Analyzing the Performance of ICN Forwarders on the Wire

Adam Drescher
adrescher@wustl.edu
Washington University in St. Louis

Jyoti Parwatikar
jp@wustl.edu
Washington University in St. Louis

ABSTRACT

Information Centric Networking (ICN) is growing in both popu-
larity and maturity. Two highly-related architectures under the
ICN umbrella, Content Centric Networking (CCNx) and Named
Data Networking (NDN), received significant effort to improve their
forwarding performance. Despite this focus, little work has been
done to evaluate ICN forwarders in a comprehensive and rigorous
manner. Furthermore, the preexisting literature in IP can only apply
broadly due to the substantial differences between the architectures.

In this paper, we provide a methodology to analyze the perfor-
mance of ICN forwarders. Our testing methodology has two key
focuses: (i) packet processing performance is the primary metric of
exploration, as bytes are usually cheap; and (ii) the PIT, FIB, and
Content Store are the primary structures to probe when consider-
ing performance impact. With these focuses in mind, we present
a series of behavioral microbenchmarks that can probe the per-
formance of CCNx/NDN forwarders in a rigorous way. To show
the efficacy of these experiments, we apply them to the reference
forwarders of the CCNx and NDN architectures, Metis and NFD,
giving us a careful understanding of their performance characteris-
tics. Additionally, these microbenchmarks should readily apply to
high performance forwarders in the space.

CCS CONCEPTS

« Networks — Network architectures; Network measurement;
Routers.

KEYWORDS

Named Data Networking, Content Centric Networking, Forwarder
Performance Analysis, ICN Packet Processing

ACM Reference Format:

Adam Drescher, John DeHart, Jyoti Parwatikar, and Patrick Crowley. 2020.
Analyzing the Performance of ICN Forwarders on the Wire. In 7th ACM Con-
ference on Information-Centric Networking (ICN 20), September 29-October

*Also with Cisco Systems, Inc..

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN °20, September 29-October 1, 2020, Virtual Event, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8040-9/20/09....$15.00
https://doi.org/10.1145/3405656.3418722

52

John DeHart
jdd@wustl.edu
Washington University in St. Louis

Patrick Crowley”
pcrowley@wustl.edu
Washington University in St. Louis

1, 2020, Virtual Event, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/lO.l145/3405656.3418722

1 INTRODUCTION

Information Centric Networking remedies much of the inflexibil-
ity of the current architecture of the Internet, and provides a rich
abstraction that has prompted many new areas of exploration. How-
ever, this paradigm is not without its own unique challenges. Scala-
bility is a key challenge when in-network forwarding decisions are
based on content names. Indeed, significant research effort has tar-
geted how to forward named content in a high performance manner
[1,9,13,15-17, 21]. However, there is little prior work on the proper
way to evaluate the performance of ICN forwarders. Because of
the differences in forwarding architecture, the space of exploration
is quite different from IP-based experimental methodologies. ICN
forwarders need an ICN-focused experimental methodology.

In this work, we aim to provide first steps towards a rigorous
experimental methodology for ICN forwarding performance. First,
we discuss practical concerns of testing in ICN. Then, as our pri-
mary contribution, we present a set of behavioral microbenchmarks
that interrogate the packet processing capabilities of the core data
structures in an ICN forwarder: the PIT, FIB, and Content Store.
These microbenchmarks are designed for running on the wire, as
they gather their performance measurements without the need to
instrument the target forwarder’s code. Last, we apply this method-
ology to NFD and Metis, the reference forwarders for NDN and
CCNx, in order to show the microbenchmark’s ability to reveal
complex behavior in the forwarder’s packet processing. These are
not bleeding edge performance numbers, as even for the ICN land-
scape the performance of these forwarders are quite low—however,
they do reveal the performance of forwarders that many people
use. More importantly, these microbenchmarks should be readily
applicable to high performance ICN forwarders.

2 BACKGROUND

We designed these behavioral microbenchmarks to reveal the packet
processing performance of ICN forwarders, focusing on the core
data structures as potential bottlenecks. As a vehicle for experimen-
tation, we apply these microbenchmarks to the reference forwarders
for NDN and CCNx, NFD and Metis respectively. To understand
the importance of these data structures, we need a high-level un-
derstanding of the forwarding architectures of NFD and Metis.
Both NFD and Metis follow the same key steps. Every forwarding
operation takes place on the name of data/requested data. When
an Interest packet is received, they insert a record of it into the

https://doi.org/10.1145/3405656.3418722
https://doi.org/10.1145/3405656.3418722
https://doi.org/10.1145/3405656.3418722

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

Pending Interest Table (PIT). The PIT is a catalog of what requests
are in flight, and are the breadcrumbs that data packets follow on
the return path. Next, they check the Content Store to see if the
requested data has already been cached in the forwarder. If the
data is in the Content Store, it can be sent immediately without for-
warding the request further. If it is not, they check the Forwarding
Information Base (FIB) to determine what interface to forward the
request out. If there are multiple interfaces available for that prefix,
forwarding strategy is the component that selects which interfaces
to actually use. When a Data packet is received, a PIT lookup is
performed to ensure the data is asked for. If it is, the forwarder
inserts the data into the Content Store, and then forwards the data
along the interface(s) marked in the PIT entry.

However, NFD and Metis do have differences in their implemen-
tations and in their parent architectures, which must be specifically
addressed to ensure a fair comparison. First, NFD uses a tree-based
data structure to provide a unified PIT and FIB [2], whereas Metis
uses separate data structures for the PIT and FIB [11]. While this
is a difference in implementation, we have nothing to control for
since there is no difference in forwarding semantics. Second, NFD
and Metis have different default behavior for selecting an output
face (ICN interface) in the presence of multiple faces: NFD selects
a single ‘best’ face, whereas Metis splits the load evenly across
the candidate faces. In experiments involving multiple faces, we
ensured that NFD achieved the same load-splitting behavior that is
the default in Metis. Third, NFD’s Content Store naturally has more
overhead because it supports more rich functionality: matching
interest prefixes with data names. Our microbenchmarks do not
leverage this extra functionality, but we cannot eliminate overhead
incurred from its support.

3 DETAILS OF EXPERIMENTATION

This section discusses some practical details of our experimen-
tal method. In particular, we present the way we generated our
synthetic workloads and details of the machines used for our ex-
periments.

3.1 Workload Generation

We must carefully consider the workload for these microbench-
marks, as ICN names are hierarchical and variable length. This
adds additional complexity to the packet processing tasks of an ICN
forwarder, and the structure of content names can affect forward-
ing performance. To our knowledge, there are no satisfactory ICN
workloads on the Internet; icn-names.net seems to have been a
useful resource, but at the time of writing is no longer hosted. As
a result, we generate our own synthetic workload for testing ICN
forwarders, inspired by published techniques in [5, 14].

Many previous works in ICN leverage the Alexa and DMOZ
top URL lists to generate their synthetic workloads, but these are
no longer available. Fortunately, Cisco provides the top 1 million
domains on the Internet in their Umbrella Popularity List [3]. We
use this as a starting point, but must adapt it to ICN: we convert the
domains into ICN names, preserving the intended hierarchical struc-
ture. As an example, www. google. com becomes /com/www/google.
By retaining the hierarchical structure in the URL, the number of

53

Drescher, DeHart, Parwatikar, and Crowley

name components (and their respective lengths) are derived directly
from the domains themselves.

However, because the Umbrella dataset gives us domain names,
we need to do more work to have our synthetic workload properly
reflect how content names are distributed. While we are unaware
of any academic work on average URL length, [6] reports that
the average URL length is 76 characters. The average name in our
workload is 20 characters, so we add 56 characters of padding to
allow our average name length to match the average URL name
length. For simplicity, we use this extra padding as the content
name being requested. Finally, to incorporate content popularity
we use RFC 7945 as our model for achieving this in the context
of ICN [5]. Following the ‘Web’ portion of the RFC, we generate
our synthetic workload by sampling our padded, translated names
via a Zipf distribution with a = 0.64. For higher fidelity workload
generation, separate distributions could be used for the “domain
names” and the content names. Additionally, the amount of name
overlap could be explicitly parameterized.

3.2 Experimental Setup

Our experiments were conducted on machines from the Open Net-
working Laboratory [19], which allows us to run these ICN for-
warders on bare metal with guaranteed isolation. For nearly all of
the experiments, our logical topology is a simple dumbbell topology,
with one producer machine and one consumer machine directly
connected to the device under test (DUT). In specific cases, we have
two producers and/or two consumers directly connected to the DUT
on separate interfaces. The DUT has an Intel Xeon E5520 clocked
at 2.27GHz, which has 8 cores (16 hyperthreads) spread across two
NUMA nodes. It also has 12 GB of DDR3 memory clocked at 1066
MHz, and an Intel 1350 NIC with 4 ports at 1 Gbps. For software, the
DUT is running Ubuntu 19.04 with Linux kernel 5.0.0, NFD version
0.6.6, and Metis at commit e59f9¢7.

ICN experiments are often bottlenecked by the traffic output of
end hosts as opposed to the pure forwarding nodes, as NFD / Metis
must also be run on the end hosts serving up the test traffic. To avoid
this bottleneck, we wrote simple yet powerful NDN/CCNx packet
crafting tools to generate and send our workloads at much higher
speeds than Metis or NFD can support. In doing this, we ensured
that producer and consumer machines are not the performance
bottleneck. On the DUT, we verified that any bottlenecks lie in the
ICN forwarders processing capabilities and not in any lower layers
(e.g. socket layer, kernel, or hardware).

4 MEASURING THE IMPACT OF THE PIT

Focusing on the PIT is essential for interrogating the performance
of an ICN forwarder, as it must handle per-packet writes to provide
the ICN breadcrumbs. To find the bottleneck processing rate of the
PIT, we need to minimize the impact of the other key data structures
in the forwarding pipeline: the FIB and the CS. The FIB effects can
be minimized by sending all traffic through a single default prefix.
Unfortunately, the default prefixes in Metis are bugged, so we must
rely on a workaround by adding 40 single component prefixes that
nearly span our entire dataset. The Content Store has the smallest
impact when it is disabled via configuration. With this setup, we
maximize our odds of seeing bottleneck behavior from the PIT.

Analyzing the Performance of ICN Forwarders on the Wire

4.1 Interest lifetime and PIT scaling

First, we explore how the interest forwarding rate scales with larger
and larger PIT sizes. Because the PIT is a dynamic data structure
which must continually clean out old entries, we cannot simply
configure the number of items resident in the PIT. However, we
can configure the Interest lifetime in both NDN and CCNx, which
is directly proportional to the PIT occupancy. PIT occupancy is
a function of the interest lifetime and the round trip time. As a
result, we design our first experiment to show how the forwarding
performance scales over a wide variety of interest lifetimes, ranging
from the minimum value 1 millisecond to a rather large value of 5
seconds. For the PIT occupancy to grow and reach its steady-state,
we must ensure that the interests in the PIT will not get satisfied
and cleaned out. To accomplish this, our experiment uses inter-
est forwarding only—no data is sent. Specifically, we measure the
mean interest forwarding rate of each forwarder over the following
Interest lifetimes (in milliseconds): 1, 5, 10, 50, 100, 500, 1000, 5000.

+29.64
5000 16.99

1000 2917

20.08

29.13
21.01

100 | 28.84
- 22.56

500

= Metis

mNFD

28.84
2345

Interest Lifetime

=)

28.78
25.26

28.82
25.49

28.83
24.69
30.00

0. 35.00

o
3

5.00 10.00 15.00 20.00 25.00

Interest Forwarding Rate (KPPS)

Figure 1: Interest forwarding rate over varying interest life-
times.

In Fig. 1 we see the interest forwarding rate over the interest
lifetimes for both NFD and Metis. Metis forwards approximately
29,000 interests per second, or 29 kilo-packets per second (KPPS),
irrespective of the configured Interest lifetime. NFD’s behavior
is more interesting. The lifetime of 5 ms is a performance knee.
Below the knee (with a lifetime of 1ms), NFD takes a performance
hit because it is forced by the small lifetime to clean the PIT too
aggressively. However, after the knee, there is a substantial drop-off
in the interest forwarding rate. In the worst case scenario, a lifetime
of 5 seconds can only forward 17,000 interests per second — a 33%
drop from the peak forwarding rate at the knee. Furthermore, there
is a clear downward slope starting with a lifetime of 50 ms.

We learned from this experiment that the best interest lifetime
for NFD’s PIT efficiency is 5 milliseconds. 5 milliseconds seems
like a good candidate to create PIT churn, so achieving the fastest
forwarding rate is unexpected. However, it makes more sense once
we recall that larger Interest lifetimes increase the PIT occupancy.
It is important to keep in mind that 5 milliseconds might be the best

54

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

for a pure interest forwarding workload, but it would be too small
for some deployments of NFD because the data would not make
it back on time. This elucidates a tension with interest lifetime
timing: we want it small enough to reduce the PIT occupancy
(and by extension the PIT processing burden), but large enough to
ensure our data will still make it back. The default interest lifetime
in NDN is 4 seconds. As a result of this experiment, we know
in certain scenarios this default lifetime could harm forwarding
performance. Fortunately, this is not a strong concern for standard
operation of NFD, as interest forwarding with no data coming back
is not realistic. However, a denial of service attack could use larger
lifetimes to induce more processing burden on the forwarder.

4.2 Interest/Data exchange

In the previous experiment, we explored the influence of the PIT
and Interest lifetimes on the interest forwarding pipeline in an
ICN forwarder. Now we explore the influence of the PIT on inter-
est/data exchange, which incorporates part of the data processing
pipeline. Some ICN forwarders, e.g. NFD, also access the PIT on
data reception to ensure that the data packet was asked for and not
unsolicited. As a result, the PIT has the potential to be a notice-
able bottleneck in the data processing pipeline. Additionally, it is
important to run an interest/data exchange experiment simply so
we have a performance baseline for each forwarder. The Interest
lifetime experiment showed us that 5 milliseconds and 5 seconds
were the two most extreme performance outcomes. As a result, we
do not need to run experiments across the entire grid of Interest
lifetime values. We simply probe the interest/data exchange rate,
measured in thousands of transactions per second (KTPS), over
these two lifetimes.

Table 1: Interest/Data exchange rate over low/high lifetimes.

Forwarder | Lifetime (ms) | Mean Exchange Rate (KTPS)
NFD 5 12.05
NFD 5000 12.04
Metis 5 15.37
Metis 5000 15.21

Table 1 shows the result of the experiment. We can see the in-
terest lifetime has little effect after incorporating the data pipeline.
Data packets satisfy the interests, keeping the PIT occupancy low
enough that the bottlenecks lie elsewhere. We do get a baseline mea-
sure of performance for interest/data exchange on each forwarder:
NFD can support 12 KTPS and Metis can support just over 15 KTPS.
With these experiments, we have explored the PIT’s influence on
both major pathways in an ICN forwarder. One pathway left to
explore is the scenario where we do not forward a request because
we have the data cached locally.

5 MEASURING THE IMPACT OF THE
CONTENT STORE
The Content Store also has a difficult job: it must do per-packet

lookups in the interest processing pipeline, and per-packet inser-
tions on the data processing pipeline. On top of that, it must actually

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

hold the bytes for each data packet it stores. In order to minimize the
impact of the PIT, we will use an Interest lifetime of 5 milliseconds
(the lifetime that had the peak interest forwarding rate). In order
to minimize the impact of the FIB, we again use our default prefix
scheme. With this configuration, we maximize our odds of seeing
bottleneck behavior from the Content Store. Metis and NFD have
different default sizes for their content stores. In order to make a
fair comparison, we configured Metis to have the same size Content
Store as NFD: 65,536 items. Also, while we do not enumerate over
different Content Store sizes in these experiments, that would be a
natural next-step for more in-depth inquiry.

5.1 Interest forwarding: enabled but empty

As a first step to revealing the overhead of the Content Store, we
first want to probe the overhead of an empty lookup. We can do
exactly this with an Interest forwarding experiment. On reception
of an Interest, the forwarder will perform the logic of the Content
Store lookup. Because there will be no data packets flowing on
the return path, the Content Store will remain empty. As a result,
this experiment is simply the Interest forwarding with the Content
Store disabled versus the Content Store enabled but empty.

Table 2: Mean Interest forwarding rate with an enabled &
empty or disabled Content Store.

Forwarder | Content Store) | Mean Forwarding Rate (KPPS)
NFD Ooff 25.49
NFD On 22.33
Metis off 28.82
Metis On 27.97

The results of the experiment are shown in Table 2. Both for-
warders experience performance degradation due to the empty
Content Store lookup: NFD has a 12% drop in forwarding rate, com-
pared to a 3% drop for Metis. It is true that we are performing an
extra lookup, and there will be some cost associated with that. How-
ever, the extent of the performance hit is surprising—particularly
for NFD—given that the extra lookup is little more logically than an
empty hash table lookup (which are quite cheap). NFD’s Content
Store is a significant bottleneck, even without the cost associated
with storing the data packets.

5.2 Interest/Data exchange

The meat of the Content Store experimentation is when we have
interest/data exchange, as opposed to interest forwarding. Now
that we allow data to flow, we consider three distinct scenarios for
an enabled Content Store: (i) the Content Store has the entirety
of the data, so we have a 100% hit rate; (ii) the Content Store is
writable, but serving that cached data is disabled; (iii) the Content
Store is not writable, but it is full of data that is not ours. The last
two are both Content Store misses, but they target different paths
of the processing pipeline. These scenarios are labeled ‘hit’, ‘miss’,
and ‘store’ respectively. We measure each forwarder’s interest/data
exchange performance under these three scenarios.

We see the results of the experiment in Fig. 2. The difference
in Content Store performance between Metis and NFD is even

55

Drescher, DeHart, Parwatikar, and Crowley

| 13.92 Metis

store | 6.05 uNFD

B 14.56

miss

H 20.74

Content Store Behavior

hit

0.00 500 10.00 156.00 20.00 25.00 30.00 35.00
Interest/Data Forwarding Rate (KTPS)

Figure 2: Interest/data exchange rate in different Content
Store scenarios.

more pronounced than the previous experiment. In the ‘hit’ sce-
nario, Metis sustains nearly 30 KTPS whereas NFD can only sustain
16.5 KTPS—nearly 80% higher performance from Metis. For the
other scenarios, Metis is roughly 50% higher performance than
NFD. We also see that writing to the content store is slightly more
volatile/costly than the lookup itself.

It is clear from these Content Store experiments that NFD’s
content store is a significant bottleneck to its packet processing.
Depending on the workload, it is worth considering disabling the
Content Store in NFD. It also seems to be a fruitful direction to
pursue optimization, since we saw Metis’s Content Store perform
substantially better.

6 MEASURING THE IMPACT OF THE FIB

The FIB has an easier processing task than the other core data
structures in an ICN forwarder—it only requires per-packet lookups,
but no per-packet modications to the FIB. At a high level, we expect
the FIB to naturally be more efficient for the usual scope of these
forwarders (the edge, not the network core). Because we want to
probe the efficiency of the FIB, we must minimize the influence of
the PIT and Content Store. In order to minimize the impact of the
PIT, we use the 5 millisecond Interest lifetime. In order to minimize
the impact of the Content Store, we disable it.

6.1 Scaling the FIB

As a first experiment, it is natural to explore how FIB performance
scales with the number of entries. In order to quickly cover the
space, exponential increase from a default prefix to a large num-
ber of prefixes is desirable. One million prefixes is a viable upper
end of the range, as it could completely encompass an entire BGP
full view—since no ICN core routers exist at the time of writing,
this is a reasonable heuristic. Under this design, our number of
prefixes would scale as follows: 1, 10, 100, 1000, 10,000, 100,000,
1,000,000. Unfortunately, we cannot apply this design to NFD and
Metis verbatim. Metis has the issues with default prefixes that we
mentioned earlier, so the smallest number of prefixes we can as-
sign is 40. Additionally, both forwarders have issues adding large
number of prefixes (Metis crashes, NFD is prohibitively slow). As

Analyzing the Performance of ICN Forwarders on the Wire

a result, our best approximation of this design is setting the low
end of the range to 40 prefixes and the upper end to 1000 prefixes.
We acknowledge that this upper limit is not reasonable in normal
circumstances, but we are constrained by NFD and Metis.

Table 3: FIB scaling with number of prefixes for interest for-
warding and interest/data exchange

Forwarder | Num Prefixes) | Mean KPPS | Mean KTPS
NFD 40 24.88 12.36
NFD 1000 25 12.31
Metis 40 28.82 15.36
Metis 1000 26.98 15.09

Table 3 shows the results of the experiment. For the interest/data
exchange, there is not a substantial change when jumping to 1000
prefixes. We need a higher number of prefixes in order to accom-
plish a meaningful interest/data exchange experiment. However,
for the Interest forwarding experiment, Metis shows a degrada-
tion in performance when jumping to 1,000 routes (roughly 7%
performance drop).

6.2 Multiplexing interfaces

Number of prefixes is not the only way the FIB can scale in an ICN
forwarder. In ICN, the FIB supports multiple egress interfaces, and
the subset of interfaces selected for forwarding is determined by
the forwarding strategy. This speaks to a larger experiment which
not only probes multiple egress interfaces, but also multiple ingress
interfaces. As a result, we must expand our logical topology so that
it allows for multiple producers and consumers on each end of the
dumbbell. To probe the cost of multiplexing across multiple inter-
faces, we perform a simple interest/data exchange for topologies of
the form 1x1, 1x2, 2x1, and 2x2—where the number of consumers is
on the left and the number of producers is on the right. For example,
a 2x1 topology has 2 consumers sending requests to 1 producer.

We need to be careful using multiple interfaces, as NFD and
Metis have vastly different default forwarding strategies (the com-
ponent responsible for choosing the egress interface). It would be
unfair to compare them without remedying this. As a result, we
ported Metis’s ‘random’ strategy to NFD, which randomly selects
the egress interface out of the list of possible interfaces. This strat-
egy is quite inexpensive since it does not maintain any state, so we
can also be confident we are not introducing a new bottleneck.

The results are shown in Fig. 3. There is a performance hit for
any form of additional multiplexing over the base 1x1 configuration.
Interestingly, both forwarders have the worst performance drop for
the 2x1 configuration, though for Metis it could be in the noise due
to higher variance. The multiplexing over multiple interfaces in the
FIB, at least for selecting between two interfaces, does not seem
to be an additional bottleneck. The bottleneck is likely in other
multiplexing-related code paths.

7 ADDITIONAL EXPERIMENTATION

There are other directions that fall out of our primary focus that
should absolutely be considered when testing the performance of
an ICN forwarder. We identify the following directions:

56

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

B Metis ENFD

S 1 50
2 N 11 i2

13.02
2 10.80

13.66
2 11.39

N 15,09
N (2.

0.00

Topology

200 4.00 6.00 8.00 10.00 1200

Interest/Data Transaction Rate (KTPS)

14.00 16.00

Figure 3: FIB multiplexing over different interfaces.

(1) Throughput / Goodput testing
(2) Latency measurements
(3) Sensitivity to Name Distribution

Large packet goodput experiments can help reveal sources of bufferbloat

in the stack, which could be lurking in any number of layers of
buffers. Plus, in order to fully profile a forwarder, having an idea of
its goodput is essential. Latency measurements, at the same time as
the packet processing experiments and the goodput experiments,
are also crucial. In this paper we captured latency measurements for
every interest/data exchange experiment—they did not show much
variation, but it is important to investigate. Name distribution is
an incredibly complex topic, as there are so many directions to go.
However, one area name distribution will certainly be important is
probing multicore forwarders, as the structure of the names could
help reveal sources of contention.

We design one experiment to address these topics in a substantive
way. Specifically, we perform a large packet goodput test where we
vary the popularity of the names in the generation of our synthetic
workload—during this large packet test, we measure the latency of
the interest/data exchange. By using large packets and measuring
the latency, this experiment will help reveal if there are bufferbloat
issues in the forwarders. By varying the popularity of the names, we
create stronger possibilities for request overlap—we accomplish this
by comparing a workload generated with a Zipf @ = 0.84 against
the standard o = 0.64 we used for the rest of the experiments. Large
data packets with varying amounts of request overlap are the ideal
factors to perform a Content Store experiment, as the Content Store
is the only data structure that stores a significant amount of bytes
beyond the metadata (by storing the data packets). As a result, we
probe the effect of these factors while the Content Store is enabled
and disabled. This experiment also serves as a sensitivity analysis
for the Content Store, as our main experimentation focused on
all-or-nothing configurations and this experiment leverages the
workloads’ actual request overlap. In order to prevent fragmenta-
tion from being an issue, we set the payload length to 1250 bytes
to accommodate the NDN/CCNx overhead.

Fig. 4 shows the goodput for Metis and NFD under the different
configurations. Metis achieves substantially higher goodput than
NFD with the same payload size, as a direct result of it being able to

ICN *20, September 29-October 1, 2020, Virtual Event, Canada

m Metis

o5 o84 1231
ol 108.8 mNFD
=3
fo_:ﬂ- 124.3
S5 o064 T0s
x
o
[e]
S 156.8
U) =
2O 0.84 104.7
(0]
|5
O < 130.1

5 0o |

0 50 100

Goodput (Mbps)

150 200

Figure 4: Goodput for different Content Store configurations
and name distributions.

process more packets. In addition, there is a difference in behavior
when the Content Store is ‘on’ vs ‘off’: turning the Content Store
on results in increased goodput for Metis but decreased goodput for
NFD. When the Zipf a = 0.64, the Content Store hit rate is just over
10%, and the hit rate is nearly 50% when a = 0.84. NFD’s Content
Store is so inefficient that even a 50% hit rate does not benefit the
forwarding performance.

140
120 :
/g 100 ,’,
D ce——————s======= -’
o b s e = . o
E . 1 fi i
S ===-nfd-zipf64-on
- ; = = nfd-zipf64-off
20 4 nfd-zipf84-on
i nfd-zipf84-off
0
o

Percentile

Figure 5: RTT distribution for NFD during the goodput test.

Fig. 5 and Fig. 6 show the measured latencies during the goodput
test for NFD and Metis, respectively. The latency distributions are
in the same ballpark between the two forwarders, except for two
outliers. Taking advantage of the 50% hit rate, Metis has reduced
latency (about 10 ms) in the case of @ = 0.84 and Content Store ‘on’.
NFD has increased latency in the case of @ = 0.64 and Content Store
‘on’. In other words, NFD is not breaking even on performance for
the Content Store until it surpasses a 50% hit rate—the 10% hit rate
of @ = 0.64 is not even close, so it is a performance bottleneck.

8 RELATED WORK

There is a wide body of ICN literature focusing on performance
and scalability, but we limit our scope to research containing thor-
ough analyses. For work that focuses on specific components in

57

Drescher, DeHart, Parwatikar, and Crowley

70
60
= = s feriygip et e Ll
[y St P ity
o 90 '
E
540 |
< 30 ,
E 20 | ===-metis-zipf64-on
| — — metis-zipf64-off
10 metis-zipf84-on
i metis-zipf84-off
0
o

T ONOOTONOOTONOOTONOOSTONOO
TEANNNOOTTETTON OOONMNNOODO0OO
—

Percentile

Figure 6: RTT distribution for Metis during the goodput test.

ICN forwarders, Yuan and Crowley design and analyze a higher
performance PIT in [20], and they provide a FIB design with better
worst-case complexity guarantees than longest prefix matching in
[21]. Virgilio et al. [18] focus on analyzing the performance and
memory consumption of the PIT under various scenarios. Rossini
and Rossi [4] and Kim and Yeom [8] both analyze the Content Store
under a variety of workloads.

For works that analyze ICN forwarders, Ohsugi et al. [12] mea-
sure and model the performance of a multicore NDN router, partic-
ularly with regards to its bandwidth and power consumption. So et
al. have multiple works exploring the use of hash tables for an NDN
forwarding engine [15, 16]. Kirchner et al. [9] provide a high speed,
DPDK-based implementation of a CCN router that can forward over
10 MPPS. Rossini et al. [13] model and measure the performance of
a CCN router to sustain gigabytes of video streaming.

Finally, there are works that focus on testing the performance
of existing ICN implementations. Marchal, Colez, and Festor [10]
measure the server-side performance of NDN. They find that the
heavy asymmetric encryption used by end hosts substantially slows
down the NDN server’s data generation performance. Khatouni
et al. [7] compare the performance of multiple ICN prototypes
including CCNx. We should note that, in their test topologies, they
must 40-50 hosts connected to a single forwarder instance in order
to fully test its performance.

9 CONCLUSION

Robust performance analysis of ICN forwarders has been an under-
serviced area by the community. In this paper, we provide a thor-
ough and practical method for analyzing the performance of an
ICN forwarder. We detail our synthetic workload generation, which
incorporates a number of key dimensions for ICN workloads. We
then present a series of microbenchmarks that focus on the packet
processing capabilities of ICN forwarders while probing their core
data structures (PIT, FIB, and Content Store). We then apply these
experiments to two ICN forwarders—NFD and Metis—to show the
viability of these microbenchmarks, and how they reveal subtle
behaviors in the ICN forwarding pipelines tested.

Analyzing the Performance of ICN Forwarders on the Wire

ACKNOWLEDGMENTS

The authors would like to thank Dave Oran, their shephard, for
repeatedly providing thoughtful and constructive feedback. The
authors would also like to thank the anonymous reviewers for their
helpful suggestions and comments. This work is supported by a
gift from Intel Corporation and by the National Science Foundation
(NSF) under the following grants: CNS-1719366 and CNS-1629807.

REFERENCES

(1]

=

[10

JEn
[OR=

[13

[14]

[15]

[16]

[17]

(18]

[19

2017. CICN. Available: https://wiki.fd.io/view/Cicn. [Online; accessed 7 May
2017].

A. Afanasyev et al. 2018. NFD Developer’s Guide. Retrieved June 2020 from http:
//named- data.net/publications/techreports/ndn-0021-10-nfd-developer- guide/
Cisco. 2020. Umbrella Popularity List. Retrieved June 2020 from http://s3-us-
west- 1.amazonaws.com/umbrella- static/index.html

D. Rossi G. Rossini. 2012. A dive into the caching performance of Content Cen-
tric Networking. Retrieved June 2020 from https://nonsns.github.io/paper/
rossil2camad.pdf

K. Pentikousis, Ed., B. Ohlman, E. Davies, S. Spirou, and G. Boggia. 2016.
Information-Centric Networking: Evaluation and Security Considerations. RFC
7945. https://doi.org/10.17487/RFC7945

Kelvin. 2010. Average length of a URL (Part 2). Retrieved June 2020 from
https://www.supermind.org/blog/740/average-length-of-a-url-part-2

A. S. Khatouni, M. Mellia, L. Venturini, D. Perino, and M. Gallo. 2016. Perfor-
mance Comparison and Optimization of ICN Prototypes. In 2016 IEEE Globecom
Workshops (GC Wkshps). 1-6. https://doi.org/10.1109/GLOCOMW.2016.7848997
Yusung Kim and Ikjun Yeom. 2013. Performance analysis of in-network caching
for content-centric networking. Computer Networks 57, 13 (2013), 2465 — 2482.
https://doi.org/10.1016/j.comnet.2012.11.026

Davide Kirchner, Raihana Ferdous, Renato Lo Cigno, Leonardo Maccari, Massimo
Gallo, Diego Perino, and Lorenzo Saino. 2016. Augustus: A CCN Router for Pro-
grammable Networks. In Proceedings of the 3rd ACM Conference on Information-
Centric Networking (Kyoto, Japan) (ACM-ICN °16). ACM, New York, NY, USA,
31-39. https://doi.org/10.1145/2984356.2984363

Xavier Marchal, Thibault Cholez, and Olivier Festor. 2016. Server-side Per-
formance Evaluation of NDN. In Proceedings of the 3rd ACM Conference on
Information-Centric Networking (Kyoto, Japan) (ACM-ICN ’16). ACM, New York,
NY, USA, 148-153. https://doi.org/10.1145/2984356.2984364

M. Mosko. 2017. Metis CCNx 1.0 Forwarder. arXiv:1707.04832 [cs.NI]

K. Ohsugi, J. Takemasa, Y. Koizumi, T. Hasegawa, and L. Psaras. 2016. Power
Consumption Model of NDN-Based Multicore Software Router Based on Detailed
Protocol Analysis. IEEE Journal on Selected Areas in Communications 34, 5 (May
2016), 1631-1644. https://doi.org/10.1109/JSAC.2016.2520278

G. Rossini, D. Rossi, M. Garetto, and E. Leonardi. 2014. Multi-Terabyte and Multi-
Gbps Information Centric Routers. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications. 181-189. https://doi.org/10.1109/INFOCOM.2014.
6847938

U. Schnurrenberger. 2017. Comparing apples to apples in ICN. In 14th IEEE
Annual Consumer Communications & Networking Conference, CCNC 2017, Las
Vegas, NV, USA, January 8-11, 2017. 89-94.

Won So, Ashok Narayanan, and David Oran. 2013. Named Data Networking on a
Router: Fast and Dos-resistant Forwarding with Hash Tables. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (San Jose, California, USA) (ANCS ’13). IEEE Press, Piscataway, NJ, USA,
215-226. http://dl.acm.org/citation.cfm?id=2537857.2537892

Won So, Ashok Narayanan, Dave Oran, and Yaogong Wang. 2012. Toward Fast
NDN Software Forwarding Lookup Engine Based on Hash Tables. In Proceedings
of the Eighth ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (Austin, Texas, USA) (ANCS ’12). ACM, New York, NY, USA,
85-86. https://doi.org/10.1145/2396556.2396575

Tian Song, Haowei Yuan, Patrick Crowley, and Beichuan Zhang. 2015. Scal-
able Name-Based Packet Forwarding: From Millions to Billions. In Proceedings
of the 2Nd ACM Conference on Information-Centric Networking (San Francisco,
California, USA) (ACM-ICN ’15). ACM, New York, NY, USA, 19-28. https:
//doi.org/10.1145/2810156.2810166

Matteo Virgilio, Guido Marchetto, and Riccardo Sisto. 2013. PIT Overload Anal-
ysis in Content Centric Networks. In Proceedings of the 3rd ACM SIGCOMM
Workshop on Information-Centric Networking (Hong Kong, China) (ICN ’13).
Association for Computing Machinery, New York, NY, USA, 67-72. https:
//doi.org/10.1145/2491224.2491225

Charlie Wiseman, Jonathan Turner, Michela Becchi, Patrick Crowley, John De-
Hart, Mart Haitjema, Shakir James, Fred Kuhns, Jing Lu, Jyoti Parwatikar, Ritun
Patney, Michael Wilson, Ken Wong, and David Zar. 2008. A Remotely Accessible
Network Processor-based Router for Network Experimentation. In Proceedings of

58

[20]

[21

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

the 4th ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (San Jose, California) (ANCS "08). ACM, New York, NY, USA, 20-29.
https://doi.org/10.1145/1477942.1477946

H. Yuan and P. Crowley. 2014. Scalable Pending Interest Table design: From
principles to practice. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications. 2049-2057.

Haowei Yuan and Patrick Crowley. 2015. Reliably Scalable Name Prefix Lookup.
In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (Oakland, California, USA) (ANCS ’15). IEEE
Computer Society, Washington, DC, USA, 111-121. http://dl.acm.org/citation.
cfm?id=2772722.2772739

https://wiki.fd.io/view/Cicn
http://named-data.net/publications/techreports/ndn-0021-10-nfd-developer-guide/
http://named-data.net/publications/techreports/ndn-0021-10-nfd-developer-guide/
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://nonsns.github.io/paper/rossi12camad.pdf
https://nonsns.github.io/paper/rossi12camad.pdf
https://doi.org/10.17487/RFC7945
https://www.supermind.org/blog/740/average-length-of-a-url-part-2
https://doi.org/10.1109/GLOCOMW.2016.7848997
https://doi.org/10.1016/j.comnet.2012.11.026
https://doi.org/10.1145/2984356.2984363
https://doi.org/10.1145/2984356.2984364
https://arxiv.org/abs/1707.04832
https://doi.org/10.1109/JSAC.2016.2520278
https://doi.org/10.1109/INFOCOM.2014.6847938
https://doi.org/10.1109/INFOCOM.2014.6847938
http://dl.acm.org/citation.cfm?id=2537857.2537892
https://doi.org/10.1145/2396556.2396575
https://doi.org/10.1145/2810156.2810166
https://doi.org/10.1145/2810156.2810166
https://doi.org/10.1145/2491224.2491225
https://doi.org/10.1145/2491224.2491225
https://doi.org/10.1145/1477942.1477946
http://dl.acm.org/citation.cfm?id=2772722.2772739
http://dl.acm.org/citation.cfm?id=2772722.2772739

	Abstract
	1 Introduction
	2 Background
	3 Details of Experimentation
	3.1 Workload Generation
	3.2 Experimental Setup

	4 Measuring the impact of the PIT
	4.1 Interest lifetime and PIT scaling
	4.2 Interest/Data exchange

	5 Measuring the impact of the Content Store
	5.1 Interest forwarding: enabled but empty
	5.2 Interest/Data exchange

	6 Measuring the impact of the FIB
	6.1 Scaling the FIB
	6.2 Multiplexing interfaces

	7 Additional Experimentation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

