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A splitting theorem for the Seiberg-Witten invariant
of a homology S! x $3
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We study the Seiberg—Witten invariant Agw (X)) of smooth spin 4-manifolds X with
the rational homology of S! x S* defined by Mrowka, Ruberman and Saveliev as
a signed count of irreducible monopoles amended by an index-theoretic correction
term. We prove a splitting formula for this invariant in terms of the Frgyshov invariant
h(X) and a certain Lefschetz number in the reduced monopole Floer homology of
Kronheimer and Mrowka. We apply this formula to obstruct the existence of metrics
of positive scalar curvature on certain 4—manifolds, and to exhibit new classes of
homology 3—spheres of infinite order in the homology cobordism group.
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2866 Jianfeng Lin, Daniel Ruberman and Nikolai Saveliev
1 Introduction

Let X be a smooth oriented spin 4-manifold with the rational homology of S! x §3.
Such manifolds play an important role in the study of homology cobordisms of ho-
mology 3—spheres and in addressing certain classification problems in 4—dimensional
topology; see discussion in Ruberman and Saveliev [55]. Their study, however, rep-
resents a challenge because the usual count of the Seiberg—Witten monopoles on X
generally depends on the auxiliary choices of metric and perturbation and hence does
not result in a smooth invariant of X. This problem has been remedied by Mrowka,
Ruberman and Saveliev [41], who defined an invariant Agw(X) for integral homology
S1xS3 by adding an index-theoretic correction term to the count of the Seiberg—Witten
monopoles on X' ; we will extend their definition to the case of rational homology
S1x S3 in this paper. Because of its gauge-theoretic nature, the invariant Agw(X) is
difficult to compute directly from its definition. We address this problem in the current
paper by expressing Asw(X) in terms of Floer-theoretic invariants via a gluing theory,
the way it is done for the classical Seiberg—Witten invariants.

An invariant relevant to this gluing theory was defined by Frgyshov [12]: under the
additional hypothesis that a generator of H3(X;Z) is carried by an embedded rational
homology sphere Y, he showed [12, Theorem 8] that the invariant 4(Y,s) arising
from the monopole Floer homology of Y with the induced spin structure s is an
invariant of the spin manifold X alone; we will denote this invariant by /(X). The
invariants Asw(X) and /(X)) are certainly different: for instance, the mod 2 reduction
of Asw(X) equals the Rokhlin invariant of X, while this is not the case for 2(.X).

The following theorem establishes a precise relation between Agw(X) and A(X). It is
followed by some strong applications (Theorems B, C and D below) to the study of
metrics of positive scalar curvature and of the homology cobordism group of homology
3—spheres.

Theorem A Let X be a smooth oriented spin rational homology S x S* which is
homology oriented by a choice of generator o € H'(X ;7). Assume that the Poincaré
dual of « is realized by a rational homology sphere Y C X. Let s be the induced spin
structure on Y, and let W be the spin cobordism from Y to itself obtained by cutting
X open along Y. Then

(1) Asw(X) + h(X) = —Lef(Wy: HM™4(Y, 5) - HM™4(Y, 5)).
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The reduced monopole Floer homology HM™!(Y, s) that appears in the statement
of this theorem is the Floer theory defined by Kronheimer and Mrowka [23], with
rational coefficients. We could use instead the monopole Floer homology defined
by Frgyshov [12], which would change the sign of the Lefschetz number because of
different grading conventions in the two theories. The rational homology sphere Y
in Theorem A is oriented by the rule that the orientation on a curve Hom-dual to
o followed by the orientation on Y gives the orientation on X. The precise sign
convention for Asw(X) is described in Section 2.1.

In the special case of X =S x Y, where Y is an integral homology sphere, Theorem A
reduces to Theorem 5 of Frgyshov [12], which relates the Casson invariant A(Y), the
Frgyshov invariant /#(Y) and the Euler characteristic of HM™¥(Y). An analogous
theorem [12, Theorem 7] holds for manifolds X with b_%_(X ) > 1 once the term
Asw(X) + A(X) in formula (1) is replaced by the usual Seiberg—Witten invariant.

1.1 An outline of the proof

The proof of Theorem A relies on the calculation of the two terms in the definition
of Asw(X), the count of the Seiberg—Witten monopoles on X and the index-theoretic
correction term, using metrics on X with long necks (0, R) x Y. This neck-stretching
technique for counting monopoles is well known in gauge theory, although mainly
in the separating case. The nonseparating case at hand was studied in Frgyshov [11,
Section 11.1] under the technical assumption of the absence of reducible monopoles
on the noncompact manifold W, obtained by attaching infinite product ends to W. In
our case, this assumption fails because b;r (W) = 0. We could overcome this problem
by adapting the proof of the gluing theorem for framed moduli spaces from [11] to our
situation. Instead, for the sake of completeness, we decided to take a different approach
and show that such a reducible monopole does not cause any trouble because it is
isolated in the sense that a sequence of irreducible monopoles on X cannot converge
to it as R — oo. This is proved using an a priori estimate on the smallest eigenvalue
of the Dirac Laplacian on a manifold with long neck. We provide a detailed argument
in Sections 7, 8 and 9, which all use the setup of Kronheimer and Mrowka [23]. As
a result, we are able to match the count of monopoles on X with a certain Lefschetz
number in the monopole Floer chain complex. The truly novel part of the proof of
Theorem A, however, is the calculation of the correction term in Agw(X), which boils
down to calculating the index of the spin Dirac operator on a manifold with periodic end
modeled on the infinite cyclic cover of X as R — oo. This is done in two substantially

Geometry & Topology, Volume 22 (2018)



2868 Jianfeng Lin, Daniel Ruberman and Nikolai Saveliev

different ways, one direct, in Section 6, and the other using the end-periodic index
theorem of Mrowka, Ruberman and Saveliev [42] in Section 11.

A very useful technical result underpinning the proof of Theorem A is the existence of
Riemannian metrics on the manifold Wy, with infinite product ends which make the 1.2
Sobolev completion of the spin Dirac operator invertible. This existence result, which
is proved in Section 10 in all dimensions divisible by four, is an extension of the generic
metric theorem of Ammann, Dahl and Humbert [1] to certain noncompact manifolds.
One advantage of working with such generic metrics is that they greatly simplify the
treatment of perturbations needed to ensure the regularity of the Seiberg—Witten moduli
spaces, and allow us to avoid perturbations on manifolds with periodic ends altogether.
See the discussion at the end of Section 2.1.

1.2 Calculations and applications

The splitting formula of Theorem A makes the invariant Agw(X) computable in a
number of cases. This is due, on one hand, to the availability of advanced compu-
tational tools in monopole Floer homology (such as Floer exact triangles and the
Pin(2) symmetry), and on the other, to the identification between monopole Floer
homology and Heegaard Floer homology, by the work of Kutluhan, Lee and Taubes
[25; 26; 27; 28; 29] or, alternatively, the work of Colin, Ghiggini and Honda [6; 7; 8]
and Taubes [63]. This newly found computability of Agw(X) leads to a number of
applications, of which we present two in Sections 4 and 5. In both applications, the
Lefschetz number in formula (1) vanishes, albeit for different reasons.

The first application gives an obstruction to a 4—-manifold having a Riemannian metric of
positive scalar curvature. Historically (see Witten [64]), the Seiberg—Witten invariants
have been used to produce many obstructions of this nature that go well beyond the
classical index-theoretic obstruction of Lichnerowicz [31]. We add to this body of
knowledge the following theorem, which was originally proved by the first author [33,
Theorem 1.2] using different techniques. It was conjectured in [33, Remark 1] that
there should exist a proof along the lines of this paper.

Theorem B Let X be a smooth oriented spin rational homology S' x S3* which is
homology oriented by a choice of generator in H'(X;Z). Assume that the Poincaré
dual of this generator is realized by a rational homology sphere Y C X with the induced
spin structure s. Then X admits no Riemannian metric of positive scalar curvature
unless Asw(X) + h(Y,s) =0.
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It was shown in Mrowka, Ruberman and Saveliev [41] that Asw (X)) reduces modulo 2
to the Rokhlin invariant p(X'). As in [33], this fact leads to the corollary that, if X
admits a metric of positive scalar curvature, any rational homology sphere Y carrying
the generator of H3(X;Z) must satisfy the relation 4(Y,s) = p(X) (mod 2) with
respect to the induces spin structure s. For example, if a generator of H3(X;Z) is
carried by the Brieskorn homology sphere (2, 3,7), then X cannot admit a positive
scalar curvature metric.

The second, and more elaborate, application is to the study of homology cobordisms.
Recall that oriented 3—manifolds Y, and Y7 are called homology cobordant (resp. Z/2
homology cobordant) if there exists a smooth, compact, oriented cobordism W from
Yo to Y7 such that H,(W,Y;;Z) =0 (resp. H«(W,Y;;Z/2) =0) fori =0, 1. The
homology cobordism group ®% is generated by oriented integral homology 3—spheres,
modulo the equivalence relation of being homology cobordant. Similarly, the Z /2
homology cobordism group ®3Z /2 is generated by oriented Z/2 homology 3—spheres,
modulo the equivalence relation of being Z /2 homology cobordant.

Let us first consider the group ®3Z. Recall that the Rokhlin invariant provides a
surjective homomorphism p: ®3Z — 7./2. Manolescu [38] used Pin(2)—equivariant
Seiberg—Witten theory to show that this homomorphism does not split, that is, no
integral homology sphere Y with p(Y) = 1 has order two in ®3Z. It seems reasonable
to conjecture that p(Y') = 1 in fact implies that Y has infinite order in ©3, ; indeed, this
was shown to be true for all Seifert fibered homology spheres by the third author [58]
following Fukumoto, Furuta and Ue [13]. Generalizing this result, we show that the
conjecture holds under an additional assumption that Y is s—positive or A—negative:
a 7 /2 homology sphere Y is said to be si—positive (resp. i—negative) if the reduced
monopole homology HM™4(Y, 5) corresponding to the unique spin structure s on Y
is supported in degrees > —2h(Y,s) (resp. < —2h(Y,s) — 1); see Definition 5.3 for
more details. All Seifert fibered homology spheres satisfy this assumption, and many
more examples can be found in Section 5.

Theorem C Any h—positive or h—negative integral homology sphere Y with p(Y) =1
has infinite order in ®3Z.

It is worth mentioning that, instead of using Theorem A, one could follow similar

arguments to deduce Theorem C from Stoffregen’s connected Seiberg—Witten Floer
homology [61].
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: 3
Let us now turn our attention to the group ®7 /2

Let ®z be the subgroup of ®3Z /2 generated by all the L —spaces (over Q) that are Z /2
homology spheres. It was shown by Stoffregen [62] (using the invariants «, 8 and y)

where we can prove a stronger result.

and Hendricks, Manolescu and Zemke [18, Proposition 1.4] (using the invariants d
and d) that the Brieskorn homology sphere X (2, 3, 7) has infinite order in the quotient
group ®3Z /2 / @i. In particular, this implies that ®3Z /2 / ®z is an infinite group. The
following theorem generalizes this result by exhibiting a large family of such manifolds.

Theorem D Any h—positive or h—negative 7 /2 homology sphere Y with p(Y) #
h(Y) (mod 2) has infinite order in the group ®3Z/2/®z.

A further study of the A—positive (h—negative) condition using the rational surgery
formula of Ozsvath and Szabé [51] leads to the following corollary.

Corollary E Let Y be an integral homology sphere obtained by 1/n surgery on a
knot K in S3 with n odd, and suppose that Arf(K) = 1. Then Y has infinite order
in ©3, in the following cases:

(1) K is the figure-eight knot.

(2) K is a quasialternating knot with nonzero signature o (K).

We remark that the Frgyshov invariant /(Y) in the above corollary vanishes both in
case (1) and in case (2) whenever n-0 (K) > 0 (see Lemma 5.13), hence the result of the
corollary cannot be proved using 4(Y') alone. It may be possible, however, to give an
alternative proof using other Frgyshov-type invariants involving the Pin(2)—symmetry,
such as the invariants «, § and y of Manolescu [38] — see also Lin [32] — and the
invariants d and d of Hendricks and Manolescu [17], once their behavior under the
connected sum operation is better understood.

Example Let Y be the integral homology sphere obtained by 1/n surgery on a two-
bridge knot K(24m £ 5,3) or K(24m £+ 11,3) with m > 0 and odd n > 0. Then
h(Y) =0 and Y has infinite order in the groups ®3Z and ®3Z/2/®z‘

Another major reason to study the group ®3Z /2 is to gain information about the smooth
knot concordance group Cs via passing to the double branched cover of the knot. Recall
that a knot K is called Khovanov-homology thin (over Z/2) if its reduced Khovanov
homology ﬁl(K ; Z./2) is supported in a single §—grading (see Khovanov [21; 22]).
Such knots are very common: all quasialternating knots [39] and 238 of the 250 prime
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knots with up to 10 crossings are Khovanov-homology thin. Let Cy,i, be the subgroup
of C generated by the Khovanov-homology thin knots. Theorem D has the following
curious corollary:

Corollary F Any knot K whose double branched cover satisties the conditions of
Theorem D generates an infinite cyclic subgroup in Cs/Cipin .

Example Let K be the (3,12n—15) or (3, 12n— 1) torus knot, with n > 0. Then the
connected sum #,, K (with m > 0) is never smoothly concordant to any Khovanov-
homology thin knot.

In our subsequent paper [34], we use similar techniques to compute the invariant
Asw(X) for the mapping tori X of all smooth orientation-preserving involutions
7: Y — Y on integral homology spheres ¥ with the quotient S3. That calculation
will confirm the conjecture of Mrowka, Ruberman and Saveliev [41, Conjecture B] for
all such mapping tori X by identifying Asw(X) with its Yang—Mills counterpart, the
invariant Apo(X') of Furuta and Ohta [14].

It is worth mentioning that the invariant Agw(X) was extended in [41, Section 10] to
the wider class of smooth closed oriented 4—manifolds X satisfying the hypotheses
H\(X:Z)=17, b;r (X) =0 and that H3(X) is generated by an integral homology
3—sphere Y C X. According to Frgyshov [12, Theorem 8], the same set of hypotheses
on X makes for the well-defined Lefschetz number and s —invariant of X. It is then
natural to wonder if Theorem A still holds in this more general situation.

1.3 Organization of the paper

We begin by reviewing the definitions of the monopole Floer homology and of the
invariants Asw(X) and A(Y,s) that go into the statement of Theorem A in Section 2.
We also use this section to settle various technical matters and introduce some notations.
The proofs of Theorems A, B, C and D, as well as Corollaries E and F, are given
in the three sections that follow. They rely on certain technical results whose proofs
are postponed until later in the paper for the sake of exposition. The first of these
results, discussed in Section 6, is a calculation of the index-theoretic correction term
w(X, g) on manifolds with long necks. An alternative calculation using the end-
periodic index theorem of Mrowka, Ruberman and Saveliev [42] is given in Section 11.
Both calculations boil down to computing the L? index of a spin Dirac operator on
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certain manifolds with periodic ends, which we do in all dimensions # = 0 (mod 4).
Similar techniques lead to the first eigenvalue estimates in Section 7. These are later
used for the compactness and gluing results in Sections 8 and 9. Several of these results
rely on the generic metric theorem, whose proof uses a rather different set of techniques
and for this reason is postponed until Section 10.

Although many results in this paper can be generalized to spin® structures, we will be
mainly concerned with spin structures. We will omit spin structures on 4—manifolds
from our notations. We will usually include spin structures on 3—manifolds, to be
consistent with Kronheimer and Mrowka [23]. One exception is Z /2 homology spheres:
each of these has a unique spin structure, which will be omitted.

Acknowledgments We are thankful to Tye Lidman, Ciprian Manolescu and Matthew
Stoffregen for generously sharing their expertise. Lin was partially supported by
NSF grant DMS-1707857, Ruberman was partially supported by NSF grant DMS-
1506328 and Saveliev was partially supported by a Collaboration Grant from the Simons
Foundation.

2 Preliminaries

We begin by recalling the definitions of all the invariants involved and settling some
technical matters.

2.1 The invariant Agw(X)

Let X be an oriented smooth 4—manifold with the rational homology of S! x 3,
equipped with a fixed spin structure. We will review the definition of Agw(X) fol-
lowing [41]. Note that the invariant Agw(X) was defined in [41] only for an integral
homology S x S3 but a careful check of the details shows that the construction of [41]
extends to a rational S! x S? essentially word for word. There are only two exceptions,
which will be discussed in Remarks 2.1 and 2.2. With a slight abuse of language, we
will cite [41] directly.

Fix a homology orientation on X by choosing a generator 1 € H'(X;Z) = Z. Given
a metric g on X and a coclosed 1—form B € Q'(X;iR) orthogonal to H!(X:iR)
(the space of harmonic 1-forms on X'), consider the triples (A4, s, ¢) consisting of
a U(1) connection A on the determinant bundle of the spin bundle, a real number
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s > 0 and a positive spinor ¢ such that [|¢||z2(x) = 1. The gauge group Map(X, Sh
acts freely on such triples by the rule u(4, s, ¢) = (A —u~'du, s, up). The blown-up
Seiberg—Witten moduli space M (X, g, B) consists of the gauge equivalence classes of
triples (4, s, ¢) that solve the perturbed Seiberg—Witten equations

{FI —s?t(p)=d*p,
D4 (X.2)(p) =0.

The solutions are referred to as monopoles. Monopoles with s = 0 are called reducible,
and all other monopoles are called irreducible. The latter are identified with the

irreducible monopoles in the usual moduli Seiberg—Witten moduli space via the map
(4,5,9) = (4,59).

According to [41, Proposition 2.2], the moduli space M (X, g, 8) is regular for a
generic choice of (g, f). In particular, M(X, g, B) is a compact oriented manifold
of dimension zero that contains only irreducible solutions. The count of points in
M(X, g, ) with signs determined by the orientation and homology orientation is
denoted by #M (X, g, B). The invariant Agw(X) is defined in [41] by the formula

Asw(X) =#M(X, g, ) —w(X. g, p),

where w(X, g, B) is the correction term which cancels the dependence of #M (X, g, B)
on the parameters (g, 8). The definition of w(X, g, B) is as follows.

Let Y C X be a connected manifold which is Poincaré dual to the chosen generator
in H'(X;Z). Note that Y is canonically oriented, and inherits a spin structure s
from X. Denote by W the cobordism from Y to itself obtained by cutting X open
along Y. For any smooth compact spin manifold Z with spin boundary Y, consider
the manifold

) Zoo(X) = ZUWoUW; UW, U---

with periodic end modeled on the infinite cyclic cover of X ; each of the manifolds W;
in this formula is just a copy of W. Choose a metric and a perturbation on Zso(X)
which match the metric and the perturbation over the end lifted from those on X. Then
the operator DT (Zoo(X), g, B) = DT (Zoo(X), g) + B is Fredholm with respect to
the usual Sobolev L2 completion, and the correction term

3) w(X.g.B) =ind D" (Zeo(X).g.B) + § sign Z

is independent of the choice of ¥ and Z.
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Remark 2.1 The proof of well-definedness of w(X, g, 8) in [41, Proposition 3.2]
makes use of the following fact: if X is an integral homology S! x §3, its p—fold
cyclic cover X, is a rational homology S % 83 for any prime number p. This need
not be true if X is a rational homology S! x S3. However, one can use the argument
of [41] to show that X, is a rational homology S 1'% §3 as long as the prime number p
is large enough that Hy(X;Z/p) = H«(S! x S3;Z/ p). This is sufficient to complete
the proof of well-definedness of w(X, g, 8).

Theorem A of [41] asserts that Asw(X) is independent of the choice of metric g and
generic perturbation 8, and that the reduction of Agw(X) modulo 2 is the Rokhlin
invariant of X.

Remark 2.2 Unlike in the case of an integral homology S' x S* treated in [41],
different spin structures on X may lead to different invariants Agw(X'). To keep our
notations clean, we will not include the spin structure in the notation. Note that when
X isa Z/2 homology S! x §3, different spin structures are all equivalent as spin®
structures and hence give the same invariant Agw(X).

There are several implicit orientation conventions that go into the definition of Agw(X).
We will not discuss them here but notice that altering these conventions consistently
only changes Asw(X) by an overall sign. The sign of Agw(X) was fixed in [41,
Section 11.2] by the condition

Asw(S!' xY) = —A(Y),

where A(Y) is the Casson invariant of an integral homology sphere Y normalized so
that A(2(2, 3,5)) = —1 for the Brieskorn homology sphere (2, 3, 5) oriented as a
link of complex surface singularity.

We conclude this section by addressing an important technical point about choices of
metrics and perturbations. According to [56], the operator D¥ (Zoo(X), g, 8) can be
made Fredholm by choosing a generic metric g and letting 8 = 0. This choice of
metric also guarantees [41, Proposition 7.2] that the moduli space M (X, g,0) has no
reducibles but not that it is regular. One way to ensure regularity is to choose a generic
perturbation 8 small enough that ind DT (Zxo(X), g) =ind DV (Zoo(X), g, B). Then

4 Asw(X) =#M(X, g, B) —w(X, g),

where w(X, g) stands for w(X, g,0). The perturbation B in this formula can be
replaced by a more general perturbation y as in [41, Section 9.2] or in Section 8.2
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below. As long as y ensures regularity and is small enough, one can connect y and S
by a generic path {8; | 0 <t < 1} of small perturbations. Since the perturbations S;
are small, the union
U M(x.g.B0)
0=<r<1
contains no reducibles (just like M (X, g,0)) and provides an oriented cobordism
between M(X, g, ) and M(X,g,y), as explained in [41, Proposition 9.4]. This
gives us the formula

(5) Asw(X) =#M(X, g,y7) —w(X, g).

2.2 Monopole Floer homology

In this subsection, we will briefly recall the definition of the monopole Floer homology
HM(Y, s). We will focus on the special case when Y is a rational homology sphere
and s is a spin structure, which will suffice for the purpose of this paper. The general
definition can be found in Kronheimer and Mrowka [23, Chapter 1]. We will work
with rational coefficients and omit the coefficient ring from our notations.

Let Y be an oriented rational homology sphere with a Riemannian metric / and a spin
structure 5. An important example to have in mind is the rational homology sphere
Y C X of Theorem A with the induced spin structure s. Trivialize the spinor bundle S
and choose the product connection By to be our reference connection. We will make
the following assumption, which according to [1, Theorem 1.1] holds for a generic
metric /.

Assumption 2.3 The spin Dirac operator D(Y, h) has zero kernel.

Let C(Y) be the Sobolev L,ZC_1 /2 completion of the affine space of configurations
(B, V), where B is a connection in S, v is a spinor and k > 3 is an integer which
will be fixed throughout the paper. We refer to C(Y') as the configuration space. We
also introduce the blown-up configuration space C°(Y), which consists of the triples
(B, s,v¥), where B is a connection in S, s > 0 is a real number and v is a spinor with

[VlL20ry = 1.

Let p: C°(Y) — C(Y) be the natural projection sending (B, s, ) to (B, sy). Using
the terminology of [23], configurations in C(Y') are said to be downstairs and those in
C°(Y) are said to be upstairs. A downstairs configuration (B, V) is called irreducible
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if ¥ # 0, while an upstairs configuration (B, s, V) is called irreducible if s # 0. All
other configurations are called reducible. The projection p provides a diffeomorphism
between the spaces of irreducible configurations upstairs and downstairs; we denote
both of these spaces by C*(Y).

The group of Li +1/2 gauge transformations u: ¥ — S! acts on C(Y) by the for-
mula u(B,v¥) = (B —u"'du,uy) and on C°(Y) by the formula u(B,s,v¥) =
(B—u""du,s,uy). Both actions restrict to an action on C*(Y). The corresponding
quotient spaces will be denoted by B(Y), B°(Y) and B*(Y). Note that B*(Y) is a
Hilbert manifold, while B°(Y) is a Hilbert manifold with boundary. The boundary
of B°(Y), given by the equation s = 0, contains the gauge equivalence classes of all
reducible configurations [(B, 0, ¥)].

The monopole Floer homology was defined in [23] as a variant of Morse homology
of the Chern-Simons-Dirac functional £: C(Y) — R. The definition of £ can be
found in [23, Definition 4.1.1]. To ensure that transversality holds, £ is perturbed
using a perturbation q which is the formal gradient of a gauge-invariant functional
f: C(Y)—R. Note that q has two well-defined components, the connection component
q° and the spinor component q'. The perturbed Chern—Simons—Dirac functional is
denoted by L, = L+ f. Its gradient grad £, = grad £ + q gives rise to a vector field
vg on B(Y).

Let €9 > 0 be any small number such that D(Y, #) has no eigenvalues in the interval
[—€0, €0] (the existence of €y follows from Assumption 2.3). Then one can prove,
as in [33, Proposition 2.8], that there exist perturbations q satisfying the following
assumption:

Assumption 2.4 The perturbation q satisfies the following three conditions:

(a) q is nice, that is, q(B,0) = 0 for all B; in other words, q equals zero when
restricted to reducible configurations.

(b) q is admissible, that is, the critical points of vg are nondegenerate and the moduli
spaces of trajectories connecting them are regular; see [23, Definition 22.1.1].

(c) The derivative of the spinor component q' of q satisfies the inequality
(6) 1D By,00a" (0. V)l L2¢ry < 5€0- 1¥llL20v)
for any ¢ € Li_l/z(Y;S).

Under Assumption 2.4, the set € of critical points of vg is discrete and can be decom-
posed into the disjoint union of three subsets:
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e (9 the set of irreducible critical points.

e (5 the set of reducible, boundary stable critical points (ie reducible critical
points near which vg points inside the boundary).

e (¥ the set of reducible, boundary unstable critical points (ie reducible critical
points near which vg points outside the boundary).

We will next take a closer look at the reducible critical points. According to [23,
Corollary 4.2.2], the vector field grad £ 4+ q has a unique reducible critical point
[(Bo,0)] downstairs, which we call [#]. The situation with the reducible critical points
upstairs is quite different. To describe it, consider the perturbed Dirac operator

Dpyq(Y. h) =D, (Y,h) + D(p,.0)d" (0,-): Li(Y;S) — L*(Y;S).

This is a self-adjoint elliptic operator. Since q is admissible, its eigenvalues are all
nonzero and have multiplicity one. We enumerate them so that

<A <A1 <0<Ag <Ay <

For each A; pick an eigenvector v; of unit L2—norm and let [6;] = [(By. 0, ¥;)] €
B°(Y). Then
¢ ={6;]1i >0} and € ={[6;]]i <0}.

Let C (resp. C* and C*) be a vector space over Q with the basis {¢[y]} indexed by
the critical points [o] in € (resp. €° and ¢*). Define a linear map 05: C° — C? by
the formula
ey =Y #M((al.[B] - epp).
[Bleee

where M([a], [8]) is the moduli space of unparametrized flow lines going from [¢]
to [B] and #M ([«], [B]) is the signed count of points in this moduli space. (This number
is set to be zero if the dimension of the moduli space is positive.) One defines maps
09: C° — C* and 0%: C* — C? similarly. Consider the vector spaces

C=C*aqC* C=C°@C’ and C=C°qC".

The monopole Floer homologies HM(Y, 5), ﬁlV[(Y, 5) and ﬁI\\/I(Y, 5) are defined as
the homology of the chain complexes (C, 0), (é ,d) and (6 , d), respectively, with the

differentials
x (050 ~ (99 9,
8—(82 0) and 8—(0 0).

Geometry & Topology, Volume 22 (2018)



2878 Jianfeng Lin, Daniel Ruberman and Nikolai Saveliev

(Note that our formulas are simpler than those in [23] because we are working with
a rational homology sphere Y and a nice perturbation q.) The chain map i: C — C

0
10

(7) ix: HM(Y,s) — HM(Y, 5).

with the matrix

induces a natural map

We define the reduced monopole Floer homology as HM™(Y, s) = coker iy . This is a
finite-dimensional vector space. Note that this definition matches the definition of the
reduced monopole Floer homology in [23, Definition 3.6.3] because of the long exact
sequence [23, (3.4)]. A rational homology sphere Y is called an L—space (over Q) if
the reduced monopole Floer homology HM™4(Y, 5) vanishes for all spin® structures 5.

All these different versions of monopole Floer homology are modules over the poly-
nomial ring Q[U], where U is a formal variable of degree —2. In fact, we have
canonical isomorphisms HM(Y, s) = Q[U, U] and imis = Q[U,U~']/U - Q[U]
as well as a noncanonical splitting ﬁl\//I(Y, s) 2 im iy, @ HM™!(Y, 5). In addition, the
monopole Floer homology has the so-called “TQFT property”. More precisely, any
spin® cobordism (W, sy/) from (Yy, s¢) to (Y7,51) induces a morphism

(8) (W,BW)*Z HM(Y(),E()) — HM(Y],E])

of Q[U]-modules, where HM stands for any one of the monopole Floer homologies
HM, HM, HM or HM™. Each of these morphisms is induced by a respective chain
map, whose definition requires further perturbations as described in Section 8.2. Note
that in the current paper, we only consider spin structures sy and omit them from our
notations.

Next, we need to discuss the canonical gradings in monopole Floer homology. With
each critical point [¢] € € one associates two gradings,

e eQ and g@(a)) €Z/2;

see [23, page 587] for the former and [23, page 427] for the latter. These naturally
induce (absolute) Q- and Z/2-gradings on Im(Y, s), ﬁIVI(Y, s) and HM™(Y, 5).
The generators [0;] € HM(Y, s) are graded by grQ([6;]) and gr®([6;]) if i >0, and by
arQ([0;]) — 1 and gr®([6;]) — 1 if i < 0. In all cases, the U —action decreases the Q—
grading by two and preserves the Z/2—grading. We will use the Z /2—grading to define
various Lefschetz numbers, and use the Q—grading to define the Frgyshov invariant.
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Definition 2.5 The Frgyshov invariant 4(Y, s) is defined as negative one-half of the
lowest Q—grading of elements in im(ix), where iy is the map (7). If X is a spin
homology S' x S3 as in Theorem A, we define its Frgyshov invariant by the formula
h(X) =h(Y,s), where Y C X is an oriented rational homology sphere Poincaré dual
to 1 € H'(X;Z), with the induced spin structure s. It follows from [12, Theorem 8]
that /(X)) is well-defined.

The Frgyshov invariant /(Y s) is an invariant of spin® rational homology cobordism.
It is also known [12, Theorem 3] that it changes sign with the change of orientation and
that it is additive with respect to connected sums. A Heegaard Floer version of /(X))
was defined in [30] without the assumption that Y be a rational homology sphere.

We will conclude this section by computing the gradings of the generators [6;] €
HM(Y, 5). To this end, consider a smooth compact spin manifold Z with spin boundary
Y and define

9) n(Y.h,s) =indD" (Zso) + § sign Z,

where DT (Z ) is the spin Dirac operator on the manifold Z, with cylindrical end
obtained by setting X = S! x Y in formula (2). In essence, n(Y, &, s) is a special case
of the correction term (3) and, like the latter, it is independent of the arbitrary choices
in its definition.

Lemma 2.6 Forany i >0, we have gr'®([6;]) =0 and grQ([6;]) = —2n(Y, h,s)+2i.

Proof This follows directly from the definition of gr(z) and gr@ (see the discussion
at the end of [23, page 421]). The only nontrivial point is the use of Assumption 2.4(c)
to ensure that Dp, 4(Y, /) can be deformed into Dp, (Y, 1) without acquiring nonzero
spectral flow, which allows one to compute the grading with zero perturbation. o

3 Proof of Theorem A

Our proof will use the neck-stretching operation, which is well-known in gauge theory;
we will use its nonseparating version.

3.1 Manifolds with long necks

Let X be a spin rational homology S' x S3 and Y C X a rational homology sphere
Poincaré dual to the choice of homology orientation 1 € H'(X;Z). The spin structure
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on X induces a spin structure s on Y. Let /# be ametric on Y satisfying Assumption 2.3,
and extend it to a metric g on X which takes the form g = dt? +/ in a product region
[—&,e] x Y, with ¢ > 0. Given a real number R > 0, consider the spin manifold “with
long neck”

(10) Xg=WU(0,R]xY)

obtained by cutting X open along {0} x Y and gluing in the cylinder [0, R] x Y along
the two copies of Y. We also consider the noncompact manifold

(11) Weo = ((—00,0] x Y)U W U ([0, +00) X Y)

with two product ends. The metric g induces metrics on Xg and Wy, which will be
denoted by gr and g, respectively.

Assumption 3.1 The metric g on X has the form g = dt* + h in a product region
[—¢, €] X Y, with ¢ > 0, and makes the spin Dirac operator

(12) DF (Weo: go0): L} (Weoi §) = L2 (Wooi S7)

invertible.

The existence of metrics satisfying Assumption 3.1 will be proved in Theorem 10.3;

see also Remark 10.4. Note that, once Assumption 3.1 is satisfied, the metric / that
shows up in its statement will automatically satisfy Assumption 2.3.

The proof of Theorem A will rely on the following two theorems about manifolds with

long necks, whose proofs occupy Sections 6—11.

Theorem 3.2 Let g be a metric on X satisfying Assumption 3.1. Then, for all
sufficiently large R, the correction term w(Xg, gg) in formula (4) is well-defined, and
we have the equality (see (9))

w(Xg.gr) =n(Y.h.s).
Theorem 3.3 Let g be a metric on X satisfying Assumption 3.1. Then, for all

sufficiently large R and all sufficiently small perturbations pg (defined in Section 8.2)
which make the moduli space M(XR, g g, PRr) regular, we have the equality

#M(XR.gr.PRr) = —Lef(Wy: C? — C?).
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3.2 The proof

Let g be a metric on X satisfying Assumption 3.1. Fix a large number
N e -2n(Y,h,s)+2Z

and consider the truncated monopole chain complex (Cv’ﬁ N> 55 n) for Y. It is generated
by the irreducible critical points and the boundary stable reducible critical points of
grading < N. Then we have a short exact sequence

0—>C;N—>CV'5N—>C0—>0,

where the chain complex CZ,; is generated by the boundary stable reducible crit-
ical points of grading < N and has trivial differential. By Lemma 2.6, each m €
—2n(Y,h,s) + 2Z with —2n(Y,h,s) < m < N contributes a generator to CZ .
Therefore, we have

dim(CLy) = $(N +2n(Y, h,s)) + 1.

The cobordism W induces chain maps Wy on the three chain complexes in the above
exact sequence making the following diagram commute:

0—>C;N—>CV‘5N—>C”—>O
lW* lW* lW*
0—>C§N—>5§N—>C0—>O

With the obvious abuse of notation, the Lefschetz numbers of the three maps Wi in
this diagram are therefore related by the equation

Lef(C<n) = Lef(CE ) + Lef(CO).
Lemma 3.4 The restriction of Wy to the chain complex C ; N IS the identity map.

Proof This is essentially proved in [23, Proposition 39.1.2]. The result is stated there
for homology but it holds as well for the chain complex because the boundary map is
trivial for grading reasons. |

By Lemma 2.6, the Z/2-gradings of the generators of CZ, are all zero. Then
Lemma 3.4 implies that Lef(CZ ;) = dim(CZ y) and therefore

(13) Lef(C<n) = L(N +2n(Y, h,5)) + 1 + Lef(C?).
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On the other hand, for all sufficiently large N, the group HM™!(Y, s) can be identified
with the cokernel of the map

i<n: HM<y (Y. 5) > HM<y (Y. 5).
Therefore, we have the commutative diagram
0 —— im(i<y) —— HM<n (Y, 5) —— HM"™(Y,5) —— 0
0 — im(i<y) — HM<n(Y,5) —— HM™4(Y,5) —— 0
with exact rows, which gives us the identity
Lef(HM<n (Y, 5)) = Lef(im(i<y)) + Lef(HM™(Y, 5)).

Since im(i<p) is a finite-length U —tail whose top grading is N and lowest grading is
—2h(Y,s), we have

dim(im(i<p)) = 3(N +2h(Y.s)) + 1.

The restriction of W, on im(i<p) is the identity map by Lemma 3.4; therefore,
Lef(im(i<p)) = dim(im(i<y)) and

(14) Lef(HM<n (Y, 5)) = L(N +24(Y, 5)) + 1 + Lef(HM™(Y, 5)).

Combining (13) and (14) with the fact that the Lefschetz number of a chain map equals
the Lefschetz number of the induced map on homology, we obtain the identity

LN +2n(Y, h,5)) + 1 + Lef(C%) = J(N + 2h(Y,5)) + 1 + Lef(HM™(Y, 5))
and, after simplification,
—Lef(C°) —n(Y, h,s) + h(Y,s) = —Lef(HM™(Y, 5)).

The proof is now complete because it follows from Theorems 3.2 and 3.3 that, for all
sufficiently large R and the small perturbation pg,

Asw(X) =#M(XRg, gr.PR) —w(XR. gr) = —Lef(C’) —n(Y, h,s).

4 Proof of Theorem B

In this section we prove Theorem B, which is an application of Theorem A to the
question of existence of metrics of positive scalar curvature.
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Let X be as in the statement of Theorem B and suppose that it admits a metric of
positive scalar curvature. According to a theorem of Schoen and Yau [60], the Poincaré
dual to the generator of H'(X;Z) can be realized by an embedded manifold M C X
which admits a metric of positive scalar curvature. Since the first Chern class of the
spin structure sps induced on M vanishes, it follows from [23, Proposition 36.1.3]
that HM™4(M, s57) = 0. Note that the manifold M need not be a rational homology
sphere; however, we will prove that its existence implies that

Lef(Wsx: HM™(Y, 5) — HM™!(Y, 5)) = 0.

Our proof will adapt the argument of Frgyshov [12, Section 13] that shows the well-
definedness of the Lefschetz number. Since M generates H3(X;Z), the standard
covering space theory implies that the manifold M lifts to the infinite cyclic cover X,
and that this lift can be arranged to be disjoint from a copy of Y. It follows that, for
some k > 0, the manifold

w® =W Uy WUy ---Uy W (k times)
contains a copy of M separating its two boundary components. Therefore, the map
W)k = wP: HM™(Y, 5) — HM™(Y, 5)

factors through HM™4(M, sp7) = 0 making Wj nilpotent. It then follows that the
trace of Wy vanishes in each Z/2—grading, and that the Lefschetz number of W, must
therefore be zero.

5 Proof of Theorems C and D

We now prove Theorems C and D from the introduction, which assert that, in a number of
circumstances, a homology sphere must have infinite order in the homology cobordism
groups ®3Z or ®3Z /2 / @i. The proofs can be found at the end of Section 5.1. The part
of Section 5 after that is dedicated to examples and the proofs of Corollaries E and F.

5.1 A homology cobordism obstruction from HM"¢

Let (Y, s) be a rational homology sphere with a spin® structure s. Then HM™4(Y’, 5)
is graded by the rational numbers, and we define the support of HM™(Y, s) by the
formula

S(Y,s) = {a € Q | HM™4(Y, 5) # 0}.
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For the rest of this section, whenever we are considering the unique spin structure s on
a Z/2 homology sphere Y, we will usually drop s from our notations. In particular,
the notations p(Y), S(Y) and 4(Y) will be used, respectively, to denote the Rokhlin
invariant, the support of reduced monopole Floer homology and the Frgyshov invariant
for the unique spin structure.

Proposition 5.1 Let Y; and Y, be Z /2 homology spheres such that S(Y1)NS(Y;) =
@ and h(Y7) # p(Y1) (mod 2). Then Y7 is not Z /2 homology cobordant to Y5.

Proof Suppose to the contrary that we have an Z/2 homology cobordism W; from
Y; to Y,. It carries a unique spin structure, which restricts to s; on Y;. Reversing
the orientation, we obtain a spin cobordism —W; from Y, to Y;. Now, consider the
composite cobordism

W = Wi Uy, (=W)

from Y; to itself. The morphism
(W1)x: HM™ (Y7, 51) —> HM™ (Y, 52)

induced by the cobordism W; as in (8) preserves the absolute grading. Since the
intersection S(Y7) N S(Y>) is empty, we conclude that the map (W;)4 must be zero.
By functoriality, the map

Wy: HM™(Y1, 51) — HM™4 (Y], 51)

is also zero; in particular, its Lefschetz number vanishes. Let X be the homology
S1x 83 obtained by identifying the two boundary components of W via the identity
map. Then, using Theorem A, we obtain

Asw(X) = —h(Yy) —Lef(Wy) = —h(Yy) # p(Y1) (mod 2).

This contradicts [41, Theorem A], which asserts that Asw(X) equals the Rokhlin
invariant of X modulo 2. a

Remark 5.2 For a Z/2 homology sphere Y with spin structure s, the condition
h(Y') # p(Y) (mod 2) is equivalent to the condition that dimg HM™ (Y, 5) is odd.

The following definition is a slight generalization of the one given in the introduction.

Definition 5.3 Let Y be a rational homology sphere with spin®—structure s.

o (Y,s) is h—positive if HM™(Y, s) is supported in degrees > —2/(Y, s), that is,
S(Y,s) C[-2h(Y,s), +00).
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o (Y,s) is h-negative if HM™4(Y, s) is supported in degrees < —2h(Y,s) — 1
that is, S(Y,s) C (—oo, —2h(Y,s) —1].

Because Heegaard Floer homology is (at present) easier to compute, we would prefer to
use it in place of the monopole Floer homology in our calculations whenever possible.
In fact, these two theories are known to be isomorphic. Furthermore, by combining
the main results of [52; 20; 9], the absolute Q—gradings in the two theories coincide.
Therefore, the relation d(Y,s) = —2h(Y, s) between the Frgyshov invariant and the
Heegaard Floer correction term holds for any rational homology sphere. It then follows
that the property of (Y, s) being h—positive (resp. h—negative) can be characterized
by saying that the reduced Heegaard Floer homology HF™Y(Y,s) is supported in
degrees > d(Y,s) (resp. in degrees < d(Y,s)—1).

Example 5.4 By a positive orientation on a Seifert fibered homology sphere we will
mean the canonical orientation of it as a link of singularity. Using the graded roots
model for computing Heegaard Floer homology [43, Section 11.13], one can show that
all Seifert fibered homology spheres with positive orientation are 2—negative, while
the ones with negative orientation are si—positive. According to [45, Proposition 8.3],
the homology sphere obtained by 1/n surgery on the figure-eight knot is s#—negative
if n > 0 and h—positive if n < 0. (Note that L—spaces are both /i—positive and
h-negative.)

Lemma 5.5 A Z/2 homology sphere Y is h—positive if and only if the 7 /2 homol-
ogy sphere —Y obtained from Y by orientation reversal is h—negative.

Proof We use s and —s to denote the spin structure on Y and —Y, respectively.

Recall from [23, (3.4)] that there is a long exact sequence1

oo — Mgy (Y, 5) 229 AM, (Y, 5) 24 HM4 (Y, 5) 229 AM4(Y, 5) —

therefore, the set S(Y') can be equivalently defined as S(Y) = {a € Q | jy,, # 0}.
Under the natural duality isomorphisms

HM, (Y, s) = (HM__g(—Y, —5))*,

HMa(Yv 5) = (HM—I—a (—Y, —5))*,
I'While the grading conventions for HM and HM are consistent with those for HF™ and HF®°,
respectively, the grading convention for HM differs from that for HF~ by 1. For example, the generator

of @(53) as a Q[U]-module has grading —1, while the generator of HF~(S3) has grading —2. We
follow here the conventions of [24].

Geometry & Topology, Volume 22 (2018)



2886 Jianfeng Lin, Daniel Ruberman and Nikolai Saveliev

the dual map
(jY,a)*3 HM_j_4(=Y,—s) - HM_;_4(Y,—5)

is exactly the map j_y,—i—,; therefore, S(=Y) ={—1—a|a € S(Y)}. The result
now follows because 4(Y) = —h(-Y). O

Lemma 5.6 For 7Z /2 homology spheres Y1 and Y,, the connected sum Y, # Y, is
h—positive (resp. h—negative) if Y1 and Y, are both h—positive (resp. h—negative).

Proof Because of Lemma 5.5, we only need to treat the #—negative case. Let us
introduce the notations

(15) Ta(b) = QU)/U")[-a] and T, = (Q[U][-dl,

where 1 € Q[U] has degree 0 and, for a graded module M, we follow the convention
(M [c])kx = M4 for the grading shift. Let s; for j =1, 2 be the spin structure on Y.
For both Y7 and Y5, we have a (noncanonical) splitting of the Q[U]-modules,

HM(Y1,51) = Ty p0py—1 @ Tay (b1) @ @ Tay (b,
AM(Y2.52) = Ty cpyy—1 © Ter (d1) & -+ @ Te, (be).

By combining the connected sum formula for Heegaard Floer homology [48, Proposi-
tion 6.2] with the identification between monopole Floer homology and Heegaard Floer
homology (or alternatively, by directly using the connected sum formula in [5; 3]) we
obtain?

ﬁl\\/I(Yl # Y2,51 #52)
= (HM(Y1,51) ®o[u] HM(Y2, 52))[~1] ® (Torgpuy(HM(Y1, 51), HM(Y2, 52)))[—2].

We will now trace the contributions of each of the summands of HM (Y1) and HM (Y2)
to I‘/H\\/I(Yl #Y,,81#5,):

e The tensor product
(Tanry—1 @1 Toanyy— DI = Toonw)—2nry—1
contributes the infinite U —tail to ﬁl\\/I(Yl #Y,,51#5;).

20nly the relatively graded version of this formula appears in [48]. One obtains the absolutely graded
version with the help of the Frgyshov invariant, which is additive under connected sum.
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e Each of the tensor products

(Ta; (bi) ®Qiu1 T o n(vy)— =1 = T=2n(¥2) +a; (bi),
(Toanr)—1 ®ul Te; (iD=11 = Toanvy) +¢; (d)),
(Ta; (bi) ®@qiuy Te; (di)—1] = Ta; +c;+1(min(b;, dj))

contributes a summand to the kernel of the map py, sy, -

» To compute Tor(7g; (bi) ®qu] Te; (dj))[—2], consider the grading-preserving
free resolution

b
0— 7:17_2bi U—>7Z — Ta; (bi) — 0.

By taking tensor product with 7¢; (d;)[—2] and computing homology of the
resulting chain complex, we obtain

Tor(Ta; (bi) ®qru) Te; (dj)[=2] = Ta; +¢; +2—2 max(b; ,d;) (Min(bi. dj)),
which contributes another summand to the kernel of py, 4y, «.

Since Y; and Y, are both #—negative, we have a; < —2h(Y;)—1 and ¢; < —-2h(Y>)—1.
Also note that b;, d; > 1. It is now easy to check that all the summands in ker py, 4y, «
are supported in degrees at most —24(Y7) —2h(Y,)—1 = —2h(Y1#Y,)—1. Therefore,
Y, #Y, is h—-negative, and the lemma is proved. a

Corollary 5.7 Let Y, be an h—positive (resp. h—negative) 7Z./2 homology sphere,
and suppose that h(Yy) # p(Y1) (mod 2). Then Y; is not Z /2 homology cobordant
to any h—negative (resp. h—positive) 7 /2 homology sphere Y, .

Proof Suppose to the contrary that Y; is Z/2 homology cobordant to an #—negative
Z/2 homology sphere Y,. Since both /4 and p are invariants of Z/2 homology
cobordism,

h(Y1) =h(Yz) and p(Y1) = p(Y2) (mod2)

and, in particular, 4(Y;) # p(Y2) (mod 2). Let & = h(Yy) = h(Y3); then S(Y7) C
[—2h, +00) and S(Y3,) C (—o0, —2h—1], so that S(Y;)NS(Y,) = &. This contradicts
Proposition 5.1. a

Corollary 5.8 Let Y1,...,Y, be h—positive Z /2 homology spheres, and a, ..., ay
positive integers. Suppose that at least one of the Y; satisfies the condition h(Y;) #
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p(Y;) (mod 2). Then the connected sum
(16) (#alyl)#"’#(#anYn)

cannot be 7,2 homology cobordant to S3. A similar result holds for h—negative
homology spheres.

Proof Suppose to the contrary that the connected sum (16) is Z /2 homology cobordant
to S3. Without loss of generality, we may assume that 4(Y;) # p(Y;) (mod 2). Then
the manifold —Y7, which is #-negative by Lemma 5.5, is Z/2 homology cobordant
to the manifold

(#al—lYl)#' : '#(#an Yn),

which is 4—positive by Lemma 5.6. This contradicts Corollary 5.7. O

Proof of Theorem C Suppose to the contrary that Y is of finite order in ®3Z. Then
h(Y) =0 # p(Y) (mod 2). This contradicts Corollary 5.8, since a Z homology
cobordism is also a Z/2 homology cobordism. a

Proof of Theorem D Suppose to the contrary that Y is of finite order in 8% /2 / ®z.
Then there exists an integer n > 0 and an L-space Y; which is a Z/2 homology
sphere, such that (#,Y)#Y; is Z/2 homology cobordant to S3. This contradicts
Corollary 5.8, since Y7 is both s—positive and s —negative. a

Proof of Corollary F Using the spectral sequences of Ozsvith and Szabé [49] and
Bloom [4] one can easily see that, for any Khovanov-homology thin knot K, the
double branched cover X (K;) is an L-space over Z/2. The universal coefficient
theorem then implies that X (K1) is also an L—space over Q. Note that the double
branched cover of 7 x S* with branch set a smooth concordance between two knots is
a 7 /2 homology cobordism between the double branched covers of the knots. The
result now follows from Theorem D. i

5.2 Surgery on knots

In this section, we will use the rational surgery formula of Ozsvéth and Szabd [51] to
obtain a sufficient condition for a surgered manifold to be /s—positive. Corollary E will
be proved in the next section by checking this condition and applying Theorem C.

Let K be a knot in S3. Given coprime integers p and ¢, denote by Sp3 / q(K) the
manifold obtained by the p/q surgery on K. For any p > 0, the manifold SS (K) is
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a rational homology sphere. It admits exactly p distinct spin structures, which can
be naturally identified [50] with the elements of Z/p. The spin® structure on S;’ (K)
corresponding to an integer s will be denoted by [s].

Theorem 5.9 (Ozsvath and Szab6 [47]; Rasmussen [53]) For all sufficiently large
p>0andall s €Z with |s| < %p the Heegaard Floer homology group HF+(S1§ (K),[s],
viewed as a relatively graded Q[U]-module, is independent of p.

Proposition 5.10 Suppose that, for all sufficiently large p > 0 and all s € Z with

ls| < %p, the rational homology sphere (S; (K),[s]) is h—positive. Then, for any

3

i/n (K) is h—positive.

positive integer n, the integral homology sphere S
Proof This is a straightforward corollary of Ozsvath and Szabd’s rational surgery
formula [51]. For the sake of completeness, we will sketch the argument here and refer
the reader to [44] for a concise summary. (See also [19], which treats a similar situation
as here).

For a sufficiently large p > 0 and any s € Z, consider n copies A:l, cee, A;fn of the
Heegaard Floer homology HF ' (S ; (K),[s]) (this notation is justified by Theorem 5.9),
and n copies B:l, e, Bs":n of the module 7+ = Q[U, U~ ']/(U - Q[U]). By [51,
Theorem 1.1] and [19, Remark 2.3], one can recover the Heegaard Floer homology

HFT (S 13 /n(K )) as the homology of the mapping cone of a certain map

. + +
D/t ( a As,l.) — ( &y Bs’i).
s€Z,1<i<n S€Z,1<i<n

In practice, one can take a large enough integer N and instead consider the mapping
cone of the truncated map

d){\;n:AfN_l,neB( D A;,.)ﬁ( D Bs-;.).

—N=<s<N,1<i<n —N=<s=<N, 1<i<n

This map is surjective, so one has an isomorphism

ker @7/, = HF* (S}, (K)).

+

Furthermore, one can impose suitable absolute gradings on A ; such that the above

S,i
+ - e - _
s admits a splitting A si=

Tt & A?”?. Let as; be the absolute grading of the bottom term in 7+ C A;rl..

isomorphism preserves the absolute grading. Recall that 4
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Then 3
ag; = d(Sl/n(K)) forall 1 <i <mn,

asi > d(Sf/n(K)) forall s€Z andall 1 <i <n,

by [19, (2.1)-(2.4)]. Using the assumption that the spin® structure [s] is #—positive
for all sufficiently large p > 0, we conclude that A7

8,0

This implies that ker <I>]1\; , 1s supported in degrees greater than or equal to

is supported in degrees > ag ;.

inf(as,i) = d(S,(K)).
Therefore, the integral homology sphere S 13 /n(K ) is h—positive. o

5.3 L —space knots and thin knots
In this section, we will apply Proposition 5.10 to the classes of L—space knots and
Floer homology thin knots, and then prove Corollary E.

Recall that a knot K is called an L —space knot (over the rationals) if there is a rational
number p/q > 0 such that the manifold S; /q (K) is an L—space, that is,

HE,/4(S,/,(K) = Q7.

This condition actually implies that S;, /q,(K) is an L—space for all p'/q’ > p/q.
Proposition 5.10 has the following corollary:

Corollary 5.11 Let K be an L—space knot. Then Sl3 /n(K) is h—positive for all
n>0.

Remark 5.12 Using Corollary 5.11, one can derive a result similar to Corollary E
for all L—space knots. However, this can be proved directly using the Heegaard Floer
correction term.

Now we turn to the case of surgeries on Floer homology thin knots. We will need a
number of constructions involving Heegaard Floer homology of knots, for which we
refer to the original paper [47], as well as to the survey [37].

Recall that, for an even integer 7, a knot K is called Floer homology t—thin (over
the rationals) if the bigraded knot Floer homology group }ﬁj\K*(K , *) satisfies the
condition

17) I‘I/ﬁ(,(K,]) =0 unlessi=j+ %‘L’.
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The following lemma summarizes properties of thin knots that are useful for the
application we have in mind.

Lemma 5.13 Let t be an even integer, K a Floer homology t —thin knot and n a
positive integer. Then:

(1) d(Sf/n(K)) = 2min(0, —[—%‘[—D. In particular, d(Sf/n(K)) # 0 if and only

if T <0.
(2) If T > 0 then for all sufficiently large p > 0 and all integers s such that |s| < %p,
the rational homology sphere (Slf (K), [s]) is h—positive.

Proof Recall that the knot Floer complexes are generated by triples [x, i, j] satisfying
various conditions, where i and j are integers and x is an intersection point between
Lagrangian tori in the symmetric product of the Heegaard surface. For any a,b € Z,
we will denote by C{i = a, j = b} the complex generated by triples [x, 7, j] with
i =a and j = b. We will use similar notations for the other complexes. It follows
from (17) that H(C{i = a, j = b}) is supported in degree (absolute Maslov grading)
a+b+ %r. Via a basic spectral sequence argument, this implies that

H(C{min(i, j —s)} > 0) is supported in degrees > s + %‘L’,
H(C{max(i, j —s)} <—1) is supported in degrees < s + %r -2.
With these two facts established, we can prove that
d(S;(K)) =2min(0, —[—17])
by repeating word for word the proof of [46, Corollary 1.5] (which deals with the

special case of an alternating knot K'). Since d(Sf/n(K)) = d(Sf(K)) for any n > 0

(see [44, Proposition 1.6]), claim (1) is proved.
We now turn to claim (2). Since the spin¢ structures [s] and [—s] are conjugate to each
other, one has an isomorphism HF* (Sg (K),[s]) = HF+(SI§(K), [—s]). Therefore,
it is sufficient to consider the case of s > 0. Recall from [47; 53] that there is an
isomorphism

HF " (S, (K).[s]) = H(C{max(i, j —s) > 0})

of relatively graded Q[U]-modules. For any integer @, denote by 7, the graded
module (Q[U,U~1]/U - Q[U])[—a] (cf (15)). Then we have a decomposition of
absolutely graded Q[U ]-modules,

H(C{max(i, j —s) > 0}) =~ T;L eV
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for some integer ¢ and a finite-dimensional (Q—vector space V. Consider the short
exact sequence

0—C{max(i,j—s5)=>0}>C{i>0}pC{j = s} > C{min(i, j —s) > 0} — 0.
Since H(C{min(i, j —s) > 0) is supported in degrees > s + %r > 1, we obtain
H<_(C{max(i, j —5) > 0}) = H<_(C{i > 0}) ® H<_1(C{j > s}) =0,
with the last equality following from the isomorphisms
H(C{i =0}) ~HF"($*) = 7," and H(C{j = s}) =HF(S?)[-2s] = T,}.

Therefore, H (C {max(i, j —s) > O}) is supported in degrees > 0. The proof will be
complete once we show that e = 0. To this end, consider another short exact sequence

0 — C{min(—1—1i, j —s) > 0} - C{max(i, j —s) > 0} £> C{i > 0} — 0.

Since C{max(—1—1i, j —s) > 0} is finite-dimensional, for any sufficiently large
integer m we have isomorphisms

pxi Hyp (C{min(i, j —s) > 0}) = Hy,,(C{i > 0}) = Q.

Let £ € Hyyy, (C{min(i, j—s)= O}) be any nonzero element. Since H(C{i >0}) = 7;)+ ,
we have py(U™E) = U™ p«(§) # 0. This implies that U™¢& # 0 and

e=2m-—2-max{n € Z |U"E #0} <2m—2m = 0.

Because H (C {max(i, j —s) > 0}) is supported in degrees > 0, we conclude that

e = 0, which completes the proof. O
Corollary 5.14 Let K be a Floer homology t —thin knot with T > 0. Then Sf/n(K)
is h—positive for all n > 0.

Proof This is immediate from Lemma 5.13(2) and Proposition 5.10. |

Proof of Corollary E  Since Arf(K) =1 and 7 is odd, it follows from the surgery
formula for the Rokhlin invariant [16; 59] that p(S 13 /n(K)) =1 (mod 2). Claim (1)
now follows from Example 5.4. To prove claim (2), consider the mirror image K of
the knot K. Since K is quasialternating and Sil /n(K) = —S13 /n(l?), it is sufficient
to consider the case of n > 0. According to [39], any quasialternating knot K is Floer
homology o (K)-thin over Z/2, where o (K) stands for the knot signature. By the
universal coefficient theorem, this implies that K is also Floer homology o (K)-thin
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over Q. If 0 (K) < 0, it follows from Lemma 5.13(1) that d(Sf/n(K)) # 0 and hence
S? )/, (K) has infinite order in ©3,. If 0(K) > 0, it follows from Corollary 5.14 that
Sl3 /n(K ) is h—positive and hence it has infinite order in ®3Z. O

6 The correction term

In this section, we will prove Theorem 3.2. The index theory that will go into our
proof is not specific to dimension four; therefore, we will work in more generality than
strictly necessary.

Let X be a connected smooth spin compact manifold of dimension # =0 (mod 4) with
a primitive cohomology class y € H'(X;Z). Let Y C X be a connected manifold
Poincaré dual to y with the induced spin structure s. Choose a metric g on X which
takes the form g = dt? +/h in a product region [—¢, ] x Y, with & > 0. We will assume
that (Y,s) is a spin boundary and that the /f—genus of X vanishes; both of these
conditions are automatic when X is a homology S' x S3. Given a real number R > 0,
construct the spin manifold

(18) Xgp=WU(0,R]xY)

as in (10) by cutting X open along {0} x Y and gluing in the cylinder [0, R] x Y
along the two copies of Y. The metric g defines a metric gg on Xg, which lifts to a
metric g on the infinite cyclic cover of Xp determined by y . Following (2), denote
by Zso(Xg) the manifold with periodic end modeled on this infinite cyclic cover, and
by Z« and Wy, the manifolds with product ends modeled on the product R x Y
with metric dt? 4 h. Note that W, has two ends, corresponding to the two boundary
components of W. The metrics will often be suppressed in our notations.

Theorem 6.1 Assume that the spin Dirac operator
DF (Woo): Li(Wooi ST) = L2 (W S7)

is an isomorphism. Then, for all sufficiently large R, the end-periodic operator
DT (Zso(XR)) is Fredholm of index

ind D1 (Zoo(XR)) =ind D1 (Zso).

The existence of metrics on W, making the operator DT (Wyo) invertible is addressed
in Theorem 10.3. When applied to a spin 4-manifold X with the rational homology
of S!x 83, Theorem 3.2 is a straightforward corollary of Theorem 6.1.
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6.1 Preliminaries
We begin by proving two technical lemmas which will be used later in the argument.

Lemma 6.2 Suppose A: H — H' is a surjective bounded operator between Hilbert
spaces. Then there exists a constant C > 0 such that for any vector v € H' one can
find a vector u € A~ (v) with |u|lg < C-|v||g’.

Proof By the open mapping theorem, the map H /ker A — H; is an isomorphism. O

Lemma 6.3 Let A;: H— Hy and A,: H— H, be bounded linear operators between
Hilbert spaces, and assume that A, is surjective. Then the operator A= (A, A3): H—
H; ® H; is Fredholm if and only if the operator A |xer 4, is Fredholm and

indA4 = ind(Al |kerA2)-

Proof The projection map im A — H, can be included in the short exact sequence
0 — im(A4q|ker 4,) — imA — H, — 0, which is naturally a subsequence of the
short exact sequence 0 — H; — Hy & H, — H, — 0. The quotient sequence
0 — Hy/im(Aq|ker 4,) — (Hy @ Hy)/im A — 0 — 0 is exact by the snake lemma,
which proves the equality of the cokernels of the two operators in question. The equality
of their kernels is clear. a

We will find it convenient to introduce the notation M = [0, R] x Y and write Xp =
W UM and

Zoo(XR) = Z Uy~ M; UY1+ Wi Uy, M> UY2+ WrU---

with W, = W and M, = M for all n > 1. Each of the manifolds Yni is just a copy
of Y but the notations are chosen so that M, is a cobordism from Y, to ¥, while

W, is a cobordism from Y, to ¥, .

The spin Dirac operator D(Y) is a self-adjoint elliptic operator on a compact manifold,
hence it has a discrete spectrum with real eigenvalues of finite multiplicity. Denote
by Vi(Y) C L% /Z(Y; S) the subspaces spanned by the eigenspinors of D(Y) with
the positive and the negative eigenvalues, respectively. The L? orthogonal projections

onto these subspaces will be denoted by 7.

Lemma 6.4 The operator DT (Wy,) of Theorem 6.1 is invertible if and only if the
following two conditions are satisfied:

(1) The Dirac operator D(Y') has zero kernel.
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(2) The Dirac operator
(DY (W), 7t 0r™,a_or®): LY(W;8T) > L2(W:ST) @ Vi (Y) @ V-(Y)

with the Atiyah—Patodi—Singer boundary conditions is an isomorphism. Here,
r: L%(W;S+) — L%/Z(Y;S) denote the restriction maps to the boundary
components Y =9~W and Y = 0T W of W.

Proof The condition on D(Y') to have zero kernel is equivalent to the condition on
DT (W) to be Fredholm. The relation between DT (Wyo) and the operator Dt (W)
with the Atiyah—Patodi—Singer boundary conditions is well known; see Proposition 3.11
of [2]. o

From now on, we will assume that the operator D1 (Wyo) is invertible or, equivalently,
that the conditions (1) and (2) of Lemma 6.4 are satisfied.

Given a family of Hilbert spaces H; for i > 1, their direct sum € H; is the Hilbert
space which consists of all the sequences (u1, u3,...) of vectors u; € H; such that
> ||u,-||12qi < 00, the inner product of sequences (1, us,...) and (vy, va,...) being
> (u;i,v;) ;. Any uniformly bounded family of bounded operators T;: H; — H; gives
rise to a well-defined bounded operator

Dar DD,

of norm sup || 4;||. An application of this abstract construction to the above splitting
of Zso(XR) yields the following result (we suppress spinor bundles in our notations):

Lemma 6.5 The natural restriction maps provide Hilbert space isomorphisms
L2 (Zoo(Xr) = L3 (2)& (D L2W)) & (P L2(M1). L3 (Zoo(Xk) =kerr.
where r is the restriction map

L@ e (Prion)e(Priom) ~ (D rLi,o0) e (PrLi,oh)
which sends ¢y ® (91, ¢2,...) D (V1,V¥2,...) to

@oly; —Vilyy eilyy —Velyy .- ) @ @ily+ = Vily+ e2lyr = Valpr. o)

Proof Claim (1) is straightforward. To prove (2), observe that there is an obvious
norm-preserving inclusion of L%(Z oo (XR)) into ker r. The result now follows from
the fact that all spinors in ker r belong to L% 1oc (Zoo(XR)); see for instance Manolescu

[36, Lemma 3]. O
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Lemma 6.6 (1) The Dirac operator DY (M): L3(M) — L*(M) is surjective.

(2) The operator
kerDT(M) > VoY ) e V_(Y™)

taking ¥ to (w4 (Y |y-), m—(¥|y+)) is an isomorphism.

(3) The restriction maps r*: L%(W; St) - L%/z(Y; S) of Lemma 6.4 are surjec-
tive.

(4) The restriction map r of Lemma 6.5 is surjective.

(5) The operator @ D+ (M;): P L%(Mi) — @ L*(M;) is surjective.

Proof Claim (1) is proved in [23, Corollary 17.1.5]; (2) can be easily verified using
the spectral decomposition of D(Y) and the fact that ker D(Y) = 0; (3) is a standard
fact about Sobolev spaces; (4) follows from (3) and Lemma 6.2; (5) follows from (1)
and Lemma 6.2. O

6.2 Proof of Theorem 6.1

The proof will essentially be a repeated application of Lemma 6.3 to the Dirac operator
Do =D (Zeo(XR)): LT (Zoo(XR): S1) = L*(Zoo(XR): S7).
Step 1 Consider the operator
Dy Lf(Z)ea(@ L%(Wi))@(@ L%(Mf))
— 122)e(@ L2)a(P L m)e (@ L3,00)a(P L1,07H)

sending o ® (¢1.92....) & (Y1, ¥2,...) 10

DYoo ® (D91, DT gy,...) @ (DT Y1, DT Y, .. )

® (poly; —Vily. eily; = V2l ) @ (@ily+ = Vily+. 2lyr = Valyr.- o)

It follows from Lemmas 6.5, 6.6(4) and 6.3 that Dy is Fredholm if and only if Dy is
Fredholm, and

ind Do =ind D] .
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Step 2 Observe that the kernel of @ D (M;) equals @ ker DT (M;) and consider
the operator

Dy L3(Z) & (D L3 W) & (D ker DF (M)
> @28 (@Lrmm)e(@Ll,rn) e (@L.oh)
sending @o @ (@1, ¢2,...) D (Y1, ¥2,...) to

D+¢0 2] (D+¢17D+§02’ .. ) 52 (()00|Y17 _W1|Yl_»(ﬂ1|Y2_ _l/f2|Y2_’ "')

b ((Pllyl-i- _W1|Yl+,§02|Y2+ _w2|Y2+,. . )

It follows from Lemmas 6.3 and 6.6(5) that the operator D; is Fredholm if and only if
D, is Fredholm, and

ind Dl = ind Dz.

Step 3 Using the subspaces V4 (Y) and V_(Y) spanned by the positive and negative
eigenspinors of the operator D(Y'), and the respective L? orthogonal projections 74
and m_, the operator D, can be written as the operator

Ds: L3(2) @ (P LiW) & (D ker DT (1))
— L2 @)e (@ o) e (B v-07) & (P v (7))
o (@v:0) e (Pr-o)
sending o @ (¢1,¢2,...)® (Y1, ¥2,...) to
DYoo @ (DT 91. DV p....) & (m—goly- —7—Y1ly-. m-ilyy —7-Valyy....)
® (T4 @ily+ — e Vily+. tr@alyr — e Palys. )
® (Tr@oly; —m4Vilyy v eilyy = ¥alyy.o)

® (m—¢1 |Y1+ — -y |Y1+, 7T—§02|Y2+ — ﬂ—W2|Y2+, ce )
Since the operators D, and D3 are isomorphic, we have
ind D, = ind Ds.

Step4 By Lemma 6.6(2), for each i > 1 we have an isomorphism
(P rv+i) e (P v-071) = Prerd* (M),
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Compose this isomorphism with the restrictions to respective boundary components
and spectral projections to obtain the operator

(P v+r) @ (D V-07") > PkerD* (M)
— (B v-0)e (Pr-07h)
sending (s1,4,52,4,...) ®(s1,—,52,—,...) to
(e®Psy—,eRPsy . )@ (e RPs) 1,67 RPsy 1.0,

Here, we used the notation D = D(Y). Note that e~ &P is a smoothing operator on
V4 while e®P is a smoothing operator on V_. The operator D3 can now be written as

Dy L32) & (@ Liw) & (@D v+ ) & (B v-(r)
— 12@)e (@ L2on) e (@ v-07) & (P V(7))
o (D) e (Pr-oh)
sending 0o @ (@1, 92....) @ (S1.4.52.4....) ® (51— 52.—....) tO

DYoo ® (DY 1. D gy, ) @ (_goly-—eX

Dsls_,n_<p1|Y2——e §2,—0...
® (m191ly+ —e RPsy 4, T4+ P2ly+ —e Py
® (T @olyy —S1,4+, T+ 1lyy —S2,4.-.-)
® (m-ily+ —s1,- 2|y + =52 . ).

Since the operators D3 and D, are isomorphic, we again conclude that

ind D3 = ind Dy.
Step 5 Consider the last two components of Dy, that is, the operator
L@ e (Priom)e(@v-a) e (Pr-ah)
— (Bv-o0) e (Pr-oh)
sending @0 @ (¢1,¢2,...) D (S1,+,52,4,...) D (51,—,52,—,...) tO
(T+@olyy =s1,4+ T4+@1ly; =524 ) @ (T-1ly+ =81, 72|y + =52 ).

This operator is obviously surjective. Therefore, we can apply Lemma 6.3 to the
first four components of Dy restricted to the kernel of the last two components. The
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resulting operator
Ds: L3(Z) & (@D L3 W)

— L2)e (P L*0) & (B v-01) & (B V()
sends @o @ (¢1,¢2,...) to

Dt ® (DY, DT s, ...)

RD RD

® (m—goly; — e m-i1ly+ T-prly; — e A—p2]y .. )

® (myo1ly+ —e FPmigoly-. mrgaly+ —e KPmpgilys. ...
1 2

It follows from Lemma 6.3 that the operator D4 is Fredholm if and only if Ds is
Fredholm, and
ind D4 =ind D5.

Step 6 The operator Ds splits as Ds = Dg + K, where the operator D¢ sends
©o ® (¢1,¢2....) to

DYoo ® (DY 91, DT g2, ... )& (m-goly;» T—¢1ly; . .. DO@+eily+. T palyt. )
and the operator K sends ¢o @ (¢1, ¢2,...) to
000 (—eRPr_g, ly+ —eRDn_<p2|Y+, o))
1 2
® (e P igoly—. —e FPmioilyy....).

According to Lemma 6.4, the operator D = D(Y) has zero kernel. Denote by u > 0
the smallest absolute value of the eigenvalues of D(Y) then the operator norm of K
does not exceed C -e MR where C is a constant independent of R. Therefore, if R
is sufficiently large, the operator Ds is Fredholm if Dg is Fredholm, and in this case

ind D5 = ind Dg.

The operator D¢ further splits as a direct sum of the Dirac operator with the Atiyah—
Patodi—Singer boundary conditions,

Do: LY(Z) - LY(Z)® V-(Y]). ¢o+> (Do, m—goly-).
and an infinite family of operators
Di: LY (Wi) — LA(Wh) @ Vi (V) @ Vo(Yi3 ),

@i > (D+‘Pi7”+§0i|yi+’77—(/)i|Yij_l)a
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fori =1,2,.... By Lemma 6.4, each of the operators Dé with i > 1 is an isomorphism.
Therefore, the operator D¢ is Fredholm if and only if Dg is Fredholm, and

ind Dg = ind DY.

The operator Dg is precisely the Dirac operator DT (Z) with the Atiyah—Patodi-Singer
boundary conditions. Since kerD(Y) = 0, the operator DV (Z,) is a Fredholm
operator of index

ind DY = ind DT (Zwo);

see Atiyah, Patodi and Singer [2, Proposition 3.11]. This completes the proof of
Theorem 6.1.

7 First eigenvalue estimate

In this section, we continue the study of manifolds Xg defined in (18) by stretching
the neck of a spin manifold X of dimension n = 0 (mod 4). We will be interested in
estimating the first eigenvalue of D~ (Xg)DT(Xg) as R — oo. This estimate will be
used in the compactness argument in Section 8.

Proposition 7.1 Let us assume that the spin Dirac operator
DT (Woo): L3(Weo; ST) = LE(Weo; S7)

is an isomorphism. Then there exist constants Ry > 0 and €; > 0 such that for any
R > Ry, the operator

AR =D (Xr)D1(Xg): L3(Xg;ST) — L*(Xg;ST)

has no eigenvalues in the interval |0, ef).

Proof For the purpose of this proof, we will view W as a cobordism from Y7 to Y>
with Y; = Y, = Y. The manifold Xz = W U ([0, R] x Y) is then obtained from W
by gluing {0} x Y to Y, and {R} x Y to Y;. Denote by Vi(Y;) C Lg/z(Yl;S)
and Vi (Y,) C L§ /2(Y2;3) the subspaces spanned by the eigenspinors of D(Y7)
and D(Y,) with positive and negative eigenvalues, respectively. The L? orthogonal
projections onto these subspaces will be denoted by 74, and the restriction maps
LI(W;8T) - Lg/z(Yi;S) will be denoted by r; for i = 1,2. As in Lemma 6.4, the
operator D1 (Wyo) is an isomorphism if and only if the following two conditions are
satisfied:

Geometry & Topology, Volume 22 (2018)



A splitting theorem for the Seiberg-Witten invariant of a homology S' x §3 2901

(1) The Dirac operator D(Y') has zero kernel.
(2) The Dirac operator

(DT (W).mpory mory): L3(W:8T) = LYW:87) @ V(Y1) ® V-(T2)
with the Atiyah—Patodi—Singer boundary conditions is an isomorphism.

The operator A g is a nonnegative self-adjoint elliptic differential operator, hence all
of its eigenvalues have the form A2 with a real A > 0. Using the fact that DV (Xg)
has zero index, one can easily check that A2 is an eigenvalue of A if and only if the
operator

D L3(Xg:ST@8™) —» LA (Xg: ST @S,
DIy T Yy =@y -y DY T —ay ),
has nonzero kernel. We denote the restriction of (¥, %) to W and to [0, R]x Y by

(¢T.¢7) and (@™, §), respectively. Supposing that (T, ¥ ) belongs to the kernel
of Dy, the following conditions are satisfied:

(i) DYt =l¢~ and D ¢~ = Ap™ on W.
(i) DTt =A@ and D¢~ =A@™T on [0, R] x Y.
(i) (m+¢T |y, -9 ¥ vy, 707 v, 11907 |1)
=@+ |y, 1= |y, 10 vy T+ G 1)
(iv) (T—¢F |y 140" |y, 1107 |y, 107 |1,)
= (”—5+|Yl s 7T+<Z+|Y2, 7T+(Z_|Y1 s 7[—65_|Y2)'
Lemma 7.2 (1) There exists a linear operator T+ (A, R): V4 (Y,) & V4 (Yy) —
V4 (Y,) @ V4 (Yy) such that, for any (¢, ™) satisfying (ii),
T R (4§ |y 140 |v) = (08 |y, 143 1)
(2) There exists a linear operator T_(A, R): V_(Y1)®V_(Y3) > V_(Y1)®V_(Y3)
such that, for any (¢, ™) satisfying (ii),
T-(h, R) -3 |y, 73 |v,) = (-3 |y, 7-F " |1).

(3) Forany € >0, there exist constants Ry > 0 and €, > 0 such that, for any R > R
and 0 < A < e,

[T+ (A, R)| <e.
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Proof We focus on the case of T+ (A, R) since the other case is similar. Over [0, R]x Y,
use Clifford multiplication with d/9¢ to identify the bundles ST and S~ with each
other and with the pullback of the bundle S. This identifies the operators DT ([0, R]xY)
and D™ ([0, R] x Y') with the operators d/d¢f + D(Y) and d/dt —D(Y), respectively.

Choose a complete system of orthonormal eigenspinors ¢; for D(Y'), with correspond-
ing eigenvalues A; for i > 1. Let V;(Y7) (resp. V;(Y3)) denote the vector space spanned
by ¢;, treated as a section over Y; (resp. Y3). It is sufficient to define T4 (A, R) on
each of the spaces V;(Y) @ V;(V1) with A; > 0, which we will do next.

Let us write ¢V (t, ) = > a;(t)pi(y) and §~(t, ) = >_ b;(t)p; (y); then condition
(i1) takes the form

d (ai\ _ —Ai A a;
1) dt (bi) B ( A M) (bi)

for all i and ¢ € [0, R]. The matrix of this system will be denoted by A;. Recall that Y;
is identified with {0} x Y and Y] is identified with { R} x Y, and express (b;(0), a;(R))
in terms of (@;(0), b;(R)). The computation that follows is elementary if a bit tedious.

The eigenvalues of A4; are tw;, where w; = +/ )\.l-z + A2, corresponding to the eigen-
vectors (A, A; £ w;). The solutions of (19) are explicitly given by the formula

x.ewit.( A )+y‘€wi(R_t)'(A A ) with x,y e C,

A + w; i — Wj

from which we obtain

bi(0)\ _ (hi+wi e RO—w)) (x
(wim) = (i 5 ) G)

and
a;(0)) _ A e®i Ry N\ (x
(bi(R)) B (em"R()»i + i) Ai —wi) (J/) ’
Therefore,
(b,-(O)) g (a,-(O))
ai(R) “\bi(R))’
where

B

B 1 _(A(e2wiR—1) —Zwie“’iR)
T (v —w) — (A +ope2eiR | 2wie® R j(1—e2@iR) )

We define T+ (A, R) on each of the spaces V;(Y,) @ V; (Y1) by the respective matrix B; .
To derive estimate (3), we let Ao be the smallest absolute value of the eigenvalues of
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the operator D(Y). Note that Aq is positive by our assumption on the kernel of D(Y)
and that w; > A¢ for all 7. For any A; > 0 we obviously have

| = 0) = (ki + @)™ 8| > (i + 01) (2K = 1) > i (2K 1),

hence
2w,ew,-R ea),-R e)»oR
! <2. <2.
(Ai —w;i) — (hi + w;)e?@iR| =7 20iR_1 =7 o200k |
and
' A(e2@iR 1) A _ A
(i —wi) = (i + @)@ R |~ w; = Ao

Therefore, the norms of B; approach zero uniformly over i as R — oo and A — 0.
This proves claim (3) for the operator 74 (A, R). O

We now return to the proof of Proposition 7.1. It follows from Lemma 7.2 together
with conditions (iii) and (iv) that

(740 vy T4+9 T vy 7= |y, 1—0 T |1,)
= (T4, R (19T |y, 14907 1y). T-(L, R) (- T |y, . 70 |1,)).

Therefore, the pair (¢, ¢ ™) belongs to the kernel of the operator D, = D3 — K, where
the operators

D3, K: L3(W:ST@87) = LI(W:ST@ST)@V4 () @V (Y)SV-(Y)BV-(T2)
are given by the formulas
D30T, 97) = (D ¢, DY 0T, 7197 vy, 140 vy, -9 vy, -0 |y,)
and
K(pT.¢7)
= (AT A7, T (A, ) (49T vy, 1407 |1,), T-A, R)(r—9 T |y, 7= 1))

One can easily see that D3 is isomorphic to the operator Dy @ D}, hence its kernel
is zero by our assumption on the kernel of Dy (note that the operator Dy has zero
index). Therefore, there exists a constant Cyy such that the operator D, = D3 — K has
zero kernel as long as | K| < Cy, and so does the operator D;. The proposition now
follows from Lemma 7.2(3). m|
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The following result, which will be used in Section 11, is a straightforward extension
of Proposition 7.1 to the holomorphic family of operators

DE(XR) =DF(Xg)—Inz-df for z e C*,
where f: X — S is an arbitrary smooth function such that [df]=y € H' (X ; Z). Note

that the operators D (Xg) and D} (Xg) are adjoint to each other whenever |z| = 1.

Proposition 7.3 Let us assume that the spin Dirac operator
DY (Woo): L3(Weo; ST) = L2 (Weo; S7)
is an isomorphism. Then there exist constants Ry > 0 and €; > 0 such that for any
R > Ry, the operators
D; (XR)DF (XR): L3(Xr:ST) — L*(Xp:S7) for |z =1,

have no eigenvalues in the interval [0, 612).

Proof The above proof can easily be adapted by introducing an extra parameter z into
the matching of the spinor bundles over Y;. This preserves the conditions (i) and (ii)
but replaces the conditions (iii) and (iv) with:
(iil) (m+9F vy, 7-9 " vy, -0 |y, 71907 |1y)
= (40T Ny, 7= |y, 270G vy 740 |12) -
(iv) -ty 7407 v, 1107 |y, 107 |1,)
= (@m0t v, 1+ vy, 27040 |7y 10 1)

The new operators 74+ (A, R) and T_(A, R) that show up in the formula for K are
obtained from the old ones by multiplying them on the left by

10 z 0
(62) = G0

respectively. Since |z| = 1, this does not change the operator norm of K, and the rest
of the proof goes through with no change. O

8 Compactness

The proof of Theorem 3.3 naturally divides into two steps: compactness and gluing. In
this section, we provide the necessary compactness results; the proof of Theorem 3.3
will be completed in Section 9.
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8.1 Notations

Let X be a connected smooth spin compact 4-manifold with a primitive cohomology
class y € H'(X;Z). We will assume that the Poincaré dual of y is realized by a
rational homology 3—sphere Y C X and choose a metric g on X which takes the form
g = dt? + h in a product region [—¢, €] x Y. Given a real number 7 > 0, consider the
manifold with long neck

Xr=WU(-T, T]xY)

obtained by cutting X open along {0} x Y and gluing in the cylinder [-7,T]x Y
along the two copies of Y. This differs from the notation Xg used in Section 6 by
a simple reparametrization. In addition, for any 0 < 77 < T < oo we will write
Xt = Wgr Ulr, T, where

Wr = (-T,0]xY)UWU((0,T'|xY) and Ipgp=[-T+T T-T'|xY.

We will find it convenient to extend these notations to the case of 7' = oo by letting
I be the disjoint union (—o00,0] x Y U[0, +00) x ¥ and using X to denote the
manifold Wy, with infinite product ends, as in Section 6. When 7T = oo and T is
finite, the notation /77 o will mean Wy, —int(W7/).

8.2 Perturbations and regularity of moduli spaces

Recall that, in order to define the monopole Floer homology of a rational homology
sphere Y in Section 2.2, we introduced perturbations q. We will assume that our pertur-
bation ¢ satisfies Assumption 2.4 with respect to a constant € satisfying 0 < €p <€,
where €; > 0 is the constant from Proposition 7.1.

To define the morphisms (8) induced on the Floer homology of Y by the spin cobor-
dism W, we will need to introduce further perturbations. To this end, consider a collar
neighborhood U = [0, 1] x W, with {1} x W identified with the actual boundary
dW = —Y UY. Let ¢ be a cut-off function which equals 1 near # = 1 and equals 0
near t = 0, and let {p be a bump function with compact support in (—1,0). Pick
another perturbation pg as in Section 2.2, and let

(20) P=2¢-9+ oo,

where q and po are the 4—dimensional perturbations corresponding to q and pg,
respectively; see [23, Definition 10.1.1]. This is a perturbation on W, supported in U.
By gluing the perturbations p on W and § on Io 7 together, we obtain a perturbation
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pr on Xr. Similarly, we define a perturbation P, on Wy, by gluing together the
perturbations p on W and § on /g . These perturbations give rise to the perturbed
Seiberg—Witten equations, whose solutions will be referred to as monopoles.

Let L4 be the perturbed Chern—-Simons—Dirac functional as in Section 2.2. Downstairs,
the gauge equivalence classes of its critical points form the finite set

c=c*ull),

where [6] is the unique reducible class and €* consists of the irreducible classes. Given
[@],[B] € ¢, consider the following moduli spaces:

(1) The moduli space M([e],[B]) of unparametrized (downstairs) trajectories of the
perturbed Chern—Simons—Dirac gradient flow (that is, monopoles on R x Y')
limiting to [«] and [B] at minus and plus infinity, in other words, the quotient of
M([«], [B]) by translations, excluding the constant trajectory if [a] = [B].

(2) The moduli space M(Wxo, [@],[B]) of (downstairs) monopoles on Wy, limit-
ing to [¢] and [B] at minus and plus infinity. We will write M (W, [«]) for
MWeo, [e], [t]).

Since q is admissible by Assumption 2.4, the moduli space M ([e],[B]) is always
regular. The regularity of the moduli space M (W, [], [B]) is proved in the following
lemma.

Lemma 8.1 For any nice admissible perturbation q, there exists a nice perturbation pg
such that, for the perturbation (20), the following conditions are satisfied:

e The various moduli spaces of upstairs monopoles on Wy, are all regular. As
a result, the cobordism induced map Wy: HM™4(Y, s) — HM™(Y, s) can be
defined using this perturbation.

e The moduli space M (W, [],[B]) is regular for all [«],[B] € ¢.

Furthermore, we may assume that pq is nice and that it satisfies the estimate

21 1D (8o,00P6 0. V)l L2(vy < 5€0- ¥l L2v)

for any ¥ € L,zc_l/z(Y;S), where By is the product connection and €y > 0 is the
constant fixed in the beginning of this section.

Proof The proof is a careful check that the arguments of [23, Proposition 24.4.7] hold
in our situation. We first introduce a large Banach space P of nice perturbations and
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form the parametrized moduli space

Mp(x, %) = U Mo (x, %).
PoEP
After proving the regularity of Mp(*, %), we can apply the Sard—Smale lemma to find
a residual subset U C P with the property that M, (x, *) is regular for any po € U.
In particular, we can choose a pg € U satisfying the estimate (21). There is one new
feature in this argument: since P only consists of nice perturbations, at a reducible
monopole, we can only obtain the transversality in the spinor direction by repeating
the arguments in [23]. This does not cause a problem for the following reason: At a
reducible monopole, the linearization of the curvature equation Fj’, = 0 is the operator

AT L2 (Weoi i T*Woo) = LE | (Weo3 i AL T* Weo).

Since b;’ (W) = 0, this operator is surjective (without any perturbation). As a result,
the transversality in directions tangent to the space of connections is automatically
satisfied. O

8.3 Statement of the theorem

From now on, we will fix a perturbation ¢ satisfying Assumption 2.4 and a perturba-
tion po as in Lemma 8.1. The following compactness theorem is the main result of
this section.

Theorem 8.2 Let T, be a sequence of positive real numbers such that T, — oo. Then,
for any sequence [(An, ¢n)] € M(XT,), there exist

[] €€ and [(Aco. poo)] € M(Woo, [e])

such that, after passing to a subsequence, [(Ay, ¢n)] converges to [(Aco, Poo)] in the
sense of Definition 8.3 below.

Definition 8.3 Let 7}, be a sequence of positive real numbers such that 7, — oo.
We will say that [(4,, ¢n)] € M(XT,) converges to [(Aoo, Poo)] € M(Weo, []) if the
following two conditions hold:

(1) There exists a sequence of L,zc 41 gauge transformation u,: X7, — S! such
that

Up - (An, on) = (Aoo, Poo)  in lec,loc(WOO)’
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2
where by L k.loc

sets of W.

(Ws) convergence we mean L,zc convergence on compact sub-

(2) For any € > 0, there exist a real number 7" > 0 and an integer N > 0 such
that, for all » > N, we have T, > T and there is a sequence of Li 41 gauge
transformations v,: I7,7, — S ! such that

||Un . (An, §0n)|IT‘Tn - )/a”Li(IT.Tn) < €.

Here, y, stands for the constant trajectory of the Chern—Simons—Dirac gradient
flow (that is, a translation-invariant monopole on the cylinder /7,7, ) connecting
the critical point « to itself.

Condition (2) roughly says that, up to a gauge transformation, (A4, @) is a “near-
constant trajectory” when restricted to the middle of the long neck. Note that the
definition of convergence given on page 486 of [23] only includes condition (1).
Actually, condition (2) follows from condition (1) in our case but proving this would
require some additional work. Instead of doing this, we simply include condition (2) in
our definition of convergence.

The rest of this section will be dedicated to the proof of Theorem 8.2. We begin with
some preparations.

8.4 Topological energy

The perturbed topological energy of a configuration (A4, ¢) on a 4—manifold was
defined by Kronheimer and Mrowka [23, Definition 24.6.3]. On a cylinder [a,b] x Y,
the perturbed topological energy of (A4, ¢) is given by

EdT (A, 9) = 2(Lq((A, ) liayxy) — Lq((A. 0) [ pyx¥))-

More generally, the topological energy of a configuration (4, ¢) on the cobordism Wyg
is given by

&P (A, 9) = 2(Lg (A, )l iryxy) — Lo(A, @) l—T1x7))-

Lemma8.4 (1) If (A, @) isamonopole on acylinder [a, b]xY, then 5;01) (4,9)=0,
with equality if and only if (A, ¢) is gauge equivalent to a constant trajectory.

(2) There exists a constant C such that E;OP(A, @) = C for any monopole (A4, ¢)
on Wr.
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Proof Claim (1) is clear because any monopole on a cylinder is gauge-equivalent
to a downward gradient flow line of £,. Claim (2) is a direct consequence of [23,
Lemma 24.5.1] and the equality of the topological and analytic energies for monopoles;
see [23, Definition 4.5.4]. m|

Lemma 8.5 (1) Let (A, ¢n) be a sequence of monopoles on [a,b] x Y satisfying
a uniform bound EUtIOp(A,,,gon) < M. After passing to a subsequence, there
exist gauge transformations uy: [a,b]x Y — S! and a monopole (Ao, ¢oo) ON
[a,b] x Y such that the sequence uy - (Ay, n) converges to (Ao, Poo) in the
Li —norm on every interior domain in [a, b] x Y.

(2) Let I,, =[ayn, by] be a sequence of intervals with lim b, = —o0 and lim a, = +o00,
and (Ap, ¢n) a sequence of monopoles on I, x Y satistying a uniform bound
S;OP (A, on) < M. After passing to a subsequence, there exist gauge transtor-
mations uy: [an, byl x Y — S and a monopole [(Aoo, Poo)] € M([ct], [B]) With
[@],[B] € € such that the sequence uy - (An, pn) converges to (Aeco, Poo) In
L} 1o RxY).

(3) Let T, be a sequence of positive real numbers with lim T,, = +oc0, and (A, ¢n)
a sequence of monopoles on Wr,, satisfying a uniform bound 5;0p(A,,, o) <M.
After passing to a subsequence, there exist gauge transformations u,: Wr, — S !
and a monopole [(Aso, Poo)] € M(Weo, (], [B]) with [a], [B] € € such that the

sequence Uy - (An, ¢n) converges to (Ao, Poo) In L,zc 1oc Weo) -

Proof This follows from [23, Theorems 10.7.1 and 24.5.2]. O
8.5 Near-constant trajectories

For every o] € ¢, choose an open neighborhood Uj,; C B(Y') such that Uy NUjg) = @
when [«] # [B]. In addition, for every [«] € ¢, choose an open neighborhood Upy,,
of the constant trajectory [yy] € B([0, 1] x Y) such that [(4, ¢)|{yxy] € Ul for all
t €[0,1] and all [(A4, )] € Up,)- Here, B([0,1] x Y) denotes the space of gauge
equivalent classes of Li configurations over [0, 1] x Y.

Lemma 8.6 There exists a constant €y > 0 such that for any monopole (A4, ¢) on
[—1,2] X Y of energy EQOP(A,go) < 3eo we have [(4,¢)lj0,11xy] C U}, for some
[a] € €.

Proof Suppose that this is not true. Then we can find a sequence of monopoles
(A, @n) on [—1,2]xY such that lim S;OP(A,,, @n) =0 as n— oo but [(An, ¥n)l[o,1]x¥]
does not belong to any Up,,]. By Lemma 8.5(1), after passing to a subsequence,
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[(An. @n)l[o,11x¥] Will converge to a monopole of zero energy, which by Lemma 8.4(1)
must be of the form [y,] for some [«] € €. This leads to a contradiction. a

Lemma 8.7 For any real numbers M >0 and € > 0 there exists a constant T’ >0 with
the following significance: Let T > T' and let (A, ¢) be a monopole on [-T,T]x Y
such that

&P (A, 9) <M and  [(A,¢)|yxy] €Uy forall t€[-T,T].

Then, for any interval [t,t +4] C [T +T’, T —T'], there exists a gauge transformation
u: [t,t +4]xY — S! such that

lloe - (A, @) iz,t+a1xy — Vo ”Lﬁ,([t,t+4]><Y) <E€.

Proof Suppose that this is not true. Then there exist a sequence 7, — oo and a se-
quence (Ap, ¢n) of monopoles on [—T,, T,|xY with T,, > T, such that 5;0P (Ap, on) <
M and [(An. ¢n)lgyxy] € Ulg for all t € [~Ty, Ty, but, for some interval [t,, t, +4] C
(T, + T,,T,—T,], we have

et - CAn, ©n) i1, t0+41x¥ — Va||L12{([tn,;n+4]xy) >e>0

for all n and all gauge transformations u: [t,,t, + 4] x Y — S1. Using the translation-
invariance of the Seiberg—Witten equations on the cylinder, reparametrize (A, ¢5) to
obtain a monopole on [—7}, —t,, T, —t,], again called (A, ¢n), such that

l|u - (An, §0n)|[0,4]xY - VO‘”L,%([OA]xY) >Ze>0

for all n and all gauge transformations u: [0,4] x Y — S'!. Note that lim(—7}, —t,,) =
—oo and lim(7},—t,) = co. Therefore, by Lemma 8.5(2), after passing to a subsequence,
we can find gauge transformations u,: [-T,, Ty] x Y — ST such that u,, - (An, on) —
(Ao, Poo) In lec,loc(R x Y), where (Aoo, Pso) is @ monopole on R x Y limiting to
critical points in ¢ at plus and minus infinity. Since the gauge equivalence class of the
restriction of (Ao, @oo) to each slice {7} x Y is contained in Ul,], and since [«] is the
only critical point in Uly], the monopole (Ao, Poo) must be gauge-equivalent to Yy
(note that if ¥ were not a rational homology sphere, we would need to impose the
extra condition that Ul is contractible). Without loss of generality, we may assume
that (Aeo, Po0) = Ve . But then the lec,loc (R x Y) convergence implies that

ltn - (An, <Pn)|[0,4]xY — Y ”L,%([0,4]xY) — 0,

which leads to a contradiction. O
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Lemma 8.8 For any € > 0 there exists 6 > 0 with the following significance: For
any T > 5 and any irreducible critical point [«a] € €*, let (A, ¢) be a monopole on
[-T,T]x Y with the property that, for any [t,t + 4] C [-T, T], there exist a gauge
transformation u,: [t,t +4]x Y — S such that

lote (A ) f+aper = Vel L2 o rapery < 6.

Then there exists a gauge transformation u: [-T +5,T —5]x Y — S such that
llu- (A, @ [-T+5,7—5]xy — Ve ”Li([—T+5,T—5]xY) Se.

Proof This is essentially Lemma 19.3.2 of [23]. In fact, the patching argument in
the proof of Lemma 8.10 will be extracted, as in the proof of this lemma, from [23,
Lemma 13.6.]. O

8.6 Broken trajectories on W,

Let grQ: ¢* — Q be the absolute grading function [23, page 587] on the irreducible
critical points, and extend it to the unique reducible [8] by the formula

ar%([0]) = —2n(Y, h, s)

(compare with the grading in Lemma 2.6). Then, for any [«], [8] € €%, the expected
dimensions (denoted by e-dim) of the moduli spaces are as follows:

(1) e-dim(M([o], [B]) = gr®([e]) — &r®(B) - 1.

@) e-dim(M(e].[0)) = gr@(a)) — (0] ~ 1.

3) e-dim(M([0], [@]) = gr®([6]) — gr®([e]) - 2.

@ e-dim(M(Weo, [o], [B])) = gr@([]) — er®((8]) -

(5) e-dim(M(Weo, [o], [6])) = gr® (o) — gr([6)) .

6) e-dim(M(Woo, [6] [0])) = gr@((6]) — 2@ () — 1.

(7 e-dim(M(We, [6].[0])) = —1.
By our regularity assumption, the actual dimensions of the moduli spaces are equal
to their expected dimensions except in case (7): in this case, there is always a one-
dimensional cokernel of the corresponding Fredholm operator. As a result, the manifold
M(Weo,[0],[0]) is zero-dimensional and only contains reducible monopoles. Note that

the moduli space M ([6],[#]) is empty because we only allow nonconstant trajectories
in our definition of the moduli spaces M ([«], []).
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Lemma 8.9 Let d > 2 and suppose that [o1], ..., [@g_1] are critical points such that
the moduli spaces M ([a1], [®2]), ..., M([oeg—s],[0g—1]) and M(Weo, [@tg—1], [@1])
are all nonempty. Then d = 2.

Proof This follows from our regularity assumption by a simple dimension count. O

8.7 Proof of Theorem 8.2

We will follow closely the argument of [23, Section 16.2]. Let (A4, ¢,) be a sequence
of monopoles as in the statement of Theorem 8.2. Since

E " (Ans o) (=1, T1x¥) = 2(La((An, @n) (=T, 3x¥) — La(Ans @) |1T,3x7))
= =& ((An. o) lw).

we conclude from Lemma 8.4 that

EP(Anson)lw) <0 and P (Ans en)l(-1,.1,1x7) < M

for some constant A > 0 independent of n. As a result, we obtain the uniform bounds
(22) & (An.gn)lwy) <M and £ ((An. @n)lrxy) < M

for any 0 < T < T, and any interval I C [T}, T,], which will allow us to apply
Lemma 8.5.

Choose neighborhoods Uje) and Upy,] as in Section 8.5, and let €9 > 0 be the constant
provided by Lemma 8.6. Restricting (A, ¢n) to the slices {¢} x Y gives rise to a path
Vi [=Tyn, Ty] = B(Y). For each n, consider the set

Sn={p€Z|[p,p+1]C[-Ty, Ty] and géop((Am(Pn”[p,p—i-l]xY) > €9 > 0}.

This set contains at most M /eo elements. By passing to a subsequence, we may find
an integer j such that every set Sy, contains exactly j elements, p} < pJ <--- < pj'.’.
Also introduce the integers py = [—T,] and p]’.’ +1 = [Ta] — 1. After passing to a

subsequence one more time, we may assume that, for each integer m between 0 and j,

n
m+1

{0,1,...,j + 1}, define an equivalence relation

either limy oo (p — Pm) = o0 or py. . — pp, is independent of 1. On the set

my ~my if and only if nll)ngo|Pm1_pmz|<oo'
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Denote by d the number of the equivalence classes; since 0 is not equivalent to j, we
must have d > 2. Pick representatives mo < m| < my < --- < mg_1, one for each
equivalence class, and let

a;’=n}3n{p,’;|m~mi} and b?zmygx{pﬁ,|m~mi} for 0 <i<d-—1.
Then
[—Tu] =ay <by <ai <bj <---<ay_, <by_, =|Tu] -1,
the difference b);, —a}, is independent of n for 0 <m <d —1, and
nli)nolo(afnﬂ—b;’,):oo for 0 <m <d—2.

Using Lemma 8.6 together with the translation-invariance of the Seiberg—Witten equa-
tions, we obtain

(23) Vn([b;z + 2’ ag'l-{-l - 1]) - U[Olm_H]

for some critical point [o,,41]. Here, we passed to a subsequence again to ensure
that [, +1] is independent of . Using Lemma 8.5 and passing to a subsequence if

necessary, we conclude the following:

* There exist gauge transformations u,: X1, — S 1 such that u, - (A,, ¢¥n) converges
in lec,loc(WOO) to a monopole (Ao, Poo) 0N Woo. Using (23), it is not difficult to see
that [(Aoo, Poo)] € M(Woo, [ag—1]. [1]).

e Let t; denote the translation on trajectories defined by (t; - y)(x) = y(x +¢).
Then, for every n >0 and 1 <m < d —2, we have

Tah+bi)/2  Yn = Yoom 0 L o (RXY),

where Yoo,m 18 a trajectory on R x Y. Since the topological energy of v, ([a},, ay, +1])
is greater than or equal to €y > 0, we conclude that Y s is not a constant trajectory. Us-
ing (23), it is not difficult to see that Yoo, represents a monopole in M ([p], [@m+1])-

Since the moduli spaces
M([ai] [@z]). ... M([ag—2]. [@g—1])  and = M(Woo, [ag—1], [@1])

are all nonempty, it follows from Lemma 8.9 that d = 2. Keeping this in mind, our
earlier discussion implies the following two results:

(A) There exist gauge transformations uy,: X7, — S ! such that u,, - (An, o) —
(Aoo, o) in L7 11 (Woo) for some [(Aoo, Poo)] € M(Woo, [a]) with [e] = [ar1].
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(B) There exists a constant 7" > 0 such that y, (=T, + T, T, — T']) C Uy for
all n (this is implied by (23)).

Using Lemma 8.7, we can replace (B) by the following:

(C) For any € > 0, there exists a constant C > 0 with the following significance: for
any n large enough that 7, > C +4 and any interval [¢, 1 +4]| C [T, +C, T,—C],
there exists a gauge transformation uy,;: [t +4]x Y — S such that

”un,t (An, §0n)|[t,t+4]xY — Y ||L,%([t,t+4]xY) Se.
Lemma 8.10 The critical point [«] is irreducible.

This lemma will be proved in Section 8.8. For now, let us assume it and finish the proof
of Theorem 8.2. It is clear that condition (1) of Definition 8.3 follows from (A) and
Lemma 8.10. Therefore, we only need to verify condition (2) of Definition 8.3. For
any € > 0, let C be the constant from (C). Choose 7'= C + 5 and let N be an integer
large enough that 7, > T for all n > N. A straightforward application of Lemma 8.8
finishes the proof.

8.8 Convergence to reducible

In this subsection we prove Lemma 8.10. The proof will be based on the following
three lemmas.

Lemma 8.11 The moduli space M(Wx, [0]) contains a single point [(Ag, 0)], where
Ag is a trivial connection on Wy .

Proof Since both q and pg are nice, we may disregard the perturbations when
studying reducible monopoles downstairs. We saw in Section 8.6 that the moduli
space M(Wqo,[0]) contains only reducible monopoles [(A4, 0)] with F;l" = 0. Write
A = Ag + a, where a is an L,zc differential 1—form on W, with coefficients in iR
satisfying d ta = 0. Integration by parts shows that

/ (da,da) = 0.

Therefore, the 1—form a is closed. Since H'!(Wso,R) = 0, there exists £: Wy, — R
such that a =i d§, and (4, 0) is gauge-equivalent to (Ag, 0) via the gauge transfor-
mation u = ¢'¢ € lec +1,10c(W°°)' Now we use [23, Definition 24.2.1] to conclude that
[(4,0)] = [(40. 0)]. m
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Lemma 8.12 For any € > 0 there exists a positive integer N such that, for any n > N:
(1) T,=4.
(2) There exists a gauge transformation u,: W4 — S 1 such that
letn - (A, o), = (Ao, 0)ll 2. < €
(3) For any interval [t,t + 4] C [—Ty, T,], there exists a gauge transformation
Upy: [t,t +4]xY — S1 such that

tn,e - (An, ¢n)|[t,t+4]><Y — (4o, 0)||L,2\,([t,t+4]><Y) <E€.

Proof Claim (1) follows trivially from 7, — oo. Since W, is a compact subset
of W, claim (2) follows from (A). To prove claim (3), let C > 0 be the constant
from (C). If [¢,¢ + 4] belongs to [-T, + C, T,, — C], claim (3) follows from (C).
Otherwise, [¢,? + 4] belongs to either [-T},, —T, + C + 4] or [T, — C — 4, T,]. For
every n, these are identified with the fixed compact subsets [0, C 4+ 4] and [-C —4, 0]
of Wy, hence the result follows from (A). O

Lemma 8.13 Let €¢ > 0 be the constant fixed in the beginning of Section 8.2. Then
there exists an integer N > 0 such that, for any n > N, we have

||Djn (@)l 20xy,) < 5€0- @nllL2(xr,)-

Proof Since (A, ¢,) solves the perturbed Seiberg—Witten equations, we have the
equality
Djn (¢n) = ﬁ;‘n (An, ¢n),

where ﬁ;n (An, pn) denotes the spinor component of the perturbation term pr,, (4n, ¥n);
see Section 8.2. It is supported in Iy 7,, U U, where U is a collar neighborhood of dW.
By our definition of pr,,,

Pr (An.on)linxy = ' (An.@n)lisyxy) forall 1 € =T, Ty].

Since q satisfies Assumption 2.4, it follows from (6) that there exists a neighborhood
V of [0] € B(Y) such that

la' (B. )2y < 3€0- 1Vl L2r)

for any configuration (B, ¥) with [(B, ¥)] € V. But then, by Lemma 8.12, there exists
a positive integer N such that for any n > N, we have [(A4n, ¢u)|yxy] € V for all
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t € [Ty, T,]. Therefore, we have the estimate

1D @)linxyllLzry < 3€o- lonlinxy L2y forall € [=Ty, Tol,

which implies that

||D:fn () llL219 7, = J€0° lenllL2(zo.7,)-

A similar argument involving estimate (21) shows that

D% @) l2@y = 30 lonl2)-

This completes the proof of the lemma because Djn (¢n) is supported on Iy 7, UU. O

Lemma 8.14 For any € > 0 there exists a positive integer N such that, for any n > N,
there is a global gauge transformation u,: Xr, — S 1 such that

~_1 ~
|An—u, d“n”CO(XT,,) <e.

Before we go on to prove this lemma, we will show how it implies Lemma 8.10. We
know from Proposition 7.1 that, as n — oo, the smallest eigenvalue of the operator
D™D on X7, is bounded from below by ef > 0. Therefore, for all sufficiently large n
and all positive spinors v,

ID* Y l2xr,) = €0 1¥llL20xr, )
On the other hand, consider the sequence of gauge transformations #, from Lemma 8.14
and the sequence of spinors Y, = U,@, with € = %eo. Lemma 8.13 implies that
||D:fn_ﬁ;1d,7n Wn)llL2xr,) < 5€0 - 1¥nllL2cxy, )
We then conclude using Lemma 8.14 that

1D Vnllr2cxyy = 1Dy (Yn) — (An — 0, diln) - Ynllp2(x7
n Ay—u, ‘duy n

< €0 1¥nllL2xr,)

for all sufficiently large n, which gives a contradiction.

Proof of Lemma 8.14 Let N be as in Lemma 8.12; then, for any n > N, there exists
an integer my > 1 such that -7, +2m, € [T, —4,T,—2). For 1 < j <m, —1, we
denote the gauge transformation u, 7, ,; of Lemma 8.12 by u(n, j). We wish to
glue the gauge transformations u,, u(n,1), u(n,2),...,u(n, my — 1) together with
the help of cutoff functions.
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First, we pick a basepoint o € Y. After multiplying by suitable constant gauge transfor-
mations, we may assume that

un, Y =T +2j + 2} x0) =un. j + DE—Tn +2j + 2} x0).

Since Y is a rational homology sphere, we have

U, Pl=T+2j+2,-T,+2j+41xy = eI u(n, j + DI=Ty+2j+2.~Tu+2j+41x7 >
where
Em, j): [=Tn+2j +2,-Ty+2j +4]xY >R
satisfies
24 E(n, j){=Tn +2j + 2} x0) =0.
Now, since
N—1 .
||An _l/l(n, j) du(n, ‘])”Li([_Tn+2j+2,—Tn+2j+4]XY) <€
and
| An —u(n, j + 1)~ du(n, j + D2 (o7, 42742, Ty 42)-41x7) < €
we have

& DN L2 (-7 42j+2.~ Ty +2j+41x¥)
= llu(n, )~ du(n, j)—u(n. j+ D)7 du(n, j+Dllp2 (1, 4242, T, +27+41x7)

< 2e.

Together with (24), this implies that there exists a constant C, > 0 such that

(25 UG Dllzz , (-T+2j+2,-Tt2j+41x7) < C2€

Next, choose a bump function t: [0, 2] — [0, 1] such that ([0, 1]) =1 and r([%, 2]) =0.
We let 7;: [t,14+2]x Y — [0, 1] be the function defined by the formula z;(s) = t(s—1¢).
Extend the function 7_7, 1242 -§(n, j) defined on

[~Tn+2j +2,-Ty+2j +4]xY
by zero to obtain a function

E(n, j): [Tu+2j +2,—Tp+2j +5]xY > R.
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We have ||§(n, gz

2 (T2 +2,~Ty+2j+5) < Cse for a constant C3 > 0, which

implies that
(26) &, D coq-T,+2j+2,~T+2j+51x¥) < Ca-€

for another constant C4 > 0. Now, for 2 < j <mj, — 1, consider the gauge transforma-
tions

un, j) =ei§(”’j_1)-u(n,j): [T, +2j.,—Tp+2j +3]xY — S

One can easily see that u(n, j) equals u(n, j—1) over [-T,+2j,—T,+2j+1]xY and
equals u(n, j) over [T, +2j+2,—T,+2j+3]xY. Therefore, the functions #(n, 2),
u(n,3),...,u(n,my —1), together with the functions u(n, 1)|[_7,+2,—7,+5)xy and
u(n,mpy — V(=1 +2mp,~Ty+2m, +2]xY » agree with each other on the overlaps. As a
result, we can glue them together to obtain a gauge transformation

Ut [=Tp+2,—Tp+2mp +2]xY — S,

Since i, is obtained from u(n, j) by multiplying by cikn.j ~1, there is a constant
Cs > 0 such that
14w =it ' ity o (=1, 42, Ty +2my +21x¥) < Cs - €.

In our next step, we introduce i, = el (“"‘bt)ﬁn, where ¢ is the coordinate in the
cylindrical direction, and «a € [0, 2] and b € [0, 7/ (T, — 2)] are chosen so that

Un({—=Ty + 2} x0) = uy({—T, + 2} X 0)
and
Un({=Ty +2my + 2} x0) = un({—Ty + 2my + 2} X 0).

There is a constant Cg > 0 such that

~—1 7~—1 T
[ An —uy duy |l coq=T,+2,~Tp+2mp+21x¥) = Co - € + 7,2

where, by choosing N > 0 large enough, we may assume 7/(7T, —2) <¢€ foralln > N.
Arguing as before, we can find

Ent Ty, — Ty +2]U[-Ty +2mp+2,—Ty +2my +4]) XY - R
such that e?én iy equals u, over the domain of &, and

En({—=Tn} x0) = En({—Ty + 2mp + 4} x 0) = 0.

Geometry & Topology, Volume 22 (2018)



A splitting theorem for the Seiberg-Witten invariant of a homology S' x §3 2919

As before, we have the estimate
||d§n||L% <4e+b < 5¢

on the domain of &,. Let 7, be a cut-off function on the domain of &, which equals 1
when restricted to ([—7,, + 1, =T, +2|U [T, 4+ 2my +2,—T, 4+ 2my + 3]) x Y and
equals 0 when restricted to ([—Tn, —T,+ %] U [—Tn +2my + % —Tn+2my, +4]) xY.
Assume that the C°°—norm of 7, is uniformly bounded for all » > N and extend
Ty - &n by zero to a function én W4 — R. The gauge transformations eit ™y, and
Un|[=T,+1,—T,+2m,+3]xy Mmatch on the overlap of their domains; therefore, we can
glue them together to the desired gauge transformation #,: X1, — S1. Since i,
is obtained by modifying u, and u, ; using the cutoff functions én, &n ,j and the
function ¢/(@+b9)_ the estimate of the lemma can be easily verified. a

9 Gluing results

In this section, we will finish the proof of Theorem 3.3 by first establishing a bijective
correspondence between monopoles on X g and monopoles on W, for all sufficiently
large R, and then matching the signs to identify #M(Xg, gg,Pr) with the Lefschetz
number in the monopole chain complex C?. To simplify notations, we will continue
writing M(X§g) for M(XRg.gRr.PR).

Theorem 9.1 Assume that the spin Dirac operator
DT (Woo): LT (Woo; 8T) = L2 (Weo3 87)

is an isomorphism. Then, for all sufficiently large R > 0, the moduli space M(XR) is
regular, and there exists a homeomorphism

@7) p: M(Xg) = | ) M(Weo, [a)).
[a]ee*

We will first prove Theorem 9.1 by adopting the gluing techniques from [23] to the
nonseparating case at hand. Theorem 3.3 will be proved at the end of this section.

9.1 Fiber products

We will be using notations from Section 8.1. Denote by M*(X7) the moduli space of
irreducible monopoles on X7 . It follows from Proposition 7.3 that M*(X7) = M(X7)
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for all sufficiently large 7" > 0. The similarly defined moduli spaces M*(Wy-) and
M*(I7:, 1) will be infinite-dimensional Hilbert manifolds because both Wr/ and
It/ 7 have nonempty boundary, but we are not imposing any boundary conditions. By
the unique continuation theorem [23, Section 10.8], the restriction of an irreducible
monopole to the boundary is irreducible; therefore, for all 0 < T/ < T < oo we have
well-defined restriction maps

Ryt M*(Wp) — B*(Y)x B*(Y) and  Rf, 7 M*(Ip,1) — B*(Y) x B*(Y).

where B*(Y') consists of irreducible configurations in B(Y). One can show that these
maps are embeddings of Hilbert manifolds. It will be convenient to extend these
notations to the case of 77 = oo. Recall that in Section 8.1 we defined I7/ o =
Woo —int(Wy/). Let M*(I7,o) be the moduli space of monopoles (A, ¢) on I7/ o
satisfying

[(4, 9)ryxy] = [(4, )| yxy] € €.

lim lim
t—>—+o00 t—>—00

Then the restriction map
R, ot M (I 00) — B*(Y) x B*(Y)

is still well defined and is an embedding of Hilbert manifolds. To unify the notations,
we will write Xoo = Woo and

M*(Xoo) = | ) M*(Woo,[a).
[a]ee*

Then, for all 0 < T’ < T < oo, we have the following commutative diagram, whose
unmarked arrows are given by restriction to submanifolds:

_ M* (W)
/ '\
% /

M*U1:,T)

B*(Y) x B*(Y) M*(XT)

Lemma 9.2 Forall 0 < T’ < T < oo, the above diagram is a Cartesian square, that
is, M*(Xr) is homeomorphic to the fiber product

Fib(R7. R}, 1) = {(x. ) € M* (W) x M*(I7.1) | R7.(x) = RE, 7 ()},
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Proof The proof is identical to that of [23, Lemma 19.1.1], which deals with the
separating case, and will be omitted. Note that some new issues would appear if we
were to glue reducible monopoles in the blown-up moduli space but we do not deal
with them here. o

In less formal terms, Lemma 9.2 asserts that the moduli space M™*(X7) is the inter-
section of the moduli spaces M* (W) and M*(I7/ 1) viewed as submanifolds of
B*(Y) x B*(Y). We will prove Theorem 9.1 by showing that all of these intersections
occur in small neighborhoods of constant trajectories Y, where the intersection points
for sufficiently large 7" can be matched with those for 7' = oo using the implicit
function theorem.

9.2 Technical lemmas

The central role in our proof will be played by the following theorem, which is a special
case of [23, Theorem 18.2.1]. When T is finite, /7 will stand for [T, T]x Y and
R; for the corresponding restriction map.

Theorem 9.3 There exists a constant Ty > 0 such that for all T > T} and [«] € €%,
there exist smooth maps

up)(T. —): B(la)) > M*(I7),  upg)(00, -): B((e]) »> M*(Iso)

which are diffeomorphisms from an open neighborhood B(|«]) C B*(Y'), which is
independent of T, onto neighborhoods of the constant solutions [yy]. Moreover, the
maps

Ial, T = R oup)(T. —): B(la]) — B*(Y) x B*(Y)

are smooth embeddings for all T € [Ty, oo], and we have a C3J convergence

Wal,T = Mlal,co as T — oo.
Finally, there exists a constant n > 0, independent of T, such that the image of the map
ue)(T, —) contains all the trajectories [y] € M*(I7) with ||y — V"‘”L,%(IT) <.
Remark 9.4 In addition, we will assume that, for all §,7 € [T}, o0] and all [«] #
[B] € €,

im(ug) (S, —)) Nim(ug|(T, —)) =&,  im(p)(S, —)) Nim(upg(T, -)) = 2.
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Lemma 9.5 Let n> 0 be as in Theorem 9.3. Then one can find constants 0 < T, <
T3 < oo with the following significance: for any T €[T3, 0o], any element of M*(XT)

1
can be represented by a monopole (A, ¢) such that ||(A, 90)|IT2.T —Va ”Li(lrz.r) <37
for some [«] € €*,

Proof The case T = oo should be clear once we remember that, for 7" = oo, the
notation /7, o, means Woo —int(W7,). Let us now assume that 7' < oo and suppose to
the contrary that the constants 75> and 773 do not exist. Then we can find two sequences
of real numbers 7}, < T, both going to infinity as n — 0o, and a sequence of monopoles
(An, ®n) on X7, such that, for any gauge transformation uy: I 7, XY — S I and
any o € €*, we have

1
”un . (An’ ¢H)|IT,{,.T;1 - ya”Li(IT/,.Tn) > 57’]

for all n. According to Theorem 8.2, after passing to a subsequence, we may assume
that [(Ay, ¢n)] converges to an element in M(Wxo, [@]) for some [a] € €*. This leads
to a contradiction with part (2) of Definition 8.3, the definition of convergence. a

Lemma 9.6 Let T, and T3 be the constants from Lemma 9.5. Then for any T €
[T3, +00], there exists a homeomorphism

M*(XT) = | Fib(RZ,, ta),r-15)
[a]eec*
between M*(Xr) and a disjoint union of the fiber products. Moreover, the moduli
space M*(Xr) is regular if and only if, for any [«] € €*, the images of the maps R7,
and [i[q),T—T, intersect transversely in B*(Y) x B*(Y).

Proof The first assertion is a straightforward corollary of Theorem 9.3 and Lemmas 9.2
and 9.5. The second assertion is essentially [23, Theorem 19.1.4]. a

Lemma 9.7 Let B(Jx]) C B*(Y) be an open neighborhood as in Theorem 9.3, and let
Xn € B([a]) be a sequence such that ji[g],T,, (Xn) —> [a],00(X) for some T, — oo and
some x € B([a]). Then x, — x in the topology of B*(Y).

Proof This will be clear once we recall the construction of the map u[4)(7, —) from
Section 18.4 of [23]. The tangent space Tj,)3*(Y'), denoted by K, has a decomposition
K= IC(;|r @ K given by the spectral decomposition of the Hessian of £;. We will
denote by IT*: K — IC;'E the corresponding projections. We will also identify small
open balls B¢(Ja]) C K of radius € > 0 with open neighborhoods B([«]) C B*(Y).
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According to [23, Section 18.4], for any sufficiently small € > 0, there exist constants
€ >0 and 77 > 0 with the following significance: for any T € [T}, oo] and any
(a,b) € Be([a)) C K @ K, there exists a unique

V5] € (RP)™H(B(e) x B([a])) € M*(I7)

such that ||V(§,b) — Y ||L;%(IT) <¢€ and (IT4, H—)(RJTF([V(T;,b)D) = (a,b). The map
u[q)(T, —) is then defined by the formula

u)(T. (a. b)) = [y 4]

With this definition in place, write x, = (an, by) € IC;‘ @® Ky and similarly xoo =
(a00, boo) € K @ K. Then

e, T, (Xn) = (an, *,%,bp) and  f[g],00(Xoo) = (doo, *, *, boo),

where we embedded B([o]) x B([«]) into Kf ® K7 @ KF @ K. From this we clearly
see that fi[g],T, (Xn) —> U[a],00(X) implies X — Xoo. a

9.3 Proof of Theorem 9.1

Let 75 and T3 be the constants from Lemma 9.5. Using Lemma 9.6 and our regularity
assumption on M (W), we can claim that, for any [«] € €%, the images of the maps
R}z and [i[y],00 intersect each other transversely and we have a homeomorphism
(bijection)
M*(Xoo) = ) Fib(RT, . 1tfa] c0)-
[e]ee*

By Theorem 9.3, the maps pt[q],7 converge to [i[q] 00 in the C30 topology as T — o0.
The implicit function theorem now implies that there exists a constant 74 > T3 such that
any (y,x) € Fib(R}z, M[«],00) has an open neighborhood U(y, x) C M*(Wr,) X By
with the following significance: for any 7" > T}, the images of embeddings R}Z and
W], T—T, intersect each other in exactly one point in U(y, x), and this intersection is

transverse. Therefore, our proof will be finished once we prove the following lemma:

Lemma 9.8 There exists a constant Ts > T4 such that, for any T > Ts and any
element of M*(Xr) represented by

(v'.x"ye | Fib(Ry,. ppa)T—1,).
[a]ee*

there exists a point (y, x) € Fib(RT,, i[a],c0) such that (', x")eU(y x).
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Proof Suppose to the contrary that this is not the case. Then there is a sequence

(Yn,xn) € Fib(R}Z, M[an],Tn)’ T, — oo,

representing monopoles (A, ¢,) on X, suchthat (y,, x,) €U(y, x) forany (y, x) in
the fiber product Fib(R;z, M[a],00) - By Theorem 8.2, after passing to a subsequence, we
may assume that [(A,, ¢,)] converges to a monopole [(Aeo, Poo)] ON Xoo. Represent
the latter by (Yoo, Xoo) € Fib(R}z, Ma],00) - Then:

(@) Yn = Yoo. This follows from part (1) of Definition 8.3, the definition of conver-
gence, because Wr, is a compact subset of W, and

yn = [(An, ‘Pn)lWTZ] and Yoo = [(Aoos ‘Poo)|WTz]-

(b) Xy — Xoo. This follows from Remark 9.4, which implies that o] = [«] for all
large enough 7, and from Lemma 9.7 applied to the convergent sequence

Hla,], T, (Xn) = R7_"2 (yn) - R;"z (yOO) = //L[a],oo(xoo)-

Therefore, (y5, Xn) € U(Voo, Xoo) for all sufficiently large #. This gives a contradiction.
O

9.4 Proof of Theorem 3.3

All we need to do is compare the signs with which the monopoles corresponding to
each other under the map (27) are counted in #M (Xg) and Lef(W,: C° — C?). This
is done in [12, Proposition 3] under a different Z/2-grading convention. Since our
setting here is slightly different, we give an alternative argument using the excision
principle.

In the product case, X =S 1Y, the orientation transport argument of [41] (see also [54]
in the instanton setting) can be used to show that

(28) #M(X) = £x(C°%)

up to an overall sign which is independent of the choice of Y. The sign is determined
by the sign fixing condition

(29) Asw(X) =—=A(Y)
of [41, Section 11.2], where A(Y) is the Casson invariant normalized by

AMB(2,3,5) = 1.
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To calculate the sign in (28), we will let X = S x Y, where ¥ = %(2,3,7) is the
Brieskorn homology sphere endowed with a natural metric / realizing its Thurston
geometry, and compute

(30) Asw(X) =#M(X, g) —w(X, g)

with respect to the product metric g = d¢? + h. The correction term in this formula
equals
w(X,g)=indD"(Zs) + % sign Z,

where Z can be any smooth compact spin manifold with boundary Y. Let us choose
Z to be the plumbed manifold with the intersection form isomorphic to Eg @ H, where
Ejy is positive definite. According to [57, Section 6], the index of D" (Z,) vanishes;
therefore, w(X, g) = 1. Since A(Y) = —1, we conclude from formulas (29) and (30)
that #M (X, g) = 2. This needs to be compared to the Euler characteristic of the chain
complex C°. The latter complex is known [40] to have exactly two generators of the
same grading. Note that

—2h(Y) = 0> gr([fo]) = —2w(X, g) = —2.

By [33, Lemma 2.9], the boundary map 99: C° — C* must be nonzero. Therefore,
both generators of C? must be of odd grading, and the overall sign in formula (28) is
a minus.

The general case now follows by using the excision principle for determinant bundles
as in [23, Section 25].

10 Generic metrics

This section contains two results about metrics with no harmonic spinors on two
types of spin manifolds: compact manifolds with product regions and noncompact
manifolds with cylindrical ends. These results are similar to those of Amman, Dahl
and Humbert [1] and are proved by a modification of their argument.

10.1 Manifolds with product regions

Let X be a connected smooth spin compact manifold of dimension 7 = 0 (mod 4)
and /: X — S! a smooth map with the primitive cohomology class [df]€ H!(X;Z).
Let Y C X be a connected manifold Poincaré dual to [df], and introduce Riemannian
metrics 4 on Y and g on X such that g = dt? +h in a product region [—¢, g] x Y C X.
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w
{1} x[—e,e]xY
________________________ R
= [0, 1] [, ] x ¥ Tl
4 Y
K /

{0} x[—¢,e]xY

Figure 1: The spin cobordism

According to [1, Theorem 1.1], the spin Dirac operator D(Y, ) is invertible in the
Sobolev L? completion for a generic choice of /.

Theorem 10.1 Let X be a manifold as above with a product region [—¢,e] x Y and
suppose that the metric h is such that ker D(Y, h) = 0. If X is spin cobordant to zero
then there exists a metric g on X such that g = dt*> + h in the product region and
DY (X, g) is invertible in the Sobolev L? completion.

Proof We will use the method of transporting invertibility of the operator DT (X, g)
across a spin cobordism as in [1] but we will be more specific in choosing the cobordism.

Start with the manifold X’ = S! x Y with the product metric g’ = dt? 4+ h and the
spin Dirac operator D¥ (X', g’) = dt-(3/9t + D(Y, h)). Since the operator D(Y, h)
is invertible, so is the operator D¥ (X', g’) by a direct calculation.

We claim that there is a spin cobordism from X’ to X that contains a product region
I x[—e¢, €] x Y, and furthermore has handles of index at most # — 1. To prove this, write

X=WUeaxy (—e.e]xY) and X' =V Ui, axy[—€€xY;

see Figure 1. We assume of course that V' has a product structure as well. Let us
consider
U=WU(0,1]x{—e,e}xY)UV,

where {0} x {—¢, e} x Y is identified with dV and {1} x {—e¢,¢} x Y is identified
with dW. After rounding corners, U is a spin manifold diffeomorphic to X, hence U
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is the boundary of a connected spin manifold R of dimension n + 1. View R as a
cobordism from V' to W, relative to the product region [0, 1] x dV/, and give it a handle
decomposition.

By surgeries on generators of 71 (R), preserving the spin condition, we can make R
simply connected, and canceling the 0—handles and (n+1)—handles, we may assume
that all the handles have index between 1 and n. Then a standard handle-trading
argument can be used to eliminate the handles of index 1 and ». Gluing this to the
product region I x [—¢,¢] x Y gives the desired cobordism.

According to [1, Theorem 1.1], the manifold X admits a metric g with ker D(X, g) =0.
This explicitly constructed metric matches the original product metric on X’ away
from arbitrarily thin tubular neighborhoods of the surgery spheres. By construction,
these spheres lie outside of the product region, so that the metric remains a product
there. Since X is spin cobordant to zero, we conclude that A (X) = 0. Therefore, the
operator DV (X, g) has zero index and must be invertible. a

Remark 10.2 The existence of just a single metric as in Theorem 10.1 implies that
the set of such metrics is in fact generic (that is, C° open and C™ dense) in the
space of all metrics on X with a fixed product metric on [—e¢, €] X Y. The proof of [35,
Proposition 3.1] goes through after one notes that fixing a product metric on [—¢, ] x Y
defines a convex subset in the space of all metrics.

10.2 Manifolds with product ends

Let X be a manifold from the previous section with a product region [—¢, €] x Y and a
metric g which in the product region takes the form g = dt?> + h. Cut X open along
Y = {0} x Y into a cobordism W, and attach infinite product ends to W. This results
in the noncompact manifold

Woo = ((—00,0]x Y)U W U ([0,00) X Y).

Theorem 10.3 Let us suppose that ker D(Y, h) = 0 and that X is spin cobordant to
zero. Then one can find a metric g on Wy, such that g = dt*> + h on the product ends
and ker DT (Wyo, g) = 0 in the Sobolev L? completion.

Remark 10.4 The conditions of this theorem are obviously satisfied for spin 4-—
manifolds X with integral homology of S' x S3 because the spin cobordism class of

~

such a manifold is determined by its A-—genus,

A(X) = —1Lsign(X) = 0.
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The rest of this section will be dedicated to the proof of Theorem 10.3. We showed in
the proof of Theorem 10.1 that X can be obtained from X’ = S x Y by performing
surgery along spheres disjoint from the product region [—¢, €] x Y. In the language of
manifolds with product ends, this implies that Wy, can be obtained from the product
manifold R x Y by performing surgeries inside a compact region in R x Y. Since
ker D(Y, i) = 0, the Sobolev L? completion of the operator D (X’) is obviously
invertible. Therefore, we can proceed with the construction of a desired metric on W
exactly as in [1] making some changes along the way to account for the noncompactness
of Weo.

The first change comes up in the proof of [1, Lemma 3.4] which uses the Rellich lemma
to conclude that an L% bounded sequence of spinors contains a strongly convergent sub-
sequence in L2, While the Rellich lemma fails on noncompact manifolds, the sequence
of harmonic spinors in Lemma 3.4 still admits a strongly convergent subsequence: we
first apply the Rellich lemma on the compact manifold ([—1,0]xY)UW U ([0, 1]xY),
and then use the following estimate:

Lemma 10.5 Let X =[0,00) x Y be a manifold with product metric g = dt> + h
such that ker D(Y,h) = 0. Then there exists a constant C > 0 such that, for any
harmonic L?*—spinor ¢ on X,

el 20,0007y = C “ l®ll L2(0,17x7)-

Proof Let {1} be an orthonormal basis of eigenspinors of D(Y, /) and let Ay > 0
stand for the smallest positive A. Since ¢ is an L2—spinor in the kernel of the operator
DY (X,g) =dt-(3/3t +D(Y, h)), it takes the form

o(t.y) =Y ar-e My ().

A>0

A direct calculation with this formula gives

) Y df — |ax|?
IV o.000ry = | Nelz2cry =2
A>0

and | | |2
ap _
”(p”iz([o,l]xY) = / ||¢||iz(y) dt = Z o (1—e 2)‘).
0 A>0
This leads to the desired estimate with the constant C = 1/+1 — e—2Ao O
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The rest of the proof of [1, Lemma 3.4] goes through using exhaustion of the complement
of the surgery sphere S in Wy, by the compact sets

([—1/e, 0]l xYYUW U ([0,1/e] xY)—Ug(e),

where Ug(e) is the open tubular neighborhood of S of radius ¢ > 0. All the lem-
mas used in that proof are already proved in [1, Section 2] without the compactness
assumption.

The second change comes up in the proof of Step 2 on page 537 of [56]. That step
goes through using exhaustion by the compact sets

(~Z.0]xY)UW U ([0, Z] xY) = Us(1/2)

for positive integers Z. In Step 3, convergence in CIE)C(WOo —S) of a sequence of
harmonic spinors implies only L2 convergence on compact subsets of Wy, — Ug (s).
To obtain the desired L? convergence on the entire Woo — Ug(s), we use Lemma 10.5
one more time.

11 Periodic p—invariants

Let X be a connected smooth spin compact manifold of dimension 7 = 0 (mod 4)
and f: X — S! a smooth map such that the cohomology class [df] € H' (X;Z) is
primitive. Choose a connected manifold ¥ C X Poincaré dual to [df]. We will assume
that the manifold Y with the induced spin structure is a spin boundary and that the
A —genus of X vanishes; both of these conditions are automatic when X is a homology
S1x S3. Define the Riemannian manifold Xz with long neck as in (18). Recall that
the metric gg on X takes the form gg = dt> + h along the neck. Consider the

holomorphic family
DE =D*(Xg.gg) —Inz-df for z e C*,

Under the assumption that ker D;¥ = 0 for all z on the unit circle |z| = 1, the periodic
n—invariant n(Xg) was defined in [42] by the formula

6y e = [ glﬁ T -DF expp7D) F

It follows from [42, Theorem A and Remark 5.4] that the so-defined periodic n—invariant
is independent of the choice of f as long as df is supported in the product region
in Xg, which we will assume from now on.
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Theorem 11.1 Let n(Y) be the Atiyah—Patodi—Singer n—invariant [2] of the Dirac
operator D = —D(Y, h).?> Assume that the operator D has zero kernel, as does the
L2 —completion of the operator D+ (W) on the manifold Wy, obtained from W by
attaching infinite product ends. Then the invariants n(Xg) are well defined and, for all
sufficiently large R,

n(Xgr) =n().

Proof The well-definedness of n(Xpg) for all sufficiently large R follows from
Proposition 7.3. According to [42, Theorem A and Remark 5.4], for any spin manifold
Z 50 (Xg) whose periodic end is modeled on (Xg, gr) we have

ind D (Zoo (XR)) = / AZ)— Ln(xp).
7Z

A similar formula applied to an end-periodic manifold Z~, whose end is modeled on
(S x Y, dt? + h) yields

indD"'(Zoo):/Z/f(Z —Ins'xy).

We know from [42, Section 6.3] that n(S! x Y) = n(Y). By subtracting the above
formulas from each other, we conclude that n(Xg) must differ from n(Y) by an even
integer. The statement of the theorem will follow as soon as we prove that n(Xg) and
n(S! x Y) can be made arbitrarily close by choosing sufficiently large R. The proof
of this will occupy the rest of this section. a

Remark 11.2 For any X which is spin cobordant to zero, all of the conditions of
Theorem 11.1 are satisfied for the right choice of metric; see Theorem 10.3.

Remark 11.3 Because of the periodic index theorem [42] the statements of Theorems
6.1 and 11.1 are essentially equivalent to each other. What follows is an independent
proof of Theorem 11.1 using heat kernel techniques. We chose to include this proof,
inspired by [10], because it may be of interest in its own right.

11.1 Heat kernel estimates on S! x Y

Let S} a circle of length r and consider a smooth function f on its universal cover,
the real line, such that f(t +r) = f(z) + 1. The cohomology class of df generates

3The change in sign is dictated by the different conventions for the spin Dirac operator with respect to
the product metric g = d¢? + h used in this paper and in [42].
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H'(S};Z), and we will write df = f'(u) du with respect to the natural parameter u
on the circle S)'. Consider the family of elliptic operators d/du —Inz - f/(u) with
z € C* If KZ(t;u,v) is the kernel of the operator exp(¢ - (3/0u —Inz - f')?) then
(0/0u—1Inz- f")KZ(t;u,v) is the kernel of the operator

(% —lnz-f') exp(t-(%—lnz-f/)z).

Lemma 11.4 There are positive constants Yy and C > 0, independent of z and r,
such that the following estimates hold for all unitary z, r > 1 and t > 0:

K (tu,0)| < C -1~ V2 . emv v/t

)(% —Inz- f’)K;(t; u, v)‘ <C.t7l. @/t
Proof We begin by observing that, for the purpose of making kernel estimates on the
circle |z| = 1, one may assume that f”(u) is constant and is therefore equal to 1/r.
This can be seen from the formula

(9 o g ).—h:i_ (f /

P (au Iz f/w) =7 = oo —Inze (/') + H @),

which holds for any function /& defined on S, and the fact that adding d/ does not
change the cohomology class of df . Choosing h(u) = u/r — f(u) will then do the
job. Conjugating the operator by the unitary complex number Zh) multiplies the
kernel by z#)=4(0) hence preserves its norm.

Let z = ¢'%; then the kernel K’ (¢;u,v) of exp(t - (3/0u —is/r)) is given by the
formula
ros. _ 1 —tQrk—s)2/r* 2miku/r _—2mikv/r
KZ(Z’”’U)_7'I§6 -e -e
€

—1/282niku/r

with respect to the orthonormal basis r on the circle S!. One can easily

verify that
7. _l, 1(L.u v
Kz(t,u,v)—r K, )

where K!(¢;u,v) stands for the heat kernel of exp(t - (3/0u —is)?) on the circle of
length one. It is well known that there exist positive constants ¥ and C independent
of z such that

|K (t:u,0)| < C 172V @ 02/t forall ¢ > 0.
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But then

—1/2
K@) <Co 1 (%) LYl r=u/ P/
r

< C V2 v @02/t gorall 150

with the same constants y and C independent of z and r. A similar calculation proves
the estimate on (d/du —is/r)K](t;u,v) as well; compare with [10, Example 2.5]. O

Given a closed spin Riemannian manifold Y of dimension n — 1, consider the chiral
spin Dirac operators DF on S} x Y and their twisted versions D;t =D* —Inz-df.
We wish to derive estimates on the kernels of the operators exp(—¢D,; D;) and
D} exp(—tD; D) which are uniform in z on the unit circle |z| = 1 and in r. Denote
by K.(;x, y) the kernel of the operator exp(—¢D, D}); then DF K, (¢; x, y) is the
kernel of D} exp(—tD,; D}).

Lemma 11.5 Suppose that the Dirac operator D on Y has zero kernel. Then there
exist positive constants y and C independent of z and r such that the following
estimates hold for all unitary z, v > 1 and t > 0:

(32) |Ko(t;x, )| < C 172 o7 2 eon)t,
(33) DK, (t; x, y)| < C -~ tD/2 Lemvdi )/t

Proof On the circle |z| = 1, we have D} = du (3/du —D —1Inz- f') and D, =
(0/0u+D—1Inz- f') du, hence D; D} = —(3/du—Inz- f)> +D? and the kernel of
exp(—tD; D) is the product of the kernels of exp(¢-(3/du—In z- f7)?) and exp(—tD?).
To obtain estimate (32), simply combine the estimate C - =12 o= W=v)?/41 o the
former kernel with the estimate C - ¢=®#=1D/2.o=vd*(x".3)/t for X/ 1/ € ¥ on the
latter; see Lemma 11.4 and [10, Proposition 1.1], respectively. To obtain estimate (33),
write the operator D} exp(—tD; D;) in the form

(34) du [(% —Inz- f’) exp(t . (% —Inz- f’)z)] -exp(—tD?)

—du -exp(z . (% —Inz- f’)z) -[Dexp(—tD?)]

and apply the estimates of Lemma 11.4 and [10, Proposition 1.1] twice. a

Lemma 11.6 Suppose that the Dirac operator D on Y has zero kernel. Then there are
positive constants . and C independent of z and r such that the following estimates
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hold for all unitary z, r > 1 and t > §:

|K;(t;x,9)| < C-e ™ and |D,K,(t;x,y)| <C-e H,

Proof We use again the fact that the kernel of exp(—tD; DJ) is the product of the
kernels of exp(¢-(d/du—Inz- f')?) and exp(—tD?). The former is uniformly bounded
for all # > 8 by Lemma 11.4. As for the latter, note that the smallest eigenvalue of D? is
positive. Denote this eigenvalue by A2; then the kernel of exp(—¢D?) can be estimated
from above by C em*1/2 by [10, Proposition 1.1]. The argument for the kernel of
D, K,(t; x, y) is similar using (34) together with [10, Proposition 1.1]. O

11.2 Heat kernel estimates on X g

In this section, we will prove certain estimates on the heat kernels on manifolds Xg.
To begin with, we will give a description of Xz which differs notationally from that
in (18).

Let Y be a connected submanifold of X which is Poincaré dual to df, and let W
be the cobordism obtained by cutting X open along Y. Assume that the Riemannian
metric on X is a product metric in a normal neighborhood [—1, 1] x Y. The induced
metric on W will have product regions [—1,0] x ¥ and [0, 1] X Y near its boundary
components. We will use these product regions to define, for every real number R > 1,
the manifold

Xp=WU(-R—-1,R+1]xY)

by gluing the product region [—1, 0] x Y of the first summand to [-R—1,—R]x Y of
the second, and the product region [0, 1] x Y of the first summand to [R, R+ 1] x Y of
the second. The gluing functions we use are linear on the first factor and are the identity
on the second. We will view the manifold [-R — 1, R + 1] x Y with the identified
boundary components as the product Slle x Y with the circle Slle of circumference
2R + 2, cut open along a copy of Y.

Throughout this section we assume that the Dirac operator D on Y has zero kernel,
df is supported in the product region [—1, 1] x Y, and f is a function of the normal
coordinate u in that region.

11.2.1 Gaussian estimates Denote by K,(;x, y), K1(t;x,y) and K2(t; x, y) the
kernels of the operator exp(—tD; D) on Xg, X and S Ile x Y, respectively. We wish to
compare the functions K(z; x, x) and K2(¢; x, x) over the product region [—1, 1] x Y
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shared by the manifolds Xz and Slle x Y. To this end, define an approximate kernel of
the operator exp(—tD; D) on Xg by the formula

(35  KAt:x.y)=@1(x)-K'(t;x,9) - Y1 () + @2(x) - K2(t: %, ¥) - Y2 (D).

The functions ¥; and ¥, here form a smooth partition of unity on Xg such that
supp(¥2) =[~R—3, R+ 2]xY and ¥, =1 on [-R—2, R+ 2] x Y. The function
¢1 equals zero on [-R—2%, R+1]xY and one outside of [-R—2, R+2]xY, and the
function ¢, equals one on [—R—3, R+3]xY and zero outside of [-R—%, R+£]xY.
Note that ¢; = 1 on supp(y;) and that the distance between supp(de;/du) and
supp(v;) is greater than or equal to % for j =1,2.

Remark 11.7 It is important to note that in (35) we did not twist the Dirac operators
on X because df is supported away from W in the manifold Xp.

The advantage of having the approximate smoothing kernel K¢(; x, x) is that it is
defined on the same manifold Xz as K,(¢; x, x), while

Ko (t:x,x)— K2(t;x,x) = K, (t:x,x) — K2(t: x, X)

in the region [—1, 1] x Y of our interest. To calculate the latter difference, consider the
error term

0 -
—E:(t:x, ) = (3 + DD ) K %, ),

where the operator D, D} acts on the variable x for any fixed 7 and y. Since
(D7 D) (9; K]) = (Apj) K] =2Vvy KI +¢;(D; D) K]
and both K ; solve the heat equation, we obtain

(36) —E;(t;x,9) = Api (x)-K'(t;x, p) ¥1()—2Vvy, 00 K (£ X, ) Y1 (1)
+ A2 (x)- K2(t;%, ) V2 (1) —2Vy 0, ) K2(£: X, 1) Y2 ().

In particular, E,(¢; x, y) = 0 whenever d(x, y) < % Following the standard argu-
ment — see for instance [42, Section 10.4] — we obtain

t
Kz(t;x,y)—K?(t;x,y)=// K:(s;x,w)-E;(t—s;w,y)dwds.
0JXg

The w—integration in this formula extends only to supp,, E.(t —s; w, y), which is
contained in N = ([—R — g, —R— %] X Y) U ([R + %, R+ %] X Y). Therefore, the
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above integral can be written in the form
t
37) K (t;x,y)—K2(t;x,y) = / / K (s;x,w)-E,(t —s;w,y)dwds.
0JN

To obtain an equation on the kernel of D} e™/P= 2 on X g similar to (37), apply D}
to both sides of that equation:

(38) D K.(t;x,y)—Df K4t;x,y)
t
=[/ DjKZ(s;x,w)'EZ(t—s;w,y)dwds.
0JN

We will use this formula to obtain our first on-diagonal estimate on the difference
between the kernels D K, and D} K. The second such estimate will be coming up
in Proposition 11.11.

Proposition 11.8 There are positive constants ¢«, Yy and C independent of unitary z
and R such that the following estimate holds for x € [—1,1]xY C Xg and t > 0:

D} K, (t;x,x)—DF K2(t: x,x)| < C -e*' YR

The proof of this proposition will use the following two lemmas, which provide us
with estimates on DJ K, and E, which are uniform in z and R.

Lemma 11.9 There are positive constants «, y and C independent of unitary z
and R such that the following estimates hold for x,y € Xg and t > 0:

(39) |K,(t;x, )| 5C-e“’-t_"/z-e_”dz(x’y)/’,
(40) IDF K (1%, )| < C- e .~ D2 gy d2xn]t,

Proof According to Lemma 11.5, such estimates hold on S 113 x Y with ¢ =0 and
the constants y and C independent of z and R. According to [10, Proposition 1.1],
the same estimates with a = 0 hold on the manifold X but only for nontwisted Dirac
operators, which are exactly the operators that X contributes to the definition (35) of
the approximate kernel. Now, the kernels of exp(—D; D7) and D} exp(—:D; D;)
on X can be constructed from this approximate kernel by an iterative procedure using
the Duhamel principle as in the proof of [10, Theorem 2.4]. In the process, one obtains
the estimates (39) and (40) on Xg from the respective estimates on Slle x Y and X.
The constants in these estimates will be independent of z and R because they were
already independent of z and R on S}e x Y and X. One also acquires in the process a
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possibly nonzero constant o which has to do with the volume of Y and is therefore
independent of z and R. a

Lemma 11.10 There exist positive constants y and C independent of unitary z
and R such that the following estimate holds for x,y € Xg and t > 0:

(41) |E,(t:x, y)| < C-e V2]t

Proof This follows from formula (36) for the error term and the usual estimates on the
kernels K!(z;x,y) and K2(¢; x, y) and their space derivatives. That the estimates for
K?2(t; x, y) are independent of z and R follows as in the proof of Lemma 11.4 from
an explicit formula for the heat kernel on Slle x Y. The negative powers of ¢ that show
up in the estimates are absorbed into the factor e~ 4 2(x.p)/t using the observation that
E.(t;x,y) =0 whenever d(x, y) <%. a

Proof of Proposition 11.8 We proceed by estimating the difference
DF K, (t;x,x)— DS K4(t; x, x)

for x €[—1, 1]x Y using formula (38). For all z€ N we have d(x,z) > (R—1) —1—% >
%R + %, hence d?(x,z) > %Rz + % and (40) gives

|'D;_KZ(S;X,Z)| < Cl . o%1S .S—(n+1)/2 e d?(x,z)/s

<C;-e%1s _S—(n+1)/2 ‘e—1/49s .e—y1R2/4s <C,-e™s _e—y1R2/4s'
Similarly, using (41), we obtain |E,(t —s;z,x)| < C3 e~ V2R?/4(t—9) , hence
t
IDF K (t; %, x) = DF K& (15 x, x)| < / / Cy-e®15 .o VR s o=vR2[(=5) 4 g
0JN
t
5// C4-e°”t-e_yR2/t dzds
0JN
<C _eat .e—sz/t’
where we used the obvious fact that 1/ < 1/s 4+ 1/(t —s) for s € (0,1). a
11.2.2 Large-time estimates The second estimate that goes into the proof of our
theorem has to do with the smallest eigenvalue of the operator D on Y. Such estimates

are well known for the Z2—norms of heat kernels; the following proposition claims
pointwise estimates.
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Proposition 11.11 There exist positive constants . and C independent of R such
that
DK (t:x,y)| <C-e™ and |DSKZ(t;x,y)| <C-e M

forall x,ye[—1,1]xY C Xg and t > 8.
Proof The estimate for D} K9(t; x, y) is precisely the second estimate of Lemma 11.6.
The following proof is modeled after the proof of [10, Proposition 1.1].

We begin with an observation about the Sobolev spaces on X g with a fixed R. For a
unitary z and a nonnegative integer s, define the Sobolev norm

lell 2y = Iellzz + D30l .
This norm is equivalent to the Sobolev norm
lellzz =llelliLz + D%l L2

meaning that the identity operators Id: L2(z) — L2 and Id: L2 — L2(z) are bounded.
The norms of these operators are continuous functions of z which achieve their absolute
minimum and maximum on the circle |z| = 1. Therefore, there exist positive constants
m and M independent of z € S! such that for all ¢ we have

42) m-lell g2 < ol 2 < M- lloll -

With this understood, let D,¢r = Ar@r be the spectral decomposition of the full
Dirac operator D, with ||¢x|/z2 =1 (both ¢ and Ax depend on z but we omit this
dependence from our notation). We first estimate

Ko(tix.p) = e () G ().
k

Use the Sobolev embedding theorem with s = 2n — see for instance Lemma 1.1.4
of [15] —and inequality (42) to obtain the pointwise estimates
a a 2n
< . < —. = —
ok =a-llellpz, = - lelrs )= A +A75
with the constants ¢ and m independent of z and k. For any ¢ > 8, we have
) a —tA2 2n\2
|Dsz(t,x7J/)|§E'Z|)‘k|e k(1+)\'kn)
<2 (onN?. —(t=3)A}
< (@) e

—(f— 2 _12 _12
E%((zny)ZZe (t—4)A e )‘k §C1'€ Act/2
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with some positive constants i and C; independent of z. In the last line, we used the
condition that ker D, = 0 on the circle |z| = 1 to guarantee that the smallest eigenvalue
of the family Dﬁ over z € S! is positive; we call this eigenvalue A2 We also used the
fact that

43) > Ple ™

is a continuous function of z € S to estimate it from above by a constant independent
of z. The constants in the estimates depend on R in two different ways. One is via
the smallest eigenvalue A which by Proposition 7.3 is bounded away from zero by a
positive constant for all sufficiently large R. The other is via the function (43), which
can be shown to be bounded for ¢ > 8§ using [42, Lemma 10.13] and Proposition 7.3. O

11.3 Proof of Theorem 11.1

For our choice of df, the difference between n(Xg) and 77(5113 x Y) is given by
integrating the quantity

/ Tr(df - (DF K.(1; %, x) = DF K(t; x, x))) dx,
[-1,1]xY

with respect to ¢ and z as in formula (31) (in the above formula, Tr stands for the
matrix trace). The quantity D} K, (¢; x, x) — D} K%(¢; x, x) has been estimated twice,
first by C-e® e YR*/1 for ¢ > 0 in Proposition 11.8 and then by C -e™# for t > 8
in Proposition 11.11. The graphs of ¢*'~¥R*/ and e=H! intersect at the point ¢ = SR,

Therefore, for sufficiently large R and after adjusting the constants C, we can use the

where

first estimate on the interval 0 <¢ < B8R and the second on the interval SR <t < c0.
Since both estimates are independent of x and z, we can integrate them with respect to
these two variables. The integration results in estimating the distance between 1(Xg)
and 77(S11Q x Y') by a uniform constant times the integral

BR 5 00
/ YR gy / e dr.
0 BR

The latter integral can easily be estimated from above by

p.o@By/BR | (LY. —uBR
B-R-e +(M) e .
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Since aff — y/B is negative, the difference between n(Xg) and n(S Ile x Y) must
approach zero as R — oo. This completes the proof of Theorem 11.1.
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