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Abstract—TIn this paper, we study decentralized online stochas-
tic non-convex optimization over a network of nodes. Integrating
a technique called gradient tracking in decentralized stochastic
gradient descent, we show that the resulting algorithm, GT-DSGD,
enjoys certain desirable characteristics towards minimizing a
sum of smooth non-convex functions. In particular, for gen-
eral smooth non-convex functions, we establish non-asymptotic
characterizations of GT-DSGD and derive the conditions under
which it achieves network-independent performances that match
the centralized minibatch SGD. In contrast, the existing results
suggest that GT-DSGD is always network-dependent and is there-
fore strictly worse than the centralized minibatch SGD. When
the global non-convex function additionally satisfies the Polyak-
Lojasiewics (PL) condition, we establish the linear convergence
of GT-DSGD up to a steady-state error with appropriate constant
step-sizes. Moreover, under stochastic approximation step-sizes,
we establish, for the first time, the optimal global sublinear
convergence rate on almost every sample path, in addition to
the asymptotically optimal sublinear rate in expectation. Since
strongly convex functions are a special case of the functions
satisfying the PL condition, our results are not only immediately
applicable but also improve the currently known best convergence
rates and their dependence on problem parameters.

Index Terms—Decentralized optimization, stochastic gradient
methods, non-convex problems, multi-agent systems.

I. INTRODUCTION

This paper considers decentralized non-convex optimization
where n nodes cooperate to solve the following problem:

' 1 n
Pl: ){Ié]er}JF(X) ~—g;fi(x)7
such that each function f; : R? — R is local and private to
node ¢ and the nodes communicate over a balanced directed
graph G = {V, €}, where V = {1,--- ,n} is the set of node
indices and £ is the collection of ordered pairs (¢, j),%,j € V,
such that node j sends information to node 7. Throughout
the paper, we assume that each local f; is smooth and non-
convex. We focus on an online' setup where data samples are
collected in real-time and hence each node i only has access
to a noisy sample g; of the true gradient at each iteration, such
that g; is an unbiased estimate of V f; with bounded variance.
Problems of this nature have found significant interest in signal
processing, machine learning, and control. See e.g., [1], [2],
for comprehensive surveys on these problems.
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'We note that “online” sometimes also refers to time-varying objective
functions, which is different from the problem setup in this paper.

Based on the classical stochastic gradient descent (SGD) [1],
a well-known solution to Problem P1 is decentralized SGD
(DSGD) [3], [4]. However, the convergence of DSGD for non-
convex problems has only been established under certain
regularity assumptions such as uniformly bounded difference
between local and global gradients [S]-[7], or coercivity of
each local function [8]. It has also been observed that if the
data distributions across the nodes are heterogeneous, the prac-
tical performance of DSGD degrades significantly [2], [9], [10].
One notable line of work towards improving the performance
of DSGD is EXTRA [11] and Exact Diffusion [12], where the
convergence under the stochastic non-convex setting is estab-
lished without the aforementioned regularity assumptions [13];
however, they require the weight matrix to be symmetric and
the smallest eigenvalue is lower bounded by —1/3. Another
family of algorithms to eliminate the performance limitation
of DSGD is based on gradient tracking, introduced in [14],
[15], where the basic idea is to replace the local gradients
with a tracker of the global gradient VF'. Decentralized first-
order methods with gradient tracking have been well studied
under exact gradients, where relevant work can be found, e.g.,
in [16]-[20]. However, the convergence behavior of gradient
tracking methods has many unanswered questions when it
comes to non-convex online stochastic problems [21], [22].

Main contributions. This paper considers GT-DSGD [9],
that adds gradient tracking to DSGD, for online stochastic non-
convex problems and rigorously develops novel results, key
insights, and new analysis techniques that fill the theory gaps
in the existing literature on gradient tracking methods [9], [21],
[22]. The main contributions are described in the following:
(1) General smooth non-convex problems: We explicitly char-
acterize the non-asymptotic, transient and steady-state perfor-
mance of GT-DSGD and derive the conditions under which
they are comparable to that of the centralized minibatch SGD.
In particular, we show that its non-asymptotic mean-squared
rate is network-independent and further matches the central-
ized minibatch SGD when the number of iterations is large
enough. In sharp contrast, the existing results in [21], [22]
suggest that the convergence rate and steady-state performance
of GT-DSGD are always network-dependent and therefore are
strictly worse than that of the centralized minibatch SGD; see
Section III-A for details.
(2) Problems satisfying the global Polyak-Lojasiewicz (PL)
condition: We analyze GT-DSGD when the global (smooth
non-convex) function F' further satisfies the PL condition. For
both constant and decaying step-sizes, we explicitly charac-
terize the non-asymptotic, transient and steady-state behaviors
in expectation, and establish the conditions under which they



are comparable to that of the centralized minibatch SGD. We
further establish global sublinear convergence rates on almost
every sample path. The obtained sample path-wise rates are
order-optimal (in the sense of polynomial time decay). To the
best of our knowledge, these are the first results on path-wise
convergence rate for online decentralized stochastic optimiza-
tion under non-convexity, thus generalizing prior results in the
decentralized stochastic approximation literature, e.g., [23],
where the convergence analysis is mostly performed under
assumptions of local convexity. As special cases, these results
improve the current state-of-the-art on exact gradient methods
under the PL condition [24] and stochastic strongly convex
problems [9]; see Section III-B for details.

(3) Convergence analysis: We emphasize that the analysis
techniques in this work are substantially different from the
existing ones [9], [21], [22] and may be applied to other gra-
dient methods built upon similar principles. We describe a few
key features in the following. We establish tighter bounds on
the stochastic gradient tracking process, by exploiting the unbi-
asedness of the online stochastic gradients, based on which all
convergence theorems are derived; see Section V-B. To prove
the convergence under general non-convexity, we characterize
a descent inequality explicitly with network consensus errors
and further show that the cumulative consensus errors along
the algorithm path are dominated by the cumulative descent
effect of the local gradients; see Section V-C. Towards the
convergence analysis under the global PL condition, we derive
the uniform boundedness of gradient tracking errors that is
crucial in simplifying the ensuing analysis; see Lemma 18.
Subsequently, we construct an appropriate stochastic process
that forms an almost supermartingale [25] to prove sublinear
rates on almost every sample path; see Section VII. To develop
the convergence results in mean under the global PL condition,
we use the analytical tools developed for recursive processes
with time-varying step-sizes; see Section VIII.

Road map and notation. The rest of the paper is
organized as follows. Section II describes the assumptions
and the GT-DSGD algorithm. In Section III, we present the
main results and discuss the contributions of this work in the
context of the current state-of-the-art, whereas Section III-A
and III-B respectively focus on the general non-convex and
the PL case. We present detailed numerical experiments in
Section IV to demonstrate the main theoretical results in this
paper. Section V establishes general bounds on the stochastic
gradient tracking process and proves the convergence for
smooth non-convex functions. Sections VI, VII and VIII pro-
vide the convergence analysis under the PL condition on top
of the results obtained in Section V. In particular, Sections VI
and VIII focus on the convergence in mean with constant and
decaying step-sizes respectively while Section VII focuses on
the almost sure convergence. Section [X concludes the paper.

We use lowercase bold letters to denote vectors and up-
percase bold letters for matrices. The matrix, I; (resp. Oy),
represents the d x d identity (resp. zero matrix); 15 and Oy
are the d-dimensional column vectors of all ones and zeros,
respectively. We denote [x]; as the i-th entry of a vector x.
The Kronecker product of two matrices A and B is denoted
by A®B. We use ||| to denote the Euclidean norm of a vector

or the spectral norm of a matrix. For a matrix X, we use p(X)
to denote its spectral radius, X* to denote its adjugate, det(X)
to denote its determinant, [X]; ; to denote its (i, j)th element
and diag(X) as the diagonal matrix that consists of the di-
agonal entries of X. Matrix-vector inequalities are interpreted
in the entry-wise sense. We use o(-) to denote the o-algebra
generated by the random variables and/or sets in its argument.

II. ASSUMPTIONS AND THE GT-DSGD ALGORITHM

We are interested in finding a first-order stationary point
of Problem P1 via local computation and communication at
each node. We first enlist the necessary assumptions that are
standard in the literature [1], [9], [10], [26].

Assumption 1 (Objective functions). Each f; is L-smooth,
ie, 3L > 0s.t ||Vfi(x)=Vfi(y)l < Llx—yl|,Vx,y € RP.
Moreover, F' is bounded below, i.e., F* := infy F(x) > —oc.

Assumption 2 (Network model). The directed communica-
tion network is strongly-connected and admits a primitive
doubly-stochastic weight matrix W = {w,, } € R"*".

We consider iterative processes that generate at each node @
a sequence of state vectors {xi : k > 0}, where x{, is assumed
to be a constant. At each iteration k, each node i is able to call
the local oracle that returns a stochastic gradient g;(x%,&}),
where 5}; is a random vector in R? and g; : R? x R? — RP is
a Borel-measurable function. For example, g; (%, 52) may be
considered as the stochastic gradient evaluated at the state xj,
with the data sample &} observed at node i and iteration k. We
work with a rich enough probability space (€2, F,P) and define
the natural filtration (an increasing family of sub-o-algebras
of F)as, Vk > 1,

Fro=o({€:0<t<k-1,ieV}), Fo={Qe},

where ¢ is the empty set. The intuitive meaning of Fj, is that
it contains the historical information of the algorithm iterates
in question up to iteration k — 1.

Assumption 3 (Oracle model). The stochastic gradient pro-
cess {gi(x5,&},) : Vk > 0,Vi € V} satisfies:
o E[|gi(x}, &) — Vi(xp)|| [Fe] < v2 VE>0,Vie,
for some constant v; > 0;
o The family {52 :Vk > 0,Vi € V} of random vectors is
independent.

We denote v2 := > 12, the average of the variance
of local stochastic gradients. We are also interested in the
case when the global objective function F further satisfies the

Polyak-t.ojasiewicz (PL) condition that was introduced in [26].

Assumption 4. 3 > 0 s.t. the global function F : RP — R
satisfies 2 (F(x) — F*) < |[VF(x)||”, Vx € RP.

When Assumption 4 holds, we denote  := % > 1, which can
be interpreted as the condition number of F'; see Lemma 12.
Note that under the PL condition, every stationary point x*
of F' is a global minimum of F, while F' is not necessarily
convex. Assumption 4 holds, e.g., in certain reinforcement
learning problems [27], see [26], [28] for more details.



Algorithm. GT-DSGD, introduced in [9] for smooth strongly
convex problems and formally described in Algorithm 1,
recursively descends in the direction of an auxiliary vari-
able y! at each node, instead of the local stochastic gradi-
ent g;(x}, £}). The auxiliary variable yi is constructed under
the dynamic average consensus principle [29] and tracks a
time-varying signal >, gi(x};,gz), which mimics the global
gradient; see [2], [9] for further intuition and explanation.
We note that GT-DSGD uses the adapt-then-combine (ATC)
structure [4] resulting in improved stability of the algorithm.
Algorithm 1 GT-DSGD at each node ¢

Require: x; {ax}: {w;, }; y) = 0p: g (x71,67,) = 0,.

1: fork:O,l,..., do

Yip1 = Zf” Vi + 8 (<, 1) — & (xi_1, €41))

i
Xk4+1 = E &ir(xk
r=1

2: end for

- akYZ+1)

III. MAIN RESULTS

In this section, we present our main convergence results for
GT-DSGD and compare them with the corresponding state-
of-the-art. For analysis purposes and the ease of presentation
of main results we let Xp,yx, gk, all in R™P, respectively
concatenate x}’s, yi’s, gi(x},£L)’s, and write GT-DSGD in
the following matrix form: Vk > 0,

(1a)
(1b)

Yit1 = W (Y + 8k — 8k-1) s

Xpr1 = W (X — axyrt1)
where W = W ® I,,. We denote the exact averaging matrix
as J:=(11,1])®1I, and , which charac-
terizes the network connectivity. Under Assumption 2, we
have A € [0,1); see [30]. For convenience, we let Vfj, € R"?
concatenate all local exact gradients V f;(x%)’s and denote

1
Xk = ( ;r@:[p)xk? yk = 5(17—[ ®Ip)yka

M—‘i\!—'

- 1
Vi = (1T @ L,)VE,, &= g(ll @ L,)gk.

We assume without loss of generality that x}, = x};, Vi,r € V.

A. General smooth non-convex functions
In this subsection, we are concerned with the convergence
of GT-DSGD for general smooth non-convex functions.

Theorem 1. Let Assumptions 1, 2, and 3 hold and consider
GT-DSGD under a constant step- szze ap = a,Vk >0, such

that 0 < a < mm{l, 112§\2, i\f)\)\l }2L’ then, VK > 1,
1¢ Xo) — F*)  2av’L
Z Z [[vro|?] < &I 2o
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Further, 37" L E[|VF(x})||?] decays at the rate
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of O(3) up to a steady-state error such that
In 1«
limsup -3 7 > [|vred]
n =1 k=0
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Centralized minibatch SGD Decentralized network effect
Theorem 1 is proved in Section V.

Remark 1 (Transient and steady-state performance). Theo-
rem | explicitly characterizes the non-asymptotic performance
of GT-DSGD for general smooth non-convex functions with an
appropriate constant step-size. In particular, the stationary gap
of GT-DSGD for any finite number of iterations K is bounded
by the sum of four terms. The first two terms are independent
of the network spectral gap 1 — A and match the complexity
of the centralized minibatch SGD up to constant factors [1].
The third and the fourth terms depend on 1 — A reflecting the
decentralized network and are in the order of O(a?). This
is a much tighter characterization compared with the existing
results [21], [22] on GT-DSGD and leads to provably faster
non-asymptotic rate, see Remark 2 below. Theorem 1 also
shows that as K' — oo, the stationary gap of GT-DSGD decays
sublinearly at the rate of O(1/K) up to a steady-state error.

It can be observed that if o = O(552- A ), then the steady
state stationary gap of GT-DSGD matches that of the cen-
tralized minibatch SGD up to constant factors. The existing
analysis [22], however, suggests that under the same choice of
the step-size «, the steady state stationary gap of GT-DSGD

is strictly worse than the centralized minibatch SGD.

The following corollary of Theorem 1 is concerned with the
non-asymptotic convergence rate of GT-DSGD over a finite
time horizon for general smooth non-convex functions.

Corollary 1. Let Assumptions 1, 2, and 3 hold and suppose
that ||V = O(n). Setting a = \/n/K in Theorem I, for

2 A\ 4
K > 4nL?max {1, (llf‘f\)‘g)z, , %}, we obtain:

= (F(Xo) — F*) 2U2L
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Thus, if K further satisfies that K > K,.:= O (%),

then we have

1on 1 V2L

 — [VF@)|°] = ( ) .

2 i X B[l - o (L
Remark 2 (Non-asymptotic mean-squared rate and tran-
sient time for network independence). Corollary 1 shows
that if the number of iterations is large enough, i.e., K > K,
by setting o = ﬁ, the non-asymptotic rate of GT-DSGD
matches that of the centralized minibatch SGD up to factors of



universal constants. This discussion shows that, in the regime
that K > K,., GT-DSGD achieves a network-independent
linear speedup compared with the centralized minibatch SGD
that processes all data at a single node. In other words,
the number of stochastic gradient computations required to
achieve an approximate stationary point is reduced by a factor
of 1/n at each node in the network. These results significantly
improve the existing convergence guarantees of GT-DSGD for
general smooth non-convex functions [21], [22]. In particular,
references [21], [22] show that if o = \;"? where K is large
enough and ¢y is some positive constant, GT-DSGD achieves
C}(, where ¢; is a function of the
network spectral gap (1 — ). The convergence results in [21],
[22] thus suggest that the rate of GT-DSGD is always network-
dependent and is strictly worse than that of the centralized
minibatch SGD and hence fail to characterize the network-
independent performance of GT-DSGD.

Remark 3 (Comparison with DSGD). We observe from
Corollary 1 that the convergence of GT-DSGD is robust to the
difference between the local and the global functions. In other
words, GT-DSGD outperforms DSGD when data distributions
across the nodes are significantly heterogeneous, since the
convergence rate of the latter explicitly depends on a factor
that measures the heterogeneity between the local and the
global functions [5]. However, the transient time for GT-DSGD
to achieve network independent performance has a network
dependence of O((1—\)~%) which is worse than that of DSGD
where the dependence is O((1—\)~*). Moreover, we note that
GT-DSGD requires two consecutive rounds of communication
per node per iteration to update the state and the gradient
tracker variables respectively, compared to DSGD.

B. Smooth non-convex functions under PL condition

In this subsection, we discuss the performance of GT-DSGD
when the global objective function F' further satisfies the PL
condition. We begin with the case of constant step-size.

Theorem 2. Let Assumption 1, 2, 3 and 4 hold. If the step-
size a, = o, Vk > 0, satisfies that

I (1-2%)% 1-X2 1-)2
2L 42X2L ' 24NLkYY 2u |’
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then B[||xi — Ixi||*] and E[F(X;,) — F*] decay linearly at
the rate of O((1 — pa)*) up to a steady-state error such that
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Moreover, L 3" | E [F(x},) — F*] decays linearly at the rate
of O((1 — ua)k) up to a steady-state error such that
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Theorem 2 is proved in Section VI.

Remark 4 (Transient and steady-state performance). The-
orem 2 shows that when the global objective function F'
satisfies the PL condition and the constant step-size « is less
than @, the optimality gap of GT-DSGD decays linearly up
to a steady-state error that is the sum of two terms. The first
term is independent of the network and matches that of the
centralized minibatch SGD up to constant factors, while the
second term is due to the network and is controlled by O(a?).
In contrast to [9], which requires a stronger assumption that
the global objective function is strongly convex, we note that
our stability range of the step-size « is larger by a factor
of O(k®/12); this relaxed upper bound on « further leads to a
faster linear convergence when exact gradients are available,
see Remark 5. Next, it can be verified from Theorem 2 that
to match the steady-state error performance of the centralized
minibatch SGD (up to constant factors), it suffices go choose
the step-size a in GT-DSGD such that a = O (}\;;‘Z ), which
is larger by a factor of O(k) than the corresponding result
in [9]; in other words, Theorem 2 demonstrates a tighter and
faster convergence rate to achieve the same steady-state error.

Remark 5 (Global linear convergence under exact gradi-
ent oracle). Theorem 2 further shows that when the exact
gradient oracle is available at each node, i.e., l/Z-Q =0,Vi e,
GT-DSGD reduces to its deterministic counterpart [14], [16],
[17] and achieves global linear convergence to an optimal
solution with an appropriate constant step-size. In other words,
when o = @, it achieves an g-accurate optimal solution in
O(max {, (IA 7 *1'{5;4, = }log & ) iterations. This result
improves upon the state-of-the-art gradient computation and
communication complexity under the PL condition [24]. The
gradient computation complexity can be further improved to
O(nlog %) by performing O(ﬁlog ﬁ) rounds of con-
sensus communication at each iteration. This gradient com-
putation complexity result matches the state-of-the-art [31]
on decentralized exact gradient methods (without Nesterov
acceleration), which further requires a stronger assumption
that each local function is convex and the global function is
strongly convex. In contrast, we only require the PL condition
on the global objective F'.

We now proceed to the case of decaying step-sizes. The next
result shows the sample path-wise performance of GT-DSGD
under a family of stochastic approximation step-sizes [32],
ie, ap > 0, Yoo ar =00, and Y ;- ai < oo, which
enables the exact sublinear convergence in contrast to the
inexact linear convergence under a constant step-size.

Theorem 3. Let Assumptions 1, 2, 3, and 4 hold. Consider the
step-size sequence {ay,} such that oy, = 0(k + @)~ ¢,Vk > 0,
where € € (0.5,1], § > 1/p, and ¢ > max {(6/a) 1/6, — )\2}
for @ given in Theorem 2. Then Yi,j € V and for arbitrarily
small e1 > 0, we have:

P <i k2671761 HX'L
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Theorem 3 is proved in Section VII.



Remark 6 (Global sublinear rate on almost every sample
path). Theorem 3 guarantees that GT-DSGD exhibits a global
sublinear convergence on almost every sample path, under
decaying step-sizes, when the global function F' satisfies the
PL condition. This result is of significant practical value in
that it is applicable to every instantiation of the algorithm
while the expectation type convergence only characterizes,
roughly speaking, the performance on average. Furthermore,
in the case of general non-degenerate variances (see Assump-
tion 3), these path-wise rates are order-optimal, in the sense
of polynomial time decay; this follows by considering the
stochastic approximation reformulation of the optimization
problem (i.e., the problem of obtaining zeros of the gradient
function VF(x)) and invoking standard central limit type
arguments, see [32].) To the best of our knowledge, Theorem 3
is the first to show path-wise convergence for online decen-
tralized stochastic optimization under non-convexity, thus gen-
eralizing prior results in the decentralized stochastic approx-
imation and optimization literature, such as [23], where such
analysis is performed under assumptions of local convexity.

Finally, we consider the convergence rate of GT-DSGD in
expectation when oy, = O(1/k),Vk > 0.

Theorem 4. Let Assumptions 1, 2, 3, and 4 hold. Consider the
step-size sequence {ay} such that ay = B(k +~)~LVk >0,
where 3> 2/u, and ~ > max{%, %} for & given in
Theorem 2. We have: Yk > 0,

n
EZE[F(X?@)—F*] < 2LV§BQ
n = n(pB —1)(k+7)
Centralized minibatch SGD
2 (F(xo) — F*) 302547
(k/y+ 10 n(uB —2)(k+7)*

Decentralized network effect

where T is a positive constant given in (62).

The non-asymptotic rate in Theorem 4 shows that GT-DSGD
asymptotically achieves network independent O(1/k) rate in
mean when the global objective function F' satisfies the PL
condition, matching the 2(1/k) oracle lower bound [1]. The
following corollary examines the number of transient itera-
tions required to achieve network-independence under specific
choices of parameter 5 and v in Theorem 4.

Corollary 2. Let Assumptions 1, 2, 3, and 4 hold. Set § = 6/

and v = max{#%, %} in Theorem 4 and suppose that

[VEo||* = O(n). Then we have:
1 & ; k2 (F(Xo) — F*) w12
it E E[F(xi) — F*] = MATRR0) T E ) Pa
n [F0a) =0 ( k2 * nuk )’

if k is large enough such that k 2 Kpy, where

2nk ARB/4 A\3/2,11/8 o—1/2
K= g T 1o T T aove T aoapn
Nnr!/2L(F(Xo) — F*)
(1 -2

Theorem 4 and Corollary 2 are proved in Section VIIIL.

Remark 7 (Transient time for network independent rate).
Corollary 2 shows after Kpy iterations, the convergence rate of
GT-DSGD matches that of the centralized minibatch SGD [1]
up to constant factors and therefore achieves an asymptotic
linear speedup. We now compare this transient time with
the existing literature. First, Ref. [9] shows that, under the
strong convexity of F', GT-DSGD asymptotically converges
at O(1/k); however, the convergence rate derived in [9]
depends on arbitrary constants and therefore the transient time
is not clear. Second, recent work [33], [34] shows that when
each local function f; is strongly convex, the corresponding
transient time of DSGD is O(nk®(1 — A)~2). Our results on
the transient time K pj therefore significantly improve upon
the dependence of the condition number ~ under weaker as-
sumptions on the objective functions, while being moderately
worse in terms of the network dependence, i.e. 1 — A.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-
strate the main theoretical results in Section III with the help
of learning problems on real-world datasets, summarized in
Table I, and minimizing certain synthetic functions to illustrate
the PL condition. We consider three different graph topologies,
i.e., a directed exponential graph with 16 nodes, an undirected
grid graph with 16 nodes, and an undirected geometric graph
with 100 nodes; see Fig. 1. The primitive doubly stochastic
weights are set to be equal for the exponential graph and
are generated by the Metroplis rule [35] for the grid and the
geometric graphs. The second largest singular values A asso-
ciated with the weight matrices of these graphs are 0.6,0.93
and 0.99, respectively. Towards the stochastic gradient oracle,
we consider two different setups: (i) each node has access to a
finite collection of data samples and the stochastic gradient is
computed with respect to one randomly selected data sample
at each iteration; (ii) each node has access to the gradient of
its local function subject to random noise, with zero-mean and
bounded variance, at each iteration. The performance metric
of interest is the average of global function values across the
nodes 2 3> | F(x}), which we refer to as loss, versus the
number of epochs” in (i) and the number of iterations in (ii).
We manually optimize the parameters of all algorithms across
all experiments to achieve their best performances.

TABLE 1

A SUMMARY OF THE DATASETS USED IN NUMERICAL EXPERIMENTS,
AVAILABLE AT HTTPS://WWW.OPENML.ORG/.

Dataset train dimension | classes
a%a 48,832 124 2
w8a 60,000 301 2
creditcard 100,000 30 2
Fashion-MNIST 60,000 785 10
CIFAR-10 50,000 3073 10
STL-10 5,000 27649 10

To study the convergence behavior of GT-DSGD, we con-
duct three different experiments: binary classification with
non-convex logistic regression [36], multiclass classification

2Each epoch is one effective pass of local data samples at each node.
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Fig. 1. A directed exponential graph with 16 nodes, an undirected grid graph with 16 nodes, and an undirected geometric graph with 100 nodes.
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Fig. 2. The performance of GT-DSGD for non-convex logistic regression over different graphs and comparison with the centralized minibatch SGD on the

a9a, w8a and creditcard datasets.
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Fig. 3. Performance comparison between GT-DSGD and DSGD for one-hidde
on the Fashion-MNIST, CIFAR-10 and STL-10 datasets.

with neural networks, and minimizing synthetic non-convex
functions that satisfy the global PL condition. We compare
the performance of GT-DSGD with DSGD [5] to illustrate
the advantages of the former in the setting of heterogeneous
data distributions across the nodes; moreover, we use the
centralized minibatch SGD as the benchmark to illustrate the
scenarios in which GT-DSGD achieves a network-independent
performance. The experimental results are described in the
next subsections. It can be verified that the numerical results
of GT-DSGD are consistent with the theory in this paper.

A. Non-convex logistic regression for binary classification

We first consider a binary classification problem with the
help of a non-convex logistic regression model [36]. Specif-
ically, the decentralized optimization problem of interest is
given by minkepr F(x) := 2 37" | fi(x) + r(x), such that

Fi(x) = %Zlog [1 + e*@‘”’iﬂfij] Y

d=1

R[x]3

2
= 1+ [x]g

n-layer neural network under heterogeneous data distributions across the nodes

where 0, ; is the feature vector, ; ; is the corresponding binary
label, and 7(x) is a non-convex regularizer with R = 10~%.

We compare the performance of GT-DSGD over the directed
exponential and the grid graphs, both with 16 nodes, to the
centralized SGD with a minibatch size of 16. We consider
the best possible constant step-size for both algorithms. The
numerical results over the a9a, w8a, and creditcard datasets
are shown in Fig. 2. It can be observed that, across all
datasets, the convergence behavior of GT-DSGD matches that
of the centralized minibatch SGD and is independent of the
underlying graph topology, as long as the total number of
iterations is large enough. This observation is consistent with
Corollary 1, demonstrating the network-independent conver-
gence of GT-DSGD under an appropriate constant step-size
for general smooth non-convex functions.

B. Neural network for multiclass classification

We next compare the performance of DSGD (without gra-
dient tracking) and GT-DSGD, both with a constant step-size,
when the data distributions across the nodes are significantly
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Fig. 5. Convergence of GT-DSGD and DSGD under the global PL condition: (a)(b) Inexact linear convergence with different constant step-sizes «. (c) Exact
sublinear convergence of GT-DSGD with decaying step-sizes a, = (k + 3)~7 under different values of 7. (d) Exact sublinear convergence of GT-DSGD
over different graphs in comparison with the centralized minibatch SGD, all with the decaying step-size o = (k + 3) 1.

heterogeneous. To this aim, we consider a harsh problem
setup where the data samples are distributed over the 100-
node geometric graph in Fig. | such that each node has the
same number of data samples and the samples belong to only
one or two classes (out of 10 possible classes). We consider
decentralized training of a neural network with one fully
connected hidden layer of 64 neurons and sigmoid activation.
The experimental results over the Fashion-MNIST, CIFAR-
10, and STL-10 datasets are shown in Fig. 3. We observe
that GT-DSGD significantly outperforms DSGD in this setting,
demonstrating the robustness of GT-DSGD to heterogeneous
data across the nodes; see also Remark 3.

C. Synthetic functions that satisfy the global PL condition

Finally, we show the performance of GT-DSGD when the
global function satisfies the PL condition and compare it with
DSGD and the centralized minibatch SGD. In particular, each
local function is chosen as f;(z) = #2+3sin?(x)4a;z cos(z),
such that > ;a; =0 and a; # 0,Vi € V, leading to the
global function F(z) = 2% + 3sin®(x), which is clearly non-
convex and further satisfies the PL condition [28]. It can
be verified that each local function is highly nonlinear and
significantly different from the global function; see Fig. 4. We
inject random Gaussian noise with mean 0 and the standard
deviation 0.5 to the gradient computation at each node. The
corresponding numerical results can be found in Fig. 5, where
the experiments in Fig. 5(a)-(c) are performed over the directed
exponential graph with 16 nodes. It can be observed from
Fig. 5(a) that GT-DSGD achieves inexact linear convergence
under constant step-sizes; moreover, a smaller step-size leads
to a smaller steady-state error but at a slower rate. Compared
with the convergence of DSGD under constant step-sizes shown
in Fig. 5(b), GT-DSGD achieves a smaller steady-state error
much faster benefiting from gradient tracking that effectively
exploits the global geometry. Fig. 5(c) shows that GT-DSGD

achieves exact sublinear convergence to the optimal solution
with decaying step-sizes of the form aj = (k + 3)~" under
different values of 7 chosen in (0.5,1]. Clearly, a larger 7
leads to a faster rate as Theorem 3 suggests. Finally, we
observe from Fig. 5(d) that the convergence rate of GT-DSGD
with 7 =1 matches that of the centralized minibatch SGD
with the same decaying step-size after a small number of
transient iterations over different graphs. This phenomenon
demonstrates the asymptotically network-independent and op-
timal O(1/k) rate achieved by GT-DSGD. This observation is
consistent with Theorem 4.

V. CONVERGENCE ANALYSIS: THE GENERAL
NON-CONVEX CASE

It is straightforward to verify that the random variables gen-
erated by GT-DSGD are square-integrable and that x, yj are
Fi-measurable and g(xx, &) is Fi1-measurable, Vk. In this
section, we derive general bounds on the stochastic gradient
tracking process, which may be of independent interest, and
prove Theorem 1. We start by presenting some standard results
on decentralized stochastic gradient tracking algorithms; their
proofs can be found, e.g., in [9], [16], [37].

Lemma 1. Under Assumption 1-3, We have the following:

(a) |[Wx —JIx|| < A|x —Ix|,Vx € R".

(b) Yi+1 =8, Vk > 0.

() |[VE — VE)| < £ [lxe — Ixie]|”, k> 0.

(d) E[(gi(X};,£2)—Vfi(xz)7g,«(Xz,ﬂ)—Vf,«(X;)ka] =0,
Vk > 0,Vi,r € V such that i # r.

(e) IE[Hgk —ﬁk||2|}—k] <v?/n,Vk > 0.

As a consequence of the state update of GT-DSGD described
in (1b) and Lemma 1(b), we have: Vk > 0,

2

X1 = Xk — QY11 = Xk — OB,



i.e., the mean state Xy, of the network proceeds in the direction
of the average of local stochastic gradients g;. The following
lemma provides several useful relations on the consensus
process of the state vectors across the network [37].

Lemma 2. Let Assumption 2 hold. We have the following
inequalities: Yk > 0,

R N
2
+ 20%/)\\2 [Yr+1 — JYk+1||
k1 — Ixppa|? < 277 [lxp — Ix||?
+ 20202 [yt — Tyl
31 — It || < A lxn — Ix]|® + @M [yrsr — Tyl -

A. A descent inequality

In this subsection, we establish a key descent inequality that
characterizes the expected decrease of the value of the global
objective function F' over each iteration in light of (2).

Lemma 3. Let Assumptions 1-3 hold. If 0 < ay, < 2L, then
we have: Yk > 0,
B [F(Xp1)[Fi] < F(Xi) — - ||VF(Xk) - ||kaH

aL? ||x;€ — Jxk” . kLl/a
2 n 2n
Proof. Since F' is L-smooth, we have [26]: Vx,y € RP,

+

Fly) < FO) + (VF(x)y — %)+ 5y X% G)

Setting y = Xy4+1 and x = X, in (3) to obtain: Vk > 0,

F(®ii1) < (%) — o (VR0 8 + 22 g

Conditioning on Fy, by E[g,|Fi] = Vfy, obtains: Vk > 0,

E[F(Xg+1)|Fk]
< F(%2) — o (VE(e), Vi) + “5CE g, |7]
= F(ik) —

SIVEE)I -5 uﬁkuz

Qg _
+ % VPR - VEI® + VR (g 7]
— 75 — =7
< F(%) - FIVF®| — 5 VT2

+ Osz

Uplgiria]. @

% — Ixg||> +

where the equality above uses (x,y) = 3(|[x[|? + [lyl|* —
lx — ylI?),Vx,y € RP, and the last inequality is due to
Lemma 1(c). For the last term in (4), note that: Vk > 0,

E |l 17| = E [|lge - VB + VE|* 1 7]
= E|lgy - VIl 17e] + [9E)?
v+ [V ®

IN

where the second equality uses that Vfj is Fj-measurable

and E[g), | F1.] = Vfy, and the last inequality uses Lemma 1(c).
We now use (5) in (4) to obtain: Vk > 0,
_ _ a _ aiLv?
E[F (K1) 7] < F(Rk) = 5 [ VE)[P + ==
o (1 —axl) ==
-l igr ey I
The proof follows by noting that 1 — axL > 35, if 0 < ap <
5 L, Vk > 0, in the inequality above. O

Compared with the corresponding descent inequality for
the centralized stochastic gradient descent, see, e.g., [1], [26],
the descent inequality for GT-DSGD derived in Lemma 3 has
an additional network consensus error term ||x; — Jxg||. We
therefore seeks for means to control this perturbation in order
to establish the convergence of GT-DSGD. We will bound the
consensus and the gradient tracking error jointly.

B. Bounding the gradient tracking error

In this subsection, we analyze the gradient tracking process.
Lemma 4. Let Assumption 1-3 hold. We have: Yk > 0,
E[|[yrs2 — Jyirel]
< NE[[lyr+1 — Iyerill’ ] + NE[ g1 — gll’]
+2E[(W = J) yit1, (W = J) (Vi — gi))]
+2E[(W = J) yit1, (W = J) (Vi1 — Vi)

Proof. Using the gradient tracking update (la), and the fact
that WJ = JW = J, we have: Vk > 0,

2
|Yk+2 — Jyis2ll

= |W (yre1 + 8re1 — 8k) — T (Yis1 + 8re1 — 80|

= Wyt — Iyir1 + (W = J) (grs1 — &)l

= [Wyrr1 — Iyeea|* + |(W = J) (gks1 — i)l
2((W = J) yis1, (W—=J)(8rt+1—8k))

<N |yhgt — Iy |” + A2 [l grer — gl
2((W =J)yrr1, (W =J) (8k+1 — 8k))s (6)

Cy
where the last inequality is due to Lemma 1(a). Towards C1,
since yi+1 and gy are Fy4i-measurable, we have: Vk > 0,

E [Cy|Fpt1]
= (W =J)yt1, (W = J) (Vi1 — gr))
=((W =J) yis1,(W = J) (VI — gk))
(W =3 yrs1, (W =) (V1 — VE)) . (D)
The proof then follows by taking the expectation on (6) and
using (7) in the resulting inequality. O

Next, we bound the terms in Lemma 4 respectively. For the
second term in Lemma 4, we have the following.

Lemma 5. Let Assumption 1-3 hold. We have: ¥k > 0,
E[ g1 — gk||2]
< I8L*E[ ||xx — Ixi||*] + 6nai L*E[|[g),]|° ]
+ 122 LPNE | |lypsr — Jye]®] + 3m2.



Proof. Since both Vfy; and g are Fji-measurable and
E[gk+1|Fr+1] = VEry1, we have: Vk > 0,

Elllgrs1 — gl ]

E[llgrt1 — ka+1||2] +E[||VEis1
< nv} + B[V — gll’]

< w2 + 2B [ | Vhiyr — VEI*] + 2E[ | Vi — gil|]

< 3nv2 + 2L E[ x4 — xi||° | (8)

Ca

7ng2L

where the first inequality uses Assumption 3 and the last in-
equality uses Assumption 3 and the L-smoothness of each f;.
Towards C5, we have: Vk > 0,

Co = B[ [|xp41 — Ixpp1 + Ixppr — Ixp + Ixp, — XkHz]
< BE[ [xkg1 — Ixera|® ] + 3n0fE[ [Ig,]1*]
+3E[ [lxk — Ix|*]
< OE[ [[xx — Ix|*] + 3naiE [ |[gell* ]
+ 60 NE [ [[yesrs — Tyl ], ©)

where the second inequality uses (2) and the last inequality
uses Lemma 2. The proof follows by using (9) in (8). O

For the third term in Lemma 4, we have the following.

Lemma 6. Let Assumption 1-3 hold. We have: Yk > 0,
E[{(W —3)yir1, (W = J) (Vi — g))] < v;.
Proof. Using the fact that J(W —J) =
tracking update (1a), we have: Vk > 0,
[((W = D) Vi1, (W = J) (VE — &) [Fi]
E[(Wyks1, (W = J) (VI — gk)) [Fi]
E [(W? (yk + 8k — 8k—1), (W =) (VE — gk)) | %]
E [(W?gk, (W = J) (VE; — gx)) | Fi]
E[(W? (gr — VE), (W = J) (Vi — gr)) [Fk]
- WTWQ) (gr — Vi) | F]

O,,, and the gradient

=E[(g—VE)'J
where the third and the fourth equality exploit the fact that
the random vectors yg, gx—1 and Vf; are Fi-measurable and
that E[gy|Fx] = V1. In light of Lemma 1(d), (10) reduces to
[(( = I yet1, (W =) (Vi — gr)) |Fi]
E [(gx — V£) Tdiag(J — WTW?) (g, — Vi) | Fi]
E [(gr — Vii) "diag(J) (g — V) | Fi] ,
= E [llgr — VE&I*|F] /n

(10)

(1)

where the inequality holds since diag(W "W?) is nonnega-
tive. The proof follows by using Assumption 3 in (11) and
taking the expectation on the resulting inequality. O

For the last term in Lemma 4, we have the following.
Lemma 7. Let Assumption 1-3 hold. We have: Yk > 0,
(W =J) yri1, (W =J) (Vi — VE))

< (AarL +0.501 +02) X |yrsr = Iyl
5 L2 [ — I * + 0507 N2 L0 |18, |

where 01 and ny are arbitrary positive constants”.

Proof. Using (W — J)J = O,,, and the Cauchy-Schwarz
inequality, we have: Vk > 0,

(W =J) yri1, (W = J) (Vi1 — VER))
= (W =J) (yrt1 = I¥k41), (W = ) (Vi1 — Vi)
< NL|yrar = Iy |l [xus1 — xll (12)
where the last inequality uses |[W — J|| = X and the L-
smoothness of each f;. We note that, V& > 0,
[I%k+1 — x|
= [|[Xkt1 — IXpg1 + Ixpg1 — Ixp + Ixp — x4 |
< b — x| + v/ gl + I, — Ix]
< 2|xp — Ixi|| + v/ |l + ar Y41 — JYk+1H1~3
(13)

where the last inequality uses Lemma 2. We use (13) in (12)
to obtain: Vk > 0,

(W =) yrt1, (W = J) (Viiy1 —
< Moy L Y1
+ (M [yr41

Vi)

— Jyral?

— Iyrsll) (AarLv/n|g,ll)
Cs

Iy DO e — Tl
Cy

+2(A lyg+1 (14)

By Young’s inequality, we have that

C3 < 0.5mA? [lyrer — Jyesa|® + 0507 N2 L2n g, 1%
where n; > 0 is arbitrary, and that,

- Ix %,

Cy < A2 |lyir — Iyl + 15 TAZL? [|xy,

where 75 > 0 is arbitrary. The proof follows by Using the
bounds on C3 and Cy in (14). O

With the help of auxiliary Lemmas 5-7, we now prove an
upper bound on the gradient tracking error.

Lemma 8. Let Assumption 1-3 hold. If 0 < oy, < 4 then

24>\L’
we have: Yk > 0,
E Iyit2 — Iyiial® o1 )‘2153 [yis1 — Iyes |
nL? - 2 nL?
24X2 T |lxp — Ix)?
E
Uy [ n
6N%a2 == 2, 62
+ T ELIVE ] + 75

Proof. We apply the upper bounds in Lemma 5, 6 and 7 to
Lemma 4 to obtain: Vk > 0,Vn; > 0,Vne > 0,

Elllyrte — JYk+2||2]
< A2(1+ 12023 L2 + 2 ax L + m1 + 212)
X E[|lyks1 — JYk+1||2]
+ (3\*n + 2)v2
+ (184205 1) N L2E[ [[xs — I ||?]

+(6+n ") AaiL*nE] gl . (15)

3We note that 7 and 72 will be fixed later.



11; 2 in (15). It is straightforward
Vk > 0, then we have:

1+ A2

2
We set 1), = 13- and 7 =

to verify that if 0 < oy, < 24>\2L’

N (14120202 L% + 2 apL + n1 + 212) < (16)

Moreover, recall from (5) that

E[llg,)?] < E[HWkH"’} +v2/n. (17)

Using (16), (17) 771 = 6/\2 ® and Ny = 15?; in (15), we have:
if 0 <ag < 24/\%, then
E[llyire — Jyrsal?]
< ! —;)\Z]E[HYI«H = Jyrl?] + (% + 5”) vy
B sl - Jxknz] + OO g .
The proof follows by 1 )\2 < 1if 0 < ay, < 24>:\L,Vk O

C. LTI dynamics

In this subsection, we establish the convergence rate of
GT-DSGD for general smooth non-convex functions under an
appropriate constant step-size such that o, = a,Vk > 0. To
this end, we now jointly write Lemma 2 and 8 in the following
linear-time-invariant system that characterizes the convergence
of consensus and gradient tracking process.

Proposition 1. Let Assumption 1-3 hold. If 0 < o < 2 4/\L,

then we have the following (entry-wise) matrix-vector inequal-

ity hold: 'k > 0,
up1 < Guy + by, (18)

where the state vector ui, € R?, the system matrix G € R2x2
and the perturbation vector by, € R? are given by

E[”er} 1+X% 2a2\°L°
n 2 1— A2
Uy = ) , — , ,
g [ 1¥er1 = Iyi 24\ 14+ A
nlL2 1— )2 2
[ 0
bk: 6)\2 V2
(|95 ] + 2

In light of Proposmon 1, we first solve the range of a such
that p(G) < 1, using the following lemma from [30].

Lemma 9. Let X € R be a non-negative matrix and x €
R be a positive vector. If Xx < x, then p(X) < 1. Moreover;
if Xx < 2x, for some z > 0, then p(X) < z.

L 10. If0 < a < LA U2V L hen we
emma [f0 < o < min 24)\ ) TTEN }Z’t en we have
p(G) < 1 and hence Y ;- G* = (I, — G)™*
Proof. In the light of Lemma 9, we solve the range of a and
a positive vector s = [s1, s3] such that Gs < s, which is
equivalent to the following two inequalities:
14 A2 n 202 \2 L2 < o2 < (1-X?)?2s
S S S —————
2 TP ANL2 sy
2 2 — 22
24\ +1—|—)\ < 571<(17)\)
12T Ty e sy o 48N

We set s1/s2 = (1 — A?)?/(50\2) and the proof follows by
using it to solve for the range of « such that the first inequality
above holds. O

Now, we prove an upper bound on the accumulated consensus
errors along the algorithm path as follows.

Lemma 11. Let Assumption 1-3 hold. If 0 < o <

min 12 412, (; \[/\if % then we have the following inequality.
K drago K—1
ZE{""“ _ank|| ] < ifa AAQ; &[98
k=0 k=0
1602X\* ||V |®  112a2A202K
(1-X2)3 n (1 =A2)3
Proof. We recursively apply (18) to obtain: Vk > 1,
k—1
w, < GPug+ Y G'broy 4. (19)
t=0

Summing up (19) over k from 1 to K, we obtain: VK > 1,

K K k-1
Zukg ZG’“mﬁ—ZZG br_1-+
k=0 k=1 t=0

IA

(<) (W) g
Yo

In light of (20), we next compute an (entry-w1se) upper bound
on (I — G)~! as follows. We note that if 0 < o < (1-A")

=T -G) lug+ (I — (20)

8V6A2L’
(1—2%)2  48a2ML% _ (1-)?%)2
I, - = — >
det(lz ~ G) 4 1-A)2 = 8
Using the lower bound on det(I> — G) above, we have that
4 16a2)\2 L2
_ L - G) 1-A2  (1-x2)p3
I —Q) ! = (-G
(I = G) det(I, — G) — | 1922 4
(1—x2)3 1-A2
(2D

We use (21) in (20) with [|xg — Jxg|| = 0 to obtain: VK > 1,

— Jv+l?
[CExa
n

== 2] 96a*\VIK
E[|[VE[°] + RTESUIE

Finally, we use the gradient tracking update (la) to obtain:

Ellyr — Iy ]
= E[E[ (W — J)goll* ]| Fo]
= E[I(W —J)(go — V) |*] +E[[|(W — )V ]
< N2 + 22| VE |12, (23)
where the second equality uses E[go|Fo] = Vi and that V1

is constant and the last inequality uses ||[W — J|| = A. The
proof follows by using (23) in (22). O

K

Z E llxx — Ix||
n

k=0

2 1602 )2
<
(1—A2)3

96aiN1L2 KL

+ 7 (22)
(=)=



Lemma 11 states that the accumulated consensus error may be
bounded by the accumulated average of local exact gradients
and the accumulated variance of stochastic gradients. We next
show that this bound leads to the convergence of GT-DSGD for
general smooth non-convex functions, i.e., Theorem 1.

Proof of Theorem 1. We take the expectation of the descent
inequality in Lemma 3 and sum up the resulting inequality
over k from 0 to K — 1, VK > 1, to obtain: if 0 < a < 5

2L
a K-1
E[F(Rx)] < E[F(&)] - 5 Y E [|VFE)I]
k=0
K-1 2,2
o} E— o*v;LK
-7 L E[IVE] + 5
k=0
aLl? " T xe — Ixi |
+ =5 kZ:O E{ - ] (24)

Rearranging (24) and using that F' is bounded below by F'*
obtains: if 0 < a < VK > 1,

K-1

S E[IVF&E)I] <

2L’

2(F(Xo) — F*) N av’LK

=0 « n
1 — 2 = [Ixr — Ixp|]
SO YRR SRS S
k=0 k=0

Moreover, we observe: VK > 1,

1 Kl
g;kzz; [zaColly
K—

=

25 (®[IvFed) - VFEI + I9FEI)
=1 k=0

3 LQK—1E|:||Xk JXkH }_’_22 {HVF )| ]

= X

where the last inequality uses the L-smoothness of F'. Us-
ing (25) in the inequality above obtains: VK > 1,

n K1 —F*)  2av?LK
2 Y E[lvre)|] < ), 2
i=1 k=0
= m Nier 121 o ar2 = ] Ik = Ixi]
E|[[VE:[°] +4L IE[}
k=0 k=0
(26)

We finally apply the upper bound derived in Lemma 1 120211 the
term of (26) to obtain: If 0 < a < min {3, 4 =22 (1=2%) 1L

24\ 0 8f)\2

1 n K-1

P2 Y E[[VEGI]

n

i=1 k=0
< 4(F(Xo) — F*)  2av2LK ~ 4480%L°N\*V2K
a n (1 —)2)3
384a L A 64a2L2)\4 ||Vf0||

-(1- )ZE[\mM i
Clearly, if 0 < o < L, then 1 — % > 0, and the
proof follows by dropping the negative term. O

VI. CONVERGENCE ANALYSIS UNDER PL CONDITION:
CONSTANT STEP-SIZE

In this section, we, built on top of the results established in
Section V, develop general bounds on the iterates of GT-DSGD
when the global function F' further satisfies the PL condition
and prove Theorem 2. The following is a useful inequality that
may be found in [26].

Lemma 12. Let Assumption I hold. We have: Vx € RP.
IVF&)|? < 2L (F(x) — F*).

Proof. By (3) and the fact that F' is bounded below by F™,
we have F* < F (x — L'V F(x)) < F(x) - & |[VF(x)|,
which yields the desired inequality. O

We conclude from Lemma 12 that, under Assumption 1 and 4,
p < L and recall k := L > 1. The following lemma is helpful
in establishing the performance of GT-DSGD at each node.

Lemma 13. Let Assumption 1 hold. We have
. Z

Proof. Setting y = x}, and x = X, in (3), we obtain
F(x;) = F*

< F(Xy) — F* + (VF(Xp), %}, — Xi) +

< F(xp) = F* 4+ [VE&)| ||xk — %] + 5L ||,

< F(Xy) — F*+ L7V |[VE&)|)? + L||x}, — ikHQ

< 2(F(xx)

s, — I

NV<2(FXk)—F)+L

5L [k — x|

— P+ L|x, — =i, @7)

where the third inequality uses Young’s inequality and the last
inequality is due to Lemma 12. Averaging (27) over ¢ from 1
to n proves the lemma. O

In the following, we refine several results developed in Sec-
tion V. We first use the PL inequality to in Lemma 3.

Lemma 14. Let Assumptions 1-4 hold. If 0 < o < 5 L, then
we have: Yk > 0,
F F(x,) — F*
E {m“‘}‘k} <(1 —Mak:)L
L
arL ||xx — Jxk||2 ail/g
2 n on

Proof. The proof follows by using the PL condition in the
descent inequality in Lemma 3 and then substracting F™* from
both sides of the resulting inequality. O

We next use Lemma 12 to refine Lemma 8 as follows.

Lemma 215. Let Assumption 1-3 hold. If 0 < ap <
min {%, l}ﬁ, then we have: Yk > 0,

E Iykre — Iyksal’ < 1+/\2E [ S
nL2 - 2 nL2
24N2a2 L2 [ F(Re) — F*
1— )2 L
200 [l — Il | 6w
1—)2 n L2



Proof. By Lemma 1(c) and Lemma 12, we have: Vk > 0,
— 12 . _ — 12
IVEL|” <20IVF&)|? +2||VEe) — VEi|
<AL (F(Xy) — F*) + 20207 ||lx — Ixi||*. (28)

Using the inequality above in Lemma 8 to obtain: Vk > 0,

E [¥kt2 — Iyisal’
nL?

2402 12\2a2 L2 x — Ixi|?] 602
< (e
24N L e a o LA Tk —Jyeqal?
T PG -FT E[ nL? ]
The proof follows by % < % if0<op <5 O

We now write the inequalities in Lemma 2, 14 and 15 jointly
in a linear dynamics as follows.

Proposition 2. Let Assumption 1-4 hold. If 0 < ap <

. — 2 b 2y2 .
min {1, 112§ , (i \/g)\l ﬁ then we have the following (entry-

wise) matrix-vector inequality: Yk > 0,

Vit1 < Hpvy +ug, (29)

where the state vector vi, € R3, the system matrix H € R3x3
and the perturbation vector u;, € R? are given by

oo -
E{Xk—JXkH ] 0
n
F(Xy) — F* Q2?2
— E _— = & a
Vi |: 3 9 U m )
E i1 — Iyl 6va
L nL? ] L?
(1422 202 \2[2]
2 1— )2
L
Hk = Oé% 1-— MO 0
97N 2UN2a2L? 14 N2
L1 — )2 1— )2 2 i

In the following lemma, we find the range of the step-size oy
such that p(Hy) < 1,Vk > 0, with the help of Lemma 9.

Lemma 16. Let Assumption [-4 hold. If the step-size se-
quence «ay, satisfies for all k that
1 (1—-)2)?2

O<ap <a:= min{ZL, 12T

1-X22 1-)2
T24NLEYVAT 2u 7
(30)

then we have: p(Hy) <1 — £52 <1, Vk > 0.

Proof. In the light of Lemma 9, we solve for the range of
the step-size oy, and a positive vector § = [01, d2,d3] such
that H;,6 < (1 — £3%) &, which may be written as

Hou 2042)\2L2 573 < 1- )\2’ 31)
2 1—-X2 4 2

ko1 < 09, (32)

Hou 1-A2 B 27\2 0 24)\20%1;2672 (33)
2~ 2 1— X245 1—-22 4§35

According to (32), we fix 41 = 1 and d5 = k. We now impose
that 0 < a < 1A ,Vk > 0. Then, according to (33), we

2p
2772 1 24)\2aiL2 K 1—-\2
choose §3 > 0 such that 1_/\2(25—324—2 Ty S - It
2 96A%a2L
suffices to fix 63 = (1198)\’2,)2 + 22 %2 " Now, we use the fixed

(1—A2)2
values of 1,2, 3 and the requirement that 0 < o <
to solve the range of ay such that (31) holds, i.e.,
21601%)\4[/2 192@%)\4114/1 1— )2
(1—2)2)3 (1=X2)3 — 4
It therefore suffices to choose «;, such that
1—22 (1-)2%)2
6ALKL/AT 42)2L '

1-)2
2u

O<ak§min{

Summarizing the obtained upper bounds on a4, in the discus-
sion completes the proof. O

We note that @ defined in (30) is the same as the one given
in Theorem 2. The following lemma drives upper bounds on
several important quantities.

Lemma 17. Let Assumption 1-4 hold. If 0 < oy, < @, where &
is given in (30), then we have: Yk > 0,

_ 288 a2 L3ky2 14402 )\212
I.—H 1 < k a k a
[( 3 k) uk:ll —_ n(l _ A2)4 (1 _ )\2)3 )
_ 3apr?  T2A%202 k13
I _ H 1 < a k a .
[ (s B, < 2un (1—A2)

Proof. By the definition of Hj in Proposition 2, we first
compute the determinant of (I3 — Hy): Vk > 0,

opog(1=X2)? 24a) LAY Bdpod L2A*
B 4 (1= )2)2 (1—22)2
o Ho(l =A%)

- 12

if 0 < ar < @, where @ is given in (30). Moreover, the
adjugate of I3 — Hy, denoted as H”, is given by

det (I3 — Hj)

48\t L* 2pai N2 L2
[ﬂ*]u:iv [E*h?):L’
, (1—X2)2 ; 1— )2
. (1 _/\2)2 . ad L3)\2
H,, < 1 H, ;= 1k_ VI
The proof follows by (I3 — Hy)~! = H*/ det (I; — Hy) and
the definition of uy given in Proposition 2. O

We are now ready to prove Theorem 2 that characterizes the
performance of GT-DSGD under a constant step-size.

Proof of Theorem 2. We consider a constant step-size such

that o, = «a,Vk > 0, with 0 < a < @ where @ is given

in (30). We denote H, := H and u; := u,Vk > 0, and

recursively apply (29) from & to 1 to obtain: Vk > 1,
k—1

vy, < Hfvg + Z H'u < Hfvy+ (I3 —H) 'u.
t=0

(34)

It is then clear that the first two statements in Theorem 2 follow
by using Lemma 16 and 17 in (34) and the third statement in
Theorem 2 follows by Lemma 13. O



VII. CONVERGENCE ANALYSIS UNDER PL. CONDITION:
ALMOST SURE CONVERGENCE

In this section, we prove Theorem 3, i.e., the almost sure
sublinear convergence rates of GT-DSGD when the global
function satisfies the PL condition under a family of stochastic
approximation step-sizes. We first establish a key fact that
under appropriate step-sizes, the stochastic gradient tracking
errors are uniformly bounded in mean squared across all
iterations. This fact will also be used in Section VIII.

Lemma 18. Let Assumptions 1-4 hold. If 0 < ay < @, for @
given in (30), then we have: sup,q E[ ||y —Jyk||2] <7y,
where 7 is a positive constant given by

. 30A%@PLkr? | 60nA*EPL3(F(X) — F*)
(N PP (1—2)2
16nv2
e (V|2 35)

Proof. We prove by mathematical induction that for the state
vector v defined in Proposition 2, there exists some positive
constant vector V = [0y, 0, 03] | such that

vi <V, Vk>0. (36)

if 0 < ap, < @, where @ is given in (30). We first note that
in order to make (36) hold when k£ = 0, according to the
definition of v and (23), it suffices to choose Vv such that
F(Ro) — F* A2 X[ VE|?
L T L2 nlL?
Next, we show that if v;, < ¥V for some k£ > 0 and then we
also have v,y < Vv with an appropriate choice of v. In light
of Proposition 2, we have vii1 < Hpvy + up < HpV + uy,
and hence it suffices to choose Vv such that H,v+u; < v, Vk,
which is equivalent to the following set of inequalities:

vl > |0,

(37)

202 \2L2 1— A2
T e 08 S T, (38)
2
K _ RV, ~
5’1}1 + 2];” S Vg, (39)
27A2 _ 24N202L7 . 6v2  1— A7
et e Rt STyt (0

where 0 < ay < @ and x = L/u. First, we note that to
make (38) hold, it suffices to choose v as

21272
v = 7??3}\2[/)2@3 41)
Second, based on (37), (39), and (41), we choose Vo as
24272 — 2 = *
B = 72(04 4 Afé)g 3+ g L‘O)L 2w
Third, to make (40) hold, it suffices to choose ¥3 such that
N 54X 48N\?@”L2 1202
B2 et e 2t pa oy @Y
which, using (41) and (42), is equivalent to
o 216a@2 M2 . 9eNtE LA . 24N*@PLky?
U Z T ey Bt T e B e
22 = * 2
48X\ a(ji(fi);()g F*) n L2(112ia)\2)- (a4

By the definition of @ in (30), we have % <

that % < ;=5 therefore, to make (44) hold, it suffices
to choose v3 such that

5 30\2a@3Lkv?  60\*a? L(F (%) — 1502
55 (11— a2)2 (1—A2)? L2(1—22)

Based on the above inequality and (37), we choose U3 as

6
1 and

F*)

+

~ 30\2@2Lev2  60\2@*L(F (Xo) — F*)
"= n(l — A?)2 (1 —)2)2
1612 A2|| V1|2
oot T
The induction is complete and the proof then follows by the
definition of vy in Proposition 2. O

We prove Theorem 3 using the Robbins-Siegmund almost su-
permartingale convergence theorem [25], presented as follows.

Lemma 19 (Robbins-Siegmund). Let (Q, F,{F},P) be a
filtered space. Suppose that Zy, By, Cy and Dy are nonneg-
ative and Fj-measurable random variables such that

[Zk-s—ll‘/—'.k} (1 + Bk) Zr +CL — Dy, vk > 0.

Then on the event {3 ;- B <00, Y ,o,Ck < oo}, we
have that limy_, Zy, exists and is finite almost surely, and
that 32 o Dy, < oo almost surely.

We are now ready to present the proof of Theorem 3, where
we construct appropriate almost supermartingales that char-
acterize the sample path-wise convergence rate of GT-DSGD
under a family of stochastic approximation step-sizes.

Proof of Theorem 3. We consider the step-size sequence {ay, }
of the following form: Vk > 0,

ap = 6(k + ()0)_67
such that ¢ > max{(6/@)'/¢, -2 }. Hence, 0 < a, < @ for
@ given in (30). We construct Fj-adapted processes: Vk > 0,
Ry = (k+ ) @) = (k+¢) " xp — Ixi*
Qi = (k+¢) Ay = (k+ @) L7HF(X) — F),
where 7 = 2e — 1 — ¢, where €; € (0,2¢—1) is an arbitrarily
small constant. By 1+xz < e%,Vx € R, we have (k+p+1)" =

(k4 @) (1+ ﬁ)T < (k+ ¢)"eF%. Since 0 < e <L
we have: Vk > 0,

where 6 > 1/p and € € (0.5,1], (45)

(kte+1)" <e(k+¢)"
Further, by e* < 14+x+22for 0 <z < 1,* we have: Yk > 0,
2
k+¢)?
Recursion of R;. We use Lemma 18 in Lemma 2 with the
definition of «ay, in (45) to obtain: Vk > 0,
- 14+ A2 2%y 52
E <
[xk-‘rl] = 2 n(l — )\2) (k + 90)26’

(46)

(k+p+1)7 < <1+k+(p+( >(l~c+go)f. (47)

E [7x] + (48)

4N0tethatex:1+x+z22?’:2 m ,V$€R If 0 <z < 1, then
Wehaveez§1+z+122212%—1+m+(672) 2< 14z + 22,




where ¥ is given in (35). We multiply (48) by (k+ ¢ +1)7
and then apply (46) and (47) to obtain: Vk > 0,

14+ M2 T 72
E|R < — (1 + E|R
Bl < =5 ( k+o (k+so)2> 1R
Tk
2 2 2
A’y 0 . (49)
n(l—A?) (k + @)2“7
Since ¢ > 7 /\2,1e,k+¢_ Vk‘>0 we have
1—)\2 T 72
T,=(1- 1+ +
; < 2 )< k+o (k+90)2>
<14 T n 72 _1—)\2
- E+e (k4 p)? 2
72 1—)\2
<1+ - 50
< Ut o) 1 (50)
Using (50) in (49), we have: Vk > 0,
72 1— )2
E[R < |1+—— |E[Ry] — E[R
(Rl < (14 s ) Bl - Bl
2 2 2
ey 0 51)

n(l =) (k+¢)>
Note that Y~ ,(k+¢) 2 < oo and > po o(k+¢)7 72 < 0o
since 2¢ — 7 > 1. Applying a special case of Lemma 19 for
deterministic recursions in (51) leads to > - E[R;] < oc.

Since Ry, is nonnegative, by monotone convergence theorem,
we have E [} 72 Ri] = > oo E[Ri] < oo which implies

P (Z Ry < oo) =1. (52)
k=0
The first statement in Theorem 3 then follows by (52).
Recursion of ();. We recall from Lemma 14: Vk > 0,
10 Ls
E (A1 Fil < (1 - )Ak + 5
Bl b+ )™ T 2+ oy
2 52
a9 (53)
2n (k4 )2

We multiply (53) by (k+ ¢+ 1) and then use (46) and (47)
to obtain: Vk > 0,

1% T T
E Fel < (1—— (1
[Qr+1l k]_( (k+<p)f)( +k+<p+(k+cp)2>Qk
Py
eld ev? 52
— R e e 54
+ 2(k + p)e . 2n (k + @)2e— (>4)
We observe that
T 72 o
P. <1 —
T e TR Ger
72 wo — 1
<1+ — ) (55)
(k+¢)? (k+¢)
We use (55) in (54) to obtain: Vk > 0,
72
o — 7
E < L —
Qi< (14 g )~ g
Lé 2 52
n e ev; (56)

Y - T —
2+ @) " 2n (k+ )27

Recall that 72 ((k+¢) ™2 < ocoand Y oo ((k+¢)" 2 < oo
since 2¢ — 7 > 1. Note that 6 > 1/u, i.e., ué > 7, applying
Lemma 19 in (56) with the help of (52) gives:

(i 0=0) -1

where () is some almost surely finite random variable, and

(57)

oo
)
]P’(Z(Z+ )Qk<oo>:1. (58)
Since Y2, (iié = 00, where € € (0.5, 1], we have
= ud—T .
{kz_o o< oo} c {hkn;g;fczk 0}, (59)

where “C” denotes the inclusion relation for two events. By
the monotonicity of (), (58) and (59) lead to

P(lpmint Qe =0) =1

From (60) and (57), we conclude that P () = 0) = 1 and then
the proof follows by (52) and Lemma 13. O

(60)

VIII. CONVERGENCE ANALYSIS UNDER PL CONDITION:
ASYMPTOTICALLY OPTIMAL RATE IN MEAN

In this section, we prove Theorem 4 and Corollary 2, i.e.,
the asymptotically optimal convergence rate of GT-DSGD in
expectation and the corresponding transient time to achieve
network-independent performance, when the global function F’
satisfies the PL condition. Recall that in this context we focus
on the following step-size sequence [1]:

ap = 76

k+~’

where 8 > 0 and v > 0 are parameters to be restricted later.

We require v > B/@ so that 0 < ay < @ for @ in (30). We
first prove a non-asymptotic rate on the consensus errors.

k>0, (61)

Lemma 20. Let Assumption 1-4 hold. If v > max { - )\2 }
for @ given in (30), then we have: Yk > 0,

< P
S+
for iy given in (35).

[ka ~ Ix|? (62)

where T 1= 8\?y(1 — \2)~2

Proof. We prove by induction that there exists a constant T

such that (62) holds. First, since xf = xg,Vi,r € V, (62)

holds trivially when k£ = 0. We next show that if (62) holds

for some k£ > 0 and then it also holds for £+1. From Lemma 2
and 18, we have: Vk > 0,

1+

2

Therefore, it suffices to choose Z such that Vk > 0,
1+ zp? 22y p? zp3?

2 (k+7)? 1-X(k+7)?~ (k+~y+1)%

which is equivalent to

2\%gaz
1—A2°

E[|[xk41 — Ixps1]?] < E[||xx — Ixx||*] +

(k+7)

2)%y 2 14+ A2\
< _
1)\2_((k+7+1)2 2 )x (63)




Since the RHS of (63) monotonically increases with k, we
suffice to choose 7 such that (63) holds when k = 0, i.e.,

222y << 72 1+)\2>§ (1/\2 2y +1 >§
IR > nen)”
Since2 (3?:{)12 < 2

(1_2’\ ,%)g Flnally, ify> = )\2,1t can be observed that the

induction is complete by setting 7 := 8A\?j(1 — A\2)=2. O
We next present a useful lemma adapted from [23], [32], [33].

Lemma 21. Consider the step-size sequence {ay.} in (61). We
have: for any nonnegative integers a,b such that 0 < a < b,

b

(a+)"
g (1 — pas) < m

Proof. By (61)and 14+ 2 < e”,Vz € R, we have: 0 < a < b,

: : wB " uB
1-— = 1-— < - .
It pe = IL(1- 5 = - 2007 )
(64)
Since s+ > S+wﬂld ,Vs >0, we have: 0 < a < b,
gl s+
b b
1 sty b 1
3 22/ —dr =1o <+7+) (65)
S:as—'_’y s=a’5tY a+y
Applying (65) to (64) completes the proof. O

Now we are ready to prove Theorem 4 through a non-
asymptotic analysis inspired by [9], [23], [33], [34], [38].
Proof of Theorem 4. We denote Wy, := E[L™(F(Xy) — F*)]
Using Lemma 20 in Lemma 14 gives: if y > max{f, Tz S

Upi1 < (1 — pog) ¥y +dai +zai, Yk >0, (66)

where u and Zz are defined as, for Z given in (62),
2 o~
SO 7 ~ Lz

= d =
U= an 7=

We recursively apply (66) from k to 0 to obtain’
Uy,

k—1 k—1
< ¥y H(l — poy) + Z < (ﬂaf + Ea?)
=0

t=0

(67)
k> 1,

k—1

IT 1)

I=t+1
ups
< ¥y 5 T (
- k—s—v ; t+7
wp 2
T Z
(k4 )18 k+’y )&

t+1+w“ﬁ
k+7“52 ’

where the second inequality is due to Lemma 2 1. Furthermore,
by 14+ <e”,Vxr € R, we have: for 0 <t <k —1,

(t+1+~)m8 ( 1 )ﬂﬁ { }
ST +—+ < exp S <\/e, (69)

26° )(t+1+7)“ﬁ
) e

t+ 1+
(t+7)?

=y

(68)

SFor a sequence {sy}, we adopt the convention [TY__ s = 1if y < a.

where the last inequality uses p3/v < pa < 0.5. We use (69)
in (68) to obtain: Vk > 1,

k—1+
U, < 0 gliad veup? R
I e D U e D et
~n3 k—1+~
L Ve 03, (70)
(k+ ) =

By s#7~ 2<max{f+1x“5 2da, [0
if B> 1/u, then Vk > 1,

k—14~ uB—1
P2y <7(k +) .

B—2
ZSH </1 T oup-1

Likewise, by s##~3 < max { f:“ B3 dx, f:_l $“5_3d:13},
we have: if 5 > 2/u, then Vk > 1,

k—1+47 k+v

Z 5#5*3§/ w

s=n y—1 H/B -2
Now, we apply (71) and (72) in (70) to obtain: Vk > 1,
oyH? Veup? Vezp?

(ke (uB=1)(k+7) (1B —=2)(k+7)*
(73)

Using (73) and Lemma 20 in Lemma 13, we obtain: Vk > 1,
n <.\ _ % ~Q2
LS pirx AF(K) —F*)  2y/eLiB
n (k/y+ 18 (uB —1)(k+7)
2\/eLz3? 2732
(B =2)(k+7)*  (k+7)*

The proof follows by that (sz»y)z < WP lé‘j(k Feb and by

recalling the definitions of & and Z given in (67). O

2"P=2dz}, we have:

(71)

2P 3dr < (72)

¥y, <

,F*]S

Proof of Corollary 2. We derive the conditions under which
the rate expression in Theorem 4 is network-independent. We
first solve for the lower bound on £ such that

Lv2j3? L2333
n(pf —1)(k+v) = n(uB —2)(k+ )’
which may be written equivalently as
pB —1Lzp
pB—2 vz’
We suppose that | Vfo||> = O(n),

k+~y> (74)

= 0/u, where 0 > 2.

Since aL = O()\ 1?4), for @ defined in (30), we have
I Nnv2 XeV42 N2nL(F(X) — F¥)
N (1—-X)3 1-A (1 —\)2k1/2 ’

where 7 is defined in (62). Therefore, to make (74) hold, it
suffices to let

Ank N &S/ Nkl 2L(F(Xo) —
(I=X)3  1-2X (1—=X)22
Next, we solve for the range of k such that for some § € [1,6),

k 0 k+1Ns o (k+)°
(F+1)7 = (557)° ie, (
choose k such that

F*)

kZz (75)

0
Tr1)s > I Since v > 1, it suffices

)

M = T (76)



_ 0 8 o Mr APt 1
We fix v = max{;z, 7=} = max{r, 5755, Tox %

Using (75) and (76) in Theorem 4, we have

1 ; KO (F(Xg) — F* K2
Z(F(x}c)—F*):O(( (]:5) )+W2>,

if & 2 max{K;, Ks}, where Ky and K, are given by
Ank AP N2pgl2L(F(%y) — F*
Ky = - L ( (20)2 ),
(1-2X) 1-A (1—=X)22
)\QIi )\H5/4 1 efa s
0—3o
max{n,(l_)\)Q,l_)\,l_)\} K .

The proof follows by setting § = 2 and 6 = 6 in the above. [

Ky =

IX. CONCLUSION

In this paper, we comprehensively improve the existing
convergence results of stochastic first-order methods based on
gradient tracking for online stochastic nonconvex problems.
In particular, for both constant and decaying step-sizes, we
systematically develop the conditions under which the perfor-
mance of GT-DSGD matches that of the centralized minibatch
SGD for both general non-convex functions and non-convex
functions that further satisfy the PL condition. Our results
significantly improve upon the existing theory, which suggests
that GT-DSGD is strictly worse than centralized minibatch
SGD. For a family of stochastic approximation step-sizes,
we establish the global sublinear convergence to an optimal
solution on almost every sample path of GT-DSGD when the
global objective function satisfies the PL condition.
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