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For any finite subgroup G of SO(4), we construct a contractible 4—manifold C, with
an effective G—action on its boundary, that can be embedded in a closed 4-manifold
so that cutting C out and regluing using distinct elements of G will always yield
distinct smooth 4—manifolds.

57TM99; 57R55

0 Introduction

A cork is a smooth, compact, contractible 4—manifold with an involution on its boundary
that does not extend to a diffeomorphism of the full manifold. Akbulut [1] discovered
this phenomenon for the classical Mazur manifold W [18] with the boundary invo-
lution t shown in Figure 1, proving that W embeds in a 4-manifold X so that the
result of removing W and regluing it using 7 is not diffeomorphic to X .

This operation is called cork twisting, and it is now known (see Curtis, Freedman,
Hsiang and Stong [9] and Matveyev [17]) that any two smooth, closed, simply connected
4-manifolds that are homeomorphic differ by a single cork twist. It is not known
whether the same cork can be used in all situations, ie whether there exists a universal
cork; it is indeed conceivable, though unlikely, that the Mazur cork is universal.

The property that the cork twist T is an involution is interesting, indeed inherent in
most constructions of corks to date, but it is not clear that it is fundamental to the

Figure 1: The Mazur cork

Published: 17 July 2017 DOI: 10.2140/agt.2017.17.1771


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M99, 57R55
http://dx.doi.org/10.2140/agt.2017.17.1771

1772 Dave Auckly, Hee Jung Kim, Paul Melvin and Daniel Ruberman

relation between cork twists and other smooth 4—manifold constructions. It is therefore
natural to ask whether cutting and gluing by higher order diffeomorphisms of the
boundary of a contractible submanifold of a 4—manifold can change the underlying
smooth structure. In this note, we give an affirmative answer, producing examples
of embeddings of contractible 4—manifolds with twists of arbitrary finite order that
alter the ambient smooth structure; it follows that none of those twists extend over the
contractible manifold. A different construction of such nonextending twists was given
in a recent preprint of Tange [19].

In fact we show more: for suitable finite groups G, there exist contractible 4—manifolds
with effective G—actions on the boundary that embed in closed 4—manifolds so that
twists corresponding to distinct elements of G yield distinct smooth structures. We
call such a gadget an equivariant cork, or G—cork if we want to specify the group.

Theorem A There exist G—corks for any finite subgroup G of SO(4).

If the action of G on S3 is free, then the action of G on the boundary of the cork
constructed in the theorem is free; this seems to be a new phenomenon, even for
G = Z,. The notion of an equivariant cork can be extended to a weak equivariant cork
where the relevant group is a subgroup of the mapping class group of the boundary; see
the end of Section 1 for details. In the final section of the paper, we give an example of
a weak G—cork in this sense, where G is a group that does not act effectively on any
homology 3-sphere.

Theorem B There are groups G that do not act effectively on any homology sphere,
but for which there exist weak equivariant G—corks.

The boundaries of the corks constructed in the proof of Theorem A are reducible. In
a sequel we will prove the following theorem, using rather different techniques from
those in the current paper.

Theorem C Given an oriented 3—manifold Y with an effective, orientation-preserving,
smooth action of a finite group G , there is an equivariant invertible Z[m1 (Y )]-homology
cobordism from it to a hyperbolic manifold.

As in Akbulut and Ruberman [2], this immediately implies:

Corollary D For any given finite subgroup G of SO(4), there exists a G—cork with
hyperbolic boundary.

Some experimentation with SnapPy [8] suggests that the simplest corks in Tange’s
paper [19] have hyperbolic boundaries, but a proof in general would require different
techniques.
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1 Preliminaries and statement of results

In this section, we lay the groundwork for our proof of the existence of equivariant
corks. Most of the ideas discussed here are well known, but since we will use “corks”
in a broader sense than usual, and employ cork twists on multiple copies of boundary
sums of embedded copies of the Mazur cork, we must give careful definitions of the
relevant notions.

Corks and boundary equivalence

Extending the usual terminology, a cork will refer to any pair (C, g) where C is
a smooth, compact, contractible 4—manifold, and g is an arbitrary diffeomorphism
of dC. In particular, g need not be an involution, nor even of finite order, and C need
not be Stein (as is often assumed; see Akbulut and Yasui [3]). But if g is a special
involution (meaning orientation preserving with nonempty fixed point set, as with the
Mazur twist 7) then we also refer to (C, g) as a special 2—cork.

In general, we call a cork (C, g) trivial if g extends to a diffeomorphism of C (it
always extends to a homeomorphism by Freedman [11]) and nontrivial otherwise; with
this convention, (B*, g) is a trivial cork for any g, whereas the Mazur cork (W, 7) is
nontrivial. These notions induce an equivalence relation on corks associated with the
same underlying manifold: (C, g) and (C, h) are boundary equivalent if and only if
(C, g7 h) is trivial, ie g~ 14 extends over C.

Boundary sums of corks

The boundary sum operation f is well defined on boundary equivalence classes of
corks, as follows: Given corks (Cq, g1) and (C,, g5), choose (for i = 1,2) diffeo-
morphisms /; isotopic (and thus boundary equivalent) to g; that are the identity on
3-balls B; C dC;. Form C fj C, by identifying the C; along the B; so that s; and £,
glue together to form /1 § 4;. The result

(C1,81)8(C2,22):=(C11Ca, 818 82)

may depend on the choices of /#; and B;, but its boundary equivalence class does not.
Note however that [} is well defined for special 2—corks without imposing boundary
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equivalence; just choose the B; to be g;—invariant 3—balls centered at fixed points, and
then g f g» is a well-defined involution, independent of the choices up to equivariant
diffeomorphism.

Cork embeddings

A cork embedding of (C, g) in a 4—manifold X is a smooth embedding e: C — X
together with the induced map g = ege™! on the boundary of its image C = e(C).
The associated cork twist X é‘;’ is obtained by removing C from X and regluing using g:

X{=(X-intC)Uz C.

The embedding is trivial if X is diffeomorphic to X', and it is otherwise nontrivial or
effective; note that this definition depends on both e and g. Thus the nontriviality of
(C, g) can be verified by producing a nontrivial embedding, rather than trying to show
directly that g does not extend smoothly across C.

Note that the definition of boundary equivalence of cork maps is compatible with the
use of such maps in changing smooth structures, because the result of twisting by g is
the same as the result of twisting by # when g~!/ extends across C. Conversely, given
any nontrivial cork (C, g), Akbulut and Ruberman [2] construct a pair of absolutely
exotic structures on a contractible manifold related by twisting (C, g). It follows that
for any two boundary inequivalent diffeomorphisms g and /, there is a 4—manifold X
and an embedding e: C <> X such that X¢ is not diffeomorphic to X. Akbulut has
made a similar observation.

Boundary sums of cork embeddings

Given any pair of embeddings ¢;: C; — X (for i =1, 2) of corks_(C,-, gi) with disjoint
images C; = ¢;(C;) and induced boundary maps g;: dC; — dC;, both twists can be
performed simultaneously to produce the 4—manifold

ng = (X —int(C; U Cy)) Uz uz» (CuGy).

Alternatively, C; and C, can be joined by an embedded 1-handle in X , the thickening
of an arc « in X —int(C; L Cy) from C; to C,. The result is an embedding e f e,
of the single cork (Cy, g1)1(C3, g2) = (C1§C,, g1 8 g2) (where, as noted above, the
map g ff g» is only defined up to boundary equivalence unless the g; are special
involutions) whose cork twist is independent of «. Indeed, it is readily seen that the

single cork twist X ge]' E?z is diffeomorphic to the pair of cork twists X ; 112.
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Figure 2: Trivial embedding of the Mazur cork in S*

This process can be iterated to construct the multiple cork twist Xg!.g" of a family
e1,...,ey of disjoint embeddings of corks (Cy, g1),...,(Cy, gn) in X, or a single
cork twist X;ll 352’; of an embedding of the boundary sum of the (C;, g;). Both
twists produce the same smooth 4—manifold. This construction will play a key role in

what follows.

Trivial cork embeddings

Most explicit corks (C, g) in the literature can be shown to have trivial embeddings
in the 4-ball, and thus in every 4—-manifold. In particular, it suffices to prove that the
double C Ujg—C and twisted double C Ug —C are both diffeomorphic to the 4—sphere,
often accomplished by an elementary Kirby calculus argument; cf Akbulut and Yasui
[5, Section 2.6]. This is illustrated for the Mazur cork (W, t) in Figure 2, where the
squiggly and straight arrows represent handle slides and cancellations, respectively,
and as usual, the 3 and 4-handles are not drawn.

Equivariant corks

If G is a subgroup of the diffeomorphism group of dC with (C, g) nontrivial for all
g # 1 in G, then (C, G) is called a G—cork. For cyclic G of finite order n, we refer
to the corks (C, g) for generators g of G as n—corks. All explicit corks that have
appeared in the literature prior to [19] are special 2—corks; recently, Gompf [13; 14]
has shown how to construct Z—corks.

There is a more general notion, which we call a weakly equivariant cork, in which
the group G is a subgroup of the mapping class group of the boundary, ie the group
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of isotopy classes of diffeomorphisms. In this situation, it is more appropriate to use
the relation of isotopy, rather than boundary equivalence, because the subgroup of
diffeomorphisms of the boundary that extend across the cork need not be normal. Hence
the set of boundary equivalent diffeomorphisms does not in general form a group in any
natural way. In the last section, we give a construction of weakly equivariant corks for
many groups G that are not subgroups of SO(4), and in fact that do not act effectively
on any homology 3-sphere.

In general, if C is a cork with an effective G—action on dC, then an embedding
e: C = X will be said to be G—effective if Xg and X7, are smoothly distinct for
any g1 # g, in G. Thus the existence of such embeddings shows that (C, G) is a
G—cork. In this case, one has a G-action on the set of 4-manifolds {X, ¢lgeG}in
the sense that (Xg,)g, = Xg, 4, for any two elements g1, g2 € G, where e: C — X,

8182
is the obvious embedding induced by e.

For the reader’s convenience, we repeat the statement of our main result:
Theorem A There exist G—corks for any finite subgroup G of SO(4).

Addenda (1) The proof will show that if |G| = n, then the boundary sum f,2(W, 7)
of n? copies of the Mazur cork can be given a G—cork structure that has G—effective
embeddings in any blown-up elliptic surface E(2k)#mCP? for k,m > n(n—1)/2.

(2) More generally, if G is any finite group that acts effectively on the boundary of a
compact, contractible submanifold of R*, then essentially the same proof shows that
there is a G—cork with an effective embedding into a closed manifold; Theorem C can
then be used to construct such corks with hyperbolic boundary.

2 Construction of equivariant corks

Our proof of Theorem A relies on the existence of certain embeddings e; of the Mazur
cork (W, 7) in the blown-up Kummer surface

E:= EQ2)#CP2.

Here E(2) is the minimal elliptic surface of Euler characteristic 24 (or Kummer surface;
see for example [15]). The key input from Seiberg—Witten theory is the count of the
number of basic classes in the associated cork twists E< .

Definition 2.1 Let X be a smooth, closed, simply connected 4-manifold. If b;’ (X)
is odd and greater than 1, then A (X) will denote the number of Seiberg—Witten basic
classes of X', and otherwise N (X) = 0. For example, N/ (E) = 2 (the basic classes
are £CP).
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Akbulut [1] established the nontriviality of (W, t) by constructing a nontrivial embed-
ding eo: W < E with reducible cork twist ES° 2~ 3CP2#20CP?2, so in particular,
N (Ei”) = 0. It was later observed [7] that such an embedding could be chosen with
image in the complement E® of a nucleus in E; see [12].

More recent work of Akbulut and Yasui [4] shows that (W, t) has another nontrivial
embedding e;: W < E* with AV (E£?) # 0. The nontriviality of e, was proved by
showing that E? results from a rational blow-down of E [10], leaving A/ unchanged,
followed by an honest blow-up, doubling A, so N (E$?) = 4. (In particular, this
follows from Theorem 4.1 for p = 2, Proposition 5.1 for n =1 and p; = 2, and
Lemma 6.6 in [4].)

As noted in the last section, (W, 7) also embeds trivially into any 4—manifold. Choose
one such embedding e: W < [E*. Thus eq, ¢; and e, are numbered so that A/ (Eii) =
iN(E). Only e; and e, are needed to prove the following key result, which is a
strengthening of an analogous noncompact embedding theorem of Akbulut and Yasui
[5, Theorem 1.5].

Lemma 2.2 For each n > 0, there exists a 2—cork (S, o) that has n disjoint embed-
dings s1,...,Sy in some closed 4—manifold X , with distinct cork twists

S1 52 Ky
X3 X, X5, X5

For example, the boundary sum (S,o0) = ,,(W, ) has n such embeddings in the
blown-up elliptic surface X = E(2k)#mCP? for any k,m > n(n—1)/2.

Proof It suffices to prove the last statement. First consider the case k = m = n?, and
view X = E(2n?)#n*CP? as the fiber sum of n? copies of the blown-up Kummer
surface E = E(2) # CP? along regular torus fibers in a chosen nucleus. Denote the
copies of E by E;; for 1 <i, j <n. Choose an embedding e;; of (W, ) in each
summand E

lj,with ejj=epifi < jande;; =eyif i > j.For 1 <i <n,lets; be
the boundary sum e;q ] - - - [ e;, of all the embeddings in the “ith row”. Then the s;
are distinct embeddings of (S,o0) =1,(W, ) and can be chosen with disjoint images
by choosing the 1-handles that join the summands to be disjoint. Furthermore, s; has
i — 1 nontrivial summands and n —i + 1 trivial ones, and so N (X3') = 2! "IN (X).
Since NV (X) # 0, the X' are pairwise distinct.

Of course, one can be more efficient by using only the “nontrivial” copies of E, ie E;;
for i > j, and putting all the trivial embeddings of the Mazur cork inside one of these.
This handles the smallest case kK = m = n(n—1)/2, and the fiber sum and blow-up
formulas for Seiberg—Witten invariants show that & and m can be increased at will. O
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Proof of Theorem A

Given a finite subgroup G of SO(4) of order n, apply Lemma 2.2 to produce 7 disjoint
embeddings sg of a cork (S, o) in a closed 4-manifold X, indexed by the elements
of G, with distinct cork twists X,¢. Using these cork embeddings, we construct a
G—cork (T, G) and a G-effective embedding ¢: T — X, as follows.

The underlying contractible manifold T is the boundary sum {,,S of n copies of S.
To define the G action on 9T, it is convenient to represent T as a cork twist on a
diffeomorphic copy T of itself that supports a natural G—action, namely the equivariant
boundary sum

T = B*4(G xS)

taken along a principal orbit {by | g € G} of the linear G action on dB*, where G
acts on G x S by left multiplication on the first factor and trivially on the second. In
other words, T is obtained from a disjoint union of the 4—ball and 1 copies S g of S
(indexed by g € G) by adding 1-handles joining b, € dB* to x4 € 0S,, where the
Xg € 0S, correspond to a chosen point x € dS. The G action is linear on B*, and
permutes the copies of Sg by left multiplication on the subscript (since the boundary
sum is along a principal orbit).

Now the embeddings sg of S can be used to define an embedding

LT—X
by identifying Sg with the image s¢(S) in X, B* with a small 4-ball B disjoint
from the Sg, and the 1-handles joining B* to the S, with embedded 1-handles.

To obtain T, we twist a shrunken copy of the cork 1 x S in T . To make this precise,
recall that T contains n copies Sg = g xS of S, the images of the embeddings
eg: S — T sending x to (g,x). Consider an embedding s: S < S that shrinks S
inside itself; that is, s is the identity off of a boundary collar dS x [0, 1), and maps
(x,1) to (x, (¢t + 1)/2) inside the collar. Then e = e¢; os embeds S onto a shrunken
copy of S1. We define T to be the cork twist associated with this embedding:

T =T¢.
Since the 9T = 9T, there is still a G-action on 9T, and this defines our cork (T, G).
Note that T is actually diffeomorphic to T, and thus to 1, S, since ] is a well defined
operation, but for our purposes it is most convenient to describe T as a cork twist
of T.
Now observe that the embedding 7: T < X above induces an embedding

£: T — X3
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since T = 7_1“5. Furthermore, twisting this embedding of T by an element g € G just
transfers the cork twist from S; to Sy ; that is,

(X531 = Xo*.

Since the smooth 4—manifolds X,¢ are distinct for g € G, this shows that ¢ is a
G—effective embedding, and so (T, G) is a G—cork. This completes the proof of
Theorem A. a

Remark Even in the case G = Z, this result can give something new. Applying the
construction from Theorem A to the free Z, action on S* extended across B* we get
a 2—cork with free action on the boundary.

Proof of the addenda to Theorem A

The first addendum to the theorem follows from this proof by using (S, o) =, (W, 7)
and X = E(2k)#mCP?, as provided by the lemma. Note that in the proof, X3! is
diffeomorphic to X since sy is a trivial cork embedding, so ¢ can be viewed as an
embedding of §,2 W — X.

With regard to the second addendum, if a finite group G acts on a compact contractible
submanifold of R*, we may repeat the argument replacing B* by the contractible
submanifold to produce a G—cork T . To build a G—cork with hyperbolic boundary,
let U be an invertible cobordism from 9T to a hyperbolic 3—manifold M with
inverse V as given by Theorem C. Then

TUsgrU C TUgrUUpV = T,
and T Uy U inherits a G action so twisting it via g has the same effect as twisting T

since g extends across V. a

Remark From the construction, we see that our G—corks are boundary-connected
sums of Stein manifolds, and hence are Stein. In contrast to the argument in [19], this
fact does not play any role in our verification that our corks are effective.

3 Weakly equivariant corks

In this section, we construct examples of weakly equivariant corks for certain finite
groups that are not subgroups of SO(4). In fact, these groups cannot act on any
homology sphere, so there are no corresponding equivariant corks. This will prove
Theorem B.
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Figure 3: A weak C24 —cork

Proof of Theorem B

Fix n >4, and let G = CJ', the product of 7 copies of the cyclic group C;. It is known
that G does not act effectively on any homology 3—sphere [20, Proposition 3]. In this
proof, we show how to construct a nontrivial weak G—cork V.

Apply Lemma 2.2 to get a 2—cork (S, o) with 2" inequivalent embeddings sg (for
g € G) in some 4—manifold X, meaning their cork twists X3¢ are 2" distinct smooth
4-manifolds. For convenience, assume that X} =~ X . For example, S could be the
boundary sum of 2" Mazur corks, with X = E(22"11) #22"CP?; see the proof of
Lemma 2.2.

As in the proof of Theorem A, we will define the cork V to be a suitable cork twist of
a diffeomorphic copy V of V. To define V, consider a full binary tree T' of height ,
built from the bottom up, as shown in Figure 3 for the case n = 4. Thus T has
one vertex at the root, two at the first level, four at the second level, etc. At the top
there are 2" vertices which can be indexed in a natural way by the elements of G (as
explained below). To get V, replace the black dots by 4—balls, the white dots by copies
of the cork S (referred to as the leaves of the cork) and the edges by 1-handles. Also
choose an equatorial 3—disk D for each black 4—ball B that separates the 1-handle
attached to B below D (if any) from the two attached above; D splits V into two
components with closures D' (locally above D) and D~ (locally below D).

Let 19,...,t,—1 denote the generators of the C, factors in G = Cé’, and let 7 act
on V by performing half Dehn twists on all the level k equatorial 3—disks. Here
a half Dehn twist about such a disk D is the diffeomorphism of V that leaves D~
fixed, sends a collar neighborhood D x [0, 7] of D in D™ to itself by the map
(x,0) — (rotg(x), 0), and sends the rest of DT to itself in the obvious way, reversing
the order of the leaves above D. Thus, for example, 7y reverses the order of all the
leaves at the top, 71 independently reverses the orders of the first and second halves of
the leaves, and so forth. Note that a full Dehn twist of a 4—manifold X can be defined
in a similar way about any 3—disk D that is either properly embedded or embedded
in 0X. In either case one uses a collar D x [0, 27r] that restricts to a collar of dD in d.X,
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k

Figure 4: A;,Y C B? when n = 3 (left) and the map &: ¥ x I — S (right)

lying to the outside of D when D C 90X ; the shaded region in Figure 4 (left) illustrates
how the collar meets the boundary in this latter case.

Now observe that 7 is of order 2 in the mapping class group of V. This is clear
for 7, since rg is a full Dehn twist about the equatorial disk Dg that untwists by
an isotopy over the 4-ball D below it, and in general we claim that t,f is isotopic
to t,?_l . Indeed, the portion of V lying between level kK — 1 and level k is a union
of 4-balls, each containing exactly three equatorial 3—disks in its boundary. Thus it
suffices to prove that a full twist about two of these disks is isotopic to a full twist about
the third. Since 7y SO(3) = Z,, this is a consequence of the following elementary fact
(cf [16, page 190]):

Lemma 3.1 The composition § of Dehn twists of a 4—ball B about any finite number
of disjoint 3—disks Dy, ..., Dy in its boundary is isotopic to the identity, leaving
the D; fixed.

Proof of the Lemma View B = B? x B? and D; = A; x B?, where the A; are
disjoint arcs in dB2. Let r: B> — Y be a deformation retraction that collapses each A;
to its midpoint a;, where Y is the cone 0 {ay,...,a,}. Pictures of the arcs A4; and
the graph Y in B2, and an indication of the retraction r, are shown in Figure 4 (left)
for the case n = 3, with collars corresponding to the shaded regions.

With this parametrization B = B? x B2, we can take

8(x, y) = (x, 10t (r(x)) (1)),

where a: Y — S is a map of degree one on each edge ¢; = 0*a; of Y. Evidently,
extends to amap @: Y x I — S! that has degree one on each edge ¢; x 0 and 0 x 1,
and is constant on each edge ¢; x 1 and a; x I; see Figure 4 (right). This defines
the desired isotopy §; from § = §y to the identity, rel the D;, given by §;(x, y) =

(x, rotg(r(x),0) (V))- a

Continuing with the proof of Theorem B, it is clear that the action of the t; extends to
an embedding of G in the mapping class group of V, and that distinct elements of G
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carry the first leaf to distinct leaves. This gives a natural way to index the leaves of V
by the elements g € G, according to where g carries the first leaf. Thus, for example,
the last leaf is indexed by 7, while the (27~ !)* leaf is indexed by t;.

Now let V be the cork twist of V along (a shrunken copy of) the first leaf. Then 9V
is naturally identified with 9V, so there is an induced embedding of G in the mapping
class group of V. To see that this defines a weak G—cork structure on V, just choose
an embedding e: V < X that restricts to the embeddings s¢ (for g € G') on the leaves
of V. Then X¢ = X3¢, andso X ¢ and X are not diffeomorphic unless g = /. a
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