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ABSTRACT: Defining optimal cogeneration system design re-
quires the use of complex analyses capable of capturing dynamic
processes within multiple subsystems and individual devices in
parallel. This is due to the well-known fact that optimal
cogeneration system performance does not always correlate with
the optimal performance of a single subsystem. Furthermore,
subsystems and single devices often present inherent design trade-
offs which are not easily captured in subsystem level models. Here,
we perform a steady state thermodynamic and economic analysis for
a concentrated solar power (CSP) cogeneration system producing
power through a supercritical carbon dioxide (sCO2) Brayton cycle
and water through a multieffect distillation (MED) plant. The use of
three artificial neural networks allows for the prediction of economic
performance (levelized cost of water and electricity) and system performance (thermal efficiency, second law efficiency, performance
ratio, and solar performance ratio). The cogeneration system results in a higher levelized cost of electricity (LCOE) than state-of-
the-art CSP sCO2 plants. However, this reduction in power performance allows for a levelized cost of water of 1.1 $/m3, which is
comparable to conventional membrane-based processes (1.25 $/m3) and significantly less than other solar thermal (1.8 $/m3)
desalination systems. The nonparasitic integration between the sCO2 Brayton cycle and MED plant also allows for maximization of
water production without altering the second law efficiency of the cogeneration system, which remains at 11% during the analysis.

KEYWORDS: cogeneration systems, sCO2 power cycles, thermal desalination, multiobjective optimization, neural networks

■ INTRODUCTION

Water scarcity and stress projections indicate that there is an
increasing demand for freshwater.1 Seawater desalination can
minimize this challenge, as 97% of the total water availability
resides in oceans. Today, most seawater desalination occurs
through membrane (reverse osmosis) or through thermal
separation (evaporation).2 Both approaches are equally
effective for desalinating seawater; however, seawater reverse
osmosis (SWRO) has a specific equivalent energy consump-
tion (SECequiv) (estimation of SECequiv explained in the
Supporting Information) of 1.58−7.5 kW h/m3, while thermal
desalination systems report SECequiv which range from 10 to 35
kW h/m3.3 The high SECequiv is limited by the unique
thermodynamic properties of water (high heat capacity),
resulting in a large energy demand for phase change. For this
reason, RO accounts for 65% of the desalination market while
thermal processes (multistage flash and multieffect distillation)
only account for 28%.4,5

Fossil fuel energy sources supply nearly all (99%) the energy
for desalination processes mainly due the higher costs
associated with fully integrated renewable desalination
systems.6 This trend however cannot continue, as it is
projected that globally installed desalination plants will

produce 218 million tons of CO2 by 2040 if the business-as-
usual scenario remains.6 Thus, integrating renewables such as
solar with desalination plants is of particular interest to
mitigate carbon emissions.7,8

There are two main solar energy integration strategies for
desalination: direct and indirect systems. Direct solar
desalination refers to any thermal process where solar capture
and desalination occur within the same system. Examples
include solar-driven water vaporization systems (solar stills and
other photothermal materials). While direct integration creates
intensified processes, ultimately they suffer from low rate of
production (≤ 100 m3/day), low performance (gain output
ratio, GOR < 1), and high cost (levelized cost of water, LCOW
up to 6.5 $/m3).4,9 Indirect solar desalination refers to any
system where the subsystems (solar capture and desalination)
operate independently and are connected through an
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integration subsystem. One promising indirect route heavily
investigated is photovoltaics (PV) with RO (PV-RO). This is
promising as the cost of PV has significantly dropped over the
past few decades, and the temperature match between systems
(near ambient) allows for ease of integration.10 However,
despite the promise, PV-RO systems still suffer from higher
cost (11.7−15.6 $/m3).4 While some of this high cost can be
mitigated through increasing the production volumes, this
current price is not competitive when compared to fossil
driven desalination-based systems.4 Furthermore, the current
cost for PV-RO is also more expensive than solar−thermal
integration (concentrated solar power−multieffect distillation,
CSP−MED) strategies which have been shown to attain prices
which approach 2.4−2.8 $/m3 while producing more than
5000 m3 of water per day.4

Thus, in an effort to meet both production and cost
demands, solar−thermal indirect cogeneration (power and
water) systems are gaining interest. Colocating power and
water is potentially also ideal as power systems heavily rely on
water for cooling, and thus, access to water would no longer
limit power plant location or operation time. Cogeneration
power and water systems are also advantageous as it would
allow a desalination plant to operate independent of the
electricity grid. With rising concerns with outdated electrical
grid-based infrastructure, reducing rather than adding loads is
advantageous.6,11 Realization of solar power and water could

ultimately mitigate many issues at the center of the water-
energy nexus.
The most likely approach to achieve solar−thermal indirect

cogeneration of solar and water requires the use of CSP with
thermal desalination (MED). While CSP systems still operate
at temperatures well beyond that of thermal desalination
systems, this approach can help in decreasing the temperature
mismatch between the power and desalination system through
the use of waste heat. Temperature match between subsystems
allows for less heat exchange loss. CSP−MED driven by a
supercritical CO2 (sCO2) Brayton cycle has been investigated
and shown to decrease the cost of energy (LCOE) by 18%,
when compared to a steam-driven Rankine cycle (LCOW
remained fixed).12 This improvement in performance is due to
the unique recompression Brayton cycle which can operate
with higher efficiencies due the higher temperature (> 600 °C)
when compared with traditional steam cycles (≈550 °C).13−16

A secondary benefit is that the integration is nonparasitic (i.e.,
power cycle efficiency is not influenced by the desalination
system). Others have investigated sCO2 CSP−MED systems
to meet municipal scale demands.17,18

Despite the current work in the field, there is a further need
to expand these analyses to identify the operational trade-offs
which exist between the power and desalination subsystems, in
order to maximize system performance under a range of
conditions relevant for operation for direct seawater desalina-
tion or inland applications. The complexity of a cogeneration

Figure 1. Diagram for the integrated cogeneration system divided in four principal blocks based on the literature work.21 The region highlighted by
the orange dotted box is the solar block using molten salts (ṁs) as the heat transfer fluid, and the region highlighted by the green dotted box is the
power block using supercritical carbon dioxide (ṁsCO2

) as the working fluid; the region highlighted by the red dotted box is the integration block
using demineralized water (ṁdem) as the heat transfer fluid, and the region highlighted in the blue dotted box is the desalination block using
seawater (ṁsea) as the working fluid which is divided into feed, brine, vapor, and distillated (ṁf, ṁb, ṁv, and ṁd).

ACS ES&T Engineering pubs.acs.org/estengg Article

https://dx.doi.org/10.1021/acsestengg.0c00132
ACS EST Engg. 2021, 1, 393−403

394

https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig1&ref=pdf
pubs.acs.org/estengg?ref=pdf
https://dx.doi.org/10.1021/acsestengg.0c00132?ref=pdf


system modeling and optimization represents a major issue for
computational resources consumption. Artificial neural net-
works (ANNs) allow for a reduction in simulation time
through the use of a simplified estimation of solutions to highly
complex nonlinear thermodynamic and economic functions
which typically require iterative solvers.19,20 The advantage of
ANN approaches for optimization is that the predictions are
based on input data and not mathematically constrained. Each
ANN can be represented as a polynomial function based on
input parameters which is easier to optimize.
Through identifying and predicting the most influential

system parameters, we aim to determine which systems metrics
are most suitable for evaluating the performance of a solar
cogeneration system using machine learning as a tool for
reduced computational time consumption. We aim to examine
the sensitivity that levelized cost (electricity and water) and
production (energy and water) have on system performance
(recovery ratio, thermal efficiency, gain output ratio (GOR))
considering the operation of the cogeneration system.

■ SYSTEM DESCRIPTION

The cogeneration system is composed of four blocks: solar
tower block, power block, integration block, and desalination
block. The desalination block uses waste heat from the power
block as the primary energy source, without influencing the
power block efficiency (Figure 1).21 For the solar tower block
(components enclosed in orange dotted square in Figure 1),
the heliostat field captures the incident irradiance (Gb)
concentrating sunlight into a central receiver tower. The
receiver heats a molten salt stream (ṁs) which then is stored
within a hot storage tank (HST). Heated molten salts then
exchange heat with a supercritical carbon dioxide (ṁsCO2

)
stream through the salt heat exchanger (SHX). A cold storage
tank (CST) stores the exhaust molten salts from the SHX
before circulating back to the receiver.
In the power block (components enclosed in the green

dotted square in Figure 1), the heated sCO2 expands in the
turbine producing the power (Ẇt) which drives the
compression devices in the power, integration, and the
desalination blocks (ẆC, ẆRC, and ẆMED). The remaining
power (Ẇnet) is available for delivering on the electrical grid.
The low-pressure exit sCO2 from the turbine preheats the
high-pressure sCO2, before entering the SHX, through a high-
and a low-temperature recuperator (HTR and LTR). The
exhaust low-pressure flow leaving the LTR divides into two
streams as a function of the recompression factor (RF) of the
Brayton cycle. A fraction (RF) of the sCO2 flows to the
recompressor, and the remaining (1 − RF) flows to the
integration block for cooling.
The integration block (components enclosed in the red

dotted square in Figure 1) cools the exhaust sCO2 from the
LTR to the compressor inlet temperature and simultaneously
provides heat to the desalination block through two printed-
circuit heat-exchanger devices (PCHE1 and PCHE2) using a
demineralized water stream (ṁdem).

17 The cooling process
aims at maximizing the temperature of the demineralized water
stream, which is used to supply the required thermal energy to
perform desalination (Q̇MED). After transferring heat to the
desalination block, the demineralized water stream enters the
feed preheater (FPH) and then mixes with the demineralized
flow that does not enter the PCHE2. To reach the temperature
required to cool the sCO2 stream in the PCHE1, demineralized

water rejects heat to feedwater in a plate and frame heat
exchanger (PFHE). A fraction of the feedwater stream, used
for cooling the demineralized water, flows to the FPH as feed.
The desalination block (components enclosed in the blue

dotted square in Figure 1) has a forward feed flow
configuration, which for sensible heat sources reaches higher
productivity compared with parallel flow schemes.18 The first
effect uses the demineralized water heated in the PCHE2 as
heat source to evaporate part of the feed (ṁf) supplied from
the FPH. This process produces two outcomes, vapor (ṁv) and
brine (ṁb). Both streams are inputs of the subsequent MED
effects. Freshwater production occurs from the condensation of
the vapor flowing from one effect to another. Heat is
transferred to the brine, and the vapor is transferred to the
next effect, as an energy driver for the next effects. In the
condenser, vapor produced in the last effect condenses
rejecting heat (Q̇cond) to a feedwater stream and then mixes
with the freshwater stream (ṁd) produced in previous stages.
The desalination block requires electricity for running the
pumps used for ensuring the flow of feedwater, brine, and
freshwater along the desalination block (ẆMED).

■ METHODOLOGY
A thermodynamic model was built to identify energy flows
within each subsystem and device. The model allows for
analyses to be performed on single subsystems or the complete
cogeneration system. This enables the identification of relevant
subsystem operating conditions and fluid properties, which
influence cogeneration system performance metrics. The
primary model inputs for the power block subsystem are
pressure ratio (PR) and recompression factor (RF). The
turbomachinery inlet temperature (TIT, CIT, and RCIT for
turbine, compressor, and recompressor), isentropic efficiency
(ηt, ηc, and ηrc), and recuperator effectiveness (ε) are constants
throughout the analyses. Different than TIT, PR and RF have a
direct influence in the power block efficiency being inversely
related and also affecting the heat rejection section and sCO2
flow in the system, which is variable due the TIT constant
value assumption (Figures S1−S3). Lower pressure and
compressor inlet temperature remains constant to ensure
CO2 in the supercritical state flowing in the system during all
the analyses (Table S3). For the desalination block subsystem,
the number of effects (N), last effect temperature (TN), feed
and brine salinity (Xf and XN), temperature difference between
effects (ΔTeffects), and cooling feedwater in the condenser
(ΔTcond) are the input parameters (Table S4) with the last
effect temperature and residual brine salinity as main variables
since they can influence more in the standalone desalination
block performance and recovery ratio compared with number
of effects (Figures S4 and S5). The feed salinity is defined as
33.5 g/kg. The model outputs are the power block thermal
efficiency (ηPB), the desalination block performance ratio
(PeR), the cogeneration system second law efficiency
(ηII,system), and solar performance ratio (SolarPerR). These
performance metrics allow for the determination of the capital
and operation costs for each component, subsystem, and the
entire cogeneration plant, allowing for the determination of the
levelized cost of water and electricity (LCOW and LCOE).
The solar field was simulated through System Advisor Model

(SAM).22 SAM optimizes the solar field for a desired power
cycle, given irradiance, location, and objective thermal
efficiency for a CSP system. SAM simulation outputs include
heliostat field area, solar field efficiency, molten salt tank
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temperature, and solar field costs. For the annual irradiance
profile and environmental conditions, SAM uses the data
available for Dagget, CA, with 10 h of thermal storage and 850
W/m2 of irradiation for base conditions (same as San Diego,
CA, close to the sea location, Table S2). Evaluating a yearly
operation, SAM provides the capacity factor (CF) of the
cogeneration system, which is equal to the capacity factor of
the solar block. Engineering Equation Solver (EES) provides
fluid properties and solves the energy and mass balance
through each device contained in the power block subsystem,
integration block subsystem, and desalination block subsystem.
EES relies on an external library in order to calculate saline
feedwater thermophysical properties including boiling point
elevation (BPE), enthalpy, entropy, and Gibbs free energy as a
function of pressure, temperature, and concentration.23−25

For an optimal operation in the heat rejection from the
power block, the use of two PCHE devices is necessary, where
the higher amount of heat must be dissipated in the devices
that supply cool sCO2 to the compressor.17 Here, for optimal
operation based on the validation point system,21 1/3 of
exhaust heat is rejected by the sCO2 stream in the PCHE2 ((1
− RF) × ṁsCO2

), heating the demineralized water flowing to
the desalination block (ṁdem,in,MED), while the remaining heat is
dissipated in the PCHE1 so the sCO2 stream reaches the
compressor inlet temperature.17 The heat exchange process
between sCO2 and the demineralized water stream in both
PCHE devices is isobaric and nonisothermal. While the
specific heat of demineralized water is assumed constant (4.18
kJ/(kg K)), specific heat of CO2 is nonlinear with changes in
temperature and pressure when operating near the critical
point.26 To evaluate the energy balance inside each PCHE
device considering the change of CO2 specific heat with
variation in temperature, the heat transfer process between
these two fluids inside the PCHE1 and PCHE2 is parametrized
in 10 and 5 points considering a pinch point temperature of 3
°C inside each one (Figure S6). The parametrization
maximizes the temperature of the demineralized flow in the
integration block flowing into the desalination block. The
demineralized water achieves the closest temperature to sCO2
even with a fixed heat rejection fraction (Figure S7). The
volume of feed saline water stream entering the desalination
block depends on the heat transferred from the power block
and the water recovery ratio (Equation S16). Here, the water
recovery varied, in order to maximize heat rejection from the
power block and subsequently the temperature of the
demineralized water stream entering the desalination block.
Each effect has a fixed operational temperature difference of 3
°C for ensuring driving forces and is also considered a 1 °C
additional for thermodynamic losses and nonequilibrium
allowance (NEA).21,27 The cooling feedwater stream in the
condenser has a fixed temperature difference of 5 °C. The
cogeneration system validation compares with results available
in the literature of the power and water production when the
power block operates at maximum thermal efficiency
producing 113.5 MW of power and 30.8 kg/s of water
(Table S5).21 The power block was validated standalone
compared with results reported in the literature (Figure
S11).13

Performance Metrics. The most critical economic metrics
used to evaluate performance are the levelized costs of
electricity and water (LCOE and LCOW). These are a

function of total annual production (power and water) and
annualized capital, operation, and maintenance cost:
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where ChCannual is the annualized chemical costs, LaCannual the
annualized labor annualized costs, CF the capacity factor, a
function of solar plant availability and estimated by SAM
(48.9% in this work), and CRF the capital recovery factor
applied for annualizing the total capital costs expenditures
(CC) of the system, where the discount rate (kd) and the
lifetime of the system (years) are 8% and 25 years.21

Capital cost correlations for turbomachinery are highly
dependent on the pressure ratio and the mass flow through the
device (Equations S18−S20) while the heat exchangers’ capital
cost depends mainly on the overall heat transfer coefficient (U)
and area (A) (Equations S25−S27). Operation and main-
tenance costs (O&Mannual) for the solar and power block are a
fixed percentage of capital expenditures (15%).28,29 For LCOE,
the capital expenditure includes costs of the solar field (Table
S2) and both PCHE devices, while the costs of the remaining
heat exchanger devices in the integration block are allocated in
the LCOW calculation. Desalination block annualized cost
calculations include annualized costs for chemicals and labor
(0.025 and 0.1 $/m3) along with operation and maintenance
costs fixed as 2% of the capital expenditure costs.30

For individual block metrics, the performance of a power
cycle is evaluated by the thermal efficiency. For the standalone
power block thermal efficiency (eq 4), the net power (Ẇnet,PB)
considers the turbine driving only power block compression
devices. The heat supplied is the heat transferred in the salt
heat exchanger (Q̇SHX).

η =
̇
̇ [−]

W

QPB
net,PB

SHX (4)

In evaluating the standalone performance of the desalination
block, gain output ratio (GOR) or conventional performance
ratio is not suitable, since the optimal value for these metrics is
not congruent with maximum water production.31 The
corrected or waste heat performance ratio (called PerR for
simplicity) considered in this work is defined as the total
produced freshwater water evaporation energy over the
maximum available energy from the heat source.31,32

=
̇ ×

̇ × −
[−]

D h
m T T

PerR
cp ( )dem

ref

dem,in,MED in,MED 0 (5)

where href is the distillate specific reference enthalpy (2336 kJ/
kg). The maximum available energy depends on the flow rate
of demineralized water, the temperature of the stream leaving
the PCHE2, and the seawater temperature (assumed to be T0).
For system metrics, the second law efficiency of the

cogeneration system considers that the power block drives
the compression devices in the desalination block (ẆMED).
Power consumption is a function of the mass flow, efficiency,
and head (Equation S17 and Table S1).33 Power and exergy of
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the freshwater stream are the products of the system, while
exergy of the brine and cooling seawater streams is lost exergy.

η
ψ

χ
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where χ̇sun is the total solar exergy provided by the solar block
estimated using a very common correlation available in the
literature.34
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where Ahel is the total area of the heliostat field reflecting
irradiance Gb, and Tsun is the effective temperature of the sun
equal to 5777 K.
Exergy of the freshwater stream only considers the

thermomechanical portion while chemical exergy is neglected
due to nonvariation in the chemical composition of freshwater.

ψ = − − × −h h T s s( ) ( )dist dist 0 0 dist 0 (8)

Here, h0 and s0 are the enthalpy and entropy of water at T0 =
20 °C and P0 = 100 kPa. A modified performance ratio,
denominated solar performance ratio (SolarPerR), compares
the energy used for evaporating freshwater against the total
solar energy input to the system.

=
̇ ×
×

[−]
D h
G A

SolarPerR ref

b hel (9)

Here, href is the benchmark value used in performance ratio
calculations (2336 kJ/kg). Solar performance ratio evaluates
the potential of the cogeneration system as a whole for
converting input energy (solar) into freshwater. Therefore, it is
a global performance metric unlike performance ratio (PerR),
which only evaluates the performance of the desalination block
converting waste heat into freshwater. Thus, it is a system
metric that is suitable for contrasting with second law efficiency
in a multiobjective optimization.

■ MULTIOBJECTIVE OPTIMIZATION USING NEURAL
NETWORKS

The proposed cogeneration system produces power and
freshwater. The developed thermodynamic model indicates
that varying PR and RF to maximize ηPB maximizes ηII,system.
This is due to the fact that the exergy of produced freshwater
in the desalination block is three orders of magnitude lower
when compared with net power production, making the power
block the main influential subsystem in the cogeneration
system exergetic efficiency (122 444 kW and 135.4 of exergy
for net power and freshwater produced at maximum second
law efficiency of the cogeneration system). Analyzing efficiency
equations for the power block and cogeneration system, the
heat and exergy input does not vary with changes in PR or RF,
but only power and distillate (eqs 4 and 6). For RF = 0.366,
increasing PR from the optimal point (3.5) increases water
production but decreases net power production showing a
trade-off between products of the cogeneration system in
second law efficiency (Figure 2).
Exploring this or other trade-offs, through a multiobjective

optimization, aids in visualizing the influence that simultaneous
system properties have on defining an optimal design based on

desired output conditions. Due to limitations of EES in
multiobjective optimization, the weighted method or direct
optimization is used most frequently when analyzing power
cycles, desalination plants, and cogeneration systems.35−38

However, the computational resources and time consumption
with high system complexity often prevent convergence. The
use of an artificial neural network (ANN) can address this
problem associated with processing complex models in order
to predict system performance with high accuracy.39

Optimization Process. The complete optimizations
require the integration and communication between EES and
Matlab (Figure S8). The thermodynamic model created in
EES provides input data through a parametric analysis varying
four operational parameters that influence the performance of
the power and desalination block (PR, RF, TN, and XN) and
calculating the six metrics (LCOE, LCOW, ηPB, PerR, ηII,system,
SolarPerR). Here, 160 000 data points are obtained varying PR
from 3.1 to 5, RF from 0.25 to 0.44, TN from 35 to 45 °C, and
XN from 57 to 95 g/kg. The Neural Network Toolbox available
in Matlab creates and trains the neural network using this input
data. Raw input data are normalized in the range [−1, 1]
automatically and randomly divided for training (60%),
validation (20%), and testing (20%). Each one of the three
generated networks has one hidden layer (also called the
Perceptron) with 4, 65, and 2 neurons in the input, hidden,
and output layer, respectively (Figure S9). One hidden layer is
enough for handling most of the complex functions.40 The
activation function for the neurons in the hidden layer is a
tangent-sigmoid function (Equation S28). The output layer of
each network value represents two metrics (LCOE−LCOW,
ηPB−PerR, and ηII,system−SolarPerR for each one).
The Levenberg−Marquardt backpropagation learning algo-

rithm was used for training. This supervised learning algorithm
minimizes the least square error for nonlinear functions, of
each network, comparing the predicted and desired output
values with high accuracy and speed.19 Once training is
complete, if the R2 value is higher than 99%, the process
continues, and a prediction function is created (three in total,
one per each network). If R2 is lower than 99%, the number of
neurons in the hidden layer increases, and the training restarts.
A multiobjective optimization using genetic algorithms with
defined numerical boundaries optimizes each prediction
function creating a Pareto front for each one. Each set of
optimal parameters is tested on the thermodynamic model to
ensure feasible results during validation. This process is

Figure 2. System second law efficiency and production levels for
different PR with its optimal RF maximizing power block thermal
efficiency.
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necessary to address the possible errors in training and final
prediction. If the set of optimal parameters provides unfeasible
solutions, the optimization upper boundary decreases, and the
multiobjective optimization restarts. After reaching feasible
solutions in the final validation process, the optimization
process is complete.

■ RESULTS AND DISCUSSION
The multiobjective optimization of each of the three predictive
functions obtained from the neural network training represents

an optimization focus for the cogeneration system (focus on
optimizing economic, standalone block, or overall system
performance). We divide this section into three parts to
analyze each of these optimizations schemes separately. We
study the variation of the optimal metrics through a Pareto
front analysis (Figures 3, 5, and 7), and then, for the Pareto
front, we explored the sensitivity that each system property
(PR, RF, Xn, Tn) had for optimal metrics. This is accomplished
through monitoring the optimal metrics and how each
property varied during the optimization process (Figures 4,
6, and 8). Each one of the points in the Pareto front has an
associated vector of system properties (optimal operational
parameters). If the system property or metric remain fixed
(small variation along the x-axis with variation in the y-axis or
small variation in the y-axis with variation in the x-axis), then

Figure 3. Pareto front for levelized costs of water and energy. The
constant green area represents the range for North, South, West, and
East region average energy prices in the United States, national
average shown in the black dotted line. The yellow area represents the
range of LCOE for other CSP sCO2 found in the literature with the
average shown in the black dotted line. The constant horizontal line
corresponds to LCOW for the current reverse osmosis (SWRO) price
in Saudi Arabia.43

Figure 4. Optimal values of (a) pressure ratio, (b) recompression factor, (c) brine salinity, and (d) last effect temperature for the levelized cost
Pareto front. The upper boundary for optimization is lower than the training upper boundary in power block parameters to achieve realistic results.

Figure 5. Pareto front for power block efficiency and desalination
block performance ratio.
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the optimal metric was not sensitive to that system property,
but the fixed value allows for other system properties to vary
altering the system metric value. On the contrary, large
property changes (large variation along the x-axis and y-axis)
are an indicator that the system property had a significant
impact on one or both performance metrics considered.
However, the four subfigures must be considered simulta-
neously and not as the influence of only one parameter in both
optimal metrics.
Cogeneration Plant Cost Optimization. State-of-the-art

CSP sCO2 recompression Brayton cycles achieve an LCOE of
0.08−0.14 $/(kW h) (yellow shaded region in Figure 3). The
price range is largely due to variable solar collection, and
different heat rejection configurations. The current price goal

which would enable CSP-sCO2 recompression Brayton cycles
to become a reality (DOE Sunshot goals) is an LCOE of 0.05
$/(kW h).41 When the CSP power plant is combined with a
thermal desalination plant, the combined system is termed a
cogeneration system as power and water are produced
simultaneously on-site. With the cogeneration configuration
(Figure 1), the LCOE increases by almost 2× to between 0.17
and 0.22 $/(kW h) (Figure 3). This increase in the LCOE is
expected as the addition of the desalination and integration
block increases the capital cost of the system and alters the
power cycle heat rejection. In the conventional Brayton cycle
without MED, heat rejection can occur in a single gas cooler
device. Conversely, within the cogeneration system with MED,
heat must be rejected to two printed-circuit heat exchangers.
This difference in how heat exchange occurs specifically alters
the correlations in capital expenditure estimations (Equation
S23).
Despite the increase in the LCOE with the cogeneration-

MED plant, the LCOW from the CSP sCO2 recompression
Brayton cycle with MED varies from 1.12 to 1.29 ($/m3)
(Figure 3). The LCOW from the combined power and water
system is lower than the specific LCOW reported from solar-
driven multistage flash plants (1.81 $/m3) and solar-driven
seawater reverse osmosis systems (SWRO) (1.25 $/m3).42,43

This signifies that, in terms of solar-desalination systems, the
CSP sCO2 recompression Brayton cycle with MED can
potentially exceed alternative solar-desalination technologies in
terms of LCOW. It is worthwhile to note that the solar-
desalination cost for the CSP-Brayton-MED system is still
more expensive than fossil thermal desalination plants or fossil
membrane desalination plants. For reference, utility scale
fossil-driven MSF systems produce water ranging from 0.52 to

Figure 6. Optimal values of (a) pressure ratio, (b) recompression factor, (c) brine salinity, and (d) last effect temperature for the block
performance Pareto front. The upper boundary for optimization is lower than the training upper boundary in power block parameters to achieve
realistic results.

Figure 7. Pareto front for second law efficiency and solar to water
performance ratio for the cogeneration system.

ACS ES&T Engineering pubs.acs.org/estengg Article

https://dx.doi.org/10.1021/acsestengg.0c00132
ACS EST Engg. 2021, 1, 393−403

399

http://pubs.acs.org/doi/suppl/10.1021/acsestengg.0c00132/suppl_file/ee0c00132_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsestengg.0c00132/suppl_file/ee0c00132_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.0c00132?fig=fig7&ref=pdf
pubs.acs.org/estengg?ref=pdf
https://dx.doi.org/10.1021/acsestengg.0c00132?ref=pdf


1.5 $/m3, and fossil powered SWRO produces water ranging
from 0.45 to 1.72 $/m3.3,44

For the CSP sCO2 recompression Brayton cycle with MED
to attain LCOW which approaches fossil-driven desalination
systems, the operational temperatures need to be altered. This
can be attained through increasing the first effect temperature,
or decreasing the bottom brine temperature. In addition,
emphasis must be placed on economical heat exchange
processes. One potential avenue which has yet to be explored
in depth which could potentially achieve these design goals is
the use of hybridized desalination systems which optimally
operate at various temperature ranges. However, care would
need to be taken to ensure that hybridization can be done
without expense adding to the capital cost.
Ideally, optimizing both LCOE and LCOW is necessary for

the cogeneration plant. This point is located at the corner of
the Pareto curve (Figure 3). Here, the LCOE is 0.17 $/(kW
h), and the LCOW is 1.18 $/m3. The trade-offs in minimum
LCOE and LCOW are due to the fact that the minimum
LCOW coincides with the maximum water produced (50 kg/
s), and the minimum LCOE corresponds with the minimum
power production (106 MW) (Figure S12a,b). Both of these
boundary conditions on the power and desalination system
cannot be maintained at the same time. Thus, operating at the
optimal cost location will require the system to operate below
the optimal performance (power and water production) point.
The predicted costs by the ANN compared with the
thermodynamic model had a mean absolute error of 0.01%
and 0.25% for the LCOE and LCOW (Figure S10a).
Variation and Influence of System Design Parame-

ters on Optimal Cost for the Cogeneration Plant. During
validation of the multiobjective optimization results obtained
through EES, all training bounds were checked to ensure that

the laws of thermodynamics were not violated, and if the
bounds violated the first or second law, they were reduced. For
this reason, the upper bound for PR decreased from 5 to 3.75,
the upper bound for RF decreased from 0.44 to 0.375, and the
upper bound for XN decreased from 95 to 75 g/kg (or 95 000
to 75 000 PPM). The upper bound for TN did not violate the
laws of thermodynamics and thus coincided with the training
bound (Figure 4).
PR was found to influence both economic metrics (LCOW

and LCOE). A PR greater than 3 increased the optimal LCOE
linearly from 0.17 to 0.224 $/(kW h) and decreased the
LCOW to 1.11 $/m3 (Figure 4a). Increasing RF from 0.26 to
0.36 decreased the LCOW to 1.18 $/m3 but had little impact
on the LCOE or PR (PR = 3.1). For RF values between 0.36
and 0.375, the LCOW further decreased to 1.11 $/m3 while
LCOE increased from 0.172 to 0.224 $/(kW h) (Figure 4b).
As PR and RF increase, it surpasses its optimum value
producing the least power and increasing the amount of waste
heat flowing into the desalination block.
Exit brine salinity (XN) was found to have a higher influence

in LCOW than LCOE (Figure 4c). LCOW remains less than
1.2 $/m3 for brine salinity ranging between 70 and 75 g/kg.
Increasing the brine salinity range between 70 and 75 g/kg
however resulted in the LCOE increasing from 0.17 to 0.224
$/(kW h). For brine salinity below 70 g/kg, LCOW increased
to 1.29 $/m3, and LCOE decreased to 0.169 $/(kW h). Thus,
a brine salinity range from 69 to 72 g/kg, and recovery ratio
between 51% and 53%, should be acceptable to operate with
low LCOW and LCOE (below 1.2 $/m3 and 0.18 $/(kW h)).
As brine salinity increases, more water is treated, and more
power is consumed by the desalination block (ẆMED), which
explains the increase in LCOE.

Figure 8. Optimal values of (a) pressure ratio, (b) recompression factor, (c) brine salinity, and (d) last effect temperature for system performance
Pareto front analysis. The upper boundary for optimization is lower than the training upper boundary in power block parameters to achieve realistic
results.
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Finally, we explore the variation of TN during the
optimization process (Figure 4d). LCOW decreases from a
maximum to 1.2 $/m3 while LCOE remains constant when
temperature decreases from 42 to 36 °C. From 35 to 36 °C,
LCOW is 1.2 $/m3, and LCOE decreases to 0.17 $/(kW h).
Since TN principally influences the performance of the
condenser in the desalination block, it does not alter the
power block costs. Therefore, decreasing the temperature of
the desalination block aids in producing more affordable water.
The different LCOW for lower TN is due to the influence of
the other three system properties (PR, RF, and XN) in the
optimal solution, which influence directly the amount of heat
rejected in the integration block and the feedwater treated. The
variation of PR and RF also explains the LCOE for different
TN.
Block Performance Metrics Optimization for the

Cogeneration Plant. In addition to the cost, the individual
subsystem performance is critical to enable system develop-
ment. Here, the subsystems are the sCO2 Brayton cycle and
the MED system, and the performance values are the thermal
efficiency of the power block (ηPB) and the performance ratio
(PerR) of the MED. The ηPB only varied from 47% to 48.3%
during the optimization process (Figure 5). This efficiency is in
the range of the state-of-the-art CSP sCO2 recompression
Brayton cycles.21,45 The desalination block PerR for the same
parameter space ranged from 1.06 to 2.31. Thus, PerR varies
by more than 2× ηPB while the power block remains nearly
unchanged. The variation in PerR is due to the decrease in the
last effect temperature, which does not affect the thermal
efficiency of the power block (Figure 6d). After reaching the
minimum possible temperature, PerR increases to 2.5, while
the thermal efficiency drops to only 47%. This corresponds to
when PR and RF reach the upper bound value (Figure 6a,b).
In terms of production, ηPB and PerR are linearly correlated
with power and water production. The maximum power
production (112.6 MW) coincides with the minimum
performance ratio (PerR = 1), and the maximum water
production (54 kg/s) coincides with the minimum thermal
efficiency indicating a direct trade-off (Figure S13).
The predicted performance by the ANN compared with the

thermodynamic model alone had a mean absolute error of
0.03% and 0.25% for ηPB and PerR (Figure S10b). During
validation of the multiobjective optimization results in EES, the
upper bound decreases from 5 to 3.9 for PR and from 0.44 to
0.39 for RF due to unfeasible results.
Variation and Influence of System Design Parame-

ters on Optimal Block Performance Metrics for the
Cogeneration Plant. The small variation of ηPB is due to the
nonparasitic integration between cogeneration system blocks,
making thermal efficiency only dependent on operational
parameters which influence heat rejected (Figure 6). Under the
block performance optimization scheme, a minimal PR of 3.5
corresponds to the maximum ηPB and minimum PerR. This is
due to a more efficient power block, where less heat is
dissipated to the desalination block. This ultimately reduces
the top brine temperature and therefore the water production.
In the pressure ratio range 3.5−3.8, ηPB decreases linearly while
PerR increases to 2. For PR above 3.8, ηPB drops from 48% to
47% while PerR increases from 1.96 to 2.31 (Figure 6a). Even
when the ηPB drop is higher for PR above 3.8, the change is
only 1.3% compared with the maximum achievable, while PerR
doubles within the same parameter space. A strong relation
exists between the optimal RF and PR under the block

performance optimization scheme, from the minimal value of
0.34; as RF increases, for PR values below 3.8, PerR remains
above 2 reaching the maximum value of 2.31 when RF and PR
are 0.39 and 3.9. On the other hand, for RF values above 0.36,
ηPB decreases below 48% with PR above 3.8 (Figure 6b).
Maximum ηPB and PerR are achieved for XN around

(meaning a recovery ratio of about 46%) making this value
optimal for the cogeneration system (Figure 6c) and not a
main influence in block performance. However, optimal PR
and RF differ for ηPB and PerR. While for maximum ηPB PR
and RF are 3.55 and 0.36, for maximum PerR theses values are
3.9 and 0.39. In consequence, under the block performance
optimization scheme, the power block parameters (PR and
RF) are the most influential in the cogeneration system.
Decreasing TN influences the system directly allowing the
production of more water and increase of PerR; this will vary
the values of PR and RF in order to consider point with
maximum PerR, and as a consequence, ηPB decreases.
However, the decrease is almost negligible for temperatures
ranging from 36 to 45 °C (Figure 6d). Under this optimization
scheme, a reduction of TN is most influential in PerR, while XN
remains constant. Thus, ηPB is affected by PR and RF, affecting
also PerR of the desalination block varying the top brine
temperature and available waste heat, while TN affects mainly
PerR decreasing the bottom brine temperature.

System Performance Metrics Optimization for the
Cogeneration Plant. ηII,system, according to eq 6, depends
only on the exergy of the products from the power and
desalination blocks (power production and exergy of the
freshwater produced). This is due to the assumption of a fixed
exergy input. Here, the total variation of the optimal ηII,system is
almost negligible varying from 11.3% to 11.6% (Figure 7). The
nonparasitic integration scheme of the cogeneration system
and the relative size of each block explain this. The power
production is the most influential term, as it is 3 orders of
magnitude higher than distillate exergy. During the multi-
objective optimization process, power production variation is
small, and maximum efficiency coincides with the maximum
power production (112.4 MW) having a linear relation, while
water production is 46 kg/s in this point. Water production
can increase to 54 kg/s when the second law efficiency
decreases to 11.32% (and power to 109 MW h) (Figure S14a).

Variation and Influence of System Design Parame-
ters on System Performance Metrics for the Cogenera-
tion Plant. SolarPerR is a direct function of water produced
having a linear relation (eq 9) and varying from 0.088 to 0.121
when water production varies from 39 to 54 kg/s (Figure
S14b). From Pareto front analysis, SolarPerR increases from
0.88 to 0.105 while ηII,system remains at 11.6% and power
production above 112 MW. Increasing SolarPerR to 0.121
reduces ηII,system to a minimum of 11.32% and power
production to 109 MW h. This little impact in the nonparasitic
cogeneration system efficiency allows for the maximization of
SolarPerR and freshwater production, with a negligible impact
in second law efficiency.
The predicted performance by the ANN compared with the

thermodynamic model in EES had a mean absolute error of
0.01% and 0.015% ηII,system and SolarPerR (Figure S10c).
During validation of the multiobjective optimization results in
EES, the upper bound decreases from 5 to 3.9 for PR and from
0.44 to 0.38 for RF due to unfeasible results. For this Pareto
front (Figure 7), we also explore the variation of each system
property (PR, RF, XN, TN) during the optimization process to
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identify their influence in the cogeneration system (Figure 8).
Altering PR from 3.6 to 3.8 has an almost negligible impact on
ηII,system while in this range SolarPerR varies from 0.088 to
0.105. When PR increases from 3.8 to 3.9, SolarPerR increases
to 0.121 while ηII,system decreased to 11.35% (Figure 8a). When
RF increases from 0.35 to 0.38, ηII,system decreases linearly,
while SolarPerR increases linearly. This trade-off is due the
direct relation between RF and power and water production. A
higher value increases the heat rejected by the power block
allowing the production of more freshwater in the desalination
block. As RF increases, ηPB of the power block decreases with
power production and, in consequence, second law efficiency
(Figure 8b).
XN achieves two possible values 58 and 73 g/kg showing an

inverse relation between ηII,system and SolarPerR (Figure 8c).
For XN = 73 g/kg, ηII,system reaches the maximum value
(11.6%); this is due to the fact that when XN is higher, the
cogeneration system produces more power and less freshwater.
Keeping XN below 60 g/kg increases SolarPerR to the
maximum value (0.12). By consequence, the cogeneration
system produces more water when the recovery ratio of the
plant is about 40%. TN variation is similar to the block Pareto
front analysis. Decreasing TN from 38 to 36 °C did not
influence ηII,system (11.6%). However, SolarPerR increases from
0.09 to close to 0.1 (Figure 8d). A lower value for TN
maximizes water production and SolarPerR, due to increases
in the operational temperature range of the MED system.
Exploration of system properties during cogeneration system
performance optimization allows one to conclude that a design
focused on maximizing water production in the system
proposed, i.e., operating at higher PR and RF and lower XN
and TN, will have almost negligible impact on ηII,system when
compared with a configuration focused on maximizing power
production.

■ CONCLUSIONS
A thermodynamic and economic analysis aided by the artificial
neural network (ANN) was performed to evaluate a
cogeneration CSP sCO2 Brayton cycle with MED plant.
Optimal system performance and cost were determined, and
three trade-offs were examined (LCOE−LCOW, ηPB−PerR,
and ηII,system−SolarPerR). For all simulations, ANN predictions
had a maximum mean absolute error of 0.25% when compared
with the thermodynamic model simulated with traditional
thermodynamic solvers (EES). The use of the ANN for
optimization aided in addressing computational resource
consumption challenges due to the complexity of the complete
system thermodynamic model. From a solar−thermal desali-
nation perspective, there are significant opportunities for
achieving high power and water production from CSP-sCO2
Brayton MED cogeneration plants. Furthermore, the LCOW
may be able to approach 1.25 $/m3 indicating that the cost of
competitive water and power may be able to begin to compete
with fossil-based alternatives.
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