binding dynamics. A key example is the way condensed heterochromatin
limits the ability of TFs to access DNA.Typically, nongenic regions of chromosomes (such as cen-
tromeres), as well as genic regions that do not play a role in cell function, are packaged tightly into
histones. Condensing large portions of the genome minimizes the nonspecific TF–DNA binding
events that can occur and promotes TF binding to the cis-regulatory sites that remain accessible.
Importantly, certain so-called pioneer TFs, such as Zelda in Drosophila (38), play a part in deter-
mining the developmental timing of which regions of the genome are open and which are closed.
Such pioneers interact with heterochromatin, shifting histones to expose genic regions, in turn al-
lowing nonpioneer TFs to bind and regulate gene expression (68) (Figure 2d). Pioneer TF activity
appears particularly important during early organismal development and has been characterized
largely within the developmental programs of mammals and Drosophila (68). However, pioneer
TFs have also been found to be active during early seed development in plants (120), indicating
that this class of TFs also exists in the plant kingdom (102).

Areas of open chromatin can also hold additional structural features that can impact TF–target
binding. Topologically associated domains (TADs) are segments of the genome, typically in the
range of tens to hundreds of kilobases, that fold upon themselves to create localized genomic com-
partments (119). Compartmentalizing portions of the genome into TADs affects gene regulation.
For example,within TADs, genes often display similar levels of gene expression (99), and the effect
of enhancers appears not to extend beyond TAD borders (119). At present, there is weak evidence
that TADs exist in Arabidopsis; not only does its genome lack a close homolog of the CTCF gene
required for TAD formation (35, 119), but also chromosomal chromatin capture experiments fail
to detect such domains.However, growing evidence indicates that TADs exist in plants with larger
genomes, such as wheat (27), cotton (129), and maize (80).

3. TRANSCRIPTION FACTOR–TARGET GENE DYNAMICS
AND GENOME-WIDE EXPRESSION

As described above, TF–target gene dynamics are an intrinsic property of gene regulation. The
fine-scale time resolution of TF–target gene binding has revised previous notions of stable TF–
target interactions of the pioneer TF Zelda and the TF Bicoid—which are now known to interact
highly transiently with TF-dependent transcription sites in developing Drosophila embryos (88).
However, while SMT studies can detect transcriptional dynamics with a single target gene within
seconds or milliseconds; they cannot capture the genome-wide TF–target interactions.

Capturing dynamic interactions on a genome-wide scale has been a technical challenge, largely
because prevailing techniques to capture TF-bound targets genome-wide in vivo or in vitro, such
as chromatin immunoprecipitation (ChIP) and DNA affinity purification sequencing (DAP-seq)
(92), respectively, reflect only a snapshot of the most stable TF interactions at a single time point
(28, 67, 125). Time-series ChIP-seq experiments, such as those conducted on the TF EIN3 in
Arabidopsis, have contributed to our knowledge of TF–target dynamics in planta. For many EIN3-
bound and ethylene-responsive genes, EIN3 binding peaked at 4 h after the ethylene treatment
and weakened after 12 h. In contrast, EIN3-induced target genes showed sustained levels of tran-
scripts during the full course of the 24-h ethylene treatment, despite the weakened binding of
EIN3 after 4 h (23). Although time-series ChIP is a suitable approach to the evaluation of TF–
target gene binding within hours, it presents drawbacks when it comes to analyzing rapid changes
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TARGET: transient
assay reporting on
genome-wide effects
of TFs

DamID-seq:
DNA adenine
methyltransferase
identification coupled
to sequencing

that could occur within seconds to minutes. This is in part because the time required to fix TF–
DNA complexes in whole tissues for ChIP requires aminimumof∼15min,which is usually longer
than gene expression changes in response to acute signals. In addition, ChIP assays—which are
based on biochemical associations—favor stable TF–target binding and miss transient TF–target
interactions (72).

Studies exploiting the fact that plant cell–based TF-perturbation assays have helped to capture
early and transient TF–target binding events that are missed in planta (6, 96). One such example
is the temporal TF perturbation assay called TARGET (transient assay reporting on genome-
wide effects of TFs). In TARGET, a chosen TF is transiently expressed in isolated plant cells
(protoplasts) as a TF–GR fusion protein (TF::GR) (11, 20, 96). To temporally control TF action,
transfected root cells transiently expressing TF::GR are sequentially treated with cycloheximide
(±CHX) to block regulation of TF2 targets as well as dexamethasone (±DEX) to induce TF
nuclear entry (11). Genes regulated by DEX-induced TF::GR nuclear import are deemed direct
targets of the TF, since +CHX pretreatment blocks translation of downstream regulators (11).
Several studies using plant cell–based TARGET have shown that direct TF-regulated genes are
early and transiently bound targets of certain TFs (6, 34, 96). Although TARGET is a suitable
means of studying the importance of binding time of direct transcriptional regulation, a caveat
is that it may not necessarily provide an authentic biological context because it is performed in
isolated plant cells (e.g., protoplasts) (6, 34, 96) (Table 1).

3.1. Hit-and-Run Model of Transcription and Its Rapid Effect
on Transcriptome Reprogramming

The genome-wide relevance of transient TF–target interactions was initially demonstrated for
bZIP1 by use of the plant cell–based TF TARGET (34, 96). The early and transiently bound
genome-wide targets of bZIP1 were captured in TARGET by combining TF-mediated changes
in gene regulation with time-series TF-binding data using micro-ChIP-seq (95, 96). These stud-
ies provided the first genome-wide evidence for a hit-and-run transcription model (24, 127), ini-
tially hypothesized in 1988 (103) but validated only on a single-gene basis in animals (39, 84)
(Figure 2c). The hit-and-run model posits that a TF trigger (the hit) can organize a stable tran-
scriptional complex, including the recruitment of other TFs, so that transcription can continue
even after the initiating TF is no longer bound (the run) (24, 34, 96, 127) (Figure 2c). Time-
series ChIP-seq experiments conducted 1–3 min following controlled TF nuclear import revealed
that bZIP1 bound transiently specifically to promoters of early nitrogen-response genes (96).
Moreover, 4-thiol-uracil labeling of de novo TF-initiated transcripts was used to affinity-capture
bZIP1-initiated mRNAs, demonstrating that transiently bound bZIP1 targets were actively tran-
scribed at times when the TF was no longer bound (34).

Transient binding of a TF to its regulated genome-wide targets was also recently captured
for NIN-LIKE PROTEIN7 (NLP7) (6), an early-acting regulator of nitrogen signaling in plants
(74, 83). One study demonstrated early and transient binding of NLP7 to its regulated targets
by integrating fine-scale time-series ChIP with NLP7-dependent genome-wide regulation data
(6), using the plant cell–based TARGET system. This study showed that highly transient NLP7
genome-wide targets were TF regulated in response to NLP7 nuclear import but that binding
of NLP7 to these targets was not detected by ChIP at any time point tested (5–180 min) (6). To
capture the highly transient NLP7 target genes that defied biochemical assays such as ChIP, the
authors adapted the DNA adenine methyltransferase identification (DamID) method such that a
TF fusion to a DNA adenine methyltransferase is coupled with sequencing (DamID-seq) (6, 7). In
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Table 1 Overview of methods used to capture, model, and validate dynamic gene regulatory networks

a Single TF–target gene dynamics
Transcription model Technique(s) used Organism Reference(s)

Treadmilling Competition ChIP Saccharomyces cerevisiae 73
Hit-and-run FRAP Mus musculus 84
TF pioneers Single-molecule tracking Drosophila melanogaster,

Arabidopsis thaliana
68, 120

Transient TF binding Single-molecule tracking Human,Drosophila melanogaster 38, 88, 89
Advantages: high temporal resolution, live-cell measurements Drawbacks: miss genome-wide TF targets needed for

GRN models
b TF–target dynamics genome-wide

Transcription model Technique(s) used Organism/pathway Reference(s)
Hit-and-run

(rapid responses)
TARGET and time-series
micro-ChIP

Arabidopsis thaliana/nitrogen 34, 96

TARGET, time-series micro-ChIP
and DamID

Arabidopsis thaliana/nitrogen 6

Hit-and-run
(chronic responses)

ChIP Arabidopsis thaliana/heat shock 69

TF dynamics in hormone
responses

Time-series ChIP Arabidopsis thaliana/ethylene 23

TF binding versus regulation TARGET and ChIP Arabidopsis thaliana/nitrogen,
ABA

21, 113

Advantages: can identify stable and transient TF–target interactions
genome-wide

Drawbacks: TARGET uses protoplasting step and cell
populations

c The hierarchy of temporal GRNs
Time-based GRN feature Characteristics Result Reference(s)

Feed-forward loop Coherent: TF1 and TF2 have same
effect on target gene

Sign-sensitive delay in target
induction or in turning off
response

100

Incoherent: TF1 and TF2 have
opposite effects on target gene

Rapid and transient target
induction (pulse-like
behavior)

77

Feedback loop TF1 regulated by downstream TF2

targets of TF1

Generates oscillations in target
expression

44, 108

Temporal TF hierarchy Interactions between
ABA-responsive TFs and targets
revealed by time-series
transcriptomics and ChIP

Interactions between 21 TFs
and 3,061 ABA-responsive
genes; validated two new
regulators of ABA (DIG1 and
DIG2)

113

Interactions between
nitrogen-responsive TFs and
targets revealed by time-series
transcriptomics and TARGET

Defined temporal hierarchy of
172 TFs and 2,174 targets in
shoots and 145 TFs and 1,458
targets in roots; validated a
new TF hub (CRF4) in
nitrogen signaling

20, 128

Advantages: breaking networks into well-understood components Drawbacks: difficult to validate the temporal role of such
TF–TF network motifs in planta

(Continued)
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Table 1 (Continued)

d Modeling and validating time-based GRNs
GRN modeling approach Characteristics Examples References

Lagged correlation Accounts for lag-lead effects in
time-series data by including an
offset in one variable

Temporal clustering by affinity
propagation, light responses
in Cyanobacteria

60, 104

Linear regression models Used in ML methods that assume a
linear relationship between TFs
and target genes

Dynamic factor graph,
Inferelator

20, 65, 128, 130

Nonlinear regression models Used in ML methods, such as
random forests, to account for
more complex nonlinear
relationships between TFs and
target genes

GENIE3 (dynGENIE3),
OutPredict

25, 82, 130

Network inference Prediction of regulatory
interactions between TFs and
target genes

Dynamic factor graph,
Inferelator, GENIE3,
OutPredict

20, 25, 65, 82, 128,
130

Forecasting Prediction of target gene
expression values at future
time-points

OutPredict, dynGENIE3 25, 41

Advantages: Time-series data can reveal casual interactions that cannot
be identified from steady-state data. Regression models allow
forecasting of gene expression in untested conditions, in addition to
GRN reconstruction.

Drawbacks: Selection of the best method often involves
testing many algorithms on a data set. Validation data
for network inference in plants are relatively sparse,
especially for TF-regulated edges.

Abbreviations: ABA, abscisic acid; ChIP, chromatin immunoprecipitation; dynGENIE3, dynamical GENIE3; FRAP, fluorescence recovery after photo-
bleaching; GRN, gene regulatory network; ML, machine learning; TARGET; transient assay reporting on genome-wide effects of TFs; TF, transcription
factor.

DamID-seq, the Dam::TF fusion protein leaves a methylation mark on promoters touched, even
transiently, by the TF (7). By adapting the DamID-seq approach to the plant cell–based TARGET
system, the authors capturedNLP7 binding to highly transientNLP7 targets that defied detection
even by time-series ChIP (6).

Notably, DamID detects any binding events that occurred during the time frame of the ex-
periment; thus, it is not limited by the snapshot problem of ChIP-seq and other antibody-based
techniques (7, 107, 110). In this context, time-series ChIP-seq and DamID-seq are sensitive ap-
proaches to the capture of NLP7-regulated genes either in root cells or in planta (6).However, the
number of NLP7-bound genes identified by either ChIP or DamID greatly exceeds the number
of genes directly regulated by NLP7. Indeed, several studies have demonstrated TF binding at a
large number of sites,many of which cannot be clearly connected with target gene regulation (76).
The apparently low specificity for ChIP (i.e., the large proportion of TF-bound targets that are
not TF regulated) holds for DamID (6, 110), supporting the notion that TF binding is necessary
but not sufficient for gene regulation. One proposed explanation for widespread TF binding is
the presence of nonfunctional binding sites that serve no biological purpose (76). Alternatively,
TFs can bind to many low-affinity sites in the genome and contribute to gene expression at levels
that are low but sufficient to allow evolutionary conservation (121). Thus, the actual specificity is
difficult to estimate, since TF-bound genes that are not transcriptionally activated may be poised
and waiting for cofactors or other signals to induce gene expression (23, 76).

NLP7-dependent de novo transcribed targets identified using 4-thiol-uracil affinity labeling
showed that highly transient NLP7 targets are transcriptionally active even after NLP7 is no
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Figure 3

Transient binding of hit-and-run TFs highlights the discord between TF-binding and TF-regulation data. (a) Transient TF–target
interactions by hit-and-run TF1s (e.g., bZIP1 and NLP7) initiate early transcriptional responses to an environmental cue (e.g.,
nitrogen signals) (6, 96). The transient interactions of a hit-and-run TF1 enable it to rapidly activate TF2s, leading to an increase in the
transcriptional output in a short period of time. TF2s amplify the transcriptional cascade by regulating indirect targets of the TF1.
(b) The overlap of TF-binding and TF-regulation data for 17 TFs (21) in the ABA (113) and nitrogen signaling (6, 96) pathways.
Overall, TF regulation is a good indicator of TF binding (blue dots). TF binding is a poor indicator of TF regulation (orange dots). Six
TFs show a low percentage of TF-regulated targets that are TF bound (first six blue dots), which may act as hit-and-run TFs. Two of
these were confirmed as hit-and-run TFs using time-series data (∗bZIP1 and ∗NLP7) (6, 96). Abbreviations: ABA, abscisic acid; TF,
transcription factor; TF1, primary TF; TF2, secondary TF.

longer bound (6). This result confirmed that transient interactions of NLP7—missed even by
time-series ChIP—initiate active transcription, according to the hit-and-run transcription model.
Importantly, this study showed that these transient NLP7 target interactions activate early N-
responsive secondary TFs (TF2s), which directly regulate the expression of late N-responsive
genes. Moreover, the direct TF2 targets of NLP7 themselves directly regulate a large number of
genes indirectly controlled by NLP7 in planta (6) (Figure 3a).

What is the purpose of hit-and-run transcription? This model might ensure that a small num-
ber of TF molecules can rapidly affect a large number of target genes in a very short period (5–
90 min) (24, 127), which would allow an organism to rapidly adapt to a change in its external or
internal nutritional status. This notion is supported by the finding that the transient hit-and-run
targets of both bZIP1 (34, 96) and NLP7 (6) are enriched in genes responding very early to nitro-
gen signals (e.g., in 3–5 min) (4, 6, 34, 65, 96, 128). In this context, rapid and transient interactions
of a hit-and-run TF can directly activate additional downstream regulatory circuits, amplifying
transcriptional output via TF2s, as shown for NLP7 (6) (Figure 3a). The data supporting the
hit-and-run model distinguish it from other dynamic transcription models such as treadmilling
(Table 1), where transitive binding to targets results in a lower level of activation (73).

The hit-and-run model of transcription described for chronic responses, such as heat shock
stress (69), may differ from rapid responses to nutrient signals (6, 96) (Table 1). For chronic
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responses, lasting changes in chromatin modifications allow plants to form stress memory (32,
69). The transcriptional memory following heat shock stress correlates with histone H3 lysine 4
di- and trimethylation at memory-related loci (69). Here, the hit-and-run TF HSFA2 transiently
associates with gene loci, leading to sustained transcriptional activity and accumulation of histone
H3 lysine 4 methylation after TF binding has decreased (69). This mechanism allows plants to
maintain the activity of heat shock memory–related genes. However, the time frame of the heat
shock response is 4 to 52 h (69), which differs from rapid nitrogen-nutrient responses within
5 to 90 min (65, 128). Whether the maintenance of transcriptional activity in response to the
rapid nitrogen nutrient signals is associated with histones and chromatin modifications remains
unknown.Considering that nitrogen treatments do not produce changes in chromatin accessibility
in a comparable time frame (4), it is likely that the sustained transcription of targets that were hit
by the TF is achieved by TF-interacting partners, rather than histone or chromatin modification.
This hypothesis is supported by enrichment of cis elements for partner TFs in the promoters of
transiently bound TF targets of both bZIP1 and NLP7 (6, 96). That said, models for hit-and-run
transcription invoke pioneer activity as well as changes in chromatin state and partner TFs (24,
115, 127). Notably, hit-and-run transcription has also been invoked for models of gene repression
(107).

The extent of transient TF–target interactions in hit-and-run transcription also suggests a TF
activity model similar to that of a catalyst (127), where a small number of TFmolecules can rapidly
affect a large number of target genes by acting catalytically.The concept of TFs acting as a catalyst
was recently supported in experiments on TGA1, a master TF that acts as a regulator of nitrogen
dose response (117). By modeling genome-wide transcriptional responses to nitrogen dose as a
function of time, the experimenters used the Michaelis–Menten model (1, 117), developed to ex-
plain enzyme kinetics (58), to describe the dynamics of plant transcriptomic responses as well as
changes in nitrogen dose–related growth. Increased levels of TGA1 can enhance the maximum
rate of gene expression, which agrees with the Michaelis–Menten model, wherein an increase in
the amount of catalyst produces higher rates of the reaction. While TGA1 is a high-level regu-
lator of nitrogen responses, targeting the expression of 92 other TFs, whether TGA1 acts as a
hit-and-run TF remains to be determined (117).

3.2. Transcription Factor–Target Gene Binding Often Does Not
Result in Transcription Factor Regulation

ChIP-seq has been widely used to capture TF binding to targets that control responses to a myr-
iad of hormonal and environmental signals in plants (123). However, due to the biochemical lim-
itations of ChIP (which favors stable TF–target gene interactions) and the limited number and
frequency of the time points that can be analyzed, the prevalence of transient TF–target binding
via a hit-and-run mechanism may be underappreciated. For example, a paradox in the biological
community is that in genome-wide studies of TF–target binding (across plants, yeast, and other
animals), the percent of TF-bound genes that are TF regulated is typically low (118). For example,
for NLP7, the proportion of TF-bound genes (assayed by ChIP) that are TF regulated in planta
is ∼20% (83). The elusive 80% of genes that are regulated by NLP7 but not stably bound (e.g.,
by ChIP) likely involve transient TF–target interactions—a hypothesis supported by a study by
Alvarez et al. (6).

To address this issue, Brooks et al. (21) explored the relationship of TF binding versus TF
regulation for multiple TFs, including ones in the abscisic acid (ABA) signaling pathway (113).
This analysis revealed three interesting findings:
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ABA: abscisic acid

1. Stable TF binding is a poor indicator of TF regulation. For all 17 TFs examined, only
2–20% of TF-bound genes are TF regulated (Figure 3b).

2. TF regulation is a good indicator of TF binding for the majority of TFs examined. For 11
out of 17 TFs, 50–80% of TF-regulated genes are stably TF bound, as detected by ChIP
(Figure 3b).

3. However, for 6 out of 17 TFs, only a small percentage of TF-regulated genes are TF bound
(10–25%) (Figure 3b). This set of 6 TFs includes 2 confirmed hit-and-run TFs (NLP7 and
bZIP1) (6, 96) and an additional 4 candidate hit-and-run TFs (FBH3, HSFA6A,WRKY18,
and DREB2A) (Figure 3b).

Indeed, this study (21) and others suggest that TF–target binding by ChIP is often a poor pre-
diction of TF regulation (43, 83, 118) and reflects only a snapshot of the most stable TF inter-
actions at the time point analyzed, most of which are not associated with regulation (28, 67, 72,
125).

4. THE HIERARCHY OF TEMPORAL GENE REGULATORY NETWORKS

Because plants are sessile, they must be able to mount a rapid transcriptional response to a change
in their environment. Creating such a rapid genome-wide transcriptional response is not the work
of any single TF but rather results from the combined action of many TFs working in a temporal
cascade. For this reason, understanding the behavior of TF networks over time can offer important
insights into how environmental cues trigger differential gene expression. Indeed, studying how
TFs work as an integrated system over time can reveal emergent properties of gene regulation
that cannot be detected by studying a single TF.

4.1. Network Architecture of Transcription Factors Enables Dynamic Gene
Regulatory Network Responses

In plants, a change in a key input—such as light quality, nutrient availability, or water—can result
in a change in the expression level of thousands of genes (48, 109, 128). Such large changes are
typical when complex physiological responses—such as a change in growth rate or transition to
flowering—are required (126). To ensure the proper regulation of numerous genes, some TFs
within signaling networks act as TF hubs. Specifically, the number of targets each TF has within
a signaling response (known as out-degree) is thought to be scale free and follow a power-law
distribution, with only a few TFs having many connections (2). Such TF hubs can regulate the
expression of hundreds to thousands of genes (97), thus playing an outsized role in signal propa-
gation, and their perturbation can disproportionately affect phenotype (128).

Within GRNs, a target gene’s expression is often regulated by more than one TF. Indeed,
the number of TFs that regulate a particular gene (known as in-degree), like out-degree, also
appears to be scale free (2). A gene that has multiple TF regulators is likely to be more robustly
expressed within the signaling network (113). Importantly, when a gene target is regulated by
multiple TFs, many of those TFs can be homologous. For example, the TF homologs MYC2 and
MYC3, involved in light signaling, share many of the same gene targets (131). The same is true
for the TGA1 and TGA4 homologs in nitrogen signaling (117). Such redundancy creates resilient
networks; not only does such redundancy provide an extra copy of a TF if one is mutated (5), but
also multiple homologous TFs likely normalize the number of transcriptional bursting events,
leading to better buffered-expression patterns (115).
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DHS: DNase I
hypersensitive site

Footprint: TF-bound
sequence protected
from DNase I
digestion

4.2. Generating Temporal Transcriptional Networks from Time-Series Data

While time-series data will reveal when a given TF transcriptionally responds to a signal, it is
also important to understand the regulatory relationships among TFs themselves. To this end,
it is necessary to identify TF–target gene interactions for not only one TF but multiple TFs
involved in a signaling response. For example, the combination of an ABA-response time course
with ChIP-seq on 21 ABA-responsive TFs allowed investigators to use interactions between each
of these 21 TFs and its ABA-responsive target genes to uncover a TF hierarchy for ABA signaling
(113).

Another study delineated the temporal hierarchy of TF–target gene interactions governing
the response of Arabidopsis to nitrogen signals by using a fine-scale time-series experiment that
monitored the transcriptome-wide nitrogen response in both shoots and roots (128). Using a just-
in-time analysis that binned genes on the basis of the first time point when their nitrogen response
passed a threshold of 1.5-fold, the authors of this study identified a temporal TF cascade in each
organ (128). Importantly, the TFs mediating this nitrogen-response cascade were validated with
the cell-based TARGET, which can identify direct regulated targets by using controlled nuclear
entry of the TF. This approach validated the role of 7 TFs in shoots (128) and 33 TFs in roots
(20) as major controllers of the nitrogen response in each organ in planta.

Hierarchical TF networks can also be constructed in a single experimental setup through
genome-wide mapping of putative TF-binding sites in regions of accessible chromatin. This can
be done using the DNase I enzyme, which cleaves accessible chromatin regions known as DNase
I hypersensitive sites (DHSs). These sites are typically associated with active transcriptional reg-
ulation, RNA polymerase II engagement, and regions where TFs bind (133). The resulting DNA
fragments of DNase I cleavage are sequenced (DNase-seq) to map the DHSs (116, 133). Per-
forming DNase-seq at a high sequencing depth enables single-base-resolution identification of
TF-bound sequences, since TF occupancy blocks DNase I digestion, leaving a footprint (91).
Combining footprinting with known TF motifs allows generation of transcriptional networks
that contain all of the bound TFs thus detected. When done as a time course, DNase-seq can
uncover TF binding events in response to a signal. To this end, Sullivan et al. (116) analyzed the
regulatory landscape dynamics ofArabidopsis during heat shock and photomorphogenesis to reveal
the topology of TF–TF regulatory interactions. They found that the light-responsive network is
enriched in autoregulatory loops and that TF–TF interactions are highly dynamic. These authors
showed that during the heat shock response many heat shock factor TFs respond to the treatment
and form a densely connected network including several novel feedback loops (116).

4.3. Complex Hierarchical Networks Are Built from Simple Components

GRNs, like many other complex networks, consist of smaller, reoccurring gene regulatory interac-
tions that occur more often than expected than if the network were random (47). These patterns,
called network motifs, enable the organism both to carry out temporal gene expression responses
to a stimulus and to filter stimuli so that a gene is transcribed only under desired conditions (3).
Originally characterized in single-celled organisms such as yeast (87) and Escherichia coli (79), net-
work motifs are fundamental components of plant GRNs (90).

Feed-forward loops, in which two TFs work together to dynamically regulate target gene ex-
pression, are an example of such network motifs (3). In an incoherent feed-forward loop, the
first TF [TF2-2 (Figure 4)] activates a gene target, as well as activating a second TF [TF3-6

(Figure 4)]. This second TF, once expressed, represses the target gene (Figure 4). This net-
work motif enables an early and rapid pulse of target gene expression. For example, an incoherent
feed-forward loop controls expression of the important nitrate transporter NRT2.1 in Arabidopsis.
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Figure 4

General features of hierarchical dynamic GRNs. GRNs, or transcriptional signaling cascades, are initiated
through receptor–TF interactions, which can occur within seconds to minutes of an environmental or
developmental signal. Within GRNs, TF hubs play an outsized role in regulating downstream target genes
and secondary TFs. Gene regulatory interactions within GRNs can include feed-forward loops and feedback
loops, which can allow target genes to either pulse or oscillate in their expression pattern (3). Abbreviations:
GRNs, gene regulatory networks; TF, transcription factor, TF1, primary TF.

Upon nitrate exposure, NLP7 activates NRT2.1 expression (77). NLP7 also regulates NIGT1,
a TF2 that represses NRT2.1 activity. This coordination between the two TFs allows NRT2.1
expression to first rise and then fall within 3 h after nitrogen exposure (77).

In a coherent feed-forward loop, both the first TF [TF2-1 (Figure 4)] and the second TF
[TF3-5 (Figure 4)] induce the target gene, and either one (OR logic) or both (AND logic) of
the TFs are required for target expression (78). A coherent feed-forward loop with AND logic
can act as a persistence detector, since short stimuli are insufficient for accumulation of the TF2

(78). In contrast, a coherent feed-forward loop with OR logic shows a time delay in turning off the
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response when the stimulus is removed, as the second TFmaintains expression after the first TF is
no longer active (3) (Figure 4). A series of coherent feed-forward loops regulate the dark-induced
senescence pathway in which PIF4/PIF5 induce ORE1, an important TF involved in senescence,
both directly and indirectly through EIN3 and ABI5/EEL (100). This process is thought to make
the pathway robust and prevent transient fluctuations in light quality to influence gene regulation
(100).

Another way TFs work together to generate dynamic gene expression patterns is through feed-
back loops. Feedback loops occur when a TF’s expression is regulated by its downstream targets
(90) (Figure 4). Feedback mechanisms can generate oscillations in gene expression and, thus, are
useful when gene expression needs to be cyclical. Circadian rhythms, for example, are known to
rely on feedback loops among multiple TFs in plants, animals, and fungi (59). In plants, LHY- and
RVE8-clade TFs antagonistically regulate target genes and one another, creating several feed-
back loops to maintain correct functioning of the circadian clock across diverse environmental
conditions (108). Many others plant processes rely on feedback mechanisms, such as transition to
flowering (56) and maintenance of the stem cell niche (44).

GRNs can consist of interactions among tens to hundreds of individual TFs and thousands
of targets with an intricate topology. Systems biology aims to simplify complex networks into
more manageable components by identifying sets of TFs with similar properties and assessing
how they are arranged into modules such as those described above.However, because of the many
transient gene expression responses, short-lived TF–target interactions (see Sections 2 and 3),
and a relatively limited quantity of genome-wide experimental data for temporal TF binding,
most GRNs remain largely incomplete. In Section 5, we describe the computational approaches
used to fill these gaps, largely by machine learning approaches that draw on known TF–target
interactions and time-series gene expression data.

5. MODELING AND VALIDATING TIME-BASED GENE
REGULATORY NETWORKS

Biological systems are incredibly dynamic. However, the current technologies available to probe
the genome-wide interactions of regulators and their targets are largely static snapshots. This
limitation means that most current GRN models are based on TF–target interaction data at one
time point or a limited number of time points. A major goal of systems biology is to extend GRN
models beyond such static measurements and learn networks, which will enable researchers to
accurately predict how genes will respond in future, untested conditions.

The large quantity of genome-wide data being generated by next-generation sequencing, as
described above (Figure 1; Table 1), makes machine learning a promising solution to the chal-
lenge of building GRNs able to predict future gene responses. This section aims to introduce the
different computational techniques currently being used to infer the structure of GRNs and pre-
dict future expression levels of target genes, with a focus on time-based methods applied in plants.
Since causality moves forward in time, time series represent a valuable data source for predictive
networks. Thus, we focus on how time can be exploited in these predictive GRN models.

5.1. Coexpression Networks of Transcription Factors and Target Genes:
Correlation Is Not Causality

Correlation has been widely adopted for the identification of TFs that regulate specific genes.
Because of their low computational requirements and ease of use, correlation approaches to GRN
construction have been extensively used in plant biology [see the review by Serin et al. (106)].
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Figure 5

Systems biology methods to predict, validate, and refine GRNs from time-series gene expression data. Experimental data sets, such as
genome-wide time-series transcriptomics and TF–target interactions, provide training data for time-based machine learning methods.
The experimental data are often divided into a training/prior set, used to train the algorithm, and a test/validation set, used to validate
and refine the resulting predicted GRN. A common machine learning method that uses time-series data is linear regression, in which
the expression level (X) of Genei at a given time point is predicted from the expression level of regulating TFs at the previous time
points, each with a learned weight (c). Included in the model are a degradation term (a) and a noise term (η). Nonlinear regression
approaches, such as methods using random forests, allow for more complex interactions between TFs and targets. These approaches
predict causal interactions between TFs and targets, in contrast to correlation methods developed for time-series data, such as lagged
correlation. While the most common goal is network inference, or the prediction of interactions between known TFs and target genes,
another goal is target gene expression forecasting, or predicting the expression level of target genes at untested time points. The
accuracy of predicted networks can be assessed by using the test/validation data sets. For time-series gene expression data, a so-called
leave-out-last approach is often used. Here, the last time point (test set) is excluded from training, and predicted values are compared
with actual (left-out) data to determine gene forecasting accuracy. For TF–target interactions, a randomly selected set of known,
validated TF–target gene edges are excluded from the training data, and prediction accuracy can be tested using these left-out edges.
This process can be repeated with different random selections of edges to determine the optimal algorithm parameters. Abbreviations:
DFG, dynamic factor graph; GRN, gene regulatory network; TF, transcription factor.

However, one drawback to such correlation networks is that the interactions are undirected; that
is, they lack information about causal relationships (93). Another disadvantage is that correlation
networks do not necessarily distinguish between direct and indirect (i.e., downstream) TF–target
interactions, potentially leading to many false-positive predicted interactions.

Time-series analysis of transcriptome data can be used in correlation network analysis to build
GRNs (50). The delay between the transcription of a gene and the translation of the mRNA into
protein means that a change in expression of a TF must precede that of its target genes. At high
temporal resolution (e.g., minutes), this time delay can obscure interactions between TF regu-
lators and their target genes in simple correlation networks. Thus, approaches that account for
time lags in time-series data have been applied to correlation networks (60, 62, 104) (Figure 5;
Table 1). Such time-lag correlation approaches reveal the temporal order within GRNs and al-
low directionality to be assigned to interactions between genes.However, they still cannot identify
causal relationships. Additional data, such as known interactions from the literature, cis-binding
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Forecasting:
prediction of the
future expression of
target genes based on
the expression of
target gene and
regulating TFs

DFG: Dynamic Factor
Graph

motif enrichment, and TF-binding assays (e.g., ChIP-seq), are therefore needed to provide addi-
tional support for interactions (10).

5.2. Time-Based Machine Learning Methods Can Infer Causality in Gene
Networks and Forecast Target Gene Expression States

Machine learning approaches are starting to improve in the areas where correlation analyses fall
short, specifically, in predicting causal relationships between TFs and their target genes. A wide
range of algorithms have been developed to address this challenge, and these various approaches
and/or their mathematical frameworks have been reviewed elsewhere (9, 29, 40, 63, 64, 71, 101).
Here, we focus on time-based machine learning methods that are being used specifically in plants
to infer GRNs from time-series gene expression data.

As opposed to machine learning methods that use steady-state data, algorithms built for time-
series data use the expression of the predictor variables at the previous time point to model the
expression of target genes at the next time point. Its sequential nature makes time-series data par-
ticularly well suited to models that use regression analysis, which are able to describe the dynamic
behavior of GRNs (62). The general approach of such analyses is to model the expression of a
gene in the form of an ordinary differential equation, where it is a function of the expression of
TFs (10, 54). Importantly, this approach allows the time-based models to perform not only net-
work inference (i.e., predict interactions between influential TFs and their target genes) but also
target gene forecasting (i.e., predict the future expression of target genes, at time t + 1, on the
basis of the expression of the target gene and regulating TFs at the previous time point, time t).
In addition, most time-based machine learning methods have some form of feature selection that
delivers a sparse network that is more interpretable and better represents the scale-free structure
of the biological network (86, 101, 124).

In linear regression, the coefficients for the TF predictors in the model provide a weight for
the predicted interaction between the TF and the target gene (Figure 5; Table 1). An advantage
of linear models is that they are mathematically simple and, therefore, often less computationally
intensive (37). Alternatively, nonlinear regression models may better represent the actual biolog-
ical system (101) (Figure 5; Table 1). Due to the flexibility and ease of use of these models, an
increasingly popular approach to nonlinear regression is the use of random forest decision trees
(53). One of the most popular random forest network inference algorithms is GENIE3 (54), but
this method was built for steady-state data. GENIE3 has been adapted to take advantage of time-
series data in order to infer the GRNs controlling the drought response in sunflower (82). More
recently, a modification of GENIE3, dynamical GENIE3,was developed specifically to improve
the handling of time-series data (41).

A dynamic factor graph (DFG) is an example of a linear regression approach that has been
used to infer GRNs from fine-scale time-series transcriptomic data on the nitrogen response in
Arabidopsis (20, 65, 128) (Figure 5; Table 1). In the first implementation of a DFG for GRN
predictions (65), a fine-scale time-series experiment was performed and the ATH1 microarray
was used to capture very early events in the nitrogen response. The DFG was then used to model
the influence of 67 nitrogen-responsive TFs on one another, as well as gene targets in the nitrogen
assimilation pathway. The authors of this study thus identified and functionally validated a novel
TF regulator of nitrogen signaling, SPL9 (65). In subsequent time-series studies, a DFG was used
to infer larger GRNs from fine-scale nitrogen-response time-course data generated using RNA-
seq on shoots (of 172 TFs and 2,174 target genes) and roots (145 TFs and 1,458 target genes)
(20, 128). These larger nitrogen-response GRNs were functionally validated by TF perturbation
studies on a genome-wide scale, as discussed in Section 5.3, below.
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ATAC-seq: assay for
transposase-accessible
chromatin using
sequencing

The Inferelator is another popular algorithm that can generate linear models of gene expres-
sion from genome-wide data, including time series. In a study that employed the Inferelator to
create GRNs for the response of rice cultivars to water and heat stress (130), known TF cis-
binding motifs that were found in open chromatin regions, as determined by the use of assay
for transposase-accessible chromatin using sequencing (ATAC-seq) on a subset of the experimen-
tal conditions, were used as priors to train the network models. This approach generated a final
network connecting 113 TFs to 4,052 target genes (130).

The ability to improve network inference by incorporating priors has recently been demon-
strated for a new random forest–based method called OutPredict (25). OutPredict is unique in
that it allows the use of both steady-state and time-series data, as well as the incorporation of pri-
ors. It focuses on target gene expression forecasting, although it can also identify the underlying
casual edges between a TF and a target gene. OutPredict has been applied to steady-state and
time-series data sets from several different organisms, including Arabidopsis, and it outperformed
several other inference methods, including dynamical GENIE3 (25).

Desai et al. (31) implemented a unique approach to time-based network inference that com-
bined the expression level with the rate of change in expression, which they called ExRANGES.
These authors showed that ExRANGES can improve network inference ability, compared with
the use of expression values, when tested with both the Inferelator (15) and GENIE3 (54), which
they modified to add a time-delay step (31). The authors suggested that this improvement is due
to emphasizing time points that precede significant changes in target expression (31).

5.3. Addressing a Current Bottleneck in Gene Regulatory Networks:
Genome-Wide Validation of Transcription Factor–Target Gene Predictions

Regardless of the machine learning approach used to predict TF–target gene relationships or
forecasting target gene expression at untested time points, it is crucial to demonstrate that the
TF–target predictions in the resulting GRNs are biologically relevant. Because a primary reason
to build GRNs is to identify key regulators, highly connected TF hubs (see Section 4) are often
selected for in planta validation (65, 128).However, this type of genome-wide validation on a single
TF does not necessarily demonstrate the overall quality of theTF–target predictions generated for
other TFs in the GRN.Therefore, it is also important to use statistical measures that will compare
predictions of TF–target interactions in GRNs with actual values of experimentally validated TF–
target interactions (105).

Beyond predicting TF–target gene interactions, time-series data can be used in machine learn-
ing models to forecast the expression level of a target gene at a future, untested time point. For
methods that perform target gene expression forecasting, the models are often created from the
gene expression data using a training set that includes all but the final time point, which is used
as a test set (Figure 5). This approach, called leave-out-last, enables comparison between the ac-
curacy of the predictions with the known (left-out) experimental values of target gene expression
by different metrics. In one example of this approach, Krouk et al. (65) compared the sign of
the change in target gene prediction with the actual sign of the change. They showed that the
DFG method improved the predictions of target gene expression at the left-out time point by
20% in comparison to naive extrapolation of the gene expression based on the previous two time
points (65). In another approach used in OutPredict,Cirrone et al. (25) compared the gene expres-
sion value returned for each prediction with the actual gene expression value in the test set and
then calculated a global mean squared error metric. The predicted gene expression values from
OutPredict were 34% more accurate than naive predictions for the Arabidopsis data set using the
same metric.
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AUPR: area under the
precision-recall

In contrast, for network inference approaches, predicted regulatory edges between a TF and
its target genes are compared with a gold standard network of known TF–target interactions (98).
This comparison is usually done by calculating the number of true versus false positives and of
true versus false negatives, which are then used to derive several metrics such as precision, recall,
and specificity. When these metrics are taken at different cutoffs for the predicted network, they
can be used to plot and calculate the area under the receiver operating characteristic curve and/or
the area under the precision/recall (AUPR) curve, values used to compare the performance of
inference methods to one another and to randomized networks (see References 98 and 105 for
more details on these evaluation metrics).When gold standard edges are used as priors in network
inference methods, they can be randomly split into a priors set and an evaluation set (Figure 5),
allowing cross-validation of the predictions (105).

Time-series studies of the nitrogen response (20, 128) used precision/recall validation of TF–
target interactions in the GRN to show that DFG-inferred networks generated from nitrogen by
time-series transcriptome data have a better AUPR curve, and, thus, are able to predict true TF–
target gene interactions significantly better than random networks (20, 128). Furthermore, these
studies used the validated TF–target interactions for 7 TFs in the first study of shoots, followed by
33 TFs in the second study of roots, to refine the predicted network by selecting a precision cutoff
value from the precision/recall curve and prune the inferred TF–target interactions to those that
passed the cutoff TF–target edge value. This process allowed the authors to extend their validated
data for ∼40 TFs to high-confidence predictions for more than 140 nitrogen-responsive TFs that
regulate 720 nitrogen-responsive genes (20, 128).

Importantly, the gold standard interactions used to evaluate the networks in the above exam-
ples used validated genome-wide targets for 40 TFs in the nitrogen-response network (20, 128).
A more recent analysis of nitrogen by the time DFG-inferred network showed that direct regu-
latory TF–target edges validated using root cell–based TARGET work better as a gold standard
than TF–target interactions from in vitro binding assays (21). This result highlights the need for
more TF perturbation data that validate TF–target regulation, which are currently more difficult
to obtain and less scalable in comparison to in vitro TF-binding data.

There is a great deal of interest in developing new approaches, such as those described above,
that are able to use time-series data to determine the structure of GRNs and predict gene expres-
sion. It is important to recognize that, while an individual method may outperform another using
a specific data set, to date no algorithm that outperforms all other algorithms and is suitable for all
types of data has been developed. In fact, ensemble approaches that combine the results of multiple
inference methods can produce the most accurate predicted networks (81). Improving methods
of handling time-series data is a key area that needs to be addressed, and to accomplish this goal it
will be important to account for the dynamic nature of TF–target interactions, as described above.

6. PERSPECTIVE

Significant advances in addressing the challenge of capturing dynamic events in GRNs have been
achieved. The methods described in this review have their own advantages and drawbacks but
collectively can provide insight into the dynamic nature of GRNs.

Howhave the current advances changed our understanding of dynamicGRNs underlying plant
responses to the environment? The discovery that TF–target interactions can occur in millisec-
onds and within 5 min of exposure to a given stimulus should thoroughly change our perspec-
tive of how rapidly regulatory events can take place. We propose that rapid and transient regu-
latory events may be more common than previously accepted. It is thus necessary to reevaluate
the design of TF-binding experiments (such as ChIP) to capture TF dynamics. Plant cell–based
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TF-perturbation assays such as TARGET (11, 20, 96) offer a higher-throughput experimental ap-
proach to the identification of these rapid and transient TF–target interactions (6, 96). However,
such assays do not necessarily provide a native biological context, because they depend on cell iso-
lation from tissues by protoplasting. In contrast, the dynamic and rapid changes in open chromatin
regions provide clues to the effective regulatory regions relevant to transcriptional regulation in
a native context. However, open chromatin studies fail to account for transient TF–target inter-
actions and depend largely on the inference of TF-binding sites.

Studies of the function of multiple TFs in parallel have revealed the relative contribution of
each TF and the TF hierarchy within a GRN. Importantly, TF–TF wiring is a prevalent compo-
nent of TF networks that fine-tune gene expression responses to the environment. In particular,
regulatory feedback and feed-forward loops are key motifs in dynamic GRNs.

A common limitation of the genome-wide studies discussed in this review is that they often
mix different plant cell types together. Specifically, the vast majority of plant GRNs are derived
fromChIP-seq or RNA-seq data sets where entire plant organs (e.g., root or shoot) are sequenced,
in effect pooling cell types together. However, the handful of studies that have assayed cell type–
specific expression patterns in plants have revealed that different cell types hold unique transcrip-
tional profiles (13, 18) and respond to environmental signals in unique ways (33, 42). The recent
advent of single-cell sequencing techniques offers an opportunity to create GRNs with cell type
specificity. Already, single-cell profiling is able to correctly resolve distinct root cell types (30, 111,
132) as well as cell type differences in chromatin accessibility (36). Importantly, the differences
between individual single-cell transcriptomes can be exploited to render a trajectory of cell type
development in silico. Such “pseudotime” analyses can identify key genes involved in determin-
ing cell fate (111, 132) and likewise can be used to create dynamic GRNs (14). However, while
such pseudotime analyses work for understanding cellular development, they are less helpful for
modeling real-time changes in gene expression, especially in response to an environmental cue.
Assaying plant environmental responses through single-cell sequencing is particularly difficult in
plants in comparison to other organisms, as transcriptional responses can be compromised during
the necessary step of digestion of plant cell walls (protoplasting). One solution to this problem
is to perform single-nucleus sequencing instead, which would allow nuclei to be extracted from
flash-frozen tissue, thus preserving transcriptomes within their native states (122).

Similarly, the development of machine learning approaches that can incorporate spatial in-
formation, in the form of single-cell or tissue-specific omics data, holds promise for improving
predictions of dynamic GRNs, as was recently demonstrated for the GRNs controlling cell wall
formation (114). Obtaining both spatial and temporal data will also enable exploration of how
tissues and organs communicate. Making these connections between distinct populations of cells
will require innovative computational approaches, such as the statistical approach recently used
to connect nitrogen signals between the root and the shoot (49).

Single-cell multiomics technologies, assays for identifying TF–target gene binding and regu-
lation, and machine learning methods are all rapidly evolving. Therefore, many challenges and
opportunities remain on the horizon for mapping and modeling dynamic GRNs using plant sys-
tems biology.

SUMMARY POINTS

1. Time is an unexplored, underutilized, but powerful variable to interrogate the dynamics
of GRNs and biological operating systems.
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2. Single-molecule studies capture transcription factor (TF) binding dynamics within sec-
onds but miss the genome-wide context. Conversely, genome-wide studies reveal the
impacts of TF regulation genome-wide but often ignore the rapid and transient behav-
ior of transcriptional regulation.

3. Chromatin immunoprecipitation sequencing (ChIP-seq) is the prevailing technique to
capture TF-bound targets genome-wide. Time-series studies using ChIP-seq reveal TF
dynamics.However, the TF binding captured by ChIP-seq rarely leads to TF regulation,
and TFs are detectably bound to only a small proportion of their regulated targets.

4. Plant cell–based TF perturbation assays, such as TARGET (transient assay reporting
on genome-wide effects of TFs), offer an experimental approach to the identification of
rapid and transient genome-wide TF–target interactions.

5. The genome-wide relevance of multiple TFs can be captured in the same experimen-
tal setup by chromatin profiling assays such as DNAse-seq and assay for transposase-
accessible chromatin using sequencing (ATAC-seq). Multiple TFs can also be studied in
parallel by ChIP-seq or TARGET.

6. Network motifs, where two or more TFs work together, enable dynamic regulation of
target gene expression.

7. Machine learning techniques are currently being exploited to predict causal relationships
between TFs and their target genes.

8. The single-cell transcriptomics approach is a promising method to determine which
GRNs drive dynamic responses in a high-resolution manner.
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