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Abstract

Cortical folding—the process of forming the characteristic gyri (hills) and sulci (valleys) of the cortex—is a highly dynamic
process that results from the interaction between gene expression, cellular mechanisms, and mechanical forces. Like many
other cells, neurons are sensitive to their mechanical environment. Because of this, cortical growth may not happen uniformly
throughout gyri and sulci after the onset of cortical folding, which is accompanied by patterns of tension and compression in
the surrounding tissue. Here, as an extension of our previous work, we introduce a biomechanically coupled growth model
to investigate the importance of interaction between biological growth and mechanical cues during brain development. Our
earlier simulations of cortical growth consisted of a homogeneous growing cortex attached to an elastic subcortex. Here, we
let the evolution of cortical growth depend on a geometrical quantity—the mean curvature of the cortex—to achieve prefer-
ential growth in either gyri or sulci. As opposed to the popular pre-patterning hypothesis, our model treats inhomogeneous
cortical growth as the result of folding rather than the cause. The model is implemented numerically in a commercial finite
element software Abaqus/Explicit in Abaqus reference manuals, Dassault Systemes Simulia, Providence (2019) by writing
user-defined material subroutine (VUMAT). Our simulations show that gyral-sulcal thickness variations are a phenomenon
particular to low stiffness ratios. In comparison with cortical thickness measurements of N = 28 human brains via a consist-
ent sampling scheme, our simulations with similar cortical and subcortical stiffnesses suggest that cortical growth is higher
in gyri than in sulci.

Keywords Biomechanics - Brain development - Curvature - Finite elements

1 Introduction many neurological disorders such as lissencephaly, pol-

ymicrogyria, and autism spectrum disorder (Walker 1942;

Cortical folding has been long studied by joint efforts of
researchers from different backgrounds of neuroscience,
biology, medical imaging, mechanics, etc. (Sejnowski et al.
1988; Sun and Hevner 2014; Fischl and Dale 2000; Tal-
linen et al. 2014). This process is associated with a dra-
matic increase in brain size and complexity, giving the
folded, or gyrencephalic, brains of humans and other mam-
mals a superior information processing capability compared
to other species with smooth, or lissencephalic, brains.
Deviation from typical development is correlated with
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Barkovich et al. 1999; Nordahl et al. 2007). Hence, a better
understanding of the cortical folding could lead to improved
diagnostics, treatments, and prevention for folding abnor-
malities in the diseased brain.

Over the past decade or so, the research on cortical fold-
ing has been growing exponentially, which has increased
our understanding of key players such as gene expression,
cellular, and mechanical mechanisms, but many questions
remain. The debate as to whether biology or mechanics dom-
inates cortical folding is ongoing (Borrell and Gotz 2014;
Kroenke and Bayly 2018). In reality, the interaction between
the two is a promising area to be further explored.

From a biological point of view, neurons are created by
neurogenesis within the subcortex at the early stage. Before
cortical folding happens, newborn cortical neurons migrate
radially along the radial glial fibers from the germinal layers
to the cortical plate. It has been shown that inhomogeneous
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neurogenesis plays an important role in cortical folding
(Kriegstein et al. 2006). Regions that undergo high neu-
rogenesis have a greater expansion, and this inhomogene-
ous growth will eventually shape the brain’s morphology.
Besides neurogenesis, the patterned expansion and folding
of the cortex could also result from the tangential disper-
sion of neurons during their radial migration. In species with
a folded cortex, the trajectory of radial glial fibers varies
across regions, being dramatically divergent in areas where
the cortical plate will later undergo the most significant
expansion and folding (Reillo et al. 2011). This has been
supported by genetic studies in ferrets, which found that the
intentionally suppression of genes that correspond to the
radial migration of neuron cells resulted in cortical malfor-
mations (Shinmyo et al. 2017).

From a mechanical perspective, early theories suggested
that cortical folding could be a passive consequence of
mechanical forces acting on the expanding brain, includ-
ing cerebrospinal fluid pressure and the constraints from
the cranium (Welker 1990). However, experiments by Bar-
ron (1950) showed that the forces primarily responsible for
cortical folding are resident within the cortex. The hypoth-
esis proposed by Van Essen (1997) states that the patterned
axonal tension between specific cortical regions drives corti-
cal folding, which is supported by axonal tracing evidence
in the macaque. However, Xu et al. (2010) later showed that
the tensile forces from axons do not act along the direc-
tion that would be required to bring the walls of developing
gyri together. As an alternative hypothesis, the differential
growth theory has become more convincing and popular
(Bayly et al. 2013; Tallinen et al. 2014). The theory states
that the outer layer of the brain undergoes faster tangential
expansion than the inner core, which builds up compressive
stresses and will trigger mechanical buckling after it reaches
a critical threshold.

Neither biology nor mechanics is self-sufficient for cap-
turing the whole picture of brain development when act-
ing alone. Instead, they likely work together. Many cells
are sensitive to their mechanical environment, with their
proliferation and growth rate regulated by mechanical
stresses (Shraiman 2005). Neurons are no exception. Their
biomechanically coupled behaviors play an important role
in shaping the neuronal morphology. For example, Pfister
et al. (2004) reported that axons could be stretch-grown at
rates of 8 mm/d and reach lengths of 10 cm without rupture.
Accordingly, models that build upon the differential growth
theory while taking into account axonal growth in the sub-
cortex have provided more realistic results (Xu et al. 2010;
Bayly et al. 2013; Budday et al. 2014; Holland et al. 2015).
A recent study by Koser et al. (2016) reported that neuron
cells grow faster when cultured in a relatively stiffer environ-
ment and that mechanical signals could act as the regulators
for neuronal pathfinding. Furthermore, Anava et al. (2009)

@ Springer

concluded that mechanical tension could regulate the axonal
branch and the subsequent formation of synapses. By exten-
sion, it is reasonable to assume that cortical growth during
cortical folding does not happen uniformly throughout the
gyri and sulci, which are accompanied by patterns of tension
and compression in the surrounding tissue.

Cortical thickness not only serves as an essential bio-
marker for diagnosing neurological disorders (Shaw et al.
20006) but also gives us a macroscopic assessment of brain
morphologies. It is consistently found to be thicker in gyri
and thinner in sulci. We have previously explained this fact
using pure mechanical buckling theory, numerical simula-
tions, and non-biological polymer experiments (Holland
et al. 2018). However, the thickness ratio gap between non-
biological analogues and human brains raises the question of
how biological growth works alongside mechanics to affect
cortical thickness.

The current work employs differential growth to trigger
initial cortical folding and focuses on the interaction between
biological growth and mechanics during the post-buckling
process. More specifically, we use the mean curvature in the
cortex as a macroscopic measure to represent the difference
in the mechanical environment between gyri and sulci. We
then link the cortical growth rate to the mechanics-induced
mean curvature variations, achieving either gyral or sulcal
growth by tuning a curvature-sensitive parameter. Our the-
ory is implemented numerically in a finite element software.
We further study the theory by running simulations in 2-D
and 3-D settings, in which the brain is modeled as a bilayer
system consisting of a growing cortical layer and an elastic
subcortical substrate. Finally, we validate our model quanti-
tatively by comparing the simulated results against measured
cortical thicknesses from human brains.

2 Method
2.1 Cortical thickness measurements

We measured gyral and sulcal thicknesses (, 7,) in humans
by analyzing magnetic resonance images of N = 28 typi-
cally developing human brains (ages between 7 and 18) from
Yale School of Medicine—a subset of a public database
(Craddock et al. 2013). All images were analyzed using the
open-source software FreeSurfer (Dale et al. 1999), which
performs volumetric image segmentation, cortical recon-
struction, and calculations of brain morphology, includ-
ing cortical thickness (Fig. 1, top). We divided the cortex
into sulcal and gyral regions by the mean curvature with
gyral and sulcal regions bounded between [—0.5, 0] and
[0, 0.5]mm™! (Fig. 1, bottom), respectively.

The averaged gyral and sulcal thicknesses are susceptible
to the sampling scheme we adopted here, as measurements
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Cortical thickness (mm)

Fig. 1 Patterns of cortical thickness and mean curvature in one of
N = 28 human brains studied. Top: cortical thickness. Bottom: mean
curvature. Images to the left represent the anatomical cortical sur-
faces, while images on the right have been artificially inflated for
improved visualization of sulcal values

obtained from only the most gyral and sulcal spots are dif-
ferent from the ones averaged from the larger area. (This is
discussed further in Sect. 3.2.3). These results were later
used to compare against our numerical simulations.

2.2 Mathematical model
2.2.1 Kinematics of finite growth

Consider a body By identified with the region of space it
occupies in a fixed reference configuration, with arbitrary
material points denoted as xi. The referential body By then
undergoes a motion X = y(Xg, ?) to the current deformed
body B, with deformation gradient given by

F=Vy, suchthat J=detF >0, ¢))

where V denotes the gradient with respect to the material
point X in the reference configuration. Following Rodri-
guez et al. (1994), to take growth-related changes in volume
within the region into account, we adopt the multiplicative
decomposition of the total deformation gradient,

F = F°F¢, )

where F¢ is the irreversible growth part of the deformation
measuring from reference configuration By to the intermedi-
ate stress-free configuration B3, denoted by X, while F¢ is the
reversible elastic part of the deformation measuring from
the intermediate to the current configuration B,. Similarly,
the volumetric change can be decomposed into elastic and
growth parts, i.e.,

J = detF = JJ2 3)

where we consider the tissue to be slightly compressible, so
J¢is not strictly 1. We model cortical growth as in-plane area
growth and assume that the response normal to the cortical
layer is purely elastic (Holland et al. 2015). The correspond-
ing growth tensor is given by

Fe = V921 + (1 — V9¢)n, ® ny, )

where 9% is a growth multiplier, ny is the referential unit
normal of the pial surface. It is worth noting that the growth
parameter 9% represents the increase in the cortical area,

98 = ||JEFET - ng|| = JE, ©)

which is identical to the increase in the cortical volume J&.
We invert the growth tensor via Sherman—Morrison formula,

- 1+\/§_1
\/oe \/9e

The elastic deformation tensor is then calculated as

. F+\/£_1
Vo Vo

where n = Fny, is the current unit normal of the pial surface.
Finally, both elastic left and right Cauchy—Green tensors are
given by

Fe!

ng @ ng. ©6)

F¢ n ® ng, )

B =F°FT and C°®=F°F°. 8)

2.2.2 Constitutive equations

We model both cortical and subcortical tissues as compress-
ible neo-Hookean materials,

vR(C 9 = B (€)= 3200 + 2wt )

where p and L denote Lamé constants and only elastic defor-
mation induces stress. The Cauchy stress is thus given by

zFe%FeT = s
Je  acCe Je

[4B¢ + (LIn(J*) — w)1]. (10)

2.2.3 Growth kinetics

The evolution of the cortical growth parameter can correlate
to several potential biological events: During the early stages
of development, the increase in cortical volume is associated
with migration of neurons to the cortex, which depends on
symmetric and asymmetric division of neural progenitor cells
(Sun and Hevner 2014; Rakic 2009). During the later stages of
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development, tangential expansion is associated with the matu-
ration and dendritic arborization of the neuron cells (Garcia
et al. 2018). Here we hypothesize that neurons are sensitive to
mechanical forces, growing differently in sulci and gyri after
the onset of cortical folding. Our hypothesis is contrary to the
popular pre-patterning theory, which states that inhomogene-
ous growth determines the cortical folding (Gémez-Skarmeta
et al. 2003). More specifically, we take the mean curvature as
a macroscopic evaluation of the local mechanical environment
that neurons are sensing. This is not intended to suggest that
cells respond to surface curvature directly, but rather than sur-
face curvature is a convenient proxy for the differing mechani-
cal state between gyri and sulci. Thus, the mean curvature is
linked to the cortical growth rate to model the preferential
cortical growth in either gyri or sulci. The evolution equation
is given by

98 =98 +9¢ . o
where
l()ftx =G and l()%ur = G, anh () 12

are the homogeneous and curvature-dependent contribu-
tions, respectively, to the total growth rate, with G* the
homogeneous baseline cortical growth rate constant, r*" a
curvature-sensitive parameter, and «* = xt, the dimension-
less mean curvature normalized by the initial thickness of
the cortex #,. We measure the mean curvature x at the cen-
troid point of each cortical element instead of at the pial
surface (further details can be found in Appendix 1), and its
definition is given by

K = —%divﬁ (13)

where n denotes the current unit normal of the cortical
layer and div is the divergence with respect to the point

X = y(Xg,?) in the deformed configuration. With this evo-
lution equation, varying the curvature-sensitive parameter
r" from —1to 1 results in a transition from sulcal to gyral
growth (Fig. 2), with the case of uniform growth reproduced
when r*" = (. As a preliminary study, we assume that the
subcortex does not grow, i.e., 98 =0.

2.2.4 Equilibrium equation

The balance of linear momentum is given by

divT=pii and T=T, (14)

where p is the mass density, il the acceleration, and T the
Cauchy stress given by Eq. (10). The pial surface of the
deformed body has outward unit normal n, and the external
surface traction on an element of the deformed pial surface
is given by

t=P~n (15)
with the viscous pressure written as
P,=-c,v-n, (16)

where c, is the viscous coefficient and v the speed of the
boundary. This surface traction acts to dampen inertial
effects in order to achieve a quasi-static condition, i.e., i1 &~ 0
in Eq. (14).

2.3 Computational model of growth

We have implemented our constitutive model in Abaqus
by writing a user-defined material subroutine (VUMAT).
In our numerical simulations, we model the develop-
ing brain as an idealized bilayer system consisting of a
growing cortical layer with an initial thickness of £ =
1.25mm and a pure elastic subcortical region. There are

Fig.2 The cortical growth rate
J2 as a function of the normal-
ized mean curvature x*
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three different computational domains being consid-
ered: (1) 2-D rectangular brain slice with a dimension of
w X h =60mm X 20 mm; (2) a quarter 2-D elliptical brain
slice with a semi-major axis of ¢ = 36 mm and a semi-minor
axis of b = 30 mm; (3) 3-D brain block with a dimension of
wXwXh=30mm X 30 mm X 10 mm. The computational
domains are discretized into 2552 and 2329 four-noded
quadrilateral plane-strain elements for the 2-D rectangle
and quarter ellipse, respectively, and 9600 brick elements
for 3-D block (Fig. 3).

In the 2-D rectangle simulation, we fix the bottom face
CD and allow the nodes at faces of AD and BC to move
only in the vertical direction. The top face AB is traction-
free and allowed to make contact with itself and the rigid
analytical surfaces (dashed-lines) without any friction. In the
2-D quarter ellipse simulation, we assign roller conditions to
faces AB and AC to preserve symmetry. The curved face BC
is traction-free and allowed to make contact with itself and
two rigid analytical surfaces (dashed-lines). Finally, in the
3-D block simulation, its bottom face EFGH is fully fixed,
and all four vertical faces are prescribed with roller condi-
tions. The top face ABCD is again traction-free and allowed
to make contact with itself, and four rigid analytical surfaces
(not shown for clarity) extended from the vertical faces. To

trigger instabilities, we introduce a geometric imperfec-
tion with a band of 1 x 1073 h in the vertical direction for
both 2-D rectangle and 3-D block simulations. The results
are essentially unaffected by sufficiently small imperfec-
tions (according to our simulations, imperfections less than
roughly 8 X 1073 h). The 2-D ellipse simulation does not
require an added imperfection because its curved pial sur-
face serves as one.

3 Results

Here we demonstrate the new features of our proposed
model by comparing the simulated results against the actual
measurements from Sect. 2.1. Specifically, we consider two
scenarios: (1) homogeneous cortical growth with various
stiffness ratios and (2) inhomogeneous cortical growth with
physiological stiffness ratios.

3.1 Homogeneous growth
We simulate homogeneous cortical growth by letting r**" = 0

in Eq. (12) and investigate brain morphologies for a range of
cortical-subcortical stiffness ratios y./p, = 1 — 10. For 2-D

(a)

Fig.3 Geometry, finite element mesh, and boundary conditions used in the simulations of a 2-D rectangle, b 2-D quarter ellipse, and ¢ 3-D

block. Points E and C are not visible in ¢ from the perspective depicted
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cases (Fig. 4), creases form when the cortex and subcortex
have similar stiffnesses (4. /4 = 1,3), as seen in experimen-
tal investigations (Kaster et al. 2011; Budday et al. 2015b).
When using stiffness ratios of u,/u, = 5, 10, which are much
higher than those seen in the brain, the cortex buckles into
more sinusoidal shapes. The amplitude of buckling, also
referred to as the sulcal depth, also increases with the stift-
ness ratio.

In the 3-D simulations of cortical folding, we use nine dif-
ferent combinations of stiffness ratio y./p, = [1,3, 10] and
initial thickness #;/h = [0.05, 0.1, 0.2] (Fig. 5). Again, a tran-
sition in brain morphology from creases—or cusped sulci
and smooth gyri—to smooth sinusoidal waves occurs as we
increase the stiffness ratio, and the wavelength of wrinkles
becomes larger as initial cortical thickness increases.

We also investigate the effects of stiffness ratio u,/u,
on the gyral-sulcal thickness ratio 7, /. The cortical thick-
nesses are measured at the apparent gyral peaks and sulcal

Fig.4 Simulated brain
morphology in 2-D rectan-

gle and ellipse considering
homogeneous growth with
four different stiffness ratios of
ue/us =1,3,5,and 10. The top
images are shown at a cortical
growth of 19ftx = 2.0, while the
bottom images are shown at a
cortical growth of 9%, = 2.5

fe/ps =1

Fig.5 Simulated brain mor-
phology in a 3-D block with
homogeneous growth at differ-
ent combinations of thickness
ratio #; /h and stiffness ratio
H./ u,. Images are shown at a
cortical growth of 9% = 2.1

e/ s =10

e/ s =3

e/ ps =1
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t;/h =0.05

fundi in the 2-D rectangular simulations (Fig. 4, top row).
In agreement with the theoretical predictions in Holland
et al. (2018), we find that the gyral-sulcal thickness ratio
decreases with an increasing stiffness ratio (Fig. 6). This
result suggests that gyral-sulcal thickness variations are a
low-stiffness-ratio phenomenon that is less pronounced, or
even absent, in large stiffness ratio systems.

3.2 Inhomogeneous growth

3.2.1 Effect of preferential cortical growth on final brain
morphology

We simulate cortical folding with different combinations of
curvature-dependent parameter and stiffness ratio. We vary
curvature-sensitive parameter r*** from —2 to 2 in Eq. (12)
to achieve a transition from sulcal to gyral growth. Again,
we let the cortical-subcortical stiffness ratio varying within

,U/c/ﬂs =3 /~Lc/,Ufs =95 pe/ s = 10

t
M—WWFV\?VM’AMMAV\AAN

™ T

(‘-’\77

ti/h =02

v
*
b 4

é

t;/h=0.1
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Fig.6 Effects of stiffness ratio y/pu on the gyral-sulcal thickness ratio ¢,/ in the case of homogeneous growth. a Evolution of gyral-sulcal
thickness ratio for different stiffness ratios. b Gyral—sulcal thickness ratio as a function of stiffness ratio obtained at a cortical growth of 19§tx =3

the range of 1 < p_/pu, < 10. It is worth noting that we only
demonstrate 2-D quarter ellipse simulations here since the
other geometries yield similar outcomes. For comparison,
we use the gyrification index (GI)—the areal ratio between
the entire pial surface and the convex hull—to parameterize
the final brain morphology from each simulation at the corti-
cal growth of Sftx = 3 (Fig. 7). Additionally, we demonstrate
contour plots of growth parameter 9% of nine representative
cases indicated by markers in the gyrification index graph.
Interestingly, we see very little variation in brain mor-
phology across growth modes at low stiffness ratios
(p./u, = 1). As the stiffness ratio increases, the variation
becomes apparent, as indicated by the horizontal color gra-
dient in Fig 7. When looking at the representative cases at
the higher stiffness ratio u,/u, = [5, 10], preferential gyral
growth tends to yield creases, while preferential sulcal
growth tends to maintain the smooth sinusoidal shape, as
seen in the homogeneous growth mode. The physical insight
is that the relatively thinner sulcal thickness has less bending
rigidity, and therefore, crease formation is more energeti-
cally favorable at sulcal spots under the gyral growth mode.
We also note that the preferential growth will not determine
the exact locations of sulci and gyri, but rather serves to

Fig.7 Simulated brain

regulate brain morphology after the onset of mechanical
buckling.

3.2.2 Effect of preferential cortical growth on evolution
of gyral and sulcal thicknesses

Next, we investigate the changes in gyral and sulcal thick-
nesses over time under a spectrum of growth modes of
r*'" =[-2,-1,0,1,2]. Based on the recent indentation tests
on brains of porcine, ferret, and bovine (Van Dommelen
et al. 2010; Xu et al. 2010; Budday et al. 2015b), we assume
that the cortical layer has a similar stiffness as the subcortex
region. Thus, we use stiffness ratio of y./pu, = 1 to mimic
a physiological environment. We see that the gyri and sulci
initially increase in thickness equally up to the point of
bifurcation (Fig. 8a). This is because the roller boundary
conditions constrain the lateral expansion and force the new
volume to expand upward instead (I-II). After the initiation
of wrinkles, gyri continue to thicken, while sulci experience
a decrease from their thickness at the bifurcation (III). As
growth continues, a second bifurcation may take place in
which the period of the wrinkles doubles. Some folds deepen
and thin, while alternating folds become shallower and

morphology using different
combinations of stiffness ratio
U,/ u, and curvature-sensitive
parameter r**". In the gyrifica-
tion index graph, markers indi-
cate the corresponding contour
plots of growth parameter 9¢
from nine representative cases

e/ s

19%
L] L L 4.7
W\/\? i
v v v
“ﬁ 1.0
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Fig.8 Evolution of cortical thickness in 2-D rectangle consider-
ing a spectrum of cortical growth modes of r**' =[-2,-1,0,1,2].
a Contours of normalized mean curvature x* from the simulation
of preferential uniform growth (" =0), with images shown at

regain some of their thickness (IV, Budday et al. (2015a);
Holland et al. (2018)). Eventually, the folding pattern stabi-
lizes, and the sulci keep deepening (V).

Throughout this folding process, gyral and sulcal thick-
nesses (f,, f;) are measured in the 2-D rectangle at the
apparent gyral peaks and sulcal fundi (Fig. 8a). We find
that the cortical thickness bifurcates at a volumetric change
of J&¢ = 19ftx ~ 1.85, regardless of the type of preferential
growth mode (Fig. 8b). Instead, the curvature-dependent
parameter " most affects the thickness gap between gyri
and sulci, with the gap widening when r**" > 0 and closing
when r"" < 0. We find that the thickness ratio in the uniform
growth (r°"" = 0) increases rapidly at the bifurcation and
eventually reaches a plateau of around 2. The most gyral
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9 =1,1.5,2,2.5, and 3, respectively. b Normalized sulcal and gyral

ctx
thickness as a function of homogeneous growth parameter 19ftx with

Roman numerals -V corresponding to the contour plots in a. ¢ Evo-
lution of gyral-sulcal thickness ratio t, /t,

growth (r°"" = 2) produces an even higher thickness ratio, up
to 2.5, whereas in the case of most sulcal growth (¥ = —2)
it decreases right after the bifurcation (Fig. 8c). Generally
speaking, once gyri and sulci become stable, the curvature-
sensitive parameter r*'" controls the amount of change in
gyral-sulcal thickness ratio #, /1, with respective to the cor-
tical growth Sftx (the slope in Fig. 8c). More intriguing, the
slope variation on the gyral growth side is more dominant as
we vary the curvature-sensitive parameter 7°". The theoreti-
cal insight is that the mean curvature is asymmetric in mag-
nitude between gyri and sulci at the low stiffness ratio—the
sulci are creases, while gyri are smooth wrinkles—accord-
ingly, our model yields an asymmetric growth between gyral
and sulcal spots.
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3.2.3 Comparison between simulations and measurements

Finally, we compare our simulations in the 2-D rectangle
domain against our measurements of cortical thickness in
humans. Importantly, the calculated thickness ratio is highly
dependent on the selection of gyral and sulcal points, and
it is extremely important to be consistent in this selection
for the meaningful comparison of thickness ratios across
simulations, imaging, and other modalities. To demonstrate
this quantitatively in our simulations, we use a piece of
wrinkled cortical mesh consisting of a complete gyrus and
sulcus (Fig. 9a). The apparent gyral peak and sulcal fundus
are manually picked from the mesh (red and blue lines),
and the gyral and sulcal regions are defined by increasing
the area around the starting points until they meet (red and
blue areas).

For comparison, we perform a similar analysis of N = 28
human brains, using mean curvature as an indicator of which

Coverage

25 Nq/:us =[1,3,5] a‘t o =3
2
T 15 :

S Y KA .,Qa'

1r B Ty D v

0 0.2 0.4 0.6 0.8 1

Coverage

cur ® M
(b) r 2 -1

Fig.9 Quantitative comparison between simulations and measure-
ments. a Schematics of a wrinkled cortical mesh demonstrating dif-
ferent sampling schemes used for the comparison. Gyral—sulcal thick-
ness ratio as a function of coverage using b the different stiffness
ratios of p./u, = [1,3,5] at a fixed cortical growth of 95 =3 and

ctx.

points are gyral (x < 0) or sulcal (x > 0). For consistency,
we introduce a quantified measure of coverage—the number
of nodes being picked for the comparison over the total num-
ber of nodes—to make the results from both simulations and
measurements comparable. We consider the gyral peaks and
sulcal fundi to correspond to the most-negative and most-
positive mean curvature values, respectively, among the ver-
tices. As the coverage increases, the range of mean curvature
values considered increases, as points with less-negative and
less-positive mean curvature are included in the analysis.
We plot the measured gyral—sulcal thickness ratio from
the human brains alongside the simulations using a spectrum
of curvature-dependent parameters of " = [-2, 1,0, 1, 2].
Our measurements show that the mean cortical thickness
of all gyral regions (2.70 mm) is significantly higher than
the one obtained from all sulcal regions (2.02 mm), with
an overall gyral-sulcal thickness ratio of 7, /7, = 1.33. For
the purpose of a robust comparison, we consider reasonable

08, = [2.3,2.5,2.7,3.0]

25 ctx at MC/MS = 1‘

e e =,
1+
0 0.2 0.4 0.6 0.8 1
Coverage
[ ] [ ]
o 1 2 (c)

¢ the different cortical growth of 19§tx =1[2.3,2.5,2.7,3.0] at a fixed
stiffness ratio of p_/u, = 1. Simulations marked with a lighter color
indicate a smaller value of stiffness ratio or cortical growth, while
green bands denote the 20, 40, 60, 80, and 100 percentiles (from dark

to light) of measured data from N = 28 subjects
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variations in our simulations, including 1) different stiff-
ness ratios of u./u, =1[1,3,5] at a fixed cortical growth
of ’9§1x = 3 (Fig. 9b) and 2) a range of cortical growth of
19§tx =[2.3,2.5,2.7,3.0] at a fixed stiffness ratio of y,/u, =1
(Fig. 9¢).

We find that the gyral-sulcal thickness ratio generally
decreases with the increasing coverage. Additionally, a lower
variability, or a higher consistency, is achieved as coverage
reaches 100% in both simulations and measurements. There-
fore, the comparison is most reliable at 100% coverage. Our
results suggest that mechanical forces alone do not produce
enough thickness variation observed in the measurements
under physiological condition (y,/u, = 1). This supports the
conclusion that increased gyral growth is partially responsi-
ble for the thickness variations seen in human brains. Gyral
growth with " = 1 agrees reasonably well with our meas-
urements at 100% coverage.

4 Limitations and potential improvements

Our work opens the door to investigating the role of prefer-
ential cortical growth during brain development. However,
this is only a preliminary study, with several limitations and
opportunities for potential improvement: First of all, while
the observed thickness variation could be explained by our
curvature feedback hypothesis, there are other underlying
mechanisms that could yield the same observation. Thus,
well-designed experiments are needed to refine our mathe-
matical model. Secondly, in constitutive relations, we model
the subcortex as a pure elastic and non-growing region.
However, the subcortex consists of bundles of anisotropi-
cally oriented axons, and each axon grows in response to the
physical stretch (Xu et al. 2010; Bayly et al. 2013; Holland
et al. 2015). The anisotropic and viscoelastic response in the
subcortex could be incorporated in the future to investigate
their effects on the cortical thickness variations. Thirdly, we
have used curvature as a macroscopic metric of the mechani-
cal state of the tissue, but in reality neurons are sensitive to
their surrounding mechanical environment. In the future, we
will consider a more physics-based model that models this
effect more directly.

5 Concluding remarks

In this work, we have developed and numerically imple-
mented a growth theory that links the mechanics-induced
curvature variations with the cortical growth rate to model
preferential cortical growth in either gyri or sulci. Without
any preference in cortical growth, our model suggests that
the gyral—sulcal thickness variations are a low-stiffness-
ratio phenomenon. We also made a meaningful comparison
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between simulations and measurements of N = 28 human
brains in terms of the gyral-sulcal thickness via a consistent
sampling scheme. Under a physiological stiffness ratio of
u./p, = 1, our comparisons suggest that mechanics alone is
able to predict cortical thickness patterns with some success.
However, a small amount of gyral growth (7' = 1) may
contribute to the observed thickness difference, suggesting
that the underlying biological mechanisms act to enlarge the
thickness differences, with the increased cortical growth in
gyri to make them thicker than they would be in the case
of uniform growth. This work also implies that biological
growth and mechanical forces closely interact in the process
of cortical folding.
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Appendix 1: Curvature calculation

In this section, we elaborate on the details of the curvature
calculation in Eq. (13), starting with the 2-D case first and
then extending it to a full 3-D case. The method we adopt
here follows the work from Henann and Anand (2010),
where they first utilized FORTRAN’s global module
along with VUMAT to obtain the mean curvature, which
requires non-local information.

Consider meshing the cortex into four-node quadrilateral
plane-strain elements (shown in Fig. 10a). Unlike Henann
and Anand (2010), we calculate the curvature at the centroid
point of each element (O). . The current coordinates of each
centroid point are calculated based on the current coordi-
nates of four integration points (X) provided by Abaqus. To
obtain the mean curvature at the centroid point A, we fit a
parabola through point A and centroid points B and C from
two adjacent elements, y' = ax’? + bx’ + c. The fitting is
based on a local coordinate Ax"y’, where the outward normal
n is perpendicular to the dashed line connecting both points
B and C. Note that both the slope and value of the parabola
should be zero at the origin of the local coordinates, which
makes the function reduce to y = ax’? (in terms of the local
coordinates). Finally, by definition, the mean curvature is
Kk =—1/2(0%'"/0x?) = —a.

Given the global coordinates of the centroid point
A(xy,yy), and its two adjacent centroid points B(x;,y;) and
C(x,,y,), the calculation of mean curvature at point A in
2-D is summarized as follows:
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/ 12
-1t
= L1, (20)
[y’z X
, which yields
_ Y .
x’14 + x’24 @D

5. Calculate mean curvature as

1 02y/
K= T3 = —a. 22)

The procedure for the 3-D case is similar but more tedious.
Centroid point A again served as our point of interest. To
calculate the mean curvature at point A, we fit a paraboloid
through it and its eight nearest centroid points. The details
are summarized as follows:

y (b)

Fig. 10 Schematics of finite element mesh used in the cortex. a 2-D
four-noded equilateral plane-strain elements and b 3-D brick ele-
ments. Note integration points are denoted as cross markers, and the
centroid points are denoted as red circles

1. Obtain the local outward-normal i = n,e, + n e, in the
global coordinate system, based on the coordinates of
centroid points from two adjacent elements at (x;,y;)
and (x,, y,), with components given by

N = Yi—0n
' \/(}’2—}’1)2"‘(362_3‘1)27
n. =

y

VO, =y P+ —x 2

2. Obtain the rotation matrix connecting global and local

coordinates,
_|n
Q] [n n ] (18)

3. Obtain the coordinates of centroid points from adjacent
elements in terms of local coordinates,

=tz
Mt

4. Perform a linear least squares fit to the system of equa-
tions

19)

Find point A’s eight nearest neighbors by using the
insertion sort algorithm.

Obtain the local outward-normal i = n,e, +n.e, +n.e,
in the global coordinate system by fitting the surface
equation z = ax + by + ¢ to the eight nearest centroid
points. The components are given by

—a —b
n=———, n=———,
Vaz+b*+1 ’ Va2 +b? +1 23)
1

I’lzz—.

Va*+ b2 +1

Obtain the rotation matrix linking global to local coor-
dinates,

2 2
nn, + ny —”x”y(l -n)
24 2 24 2 x
ng + ny IZX + 721y
[Q] =|-nn(1—-n) ni+nn, . (24)
—-n
24 2 24 2 y
ng + n ng + ny
n, n, n,

Obtain the position of the eight nearest centroid points
in terms of local coordinates,

/

Xx; X; — X
yi[=[Q]|yi—=y| for i=1to38. (25)
z Z— 2

L

Perform a linear least squares fit to the system of equa-
tions

Z=ax*+py?+yxy, for i=11038, (26)

which yields eight equations with three unknowns.
Let [d]" denote an array of the three unknowns (a, g, y)
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Fig. 11 Verification of our cur- ‘ ; 0.5 ‘
vature calculation algorithm. a 15} +Boundaitry e®eg, e®®¢®
Profiles of wrinkled cortex with © Centroid ® ® ®
boundary and centroid points or ®
denoted as black symbol lines P e
and red circles. b Comparison g ®
of mean curvatures at the cen- = -0.5 ®
troid points between MATLAB ©
and Abaqus e ® |
]
® x Matlab
o Abaqus
o5k ... 15 ‘ ‘ ‘
-285 -28 -275 -27 -265 -26 -29 -28 -27 -26
X (mm) X (mm)
() (b)

and [z]" denote an array of the eight measured values of
z;, and [A] denote an 8-by-3 matrix storing the values
(2, y%,x]y!) for i = 1to 8. Thus, equation (26) can be
rewritten

[A] [d] =[] @7

with the optimal solution given by

@] = (] [A]) " [A] [ (28)
6. Calculate mean curvature as

1(0% 0%
K=—= +
2\ ox2 ay/2

> =—(a+p). (29)

The algorithm was implemented in both our user-defined
subroutine (VUMAT) and MATLAB. We verified our imple-
mentations by comparing the calculated mean curvature val-
ues at the middle surface of the wrinkled cortex between the
two programs (Fig. 11).
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