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An improved convergence analysis for decentralized
online stochastic non-convex optimization

Ran Xin, Usman A. Khan, and Soummya Kar

Abstract—In this paper, we study decentralized online stochas-
tic non-convex optimization over a network of nodes. Integrating
a technique called gradient tracking in decentralized stochastic
gradient descent, we show that the resulting algorithm, GT-DSGD,
enjoys certain desirable characteristics towards minimizing a
sum of smooth non-convex functions. In particular, for gen-
eral smooth non-convex functions, we establish non-asymptotic
characterizations of GT-DSGD and derive the conditions under
which it achieves network-independent performances that match
the centralized minibatch SGD. In contrast, the existing results
suggest that GT-DSGD is always network-dependent and is there-
fore strictly worse than the centralized minibatch SGD. When
the global non-convex function additionally satisfies the Polyak-
Łojasiewics (PL) condition, we establish the linear convergence
of GT-DSGD up to a steady-state error with appropriate constant
step-sizes. Moreover, under stochastic approximation step-sizes,
we establish, for the first time, the optimal global sublinear
convergence rate on almost every sample path, in addition to
the asymptotically optimal sublinear rate in expectation. Since
strongly convex functions are a special case of the functions
satisfying the PL condition, our results are not only immediately
applicable but also improve the currently known best convergence
rates and their dependence on problem parameters.

Index Terms—Decentralized optimization, stochastic gradient
methods, non-convex problems, multi-agent systems.

I. INTRODUCTION

This paper considers decentralized non-convex optimization
where n nodes cooperate to solve the following problem:

P1: min
x∈Rp

F (x) :=
1

n

n∑︂
i=1

fi(x),

such that each function fi : Rp → R is local and private to
node i and the nodes communicate over a balanced directed
graph G = {V, E}, where V = {1, · · · , n} is the set of node
indices and E is the collection of ordered pairs (i, j), i, j ∈ V ,
such that node j sends information to node i. Throughout
the paper, we assume that each local fi is smooth and non-
convex. We focus on an online1 setup where data samples are
collected in real-time and hence each node i only has access
to a noisy sample gi of the true gradient at each iteration, such
that gi is an unbiased estimate of ∇fi with bounded variance.
Problems of this nature have found significant interest in signal
processing, machine learning, and control. See e.g., [1], [2],
for comprehensive surveys on these problems.
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1We note that “online” sometimes also refers to time-varying objective
functions, which is different from the problem setup in this paper.

Based on the classical stochastic gradient descent (SGD) [1],
a well-known solution to Problem P1 is decentralized SGD
(DSGD) [3], [4]. However, the convergence of DSGD for non-
convex problems has only been established under certain
regularity assumptions such as uniformly bounded difference
between local and global gradients [5]–[7], or coercivity of
each local function [8]. It has also been observed that if the
data distributions across the nodes are heterogeneous, the prac-
tical performance of DSGD degrades significantly [2], [9], [10].
One notable line of work towards improving the performance
of DSGD is EXTRA [11] and Exact Diffusion [12], where the
convergence under the stochastic non-convex setting is estab-
lished without the aforementioned regularity assumptions [13];
however, they require the weight matrix to be symmetric and
the smallest eigenvalue is lower bounded by −1/3. Another
family of algorithms to eliminate the performance limitation
of DSGD is based on gradient tracking, introduced in [14],
[15], where the basic idea is to replace the local gradients
with a tracker of the global gradient ∇F . Decentralized first-
order methods with gradient tracking have been well studied
under exact gradients, where relevant work can be found, e.g.,
in [16]–[20]. However, the convergence behavior of gradient
tracking methods has many unanswered questions when it
comes to non-convex online stochastic problems [21], [22].

Main contributions. This paper considers GT-DSGD [9],
that adds gradient tracking to DSGD, for online stochastic non-
convex problems and rigorously develops novel results, key
insights, and new analysis techniques that fill the theory gaps
in the existing literature on gradient tracking methods [9], [21],
[22]. The main contributions are described in the following:
(1) General smooth non-convex problems: We explicitly char-
acterize the non-asymptotic, transient and steady-state perfor-
mance of GT-DSGD and derive the conditions under which
they are comparable to that of the centralized minibatch SGD.
In particular, we show that its non-asymptotic mean-squared
rate is network-independent and further matches the central-
ized minibatch SGD when the number of iterations is large
enough. In sharp contrast, the existing results in [21], [22]
suggest that the convergence rate and steady-state performance
of GT-DSGD are always network-dependent and therefore are
strictly worse than that of the centralized minibatch SGD; see
Section III-A for details.
(2) Problems satisfying the global Polyak-Łojasiewicz (PL)
condition: We analyze GT-DSGD when the global (smooth
non-convex) function F further satisfies the PL condition. For
both constant and decaying step-sizes, we explicitly charac-
terize the non-asymptotic, transient and steady-state behaviors
in expectation, and establish the conditions under which they
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are comparable to that of the centralized minibatch SGD. We
further establish global sublinear convergence rates on almost
every sample path. The obtained sample path-wise rates are
order-optimal (in the sense of polynomial time decay). To the
best of our knowledge, these are the first results on path-wise
convergence rate for online decentralized stochastic optimiza-
tion under non-convexity, thus generalizing prior results in the
decentralized stochastic approximation literature, e.g., [23],
where the convergence analysis is mostly performed under
assumptions of local convexity. As special cases, these results
improve the current state-of-the-art on exact gradient methods
under the PL condition [24] and stochastic strongly convex
problems [9]; see Section III-B for details.
(3) Convergence analysis: We emphasize that the analysis
techniques in this work are substantially different from the
existing ones [9], [21], [22] and may be applied to other gra-
dient methods built upon similar principles. We describe a few
key features in the following. We establish tighter bounds on
the stochastic gradient tracking process, by exploiting the unbi-
asedness of the online stochastic gradients, based on which all
convergence theorems are derived; see Section V-B. To prove
the convergence under general non-convexity, we characterize
a descent inequality explicitly with network consensus errors
and further show that the cumulative consensus errors along
the algorithm path are dominated by the cumulative descent
effect of the local gradients; see Section V-C. Towards the
convergence analysis under the global PL condition, we derive
the uniform boundedness of gradient tracking errors that is
crucial in simplifying the ensuing analysis; see Lemma 18.
Subsequently, we construct an appropriate stochastic process
that forms an almost supermartingale [25] to prove sublinear
rates on almost every sample path; see Section VII. To develop
the convergence results in mean under the global PL condition,
we use the analytical tools developed for recursive processes
with time-varying step-sizes; see Section VIII.

Road map and notation. The rest of the paper is
organized as follows. Section II describes the assumptions
and the GT-DSGD algorithm. In Section III, we present the
main results and discuss the contributions of this work in the
context of the current state-of-the-art, whereas Section III-A
and III-B respectively focus on the general non-convex and
the PL case. We present detailed numerical experiments in
Section IV to demonstrate the main theoretical results in this
paper. Section V establishes general bounds on the stochastic
gradient tracking process and proves the convergence for
smooth non-convex functions. Sections VI, VII and VIII pro-
vide the convergence analysis under the PL condition on top
of the results obtained in Section V. In particular, Sections VI
and VIII focus on the convergence in mean with constant and
decaying step-sizes respectively while Section VII focuses on
the almost sure convergence. Section IX concludes the paper.

We use lowercase bold letters to denote vectors and up-
percase bold letters for matrices. The matrix, Id (resp. Od),
represents the d × d identity (resp. zero matrix); 1d and 0d

are the d-dimensional column vectors of all ones and zeros,
respectively. We denote [x]i as the i-th entry of a vector x.
The Kronecker product of two matrices A and B is denoted
by A⊗B. We use ∥·∥ to denote the Euclidean norm of a vector

or the spectral norm of a matrix. For a matrix X, we use ρ(X)
to denote its spectral radius, X∗ to denote its adjugate, det(X)
to denote its determinant, [X]i,j to denote its (i, j)th element
and diag(X) as the diagonal matrix that consists of the di-
agonal entries of X. Matrix-vector inequalities are interpreted
in the entry-wise sense. We use σ(·) to denote the σ-algebra
generated by the random variables and/or sets in its argument.

II. ASSUMPTIONS AND THE GT-DSGD ALGORITHM

We are interested in finding a first-order stationary point
of Problem P1 via local computation and communication at
each node. We first enlist the necessary assumptions that are
standard in the literature [1], [9], [10], [26].

Assumption 1 (Objective functions). Each fi is L-smooth,
i.e., ∃L > 0 s.t. ∥∇fi(x)−∇fi(y)∥ ≤ L∥x−y∥,∀x,y ∈ Rp.
Moreover, F is bounded below, i.e., F ∗ := infx F (x) > −∞.

Assumption 2 (Network model). The directed communica-
tion network is strongly-connected and admits a primitive
doubly-stochastic weight matrix W = {wir} ∈ Rn×n.

We consider iterative processes that generate at each node i
a sequence of state vectors {xi

k : k ≥ 0}, where xi
0 is assumed

to be a constant. At each iteration k, each node i is able to call
the local oracle that returns a stochastic gradient gi(x

i
k, ξ

i
k),

where ξik is a random vector in Rq and gi : Rp × Rq → Rp is
a Borel-measurable function. For example, gi(x

i
k, ξ

i
k) may be

considered as the stochastic gradient evaluated at the state xi
k

with the data sample ξik observed at node i and iteration k. We
work with a rich enough probability space (Ω,F ,P) and define
the natural filtration (an increasing family of sub-σ-algebras
of F) as, ∀k ≥ 1,

Fk := σ
(︁{︁

ξit : 0 ≤ t ≤ k − 1, i ∈ V
}︁)︁

, F0 := {Ω, ϕ},

where ϕ is the empty set. The intuitive meaning of Fk is that
it contains the historical information of the algorithm iterates
in question up to iteration k − 1.

Assumption 3 (Oracle model). The stochastic gradient pro-
cess {gi(x

i
k, ξ

i
k) : ∀k ≥ 0,∀i ∈ V} satisfies:

• E
[︁
gi(x

i
k, ξ

i
k)|Fk

]︁
= ∇fi(x

i
k),∀k ≥ 0,∀i ∈ V;

• E
[︁ ⃦⃦

gi(x
i
k, ξ

i
k)−∇fi(x

i
k)
⃦⃦2 |Fk

]︁
≤ ν2i ,∀k ≥ 0,∀i ∈ V ,

for some constant νi > 0;
• The family

{︁
ξik : ∀k ≥ 0,∀i ∈ V

}︁
of random vectors is

independent.

We denote ν2a := 1
n

∑︁n
i=1 ν

2
i , the average of the variance

of local stochastic gradients. We are also interested in the
case when the global objective function F further satisfies the
Polyak-Łojasiewicz (PL) condition that was introduced in [26].

Assumption 4. ∃µ > 0 s.t. the global function F : Rp → R
satisfies 2µ (F (x)− F ∗) ≤ ∥∇F (x)∥2 ,∀x ∈ Rp.

When Assumption 4 holds, we denote κ := L
µ ≥ 1, which can

be interpreted as the condition number of F ; see Lemma 12.
Note that under the PL condition, every stationary point x∗

of F is a global minimum of F , while F is not necessarily
convex. Assumption 4 holds, e.g., in certain reinforcement
learning problems [27], see [26], [28] for more details.
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Algorithm. GT-DSGD, introduced in [9] for smooth strongly
convex problems and formally described in Algorithm 1,
recursively descends in the direction of an auxiliary vari-
able yi

k at each node, instead of the local stochastic gradi-
ent gi(x

i
k, ξ

i
k). The auxiliary variable yi

k is constructed under
the dynamic average consensus principle [29] and tracks a
time-varying signal

∑︁
i gi(x

i
k, ξ

i
k), which mimics the global

gradient; see [2], [9] for further intuition and explanation.
We note that GT-DSGD uses the adapt-then-combine (ATC)
structure [4] resulting in improved stability of the algorithm.
Algorithm 1 GT-DSGD at each node i

Require: xi
0; {αk}; {wir}; y0

i = 0p; gr

(︁
xr
−1, ξ

r
−1

)︁
:= 0p.

1: for k = 0, 1, . . . , do

yi
k+1 =

n∑︂
r=1

wir

(︁
yr
k + gr(x

r
k, ξ

r
k)− gr(x

r
k−1, ξ

r
k−1)

)︁
xi
k+1 =

n∑︂
r=1

wir

(︁
xr
k − αky

r
k+1

)︁
2: end for

III. MAIN RESULTS

In this section, we present our main convergence results for
GT-DSGD and compare them with the corresponding state-
of-the-art. For analysis purposes and the ease of presentation
of main results, we let xk,yk,gk, all in Rnp, respectively
concatenate xi

k’s, yi
k’s, gi(x

i
k, ξ

i
k)’s, and write GT-DSGD in

the following matrix form: ∀k ≥ 0,

yk+1 = W (yk + gk − gk−1) , (1a)
xk+1 = W (xk − αkyk+1) , (1b)

where W = W ⊗ Ip. We denote the exact averaging matrix
as J := ( 1n1n1

⊤
n )⊗ Ip and λ := ∥W − J∥, which charac-

terizes the network connectivity. Under Assumption 2, we
have λ ∈ [0, 1); see [30]. For convenience, we let ∇fk ∈ Rnp

concatenate all local exact gradients ∇fi(x
i
k)’s and denote

xk :=
1

n
(1⊤

n ⊗ Ip)xk, yk :=
1

n
(1⊤

n ⊗ Ip)yk,

∇fk :=
1

n
(1⊤

n ⊗ Ip)∇fk, gk :=
1

n
(1⊤

n ⊗ Ip)gk.

We assume without loss of generality that xi
0 = xr

0,∀i, r ∈ V .

A. General smooth non-convex functions
In this subsection, we are concerned with the convergence

of GT-DSGD for general smooth non-convex functions.

Theorem 1. Let Assumptions 1, 2, and 3 hold and consider
GT-DSGD under a constant step-size αk = α,∀k ≥ 0, such
that 0 < α ≤ min

{︁
1, 1−λ2

12λ , (1−λ2)2

4
√
6λ2

}︁
1
2L , then, ∀K > 1,

1

n

n∑︂
i=1

1

K

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂

⏞ ⏟⏟ ⏞
Mean-squared stationary gap

≤ 4(F (x0)− F ∗)

αK
+

2αν2aL

n⏞ ⏟⏟ ⏞
Centralized minibatch SGD

+
448α2L2λ2ν2a
(1− λ2)3

+
64α2L2λ4

(1− λ2)3K

∥∇f0∥2

n⏞ ⏟⏟ ⏞
Decentralized network effect

.

Further, 1
n

∑︁n
i=1

1
K

∑︁K−1
k=0 E

[︁
∥∇F (xi

k)∥2
]︁

decays at the rate
of O( 1

K ) up to a steady-state error such that

lim sup
K→∞

1

n

n∑︂
i=1

1

K

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂

≤ 2αν2aL

n⏞ ⏟⏟ ⏞
Centralized minibatch SGD

+
448α2L2λ2ν2a
(1− λ2)3⏞ ⏟⏟ ⏞

Decentralized network effect

.

Theorem 1 is proved in Section V.

Remark 1 (Transient and steady-state performance). Theo-
rem 1 explicitly characterizes the non-asymptotic performance
of GT-DSGD for general smooth non-convex functions with an
appropriate constant step-size. In particular, the stationary gap
of GT-DSGD for any finite number of iterations K is bounded
by the sum of four terms. The first two terms are independent
of the network spectral gap 1 − λ and match the complexity
of the centralized minibatch SGD up to constant factors [1].
The third and the fourth terms depend on 1− λ reflecting the
decentralized network and are in the order of O(α2). This
is a much tighter characterization compared with the existing
results [21], [22] on GT-DSGD and leads to provably faster
non-asymptotic rate, see Remark 2 below. Theorem 1 also
shows that as K → ∞, the stationary gap of GT-DSGD decays
sublinearly at the rate of O(1/K) up to a steady-state error.
It can be observed that if α = O

(︁ (1−λ)3

λ2nL

)︁
, then the steady

state stationary gap of GT-DSGD matches that of the cen-
tralized minibatch SGD up to constant factors. The existing
analysis [22], however, suggests that under the same choice of
the step-size α, the steady state stationary gap of GT-DSGD
is strictly worse than the centralized minibatch SGD.

The following corollary of Theorem 1 is concerned with the
non-asymptotic convergence rate of GT-DSGD over a finite
time horizon for general smooth non-convex functions.

Corollary 1. Let Assumptions 1, 2, and 3 hold and suppose
that ∥∇f0∥2 = O(n). Setting α =

√︁
n/K in Theorem 1, for

K ≥ 4nL2 max
{︂
1, 144λ2

(1−λ2)2 ,
96λ4

(1−λ2)4

}︂
, we obtain:

1

n

n∑︂
i=1

1

K

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂ ≤ 4(F (x0)− F ∗)√

nK
+

2ν2aL√
nK⏞ ⏟⏟ ⏞

Centralized minibatch SGD

+
448nλ2ν2aL

2

(1− λ2)3K
+

64L2λ4 ∥∇f0∥2

(1− λ2)3K2⏞ ⏟⏟ ⏞
Decentralized network effect

.

Thus, if K further satisfies that K ≥ Knc := O
(︂

n3λ4L2

(1−λ)6

)︂
,

then we have

1

n

n∑︂
i=1

1

K

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂

= O
(︃

ν2aL√
nK

)︃
.

Remark 2 (Non-asymptotic mean-squared rate and tran-
sient time for network independence). Corollary 1 shows
that if the number of iterations is large enough, i.e., K ≥ Knc,
by setting α =

√
n√
K

, the non-asymptotic rate of GT-DSGD
matches that of the centralized minibatch SGD up to factors of
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universal constants. This discussion shows that, in the regime
that K ≥ Knc, GT-DSGD achieves a network-independent
linear speedup compared with the centralized minibatch SGD
that processes all data at a single node. In other words,
the number of stochastic gradient computations required to
achieve an approximate stationary point is reduced by a factor
of 1/n at each node in the network. These results significantly
improve the existing convergence guarantees of GT-DSGD for
general smooth non-convex functions [21], [22]. In particular,
references [21], [22] show that if α = c0√

K
, where K is large

enough and c0 is some positive constant, GT-DSGD achieves
the convergence rate of c1√

K
, where c1 is a function of the

network spectral gap (1−λ). The convergence results in [21],
[22] thus suggest that the rate of GT-DSGD is always network-
dependent and is strictly worse than that of the centralized
minibatch SGD and hence fail to characterize the network-
independent performance of GT-DSGD.

Remark 3 (Comparison with DSGD). We observe from
Corollary 1 that the convergence of GT-DSGD is robust to the
difference between the local and the global functions. In other
words, GT-DSGD outperforms DSGD when data distributions
across the nodes are significantly heterogeneous, since the
convergence rate of the latter explicitly depends on a factor
that measures the heterogeneity between the local and the
global functions [5]. However, the transient time for GT-DSGD
to achieve network independent performance has a network
dependence of O((1−λ)−6) which is worse than that of DSGD
where the dependence is O((1−λ)−4). Moreover, we note that
GT-DSGD requires two consecutive rounds of communication
per node per iteration to update the state and the gradient
tracker variables respectively, compared to DSGD.

B. Smooth non-convex functions under PL condition

In this subsection, we discuss the performance of GT-DSGD
when the global objective function F further satisfies the PL
condition. We begin with the case of constant step-size.

Theorem 2. Let Assumption 1, 2, 3 and 4 hold. If the step-
size αk = α,∀k ≥ 0, satisfies that

0 < α ≤ α := min

{︃
1

2L
,
(1− λ2)2

42λ2L
,

1− λ2

24λLκ1/4
,
1− λ2

2µ

}︃
,

then E[∥xk − Jxk∥2] and E[F (xk) − F ∗] decay linearly at
the rate of O((1− µα)k) up to a steady-state error such that

lim sup
k→∞

E
[︃
∥xk − Jxk∥2

n

]︃
≤ 288λ4α5L3κν2a

n(1− λ2)4
+

144λ2α2ν2a
(1− λ2)3

,

lim sup
k→∞

E [F (xk)− F ∗] ≤ 3ακν2a
2n

+
72λ2α2κLν2a
(1− λ2)3

.

Moreover, 1
n

∑︁n
i=1 E

[︁
F (xi

k)− F ∗]︁ decays linearly at the rate
of O((1− µα)k) up to a steady-state error such that

lim sup
k→∞

1

n

n∑︂
i=1

E
[︁
F (xi

k)− F ∗]︁
= O

(︃
ακν2a
n

)︃
⏞ ⏟⏟ ⏞

Centralized minibatch SGD

+ O
(︃
λ2α2κLν2a
(1− λ)3

)︃
⏞ ⏟⏟ ⏞

Decentralized network effect

.

Theorem 2 is proved in Section VI.
Remark 4 (Transient and steady-state performance). The-
orem 2 shows that when the global objective function F
satisfies the PL condition and the constant step-size α is less
than α, the optimality gap of GT-DSGD decays linearly up
to a steady-state error that is the sum of two terms. The first
term is independent of the network and matches that of the
centralized minibatch SGD up to constant factors, while the
second term is due to the network and is controlled by O(α2).
In contrast to [9], which requires a stronger assumption that
the global objective function is strongly convex, we note that
our stability range of the step-size α is larger by a factor
of O(κ5/12); this relaxed upper bound on α further leads to a
faster linear convergence when exact gradients are available,
see Remark 5. Next, it can be verified from Theorem 2 that
to match the steady-state error performance of the centralized
minibatch SGD (up to constant factors), it suffices to choose
the step-size α in GT-DSGD such that α = O

(︁ (1−λ)3

λ2nL

)︁
, which

is larger by a factor of O(κ) than the corresponding result
in [9]; in other words, Theorem 2 demonstrates a tighter and
faster convergence rate to achieve the same steady-state error.
Remark 5 (Global linear convergence under exact gradi-
ent oracle). Theorem 2 further shows that when the exact
gradient oracle is available at each node, i.e., ν2i = 0,∀i ∈ V ,
GT-DSGD reduces to its deterministic counterpart [14], [16],
[17] and achieves global linear convergence to an optimal
solution with an appropriate constant step-size. In other words,
when α = α, it achieves an q-accurate optimal solution in
O
(︁
max

{︁
κ, λ2κ

(1−λ)2 ,
λκ5/4

1−λ , 1
1−λ

}︁
log 1

q

)︁
iterations. This result

improves upon the state-of-the-art gradient computation and
communication complexity under the PL condition [24]. The
gradient computation complexity can be further improved to
O
(︁
κ log 1

ϵ

)︁
by performing O

(︁
1

1−λ log κ
1−λ

)︁
rounds of con-

sensus communication at each iteration. This gradient com-
putation complexity result matches the state-of-the-art [31]
on decentralized exact gradient methods (without Nesterov
acceleration), which further requires a stronger assumption
that each local function is convex and the global function is
strongly convex. In contrast, we only require the PL condition
on the global objective F .

We now proceed to the case of decaying step-sizes. The next
result shows the sample path-wise performance of GT-DSGD
under a family of stochastic approximation step-sizes [32],
i.e., αk > 0,

∑︁∞
k=0 αk = ∞, and

∑︁∞
k=0 α

2
k < ∞, which

enables the exact sublinear convergence in contrast to the
inexact linear convergence under a constant step-size.

Theorem 3. Let Assumptions 1, 2, 3, and 4 hold. Consider the
step-size sequence {αk} such that αk = δ(k + φ)−ϵ,∀k ≥ 0,
where ϵ ∈ (0.5, 1], δ ≥ 1/µ, and φ ≥ max

{︁
(δ/α)1/ϵ, 4

1−λ2

}︁
for α given in Theorem 2. Then ∀i, j ∈ V and for arbitrarily
small ϵ1 > 0, we have:

P

(︄ ∞∑︂
k=0

k2ϵ−1−ϵ1
⃦⃦
xi
k − xj

k

⃦⃦2
< ∞

)︄
= 1,

P
(︂

lim
k→∞

k2ϵ−1−ϵ1
(︁
F (xi

k)− F ∗)︁ = 0
)︂
= 1.

Theorem 3 is proved in Section VII.
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Remark 6 (Global sublinear rate on almost every sample
path). Theorem 3 guarantees that GT-DSGD exhibits a global
sublinear convergence on almost every sample path, under
decaying step-sizes, when the global function F satisfies the
PL condition. This result is of significant practical value in
that it is applicable to every instantiation of the algorithm
while the expectation type convergence only characterizes,
roughly speaking, the performance on average. Furthermore,
in the case of general non-degenerate variances (see Assump-
tion 3), these path-wise rates are order-optimal, in the sense
of polynomial time decay; this follows by considering the
stochastic approximation reformulation of the optimization
problem (i.e., the problem of obtaining zeros of the gradient
function ∇F (x)) and invoking standard central limit type
arguments, see [32].) To the best of our knowledge, Theorem 3
is the first to show path-wise convergence for online decen-
tralized stochastic optimization under non-convexity, thus gen-
eralizing prior results in the decentralized stochastic approx-
imation and optimization literature, such as [23], where such
analysis is performed under assumptions of local convexity.

Finally, we consider the convergence rate of GT-DSGD in
expectation when αk = O(1/k),∀k ≥ 0.

Theorem 4. Let Assumptions 1, 2, 3, and 4 hold. Consider the
step-size sequence {αk} such that αk = β(k + γ)−1,∀k ≥ 0,
where β > 2/µ, and γ ≥ max

{︁
β
α ,

8
1−λ2

}︁
for α given in

Theorem 2. We have: ∀k ≥ 0,

1

n

n∑︂
i=1

E
[︁
F (xi

k)−F ∗]︁ ≤ 2Lν2aβ
2

n(µβ − 1)(k + γ)⏞ ⏟⏟ ⏞
Centralized minibatch SGD

+
2 (F (x0)− F ∗)

(k/γ + 1)µβ
+

3L2ˆ︁xβ3

n(µβ − 2)(k + γ)2⏞ ⏟⏟ ⏞
Decentralized network effect

,

where ˆ︁x is a positive constant given in (62).

The non-asymptotic rate in Theorem 4 shows that GT-DSGD
asymptotically achieves network independent O(1/k) rate in
mean when the global objective function F satisfies the PL
condition, matching the Ω(1/k) oracle lower bound [1]. The
following corollary examines the number of transient itera-
tions required to achieve network-independence under specific
choices of parameter β and γ in Theorem 4.

Corollary 2. Let Assumptions 1, 2, 3, and 4 hold. Set β = 6/µ
and γ = max

{︁
6
µα ,

8
1−λ2

}︁
in Theorem 4 and suppose that

∥∇f0∥2 = O(n). Then we have:

1

n

n∑︂
i=1

E
[︁
F (xi

k)− F ∗]︁ = O
(︃
κ2 (F (x0)− F ∗)

k2
+

κν2a
nµk

)︃
,

if k is large enough such that k ≳ KPL, where

KPL :=
λ2nκ

(1− λ)3
+

λκ5/4

1− λ
+ κ+

λ3/2κ11/8

(1− λ)3/2
+

κ−1/2

(1− λ)3/2

+
λ2nκ1/2L(F (x0)− F ∗)

(1− λ)2ν2a
.

Theorem 4 and Corollary 2 are proved in Section VIII.

Remark 7 (Transient time for network independent rate).
Corollary 2 shows after KPL iterations, the convergence rate of
GT-DSGD matches that of the centralized minibatch SGD [1]
up to constant factors and therefore achieves an asymptotic
linear speedup. We now compare this transient time with
the existing literature. First, Ref. [9] shows that, under the
strong convexity of F , GT-DSGD asymptotically converges
at O(1/k); however, the convergence rate derived in [9]
depends on arbitrary constants and therefore the transient time
is not clear. Second, recent work [33], [34] shows that when
each local function fi is strongly convex, the corresponding
transient time of DSGD is O

(︁
nκ6(1 − λ)−2

)︁
. Our results on

the transient time KPL therefore significantly improve upon
the dependence of the condition number κ under weaker as-
sumptions on the objective functions, while being moderately
worse in terms of the network dependence, i.e. 1− λ.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-
strate the main theoretical results in Section III with the help
of learning problems on real-world datasets, summarized in
Table I, and minimizing certain synthetic functions to illustrate
the PL condition. We consider three different graph topologies,
i.e., a directed exponential graph with 16 nodes, an undirected
grid graph with 16 nodes, and an undirected geometric graph
with 100 nodes; see Fig. 1. The primitive doubly stochastic
weights are set to be equal for the exponential graph and
are generated by the Metroplis rule [35] for the grid and the
geometric graphs. The second largest singular values λ asso-
ciated with the weight matrices of these graphs are 0.6, 0.93
and 0.99, respectively. Towards the stochastic gradient oracle,
we consider two different setups: (i) each node has access to a
finite collection of data samples and the stochastic gradient is
computed with respect to one randomly selected data sample
at each iteration; (ii) each node has access to the gradient of
its local function subject to random noise, with zero-mean and
bounded variance, at each iteration. The performance metric
of interest is the average of global function values across the
nodes 1

n

∑︁n
i=1 F (xi

k), which we refer to as loss, versus the
number of epochs2 in (i) and the number of iterations in (ii).
We manually optimize the parameters of all algorithms across
all experiments to achieve their best performances.

TABLE I
A SUMMARY OF THE DATASETS USED IN NUMERICAL EXPERIMENTS,

AVAILABLE AT HTTPS://WWW.OPENML.ORG/.
Dataset train dimension classes

a9a 48,832 124 2

w8a 60,000 301 2

creditcard 100,000 30 2

Fashion-MNIST 60,000 785 10

CIFAR-10 50,000 3073 10

STL-10 5,000 27649 10

To study the convergence behavior of GT-DSGD, we con-
duct three different experiments: binary classification with
non-convex logistic regression [36], multiclass classification

2Each epoch is one effective pass of local data samples at each node.

https://www.openml.org/
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Fig. 1. A directed exponential graph with 16 nodes, an undirected grid graph with 16 nodes, and an undirected geometric graph with 100 nodes.
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Fig. 2. The performance of GT-DSGD for non-convex logistic regression over different graphs and comparison with the centralized minibatch SGD on the
a9a, w8a and creditcard datasets.
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Fig. 3. Performance comparison between GT-DSGD and DSGD for one-hidden-layer neural network under heterogeneous data distributions across the nodes
on the Fashion-MNIST, CIFAR-10 and STL-10 datasets.

with neural networks, and minimizing synthetic non-convex
functions that satisfy the global PL condition. We compare
the performance of GT-DSGD with DSGD [5] to illustrate
the advantages of the former in the setting of heterogeneous
data distributions across the nodes; moreover, we use the
centralized minibatch SGD as the benchmark to illustrate the
scenarios in which GT-DSGD achieves a network-independent
performance. The experimental results are described in the
next subsections. It can be verified that the numerical results
of GT-DSGD are consistent with the theory in this paper.

A. Non-convex logistic regression for binary classification

We first consider a binary classification problem with the
help of a non-convex logistic regression model [36]. Specif-
ically, the decentralized optimization problem of interest is
given by minx∈Rp F (x) := 1

n

∑︁n
i=1 fi(x) + r(x), such that

fi(x) =
1

m

m∑︂
j=1

log
[︂
1 + e−(x⊤θij)ξij

]︂
, r(x) =

p∑︂
d=1

R[x]2d
1 + [x]2d

,

where θi,j is the feature vector, ξi,j is the corresponding binary
label, and r(x) is a non-convex regularizer with R = 10−4.

We compare the performance of GT-DSGD over the directed
exponential and the grid graphs, both with 16 nodes, to the
centralized SGD with a minibatch size of 16. We consider
the best possible constant step-size for both algorithms. The
numerical results over the a9a, w8a, and creditcard datasets
are shown in Fig. 2. It can be observed that, across all
datasets, the convergence behavior of GT-DSGD matches that
of the centralized minibatch SGD and is independent of the
underlying graph topology, as long as the total number of
iterations is large enough. This observation is consistent with
Corollary 1, demonstrating the network-independent conver-
gence of GT-DSGD under an appropriate constant step-size
for general smooth non-convex functions.

B. Neural network for multiclass classification

We next compare the performance of DSGD (without gra-
dient tracking) and GT-DSGD, both with a constant step-size,
when the data distributions across the nodes are significantly
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Fig. 4. The global and local geometries in the experiment with synthetic functions that satisfy the global PL condition.
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Fig. 5. Convergence of GT-DSGD and DSGD under the global PL condition: (a)(b) Inexact linear convergence with different constant step-sizes α. (c) Exact
sublinear convergence of GT-DSGD with decaying step-sizes αk = (k + 3)−τ under different values of τ . (d) Exact sublinear convergence of GT-DSGD
over different graphs in comparison with the centralized minibatch SGD, all with the decaying step-size αk = (k + 3)−1.

heterogeneous. To this aim, we consider a harsh problem
setup where the data samples are distributed over the 100-
node geometric graph in Fig. 1 such that each node has the
same number of data samples and the samples belong to only
one or two classes (out of 10 possible classes). We consider
decentralized training of a neural network with one fully
connected hidden layer of 64 neurons and sigmoid activation.
The experimental results over the Fashion-MNIST, CIFAR-
10, and STL-10 datasets are shown in Fig. 3. We observe
that GT-DSGD significantly outperforms DSGD in this setting,
demonstrating the robustness of GT-DSGD to heterogeneous
data across the nodes; see also Remark 3.

C. Synthetic functions that satisfy the global PL condition

Finally, we show the performance of GT-DSGD when the
global function satisfies the PL condition and compare it with
DSGD and the centralized minibatch SGD. In particular, each
local function is chosen as fi(x) = x2+3 sin2(x)+aix cos(x),
such that

∑︁n
i=1 ai = 0 and ai ̸= 0,∀i ∈ V , leading to the

global function F (x) = x2 + 3 sin2(x), which is clearly non-
convex and further satisfies the PL condition [28]. It can
be verified that each local function is highly nonlinear and
significantly different from the global function; see Fig. 4. We
inject random Gaussian noise with mean 0 and the standard
deviation 0.5 to the gradient computation at each node. The
corresponding numerical results can be found in Fig. 5, where
the experiments in Fig. 5(a)-(c) are performed over the directed
exponential graph with 16 nodes. It can be observed from
Fig. 5(a) that GT-DSGD achieves inexact linear convergence
under constant step-sizes; moreover, a smaller step-size leads
to a smaller steady-state error but at a slower rate. Compared
with the convergence of DSGD under constant step-sizes shown
in Fig. 5(b), GT-DSGD achieves a smaller steady-state error
much faster benefiting from gradient tracking that effectively
exploits the global geometry. Fig. 5(c) shows that GT-DSGD

achieves exact sublinear convergence to the optimal solution
with decaying step-sizes of the form αk = (k + 3)−τ under
different values of τ chosen in (0.5, 1]. Clearly, a larger τ
leads to a faster rate as Theorem 3 suggests. Finally, we
observe from Fig. 5(d) that the convergence rate of GT-DSGD
with τ = 1 matches that of the centralized minibatch SGD
with the same decaying step-size after a small number of
transient iterations over different graphs. This phenomenon
demonstrates the asymptotically network-independent and op-
timal O(1/k) rate achieved by GT-DSGD. This observation is
consistent with Theorem 4.

V. CONVERGENCE ANALYSIS: THE GENERAL
NON-CONVEX CASE

It is straightforward to verify that the random variables gen-
erated by GT-DSGD are square-integrable and that xk,yk are
Fk-measurable and g(xk, ξk) is Fk+1-measurable, ∀k. In this
section, we derive general bounds on the stochastic gradient
tracking process, which may be of independent interest, and
prove Theorem 1. We start by presenting some standard results
on decentralized stochastic gradient tracking algorithms; their
proofs can be found, e.g., in [9], [16], [37].

Lemma 1. Under Assumption 1-3, We have the following:
(a) ∥Wx− Jx∥ ≤ λ ∥x− Jx∥ ,∀x ∈ Rnp.
(b) yk+1 = gk,∀k ≥ 0.
(c)

⃦⃦
∇fk −∇F (xk)

⃦⃦2 ≤ L2

n ∥xk − Jxk∥2 ,∀k ≥ 0.
(d) E[⟨gi(x

i
k, ξ

i
k)−∇fi(x

i
k),gr(x

r
k, ξ

r
k)−∇fr(x

r
k)⟩|Fk] = 0,

∀k ≥ 0,∀i, r ∈ V such that i ̸= r.
(e) E

[︁
∥gk −∇fk∥2|Fk

]︁
≤ ν2a/n,∀k ≥ 0.

As a consequence of the state update of GT-DSGD described
in (1b) and Lemma 1(b), we have: ∀k ≥ 0,

xk+1 = xk − αkyk+1 = xk − αkgk, (2)
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i.e., the mean state xk of the network proceeds in the direction
of the average of local stochastic gradients gk. The following
lemma provides several useful relations on the consensus
process of the state vectors across the network [37].

Lemma 2. Let Assumption 2 hold. We have the following
inequalities: ∀k ≥ 0,

∥xk+1 − Jxk+1∥2 ≤ 1 + λ2

2
∥xk − Jxk∥2

+
2α2

kλ
2

1− λ2
∥yk+1 − Jyk+1∥2 .

∥xk+1 − Jxk+1∥2 ≤ 2λ2 ∥xk − Jxk∥2

+ 2α2
kλ

2 ∥yk+1 − Jyk+1∥2 .
∥xk+1 − Jxk+1∥ ≤ λ ∥xk − Jxk∥2 + αkλ ∥yk+1 − Jyk+1∥ .

A. A descent inequality

In this subsection, we establish a key descent inequality that
characterizes the expected decrease of the value of the global
objective function F over each iteration in light of (2).

Lemma 3. Let Assumptions 1-3 hold. If 0 < αk ≤ 1
2L , then

we have: ∀k ≥ 0,

E [F (xk+1)|Fk] ≤ F (xk)−
αk

2
∥∇F (xk)∥2 −

αk

4

⃦⃦
∇fk

⃦⃦2
+

αkL
2

2

∥xk − Jxk∥2

n
+

α2
kLν

2
a

2n
.

Proof. Since F is L-smooth, we have [26]: ∀x,y ∈ Rp,

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩+ L

2
∥y − x∥2. (3)

Setting y = xk+1 and x = xk in (3) to obtain: ∀k ≥ 0,

F (xk+1) ≤ F (xk)− αk ⟨∇F (xk),gk⟩+
α2
kL

2
∥gk∥2.

Conditioning on Fk, by E[gk|Fk] = ∇fk, obtains: ∀k ≥ 0,

E[F (xk+1)|Fk]

≤ F (xk)− αk

⟨︁
∇F (xk),∇fk

⟩︁
+

α2
kL

2
E
[︂
∥gk∥

2 |Fk

]︂
= F (xk)−

αk

2
∥∇F (xk)∥2 −

αk

2

⃦⃦
∇fk

⃦⃦2
+

αk

2
∥∇F (xk)−∇fk∥2 +

α2
kL

2
E
[︂
∥gk∥

2 |Fk

]︂
≤ F (xk)−

αk

2
∥∇F (xk)∥2 −

αk

2
∥∇fk∥2

+
αkL

2

2n
∥xk − Jxk∥2 +

α2
kL

2
E
[︂
∥gk∥

2 |Fk

]︂
, (4)

where the equality above uses ⟨x,y⟩ = 1
2 (∥x∥

2 + ∥y∥2 −
∥x − y∥2),∀x,y ∈ Rp, and the last inequality is due to
Lemma 1(c). For the last term in (4), note that: ∀k ≥ 0,

E
[︂
∥gk∥

2 |Fk

]︂
= E

[︂⃦⃦
gk −∇fk +∇fk

⃦⃦2 |Fk

]︂
= E

[︂⃦⃦
gk −∇fk

⃦⃦2 |Fk

]︂
+ ∥∇fk∥2

≤ ν2a/n+
⃦⃦
∇fk

⃦⃦2
, (5)

where the second equality uses that ∇fk is Fk-measurable
and E[gk|Fk] = ∇fk, and the last inequality uses Lemma 1(e).
We now use (5) in (4) to obtain: ∀k ≥ 0,

E[F (xk+1)|Fk] ≤ F (xk)−
αk

2
∥∇F (xk)∥2 +

α2
kLν

2
a

2n

− αk (1− αkL)

2
∥∇fk∥2 +

αkL
2

2n
∥xk − Jxk∥2.

The proof follows by noting that 1− αkL ≥ 1
2 , if 0 < αk ≤

1
2L , ∀k ≥ 0, in the inequality above.

Compared with the corresponding descent inequality for
the centralized stochastic gradient descent, see, e.g., [1], [26],
the descent inequality for GT-DSGD derived in Lemma 3 has
an additional network consensus error term ∥xk − Jxk∥. We
therefore seeks for means to control this perturbation in order
to establish the convergence of GT-DSGD. We will bound the
consensus and the gradient tracking error jointly.

B. Bounding the gradient tracking error
In this subsection, we analyze the gradient tracking process.

Lemma 4. Let Assumption 1-3 hold. We have: ∀k ≥ 0,

E
[︁
∥yk+2 − Jyk+2∥2

]︁
≤ λ2E

[︁
∥yk+1 − Jyk+1∥2

]︁
+ λ2E

[︁
∥gk+1 − gk∥2

]︁
+ 2E [⟨(W − J)yk+1, (W − J) (∇fk − gk)⟩]
+ 2E [⟨(W − J)yk+1, (W − J) (∇fk+1 −∇fk)⟩]

Proof. Using the gradient tracking update (1a), and the fact
that WJ = JW = J, we have: ∀k ≥ 0,

∥yk+2 − Jyk+2∥2

= ∥W (yk+1 + gk+1 − gk)− J (yk+1 + gk+1 − gk)∥2

= ∥Wyk+1 − Jyk+1 + (W − J) (gk+1 − gk)∥2

= ∥Wyk+1 − Jyk+1∥2 + ∥(W − J) (gk+1 − gk)∥2

+ 2 ⟨(W − J)yk+1, (W − J) (gk+1 − gk)⟩
≤ λ2 ∥yk+1 − Jyk+1∥2 + λ2 ∥gk+1 − gk∥2

+ 2 ⟨(W − J)yk+1, (W − J) (gk+1 − gk)⟩⏞ ⏟⏟ ⏞
C1

, (6)

where the last inequality is due to Lemma 1(a). Towards C1,
since yk+1 and gk are Fk+1-measurable, we have: ∀k ≥ 0,

E [C1|Fk+1]

= ⟨(W − J)yk+1, (W − J) (∇fk+1 − gk)⟩
= ⟨(W − J)yk+1, (W − J) (∇fk − gk)⟩

+ ⟨(W − J)yk+1, (W − J) (∇fk+1 −∇fk)⟩ . (7)

The proof then follows by taking the expectation on (6) and
using (7) in the resulting inequality.

Next, we bound the terms in Lemma 4 respectively. For the
second term in Lemma 4, we have the following.

Lemma 5. Let Assumption 1-3 hold. We have: ∀k ≥ 0,

E
[︁
∥gk+1 − gk∥2

]︁
≤ 18L2E

[︁
∥xk − Jxk∥2

]︁
+ 6nα2

kL
2E
[︁
∥gk∥

2 ]︁
+ 12α2

kL
2λ2E

[︁
∥yk+1 − Jyk+1∥2

]︁
+ 3nν2a.
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Proof. Since both ∇fk+1 and gk are Fk+1-measurable and
E[gk+1|Fk+1] = ∇fk+1, we have: ∀k ≥ 0,

E
[︁
∥gk+1 − gk∥2

]︁
= E

[︁
∥gk+1 −∇fk+1∥2

]︁
+ E

[︁
∥∇fk+1 − gk∥2

]︁
,

≤ nν2a + E
[︁
∥∇fk+1 − gk∥2

]︁
≤ nν2a + 2E

[︁
∥∇fk+1 −∇fk∥2

]︁
+ 2E

[︁
∥∇fk − gk∥2

]︁
≤ 3nν2a + 2L2 E

[︁
∥xk+1 − xk∥2

]︁⏞ ⏟⏟ ⏞
C2

(8)

where the first inequality uses Assumption 3 and the last in-
equality uses Assumption 3 and the L-smoothness of each fi.
Towards C2, we have: ∀k ≥ 0,

C2 = E
[︁
∥xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk∥2

]︁
≤ 3E

[︁
∥xk+1 − Jxk+1∥2

]︁
+ 3nα2

kE
[︁
∥gk∥

2 ]︁
+ 3E

[︁
∥xk − Jxk∥2

]︁
≤ 9E

[︁
∥xk − Jxk∥2

]︁
+ 3nα2

kE
[︁
∥gk∥

2 ]︁
+ 6α2

kλ
2E
[︁
∥yk+1 − Jyk+1∥2

]︁
, (9)

where the second inequality uses (2) and the last inequality
uses Lemma 2. The proof follows by using (9) in (8).

For the third term in Lemma 4, we have the following.

Lemma 6. Let Assumption 1-3 hold. We have: ∀k ≥ 0,

E [⟨(W − J)yk+1, (W − J) (∇fk − gk)⟩] ≤ ν2a.

Proof. Using the fact that J(W−J) = Onp and the gradient
tracking update (1a), we have: ∀k ≥ 0,

E [⟨(W − J)yk+1, (W − J) (∇fk − gk)⟩ |Fk]

= E [⟨Wyk+1, (W − J) (∇fk − gk)⟩ |Fk]

= E
[︁⟨︁
W2 (yk + gk − gk−1) , (W − J) (∇fk − gk)

⟩︁
|Fk

]︁
= E

[︁⟨︁
W2gk, (W − J) (∇fk − gk)

⟩︁
|Fk

]︁
= E

[︁⟨︁
W2 (gk −∇fk) , (W − J) (∇fk − gk)

⟩︁
|Fk

]︁
= E

[︁
(gk −∇fk)

⊤(J−W⊤W2) (gk −∇fk) |Fk

]︁
, (10)

where the third and the fourth equality exploit the fact that
the random vectors yk, gk−1 and ∇fk are Fk-measurable and
that E[gk|Fk] = ∇fk. In light of Lemma 1(d), (10) reduces to

E [⟨(W − J)yk+1, (W − J) (∇fk − gk)⟩ |Fk]

= E
[︁
(gk −∇fk)

⊤diag(J−W⊤W2) (gk −∇fk) |Fk

]︁
≤ E

[︁
(gk −∇fk)

⊤diag(J) (gk −∇fk) |Fk

]︁
,

= E
[︁
∥gk −∇fk∥2|Fk

]︁
/n (11)

where the inequality holds since diag(W⊤W2) is nonnega-
tive. The proof follows by using Assumption 3 in (11) and
taking the expectation on the resulting inequality.

For the last term in Lemma 4, we have the following.

Lemma 7. Let Assumption 1-3 hold. We have: ∀k ≥ 0,

⟨(W − J)yk+1, (W − J) (∇fk+1 −∇fk)⟩
≤ (λαkL+ 0.5η1 + η2)λ

2 ∥yk+1 − Jyk+1∥2

+ η−1
2 λ2L2 ∥xk − Jxk∥2 + 0.5η−1

1 λ2α2
kL

2n ∥gk∥
2
,

where η1 and η2 are arbitrary positive constants3.

Proof. Using (W − J)J = Onp and the Cauchy-Schwarz
inequality, we have: ∀k ≥ 0,

⟨(W − J)yk+1, (W − J) (∇fk+1 −∇fk)⟩
= ⟨(W − J) (yk+1 − Jyk+1), (W − J) (∇fk+1 −∇fk)⟩
≤ λ2L ∥yk+1 − Jyk+1∥ ∥xk+1 − xk∥ , (12)

where the last inequality uses ∥W − J∥ = λ and the L-
smoothness of each fi. We note that, ∀k ≥ 0,

∥xk+1 − xk∥
= ∥xk+1 − Jxk+1 + Jxk+1 − Jxk + Jxk − xk∥
≤ ∥xk+1 − Jxk+1∥+ αk

√
n ∥gk∥+ ∥xk − Jxk∥

≤ 2 ∥xk − Jxk∥+ αk

√
n ∥gk∥+ αkλ ∥yk+1 − Jyk+1∥ .

(13)

where the last inequality uses Lemma 2. We use (13) in (12)
to obtain: ∀k ≥ 0,

⟨(W − J)yk+1, (W − J) (∇fk+1 −∇fk)⟩
≤ λ3αkL ∥yk+1 − Jyk+1∥2

+ (λ ∥yk+1 − Jyk+1∥)
(︁
λαkL

√
n ∥gk∥

)︁⏞ ⏟⏟ ⏞
C3

+ 2(λ ∥yk+1 − Jyk+1∥)(λL ∥xk − Jxk∥)⏞ ⏟⏟ ⏞
C4

. (14)

By Young’s inequality, we have that

C3 ≤ 0.5η1λ
2 ∥yk+1 − Jyk+1∥2 + 0.5η−1

1 λ2α2
kL

2n ∥gk∥
2
,

where η1 > 0 is arbitrary, and that,

C4 ≤ η2λ
2 ∥yk+1 − Jyk+1∥2 + η−1

2 λ2L2 ∥xk − Jxk∥2 ,

where η2 > 0 is arbitrary. The proof follows by Using the
bounds on C3 and C4 in (14).

With the help of auxiliary Lemmas 5-7, we now prove an
upper bound on the gradient tracking error.

Lemma 8. Let Assumption 1-3 hold. If 0 < αk ≤ 1−λ2

24λL , then
we have: ∀k ≥ 0,

E
[︃
∥yk+2 − Jyk+2∥2

nL2

]︃
≤ 1 + λ2

2
E
[︃
∥yk+1 − Jyk+1∥2

nL2

]︃
+

24λ2

1− λ2
E
[︃
∥xk − Jxk∥2

n

]︃
+

6λ2α2
k

1− λ2
E
[︁ ⃦⃦

∇fk
⃦⃦2 ]︁

+
6ν2a
L2

.

Proof. We apply the upper bounds in Lemma 5, 6 and 7 to
Lemma 4 to obtain: ∀k ≥ 0,∀η1 > 0,∀η2 > 0,

E
[︁
∥yk+2 − Jyk+2∥2

]︁
≤ λ2(1 + 12λ2α2

kL
2 + 2λαkL+ η1 + 2η2)

× E
[︁
∥yk+1 − Jyk+1∥2

]︁
+ (3λ2n+ 2)ν2a

+
(︁
18 + 2η−1

2

)︁
λ2L2E

[︁
∥xk − Jxk∥2

]︁
+
(︁
6 + η−1

1

)︁
λ2α2

kL
2nE

[︁
∥gk∥

2 ]︁
. (15)

3We note that η1 and η2 will be fixed later.
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We set η1 = 1−λ2

6λ2 and η2 = 1−λ2

12λ2 in (15). It is straightforward
to verify that if 0 < αk ≤ 1−λ2

24λ2L ,∀k ≥ 0, then we have:

λ2(1 + 12λ2α2
kL

2 + 2λαkL+ η1 + 2η2) ≤
1 + λ2

2
. (16)

Moreover, recall from (5) that

E
[︁
∥gk∥2

]︁
≤ E

[︁
∥∇fk∥2

]︁
+ ν2a/n. (17)

Using (16), (17), η1 = 1−λ2

6λ2 and η2 = 1−λ2

12λ2 in (15), we have:
if 0 < αk ≤ 1−λ2

24λ2L , then

E
[︁
∥yk+2 − Jyk+2∥2

]︁
≤ 1 + λ2

2
E
[︁
∥yk+1 − Jyk+1∥2

]︁
+

(︃
6λ2α2

kL
2

1− λ2
+ 5n

)︃
ν2a

+
24λ2L2

1− λ2
E
[︁
∥xk − Jxk∥2

]︁
+

6λ2α2
kL

2n

1− λ2
E
[︁
∥∇fk∥2

]︁
.

The proof follows by 6λ2α2
kL

2

1−λ2 ≤ 1 if 0 < αk ≤ 1−λ2

24λL ,∀k.

C. LTI dynamics
In this subsection, we establish the convergence rate of

GT-DSGD for general smooth non-convex functions under an
appropriate constant step-size such that αk = α,∀k ≥ 0. To
this end, we now jointly write Lemma 2 and 8 in the following
linear-time-invariant system that characterizes the convergence
of consensus and gradient tracking process.

Proposition 1. Let Assumption 1-3 hold. If 0 < α ≤ 1−λ2

24λL ,
then we have the following (entry-wise) matrix-vector inequal-
ity hold: ∀k ≥ 0,

uk+1 ≤ Guk + bk, (18)

where the state vector uk ∈ R2, the system matrix G ∈ R2×2

and the perturbation vector bk ∈ R2 are given by

uk=

⎡⎢⎢⎢⎣
E
[︃
∥xk − Jxk∥2

n

]︃
E
[︃
∥yk+1 − Jyk+1∥2

nL2

]︃
⎤⎥⎥⎥⎦ ,G=

⎡⎢⎢⎣
1 + λ2

2

2α2λ2L2

1− λ2

24λ2

1− λ2

1 + λ2

2

⎤⎥⎥⎦ ,

bk=

⎡⎣ 0

6λ2α2

1− λ2
E
[︂⃦⃦

∇fk
⃦⃦2]︂

+
6ν2a
L2

⎤⎦ .

In light of Proposition 1, we first solve the range of α such
that ρ(G) < 1, using the following lemma from [30].

Lemma 9. Let X ∈ Rd×d be a non-negative matrix and x ∈
Rd be a positive vector. If Xx < x, then ρ(X) < 1. Moreover,
if Xx ≤ zx, for some z > 0, then ρ(X) ≤ z.

Lemma 10. If 0 < α ≤ min
{︁

1−λ2

24λ , (1−λ2)2

15λ2

}︁
1
L , then we have

ρ(G) < 1 and hence
∑︁∞

k=0 G
k = (I2 −G)−1.

Proof. In the light of Lemma 9, we solve the range of α and
a positive vector s = [s1, s2]

⊤ such that Gs < s, which is
equivalent to the following two inequalities:⎧⎪⎪⎨⎪⎪⎩

1 + λ2

2
s1 +

2α2λ2L2

1− λ2
s2 < s1

24λ2

1− λ2
s1 +

1 + λ2

2
s2 < s2

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
α2 <

(1− λ2)2

4λ2L2

s1
s2

s1
s2

<
(1− λ2)2

48λ2

We set s1/s2 = (1 − λ2)2/(50λ2) and the proof follows by
using it to solve for the range of α such that the first inequality
above holds.

Now, we prove an upper bound on the accumulated consensus
errors along the algorithm path as follows.

Lemma 11. Let Assumption 1-3 hold. If 0 < α ≤
min

{︁
1−λ2

24λ , (1−λ2)2

8
√
6λ2

}︁
1
L , then we have the following inequality.

K∑︂
k=0

E
[︃
∥xk − Jxk∥2

n

]︃
≤ 96α4λ4L2

(1− λ2)4

K−1∑︂
k=0

E
[︂⃦⃦

∇fk
⃦⃦2]︂

+
16α2λ4

(1− λ2)3
∥∇f0∥2

n
+

112α2λ2ν2aK

(1− λ2)3
.

Proof. We recursively apply (18) to obtain: ∀k ≥ 1,

uk ≤ Gku0 +

k−1∑︂
t=0

Gtbk−1−t. (19)

Summing up (19) over k from 1 to K, we obtain: ∀K ≥ 1,
K∑︂

k=0

uk ≤
K∑︂

k=0

Gku0 +

K∑︂
k=1

k−1∑︂
t=0

Gtbk−1−t

≤

(︄ ∞∑︂
k=0

Gk

)︄
u0 +

(︄ ∞∑︂
k=0

Gk

)︄
K−1∑︂
k=0

bk

= (I2 −G)−1u0 + (I2 −G)−1
K−1∑︂
k=0

bk. (20)

In light of (20), we next compute an (entry-wise) upper bound
on (I2 −G)−1 as follows. We note that if 0 < α ≤ (1−λ2)2

8
√
6λ2L

,

det(I2 −G) =
(1− λ2)2

4
− 48α2λ4L2

(1− λ2)2
≥ (1− λ2)2

8
.

Using the lower bound on det(I2 −G) above, we have that

(I2 −G)−1 =
(I2 −G)∗

det(I2 −G)
≤

⎡⎢⎢⎣
4

1− λ2

16α2λ2L2

(1− λ2)3

192λ2

(1− λ2)3
4

1− λ2

⎤⎥⎥⎦ .

(21)

We use (21) in (20) with ∥x0 −Jx0∥ = 0 to obtain: ∀K ≥ 1,
K∑︂

k=0

E
[︃
∥xk − Jxk∥2

n

]︃
≤ 16α2λ2

(1− λ2)3
E
[︃
∥y1 − Jy1∥2

n

]︃

+
96α4λ4L2

(1− λ2)4

K−1∑︂
k=0

E
[︂⃦⃦

∇fk
⃦⃦2]︂

+
96α2λ2ν2aK

(1− λ2)3
. (22)

Finally, we use the gradient tracking update (1a) to obtain:

E
[︁
∥y1 − Jy1∥2

]︁
= E

[︁
E
[︁
∥(W − J)g0∥2

]︁
|F0

]︁
= E

[︁
∥(W − J)(g0 −∇f0)∥2

]︁
+ E

[︁
∥(W − J)∇f0∥2

]︁
≤ λ2nν2a + λ2 ∥∇f0∥2 , (23)

where the second equality uses E[g0|F0] = ∇f0 and that ∇f0
is constant and the last inequality uses ∥W − J∥ = λ. The
proof follows by using (23) in (22).
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Lemma 11 states that the accumulated consensus error may be
bounded by the accumulated average of local exact gradients
and the accumulated variance of stochastic gradients. We next
show that this bound leads to the convergence of GT-DSGD for
general smooth non-convex functions, i.e., Theorem 1.

Proof of Theorem 1. We take the expectation of the descent
inequality in Lemma 3 and sum up the resulting inequality
over k from 0 to K − 1, ∀K ≥ 1, to obtain: if 0 < α ≤ 1

2L ,

E [F (xK)] ≤ E [F (x0)]−
α

2

K−1∑︂
k=0

E
[︂
∥∇F (xk)∥2

]︂
− α

4

K−1∑︂
k=0

E
[︂⃦⃦

∇fk
⃦⃦2]︂

+
α2ν2aLK

2n

+
αL2

2

K−1∑︂
k=0

E
[︃
∥xk − Jxk∥2

n

]︃
. (24)

Rearranging (24) and using that F is bounded below by F ∗

obtains: if 0 < α ≤ 1
2L , ∀K ≥ 1,

K−1∑︂
k=0

E
[︂
∥∇F (xk)∥2

]︂
≤ 2(F (x0)− F ∗)

α
+

αν2aLK

n

− 1

2

K−1∑︂
k=0

E
[︂⃦⃦

∇fk
⃦⃦2]︂

+ L2
K−1∑︂
k=0

E
[︃
∥xk − Jxk∥2

n

]︃
. (25)

Moreover, we observe: ∀K ≥ 1,

1

n

n∑︂
i=1

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂

≤ 2

n

n∑︂
i=1

K−1∑︂
k=0

(︂
E
[︂⃦⃦

∇F (xi
k)−∇F (xk)

⃦⃦2
+ ∥∇F (xk)∥2

]︂)︂
≤ 2L2

K−1∑︂
k=0

E
[︃
∥xk − Jxk∥2

n

]︃
+ 2

K−1∑︂
k=0

E
[︂
∥∇F (xk)∥2

]︂
,

where the last inequality uses the L-smoothness of F . Us-
ing (25) in the inequality above obtains: ∀K ≥ 1,

1

n

n∑︂
i=1

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂ ≤ 4(F (x0)− F ∗)

α
+

2αν2aLK

n

−
K−1∑︂
k=0

E
[︂⃦⃦

∇fk
⃦⃦2]︂

+ 4L2
K−1∑︂
k=0

E
[︃
∥xk − Jxk∥2

n

]︃
.

(26)

We finally apply the upper bound derived in Lemma 11 on the
term of (26) to obtain: If 0 < α ≤ min

{︁
1
2 ,

1−λ2

24λ , (1−λ2)2

8
√
6λ2

}︁
1
L ,

1

n

n∑︂
i=1

K−1∑︂
k=0

E
[︂⃦⃦

∇F (xi
k)
⃦⃦2]︂

≤ 4(F (x0)− F ∗)

α
+

2αν2aLK

n
+

448α2L2λ2ν2aK

(1− λ2)3

−
(︂
1− 384α4L4λ4

(1− λ2)4

)︂K−1∑︂
k=0

E
[︂⃦⃦

∇fk
⃦⃦2]︂

+
64α2L2λ4

(1− λ2)3
∥∇f0∥2

n
.

Clearly, if 0 < α ≤ 1−λ2

5Lλ , then 1 − 384α4L4λ4

(1−λ2)4 ≥ 0, and the
proof follows by dropping the negative term.

VI. CONVERGENCE ANALYSIS UNDER PL CONDITION:
CONSTANT STEP-SIZE

In this section, we, built on top of the results established in
Section V, develop general bounds on the iterates of GT-DSGD
when the global function F further satisfies the PL condition
and prove Theorem 2. The following is a useful inequality that
may be found in [26].

Lemma 12. Let Assumption 1 hold. We have: ∀x ∈ Rp.

∥∇F (x)∥2 ≤ 2L (F (x)− F ∗) .

Proof. By (3) and the fact that F is bounded below by F ∗,
we have F ∗ ≤ F

(︁
x− L−1∇F (x)

)︁
≤ F (x)− 1

2L ∥∇F (x)∥2,
which yields the desired inequality.

We conclude from Lemma 12 that, under Assumption 1 and 4,
µ ≤ L and recall κ := L

µ ≥ 1. The following lemma is helpful
in establishing the performance of GT-DSGD at each node.

Lemma 13. Let Assumption 1 hold. We have

1

n

n∑︂
i=1

(F (xi
k)− F ∗) ≤ 2 (F (xk)− F ∗) + L

∥xk − Jxk∥2

n
.

Proof. Setting y = xi
k and x = xk in (3), we obtain

F (xi
k)− F ∗

≤ F (xk)− F ∗ +
⟨︁
∇F (xk),x

i
k − xk

⟩︁
+ 1

2L
⃦⃦
xi
k − xk

⃦⃦2
,

≤ F (xk)− F ∗ + ∥∇F (xk)∥
⃦⃦
xi
k − xk

⃦⃦
+ 1

2L
⃦⃦
xi
k − xk

⃦⃦2
,

≤ F (xk)− F ∗ + 1
2L

−1 ∥∇F (xk)∥2 + L
⃦⃦
xi
k − xk

⃦⃦2
≤ 2 (F (xk)− F ∗) + L

⃦⃦
xi
k − xk

⃦⃦2
, (27)

where the third inequality uses Young’s inequality and the last
inequality is due to Lemma 12. Averaging (27) over i from 1
to n proves the lemma.

In the following, we refine several results developed in Sec-
tion V. We first use the PL inequality to in Lemma 3.

Lemma 14. Let Assumptions 1-4 hold. If 0 < αk ≤ 1
2L , then

we have: ∀k ≥ 0,

E
[︃
F (xk+1)− F ∗

L

⃓⃓⃓
Fk

]︃
≤ (1− µαk)

F (xk)− F ∗

L

+
αkL

2

∥xk − Jxk∥2

n
+

α2
kν

2
a

2n
.

Proof. The proof follows by using the PL condition in the
descent inequality in Lemma 3 and then substracting F ∗ from
both sides of the resulting inequality.

We next use Lemma 12 to refine Lemma 8 as follows.

Lemma 15. Let Assumption 1-3 hold. If 0 < αk ≤
min

{︁
1−λ2

12λ , 1
}︁

1
2L , then we have: ∀k ≥ 0,

E
[︃
∥yk+2 − Jyk+2∥2

nL2

]︃
≤ 1 + λ2

2
E
[︃
∥yk+1 − Jyk+1∥2

nL2

]︃
+
24λ2α2

kL
2

1− λ2
E
[︃
F (xk)− F ∗

L

]︃
+

27λ2

1− λ2
E
[︃
∥xk − Jxk∥2

n

]︃
+

6ν2a
L2

.
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Proof. By Lemma 1(c) and Lemma 12, we have: ∀k ≥ 0,⃦⃦
∇fk

⃦⃦2 ≤ 2 ∥∇F (xk)∥2 + 2
⃦⃦
∇F (xk)−∇fk

⃦⃦2
≤ 4L (F (xk)− F ∗) + 2L2n−1 ∥xk − Jxk∥2 . (28)

Using the inequality above in Lemma 8 to obtain: ∀k ≥ 0,

E
[︃
∥yk+2 − Jyk+2∥2

nL2

]︃
≤
(︃

24λ2

1− λ2
+

12λ2α2
kL

2

1− λ2

)︃
E
[︃
∥xk − Jxk∥2

n

]︃
+

6ν2a
L2

+
24λ2α2

kL

1− λ2
E
[︁
F (xk)−F ∗]︁+ 1 + λ2

2
E
[︃
∥yk+1−Jyk+1∥2

nL2

]︃
.

The proof follows by 12λ2α2
kL

2

1−λ2 ≤ 3λ2

1−λ2 if 0 < αk ≤ 1
2L .

We now write the inequalities in Lemma 2, 14 and 15 jointly
in a linear dynamics as follows.

Proposition 2. Let Assumption 1-4 hold. If 0 < αk ≤
min

{︁
1, 1−λ2

12λ , (1−λ2)2

4
√
6λ2

}︁
1
2L , then we have the following (entry-

wise) matrix-vector inequality: ∀k ≥ 0,

vk+1 ≤ Hkvk + uk, (29)

where the state vector vk ∈ R3, the system matrix H ∈ R3×3

and the perturbation vector uk ∈ R3 are given by

vk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
[︃
∥xk − Jxk∥2

n

]︃
E
[︃
F (xk)− F ∗

L

]︃
E
[︃
∥yk+1 − Jyk+1∥2

nL2

]︃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, uk =

⎡⎢⎢⎢⎢⎢⎢⎣
0

α2
kν

2
a

2n

6ν2a
L2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Hk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + λ2

2
0

2α2
kλ

2L2

1− λ2

αkL

2
1− µαk 0

27λ2

1− λ2

24λ2α2
kL

2

1− λ2

1 + λ2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In the following lemma, we find the range of the step-size αk

such that ρ(Hk) < 1,∀k ≥ 0, with the help of Lemma 9.

Lemma 16. Let Assumption 1-4 hold. If the step-size se-
quence αk satisfies for all k that

0 < αk ≤ α := min

{︃
1

2L
,
(1− λ2)2

42λ2L
,

1− λ2

24λLκ1/4
,
1− λ2

2µ

}︃
,

(30)

then we have: ρ(Hk) ≤ 1− µαk

2 < 1, ∀k ≥ 0.

Proof. In the light of Lemma 9, we solve for the range of
the step-size αk and a positive vector δ = [δ1, δ2, δ3] such
that Hkδ ≤

(︁
1− µαk

2

)︁
δ, which may be written as

µαk

2
+

2α2
kλ

2L2

1− λ2

δ3
δ1

≤ 1− λ2

2
, (31)

κδ1 ≤ δ2, (32)
µαk

2
≤ 1− λ2

2
− 27λ2

1− λ2

δ1
δ3

− 24λ2α2
kL

2

1− λ2

δ2
δ3

. (33)

According to (32), we fix δ1 = 1 and δ2 = κ. We now impose
that 0 < αk ≤ 1−λ2

2µ ,∀k ≥ 0. Then, according to (33), we

choose δ3 > 0 such that 27λ2

1−λ2
1
δ3

+
24λ2α2

kL
2

1−λ2
κ
δ3

≤ 1−λ2

4 . It

suffices to fix δ3 = 108λ2

(1−λ2)2+
96λ2α2

kL
2κ

(1−λ2)2 . Now, we use the fixed

values of δ1, δ2, δ3 and the requirement that 0 < αk ≤ 1−λ2

2µ
to solve the range of αk such that (31) holds, i.e.,

216α2
kλ

4L2

(1− λ2)3
+

192α4
kλ

4L4κ

(1− λ2)3
≤ 1− λ2

4
.

It therefore suffices to choose αk such that

0 < αk ≤ min

{︃
1− λ2

6λLκ1/4
,
(1− λ2)2

42λ2L

}︃
.

Summarizing the obtained upper bounds on αk in the discus-
sion completes the proof.

We note that α defined in (30) is the same as the one given
in Theorem 2. The following lemma drives upper bounds on
several important quantities.

Lemma 17. Let Assumption 1-4 hold. If 0 < αk ≤ α, where α
is given in (30), then we have: ∀k ≥ 0,[︁

(I3 −Hk)
−1

uk

]︁
1
≤ 288λ4α5

kL
3κν2a

n(1− λ2)4
+

144α2
kλ

2ν2a
(1− λ2)3

,

[︁
(I3 −Hk)

−1
uk

]︁
2
≤ 3αkν

2
a

2µn
+

72λ2α2
kκν

2
a

(1− λ2)3
.

Proof. By the definition of Hk in Proposition 2, we first
compute the determinant of (I3 −Hk): ∀k ≥ 0,

det(I3 −Hk) =
µαk(1− λ2)2

4
− 24α5

kL
5λ4

(1− λ2)2
− 54µα3

kL
2λ4

(1− λ2)2

≥ µαk(1− λ2)2

12
.

if 0 < αk ≤ α, where α is given in (30). Moreover, the
adjugate of I3 −Hk, denoted as H∗, is given by

[H∗]1,2 =
48λ4α4

kL
4

(1− λ2)2
, [H∗]1,3 =

2µα3
kλ

2L2

1− λ2
,

[H∗]2,2 ≤ (1− λ2)2

4
, [H∗]2,3 =

α3
kL

3λ2

1− λ2
.

The proof follows by (I3 −Hk)
−1 = H∗/ det (I3 −Hk) and

the definition of uk given in Proposition 2.

We are now ready to prove Theorem 2 that characterizes the
performance of GT-DSGD under a constant step-size.

Proof of Theorem 2. We consider a constant step-size such
that αk = α,∀k ≥ 0, with 0 < α ≤ α where α is given
in (30). We denote Hk := H and uk := u,∀k ≥ 0, and
recursively apply (29) from k to 1 to obtain: ∀k ≥ 1,

vk ≤ Hkv0 +

k−1∑︂
t=0

Htu ≤ Hkv0 + (I3 −H)
−1

u. (34)

It is then clear that the first two statements in Theorem 2 follow
by using Lemma 16 and 17 in (34) and the third statement in
Theorem 2 follows by Lemma 13.
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VII. CONVERGENCE ANALYSIS UNDER PL CONDITION:
ALMOST SURE CONVERGENCE

In this section, we prove Theorem 3, i.e., the almost sure
sublinear convergence rates of GT-DSGD when the global
function satisfies the PL condition under a family of stochastic
approximation step-sizes. We first establish a key fact that
under appropriate step-sizes, the stochastic gradient tracking
errors are uniformly bounded in mean squared across all
iterations. This fact will also be used in Section VIII.

Lemma 18. Let Assumptions 1-4 hold. If 0 < αk ≤ α, for α
given in (30), then we have: supk≥0 E

[︁
∥yk − Jyk∥2

]︁
≤ ˆ︁y,

where ˆ︁y is a positive constant given by

ˆ︁y :=
30λ2α3L3κν2a
(1− λ2)2

+
60nλ2α2L3(F (x0)− F ∗)

(1− λ2)2

+
16nν2a
1− λ2

+ λ2∥∇f0∥2. (35)

Proof. We prove by mathematical induction that for the state
vector vk defined in Proposition 2, there exists some positive
constant vector ˆ︁v = [ˆ︁v1, ˆ︁v2, ˆ︁v3]⊤ such that

vk ≤ ˆ︁v, ∀k ≥ 0. (36)

if 0 < αk ≤ α, where α is given in (30). We first note that
in order to make (36) hold when k = 0, according to the
definition of v0 and (23), it suffices to choose ˆ︁v such that

ˆ︁v⊤ ≥
[︃
0,

F (x0)− F ∗

L
,
λ2ν2a
L2

+
λ2∥∇f0∥2

nL2

]︃
. (37)

Next, we show that if vk ≤ ˆ︁v for some k ≥ 0 and then we
also have vk+1 ≤ ˆ︁v with an appropriate choice of ˆ︁v. In light
of Proposition 2, we have vk+1 ≤ Hkvk + uk ≤ Hkˆ︁v + uk,
and hence it suffices to choose ˆ︁v such that Hkˆ︁v+uk ≤ ˆ︁v,∀k,
which is equivalent to the following set of inequalities:

2α2
kλ

2L2

1− λ2
ˆ︁v3 ≤ 1− λ2

2
ˆ︁v1, (38)

κ

2
ˆ︁v1 + αkν

2
a

2µn
≤ ˆ︁v2, (39)

27λ2

1− λ2
ˆ︁v1 + 24λ2α2

kL
2

1− λ2
ˆ︁v2 + 6ν2a

L2
≤ 1− λ2

2
ˆ︁v3, (40)

where 0 < αk ≤ α and κ = L/µ. First, we note that to
make (38) hold, it suffices to choose ˆ︁v1 as

ˆ︁v1 =
4α2λ2L2

(1− λ2)2
ˆ︁v3. (41)

Second, based on (37), (39), and (41), we choose ˆ︁v2 as

ˆ︁v2 =
2α2λ2L2κ

(1− λ2)2
ˆ︁v3 + αν2a

2µn
+

F (x0)− F ∗

L
. (42)

Third, to make (40) hold, it suffices to choose ˆ︁v3 such that

ˆ︁v3 ≥ 54λ2

(1− λ2)2
ˆ︁v1 + 48λ2α2L2

(1− λ2)2
ˆ︁v2 + 12ν2a

L2(1− λ2)
, (43)

which, using (41) and (42), is equivalent to

ˆ︁v3 ≥ 216α2λ4L2

(1− λ2)4
ˆ︁v3 + 96λ4α4L4κ

(1− λ2)4
ˆ︁v3 + 24λ2α3Lκν2a

n(1− λ2)2

+
48λ2α2L(F (x0)− F ∗)

(1− λ2)2
+

12ν2a
L2(1− λ2)

. (44)

By the definition of α in (30), we have 216α2λ4L2

(1−λ2)4 ≤ 6
49 and

that 96α4λ4L4κ
(1−λ2)4 ≤ 1

3456 ; therefore, to make (44) hold, it suffices
to choose ˆ︁v3 such that

ˆ︁v3 ≥ 30λ2α3Lκν2a
n(1− λ2)2

+
60λ2α2L(F (x0)− F ∗)

(1− λ2)2
+

15ν2a
L2(1− λ2)

.

Based on the above inequality and (37), we choose ˆ︁v3 as

ˆ︁v3 =
30λ2α3Lκν2a
n(1− λ2)2

+
60λ2α2L(F (x0)− F ∗)

(1− λ2)2

+
16ν2a

L2(1− λ2)
+

λ2∥∇f0∥2

nL2
.

The induction is complete and the proof then follows by the
definition of vk in Proposition 2.

We prove Theorem 3 using the Robbins-Siegmund almost su-
permartingale convergence theorem [25], presented as follows.

Lemma 19 (Robbins-Siegmund). Let (Ω,F , {Fk},P) be a
filtered space. Suppose that Zk, Bk, Ck and Dk are nonneg-
ative and Fk-measurable random variables such that

E [Zk+1|Fk] ≤ (1 +Bk)Zk + Ck −Dk, ∀k ≥ 0.

Then on the event {
∑︁∞

k=0 Bk < ∞,
∑︁∞

k=0 Ck < ∞}, we
have that limk→∞ Zk exists and is finite almost surely, and
that

∑︁∞
k=0 Dk < ∞ almost surely.

We are now ready to present the proof of Theorem 3, where
we construct appropriate almost supermartingales that char-
acterize the sample path-wise convergence rate of GT-DSGD
under a family of stochastic approximation step-sizes.

Proof of Theorem 3. We consider the step-size sequence {αk}
of the following form: ∀k ≥ 0,

αk = δ(k + φ)−ϵ, where δ ≥ 1/µ and ϵ ∈ (0.5, 1], (45)

such that φ ≥ max{(δ/α)1/ϵ, 4
1−λ2 }. Hence, 0 < αk ≤ α for

α given in (30). We construct Fk-adapted processes: ∀k ≥ 0,

Rk := (k + φ)τ˜︁xk := (k + φ)τn−1 ∥xk − Jxk∥2 ,
Qk := (k + φ)τ∆k := (k + φ)τL−1(F (xk)− F ∗),

where τ = 2ϵ− 1− ϵ1, where ϵ1 ∈ (0, 2ϵ− 1) is an arbitrarily
small constant. By 1+x ≤ ex,∀x ∈ R, we have (k+φ+1)τ =
(k + φ)τ

(︁
1 + 1

k+φ

)︁τ ≤ (k + φ)τe
τ

k+φ . Since 0 < τ
k+φ ≤ 1,

we have: ∀k ≥ 0,

(k + φ+ 1)τ ≤ e(k + φ)τ . (46)

Further, by ex ≤ 1+x+x2 for 0 ≤ x ≤ 1,4 we have: ∀k ≥ 0,

(k + φ+ 1)τ ≤
(︃
1 +

τ

k + φ
+

τ2

(k + φ)2

)︃
(k + φ)τ . (47)

Recursion of Rk. We use Lemma 18 in Lemma 2 with the
definition of αk in (45) to obtain: ∀k ≥ 0,

E [˜︁xk+1] ≤
1 + λ2

2
E [˜︁xk] +

2λ2ˆ︁y
n(1− λ2)

δ2

(k + φ)2ϵ
, (48)

4Note that ex = 1 + x + x2
∑︁∞

k=2
xk−2

k!
, ∀x ∈ R. If 0 ≤ x ≤ 1, then

we have ex ≤ 1 + x+ x2
∑︁∞

k=2
1
k!

= 1 + x+ (e− 2)x2 ≤ 1 + x+ x2.
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where ˆ︁y is given in (35). We multiply (48) by (k + φ + 1)τ

and then apply (46) and (47) to obtain: ∀k ≥ 0,

E [Rk+1] ≤
1 + λ2

2

(︃
1 +

τ

k + φ
+

τ2

(k + φ)2

)︃
⏞ ⏟⏟ ⏞

Tk

E [Rk]

+
2eλ2ˆ︁y

n(1− λ2)

δ2

(k + φ)2ϵ−τ
. (49)

Since φ ≥ 4
1−λ2 , i.e., τ

k+φ ≤ 1−λ2

4 ,∀k ≥ 0, we have

Tk =

(︃
1− 1− λ2

2

)︃(︃
1 +

τ

k + φ
+

τ2

(k + φ)2

)︃
≤ 1 +

τ

k + φ
+

τ2

(k + φ)2
− 1− λ2

2

≤ 1 +
τ2

(k + φ)2
− 1− λ2

4
. (50)

Using (50) in (49), we have: ∀k ≥ 0,

E [Rk+1] ≤
(︃
1 +

τ2

(k + φ)2

)︃
E [Rk]−

1− λ2

4
E [Rk]

+
2eλ2ˆ︁y

n(1− λ2)

δ2

(k + φ)2ϵ−τ
. (51)

Note that
∑︁∞

k=0(k+φ)−2 < ∞ and
∑︁∞

k=0(k+φ)τ−2ϵ < ∞
since 2ϵ − τ > 1. Applying a special case of Lemma 19 for
deterministic recursions in (51) leads to

∑︁∞
k=0 E [Rk] < ∞.

Since Rk is nonnegative, by monotone convergence theorem,
we have E [

∑︁∞
k=0 Rk] =

∑︁∞
k=0 E [Rk] < ∞ which implies

P

(︄ ∞∑︂
k=0

Rk < ∞

)︄
= 1. (52)

The first statement in Theorem 3 then follows by (52).
Recursion of Qk. We recall from Lemma 14: ∀k ≥ 0,

E [∆k+1|Fk] ≤
(︃
1− µδ

(k + φ)ϵ

)︃
∆k +

Lδ

2(k + φ)ϵ
˜︁xk

+
ν2a
2n

δ2

(k + φ)2ϵ
. (53)

We multiply (53) by (k+φ+1)τ and then use (46) and (47)
to obtain: ∀k ≥ 0,

E[Qk+1|Fk] ≤
(︂
1− µδ

(k + φ)ϵ

)︂(︂
1 +

τ

k + φ
+

τ2

(k + φ)2

)︂
⏞ ⏟⏟ ⏞

Pk

Qk

+
eLδ

2(k + φ)ϵ
Rk +

eν2a
2n

δ2

(k + φ)2ϵ−τ
. (54)

We observe that

Pk ≤ 1 +
τ

k + φ
+

τ2

(k + φ)2
− µδ

(k + φ)ϵ

≤ 1 +
τ2

(k + φ)2
− µδ − τ

(k + φ)ϵ
. (55)

We use (55) in (54) to obtain: ∀k ≥ 0,

E [Qk+1|Fk] ≤
(︃
1 +

τ2

(k + φ)2

)︃
Qk − µδ − τ

(k + φ)ϵ
Qk

+
eLδ

2(k + φ)ϵ
Rk +

eν2a
2n

δ2

(k + φ)2ϵ−τ
. (56)

Recall that
∑︁∞

k=0(k+φ)−2 < ∞ and
∑︁∞

k=0(k+φ)τ−2ϵ < ∞
since 2ϵ − τ > 1. Note that δ ≥ 1/µ, i.e., µδ > τ , applying
Lemma 19 in (56) with the help of (52) gives:

P
(︂

lim
k→∞

Qk = Q
)︂
= 1, (57)

where Q is some almost surely finite random variable, and

P
(︃ ∞∑︂

k=0

µδ − τ

(k + φ)ϵ
Qk < ∞

)︃
= 1. (58)

Since
∑︁∞

k=0
µδ−τ
(k+φ)ϵ = ∞, where ϵ ∈ (0.5, 1], we have{︄ ∞∑︂

k=0

µδ − τ

(k + φ)ϵ
Qk < ∞

}︄
⊆
{︃
lim inf
k→∞

Qk = 0

}︃
, (59)

where “⊆” denotes the inclusion relation for two events. By
the monotonicity of P(·), (58) and (59) lead to

P
(︂
lim inf
k→∞

Qk = 0
)︂
= 1. (60)

From (60) and (57), we conclude that P (Q = 0) = 1 and then
the proof follows by (52) and Lemma 13.

VIII. CONVERGENCE ANALYSIS UNDER PL CONDITION:
ASYMPTOTICALLY OPTIMAL RATE IN MEAN

In this section, we prove Theorem 4 and Corollary 2, i.e.,
the asymptotically optimal convergence rate of GT-DSGD in
expectation and the corresponding transient time to achieve
network-independent performance, when the global function F
satisfies the PL condition. Recall that in this context we focus
on the following step-size sequence [1]:

αk =
β

k + γ
, ∀k ≥ 0, (61)

where β > 0 and γ > 0 are parameters to be restricted later.
We require γ ≥ β/α so that 0 < αk ≤ α for α in (30). We
first prove a non-asymptotic rate on the consensus errors.

Lemma 20. Let Assumption 1-4 hold. If γ ≥ max
{︁

β
α ,

8
1−λ2

}︁
for α given in (30), then we have: ∀k ≥ 0,

E
[︂
∥xk − Jxk∥2

]︂
≤ ˆ︁xβ2

(k + γ)2
. (62)

where ˆ︁x := 8λ2ˆ︁y(1− λ2)−2 for ˆ︁y given in (35).

Proof. We prove by induction that there exists a constant ˆ︁x
such that (62) holds. First, since xi

0 = xr
0,∀i, r ∈ V , (62)

holds trivially when k = 0. We next show that if (62) holds
for some k ≥ 0 and then it also holds for k+1. From Lemma 2
and 18, we have: ∀k ≥ 0,

E[∥xk+1 − Jxk+1∥2] ≤
1 + λ2

2
E[∥xk − Jxk∥2] +

2λ2ˆ︁yα2
k

1− λ2
.

Therefore, it suffices to choose ˆ︁x such that ∀k ≥ 0,

1 + λ2

2

ˆ︁xβ2

(k + γ)2
+

2λ2ˆ︁y
1− λ2

β2

(k + γ)2
≤ ˆ︁xβ2

(k + γ + 1)2
,

which is equivalent to

2λ2ˆ︁y
1− λ2

≤
(︃

(k + γ)2

(k + γ + 1)2
− 1 + λ2

2

)︃ ˆ︁x. (63)
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Since the RHS of (63) monotonically increases with k, we
suffice to choose ˆ︁x such that (63) holds when k = 0, i.e.,

2λ2ˆ︁y
1− λ2

≤
(︃

γ2

(γ + 1)2
−1 + λ2

2

)︃ˆ︁x =

(︃
1− λ2

2
− 2γ + 1

(γ + 1)2

)︃ˆ︁x.
Since 2γ+1

(γ+1)2 ≤ 2
γ , it suffices to choose ˆ︁x such that 2λ2ˆ︁y

1−λ2 ≤(︁
1−λ2

2 − 2
γ

)︁ˆ︁x. Finally, if γ ≥ 8
1−λ2 , it can be observed that the

induction is complete by setting ˆ︁x := 8λ2ˆ︁y(1− λ2)−2.

We next present a useful lemma adapted from [23], [32], [33].

Lemma 21. Consider the step-size sequence {αk} in (61). We
have: for any nonnegative integers a, b such that 0 ≤ a ≤ b,

b∏︂
s=a

(1− µαs) ≤
(a+ γ)µβ

(b+ γ + 1)µβ
.

Proof. By (61) and 1+ x ≤ ex,∀x ∈ R, we have: 0 ≤ a ≤ b,
b∏︂

s=a

(1− µαs) =

b∏︂
s=a

(︃
1− µβ

s+ γ

)︃
≤ exp

{︃
−

b∑︂
s=a

µβ

s+ γ

}︃
.

(64)

Since 1
s+γ ≥

∫︁ s+γ+1

s+γ
1
xdx,∀s ≥ 0, we have: 0 ≤ a ≤ b,

b∑︂
s=a

1

s+ γ
≥

b∑︂
s=a

∫︂ s+γ+1

s+γ

1

x
dx = log

(︃
b+ γ + 1

a+ γ

)︃
. (65)

Applying (65) to (64) completes the proof.

Now we are ready to prove Theorem 4 through a non-
asymptotic analysis inspired by [9], [23], [33], [34], [38].

Proof of Theorem 4. We denote Ψk := E[L−1(F (xk)−F ∗)].
Using Lemma 20 in Lemma 14 gives: if γ ≥ max

{︁
β
α ,

8
1−λ2

}︁
,

Ψk+1 ≤ (1− µαk)Ψk + ˆ︁uα2
k + ˆ︁zα3

k, ∀k ≥ 0, (66)

where ˆ︁u and ˆ︁z are defined as, for ˆ︁x given in (62),

ˆ︁u :=
ν2a
2n

and ˆ︁z :=
Lˆ︁x
2n

. (67)

We recursively apply (66) from k to 0 to obtain5: ∀k ≥ 1,

Ψk

≤ Ψ0

k−1∏︂
t=0

(1− µαt) +

k−1∑︂
t=0

(︃(︁ˆ︁uα2
t + ˆ︁zα3

t

)︁ k−1∏︂
l=t+1

(1− µαl)

)︃

≤ Ψ0
γµβ

(k + γ)µβ
+

k−1∑︂
t=0

(︂ ˆ︁uβ2

(t+ γ)2
+

ˆ︁zβ3

(t+ γ)3

)︂ (t+ 1 + γ)µβ

(k + γ)µβ

= Ψ0
γµβ

(k + γ)µβ
+

ˆ︁uβ2

(k + γ)µβ

k−1∑︂
t=0

(t+ 1 + γ)µβ

(t+ γ)2

+
ˆ︁zβ3

(k + γ)µβ

k−1∑︂
t=0

(t+ 1 + γ)µβ

(t+ γ)3
, (68)

where the second inequality is due to Lemma 21. Furthermore,
by 1 + x ≤ ex,∀x ∈ R, we have: for 0 ≤ t ≤ k − 1,

(t+ 1 + γ)µβ

(t+ γ)µβ
=

(︃
1 +

1

t+ γ

)︃µβ

≤ exp

{︃
µβ

γ

}︃
≤
√
e, (69)

5For a sequence {sk}, we adopt the convention
∏︁y

k=x sk = 1 if y < x.

where the last inequality uses µβ/γ ≤ µα ≤ 0.5. We use (69)
in (68) to obtain: ∀k ≥ 1,

Ψk ≤ Ψ0
γµβ

(k + γ)µβ
+

√
eˆ︁uβ2

(k + γ)µβ

k−1+γ∑︂
s=γ

sµβ−2

+

√
eˆ︁zβ3

(k + γ)µβ

k−1+γ∑︂
s=γ

sµβ−3. (70)

By sµβ−2 ≤ max
{︁ ∫︁ s+1

s
xµβ−2dx,

∫︁ s

s−1
xµβ−2dx

}︁
, we have:

if β > 1/µ, then ∀k ≥ 1,
k−1+γ∑︂
s=γ

sµβ−2 ≤
∫︂ k+γ

γ−1

xµβ−2dx ≤ (k + γ)µβ−1

µβ − 1
. (71)

Likewise, by sµβ−3 ≤ max
{︁ ∫︁ s+1

s
xµβ−3dx,

∫︁ s

s−1
xµβ−3dx

}︁
,

we have: if β > 2/µ, then ∀k ≥ 1,
k−1+γ∑︂
s=γ

sµβ−3 ≤
∫︂ k+γ

γ−1

xµβ−3dx ≤ (k + γ)µβ−2

µβ − 2
. (72)

Now, we apply (71) and (72) in (70) to obtain: ∀k ≥ 1,

Ψk ≤ Ψ0γ
µβ

(k + γ)µβ
+

√
eˆ︁uβ2

(µβ − 1)(k + γ)
+

√
eˆ︁zβ3

(µβ − 2)(k + γ)2
.

(73)

Using (73) and Lemma 20 in Lemma 13, we obtain: ∀k ≥ 1,

1

n

n∑︂
i=1

E[F (xi
k)− F ∗] ≤2(F (x0)− F ∗)

(k/γ + 1)µβ
+

2
√
eLˆ︁uβ2

(µβ − 1)(k + γ)

+
2
√
eLˆ︁zβ3

(µβ − 2)(k + γ)2
+

2ˆ︁zβ2

(k + γ)2
.

The proof follows by that ˆ︁zβ2

(k+γ)2 ≤ Lˆ︁zβ3

(µβ−2)(k+γ)2 and by
recalling the definitions of ˆ︁u and ˆ︁z given in (67).

Proof of Corollary 2. We derive the conditions under which
the rate expression in Theorem 4 is network-independent. We
first solve for the lower bound on k such that

Lν2aβ
2

n(µβ − 1)(k + γ)
≥ L2ˆ︁xβ3

n(µβ − 2)(k + γ)2
,

which may be written equivalently as

k + γ ≥ µβ − 1

µβ − 2

Lˆ︁xβ
ν2a

. (74)

We suppose that ∥∇f0∥2 = O(n), β = θ/µ, where θ > 2.
Since αL = O

(︁
1−λ
λκ1/4

)︁
, for α defined in (30), we have

ˆ︁x = O
(︃

λ2nν2a
(1− λ)3

+
λκ1/4ν2a
1− λ

+
λ2nL(F (x0)− F ∗)

(1− λ)2κ1/2

)︃
,

where ˆ︁x is defined in (62). Therefore, to make (74) hold, it
suffices to let

k ≳
λ2nκ

(1− λ)3
+

λκ5/4

1− λ
+

λ2nκ1/2L(F (x0)− F ∗)

(1− λ)2ν2a
. (75)

Next, we solve for the range of k such that for some δ ∈ [1, θ),
( kγ +1)θ ≥ (k+1

κ )δ , i.e., (k+γ)θ

(k+1)δ
≥ γθ

κδ . Since γ > 1, it suffices
choose k such that

k ≥ γ
θ

θ−δ κ− δ
θ−δ . (76)
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We fix γ = max{ θ
µα ,

8
1−λ2 } ≍ max{κ, λ2κ

(1−λ)2 ,
λκ5/4

1−λ , 1
1−λ}.

Using (75) and (76) in Theorem 4, we have

1

n

n∑︂
i=1

(︁
F (xi

k)− F ∗)︁ = O
(︃
κδ (F (x0)− F ∗)

kδ
+

κν2a
nµk

)︃
,

if k ≳ max {K1,K2}, where K1 and K2 are given by

K1 =
λ2nκ

(1− λ)3
+

λκ5/4

1− λ
+

λ2nκ1/2L(F (x0)− F ∗)

(1− λ)2ν2a
,

K2 = max

{︃
κ,

λ2κ

(1− λ)2
,
λκ5/4

1− λ
,

1

1− λ

}︃ θ
θ−δ

κ− δ
θ−δ .

The proof follows by setting δ = 2 and θ = 6 in the above.

IX. CONCLUSION

In this paper, we comprehensively improve the existing
convergence results of stochastic first-order methods based on
gradient tracking for online stochastic nonconvex problems.
In particular, for both constant and decaying step-sizes, we
systematically develop the conditions under which the perfor-
mance of GT-DSGD matches that of the centralized minibatch
SGD for both general non-convex functions and non-convex
functions that further satisfy the PL condition. Our results
significantly improve upon the existing theory, which suggests
that GT-DSGD is strictly worse than centralized minibatch
SGD. For a family of stochastic approximation step-sizes,
we establish the global sublinear convergence to an optimal
solution on almost every sample path of GT-DSGD when the
global objective function satisfies the PL condition.
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[23] S. Kar and José M. F. Moura, “Convergence rate analysis of distributed
gossip (linear parameter) estimation: Fundamental limits and tradeoffs,”
IEEE J. Sel. Topics Signal Process., vol. 5, no. 4, pp. 674–690, 2011.

[24] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for
nonconvex multi-agent optimization,” IEEE Trans. Control Netw. Syst.,
2020.

[25] H. Robbins and D. Siegmund, “A convergence theorem for non negative
almost supermartingales and some applications,” in Optimizing methods
in statistics, pp. 233–257. Elsevier, 1971.

[26] B. T Polyak, “Introduction to optimization. 1987,” Optimization
Software, Inc, New York.

[27] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in Proc. 35th
Int. Conf. Mach. Learn., 10–15 Jul 2018, pp. 1467–1476.

[28] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-lojasiewicz condition,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases.
2016, pp. 795–811, Springer.

[29] M. Zhu and S. Martı́nez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46(2), pp. 322–329, 2010.

[30] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University
Press, 2012.

[31] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Trans. Signal Process., vol. 67, no. 17, pp. 4494–4506, 2019.

[32] M. B. Nevelson and R. Z. Hasminskii, Stochastic approximation and
recursive estimation, vol. 47, American Mathematical Soc., 1976.

[33] S. Pu, A. Olshevsky, and I. C. Paschalidis, “A sharp estimate on the
transient time of distributed stochastic gradient descent,” arXiv preprint
arXiv:1906.02702, 2019.

[34] S. Pu, A. Olshevsky, and I. C. Paschalidis, “Asymptotic network in-
dependence in distributed stochastic optimization for machine learning:
Examining distributed and centralized stochastic gradient descent,” IEEE
Signal Process. Mag., vol. 37, no. 3, pp. 114–122, 2020.
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