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Abstract- In  this  article,  we  consider   the  optimal  design 
of networked estimators to minimize the communication/ 
measurement cost under the networked observability constraint. 
This problem is known as the minimumc-ostnetworked estimation 
problem, which is generally claimed to be NP-hard. The main 
contribution of this work is to provide a polynomial-order solution 
for   this   problem   under  the   constrani t   that   the   underlying 
dynamical  system  is  self-damped.   Using   structural   analysis, 
we subdivide the main problem into two NP-hard subproblems 
known as (i) optimal sensor selection, and (ii) minimum-cost 
communication network. For self-damped dynamical systems, we 
provide a polynomial-order solution for s ubproblem (i). Further, 
weshow that the subproblem (ii) is of polynomial-ordercomplexity 
if the links in the communication network are bidirectional. We 
provide an illustrativeexample toexplain the methodologies. 

Index Terms- Computational complexity, networked estima­ 
tion, observability, self-damped dynamical system, structural 
analysis. 

 

l   INTRODUCTION 

ETW ORKED estimation has been a topic of significant 

interest in the literature [1)- [6], where a group of agents1 is 

assigned to talce meas urements and share information over a 

communication network in order toestimate the state-vector of a 

dynamical system. This paper studies the complexity of Mini­ 

mum-Cost Networked Estimation (MCNE) for self-damped 

dynamical systems, crucial in many large-scale applications. 

Because of the large size, only solutions with polynomial-order 

complexity are desirable. Self-damped dynamical system is a 

type of system in which the state of each node in the system is 

influenced, among others, by itself [7]- [9]. Structurally repre­ 

senting thissystem by a digraph, each state node contains a self­ 

cycle. Such systems are prevalent, for example, in epidemic 

models [1OJ and eco-systems [11). Also, in discretizationof con­ 

tinuous-time systems the discretized system matrix always has 

non-zero diagonal entries, implying that its associated system 

digraph contains a self-link onevery state node. Such discretized 

models may bederived via Euler's method or Tustin's method as 
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1 
In this paper, agent/sensor/estimator is used interchangeably. 

discussed in [12]. See more examples of discrete-time represen­ 

tations for modeling the target-tracking systems in [13)- [17]. 

The self-damped assumption is also considered in estimation 

scenarios as in [18]. 

For self-damped systems, we relax the MCNE problem into 

two subproblems: (i) Minimum-Cost Sensor Selection (MCSS) 

problem, and (ii) Minimum-Cost Communication Network 

(MCCN) problem. We separately discuss the computational 

comp lexity of each problem The MCSS problem is to find the 

optimal sensor placement to minimize thecost of measurements. 

This cost may represent sensor expenses, or utility/energy con­ 

sumption by sensors [19]. On the other hand,theMCCN problem 

is to optimally design the communication networlc to minimize 

the communication cost at the agents, where the cost may repre­ 

sent communication reliability [20], communication energy/ 

power [21], or distance (also referred to as capacity-infrastruc­ 

turecost) [22), among others. 

Related literature: Optimal sensor selection [23], [24] and dual 

problem of optimal actuator placement [25), [26) is shown to be 

NP-harci2in the literature. The problem of optimal selection of 

sensors (information gatherers) is shown to be reducible to a min­ 

imum set covering problem [23). The problem of optimal input 

selection is shown tobe reducibletor-hitting set problem in [25). 

These references imply that the MCSS problem is NP-hard, in 

general. On the other hand,cost-optimal communication network 

design is considered in [18], [20]-[ 22], [27]-[ 29]. In [27], trade­ 

offsbetween optimal sensor placementand minimization ofcom­ 

munication cost is claimed to be NP-hard and therefore a near­ 

optimal solution is proposed. The near-optimal approximation3 

solution in [27] is ofcomplexity O(n log (n)). In [22),communi­ 

cation to a central unit based on Poisson-Voronoi spanning tree 

with application to tracking in mobile communication systems is 

discussed. In the literature, a few references consider the optimal 

communication network design under obse rvability con­ 

straints [18), [28), [29); in these works, the main objective is to 

design the network such that the communication cost to a central 

base is minimized while satisfying observability constraint as a 

necessary condition for centralized estimation4 . Fo r ex ample, the 

 

2 NP-hardness (Non-deterministic Polynomial-time hardness) is the defin­ 
ingproperty of a class of problems that has no solution in the time-complexity 
upperboundedby a polynomial function of the inputparameters. 

3 For NP-hard problems, typically a p-approximation algorithm is pro­ 
vided with provable guarantees on the fac tor p of the returned solution to the 
optimal one. 

4  Note that in works [ 18],  [28],  [29] although  the authors claim a distrib­ 
utedf ramework, they indeedconsider the estimation via a central node (or the 
root node) in the sensor network. 
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complexity of the cost-optimal design of the communication net­ 

work for centralized estimationin [18] is proved to be in O(n5) . 

 
x(( k+ l )T ) (I + T.A)x ( kT) 

 
(4) 

However, the general MCCN problem is known to  be  NP­ 

hard [30]. 

Contributions: The  main contributions of this paper are  as 

follows, First, in Section ID, we reformulate the MCNE prob­ 

w he re I is th e identity matrix. In fact, the Euler's method is 

the approximation to the following discrete-time model of 

continuous-time system (3): 

lem for self-damped systems using structured systems theory 

and decompose the problem into MCSS and MCCN subpro­ 
x((k + l )T ) = exp (T .A)x(kT) (5) 

blems. In this direction, we generalize the optimal centralized 

estimation problem in [18], [28], [29] to the networked case, 

where the problem is cons traine d with networked observability. 

Second, in Section N , we prove existence of a polynomial­ 

order solution for MCSS problem in the case the syste m is self­ 

damped. We reformulate this problem as a linear assignment 

problem with a solution of complexity O(N3
) based on the 

Hungarian method. It should be noted that, as claimed in [23], 

for general systems the MCSS problem is NP-hard. Third, in 

Section V, we show that generally NP-hard MCCN problem 

has polynomial-order solutions under bidirectional link con­ 

straint, i.e., when the co mmunication adjacency matrix is sym­ 

metric. Note that the main contribution of this work is not to 

generate an algorithm as the solution to the MCNE problem but 

determining the complexity of the solution.It should be empha­ 

sized that in this paper, we determine the minimum number of 

agents such that each agent measures one necessary state for 

observability of the unde rlying self-damped dynamical system. 

In other words, the case of minimal systemobservability is con­ 

sidered here. The case where more measurements of the system 

are given, for example, to improve the estimation performance 

or to reduce the cost of network communication,is left as future 

research direction. 

 
II. MCNE PROBLEM STATEMENf 

We consider discrete-time LTI dynamics in the form: 

Another approximation to the above model is by using the 

Tustin's method [12] for discretizationof (3) as follows: 
 

 

In both discretized models (4) and (6) the diagonal entries 

of the discrete-time syste m matrices are non-zero (due to the 

identity matrix I). It should be mentioned both Euler's and 

Tustin's methods are discrete-time approximations of continu­ 

ous-time system model, and both give approximate solutions 

to the continuous-time model (3). 

In general, system estimation necessitates the pair (A ,C) to 

be observable 6
. In networked estimation, the group of agents/ 

estimators are connected  such that the  system is observable to 
every agent/estimator via the  local  measurement  matrices Ci 

at each agent i  with C = [C[   ...  ci_ JT Since the pair (A , Ci  ) 
i s  not  necessarily  observable  at any agent, the  agents recover 

the observability deficiency by sharing measurements or state 

predictions over a communication network 9u. To keep the 

exposition simple and without loss of  generality,  we  assume 

each measurement Yi i s taken by one sensor/agent i. At every time-

step k, every agent i shares its information with other agents in 

its neighborhood Ni  - B y  s haring necessary informa­ tion over 

9u every agent is capable of  tracking  the global  state of the 

dynamical system. In this  regard,  the  necessary  condi­ tion for 

networked estimation is networked observability 

x(k + 1) = Ax(k ) + v (k) 

y(k) = Cx(k) + r(k) 

(1) 

 
(2) 

defined as follows [3]- [6], [31]: 

Definition I: For the dynamical system ( A ,{ C}i) moni­ 

tored by a network 9u of agents with adjacency matrix U, the 

networked syste m is observable by each agent if the pair 

whe re k is the time-index, x E nr represents the state of the 

dynamical system, y E RN is system measurement, v and r 

respectively represent syste m and measurement noise5
, and A 

and C respectively represe nt system and measurement matri­ 

ces. The discrete-time model (1) may be derived from the dis­ 

cretization of continuous-time models in the form, 

 
                                       (3) 

 

Applying the Euler's method [12] for discretization of (3) with 

sampling timeT, 

 
5 

The noise is inherent to any estimation scenario. Although, in this paper 

we do notdirectly use the noise in our analysis, we consider the noise terms as 

in most general case the concept of estimation and observability are tightly 

related with noise. It should be noted that the cost-optimal design in this paper 

is irrespective of the noise terms. Ho wever, after designing the sensor-net­ 

work, the distributed estimation scenario aims to track the noise-corrupted sys­ 

tem states. 

(U ® A,De) is observable, where De is defined as: 

 

 
(7) 

 

and the set {N1, ... , NN } is the set of neighboring agents, 

where N j is the set of agent j's neighbors. 

It should be noted that the ( A, C) -o bservability is necessary 

for (U ® A, De )-observability, but is not sufficient; the next 

section explains moreconditions for networked observability. If 

the networked observability is satisfied, a feedback gain matrix 

may exist such that every agent achieves asymptotic omni­ 

science on the dynamical system state [3]- [6], [31]. This simply 

 
6 Throughout this paper, we use structured system theory where the observ­ 

ability analysis is structural and generic. For notation simplic ity, observability 

implies structuralor genericobservability. 
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implies that the error dynamics at every agent is bounded and 

achieves asymptotic mean-squared stability. The idea in this 

paper is to design the measurement matrix and communication 

network such that certain cost is minimized. The cost of net­ 

worked estimation is twofold: the measurement cost and the 

communication cost The problem is to minimize these costs 

while networked observability constraint is satisfied, termed as 

the Minimum-Cost Networlced Estimation (MCNE) problem. 

Problem Fonnulation 1: Consider the system matrix and 

measurement matrix pair (A, C). The measurement  of state j 

by agent i is assigned with a cost 8i j and the communication 

 

(v) Each agent measures one system state. 

Regard ing Assumption (v), it should be  mentioned  that 

the methodology can be extended  to  the  case  where 

agents take more than one measurements, discussed in 

Sections V and VII. 

 

ill. REFORMULATION B ASED ON STRUCTURED 

SYSTEMS THEORY 

In   this  paper,  a  structural   (also  referred  to   as generic) 

approach  is  adopted to solve the  MCNE problem. It is  known 

from agent i to agent j is assigned with a cost 1i/· j 

probl em is to so lve th e fo llo wing: 

 

min    LL  8i;Cii + LL 1/i p i; 
i=l j=  l i=   l     j=   l 

s .t . (U 0 A, Dc)-observability, 

Cii  E {0,1} 

Ui; E {0,1} 

Th en, the 

 

 

 

 
 

(8) 

that  many properties  of  the  system emerge from  the system 

structure and are irrespective of the numerical values of system 

variables [33]. Among these properties are system controlla­ 

bility and observability [31], [34], [35]. It is known that the val­ 

uesof system parameters for which a generic property doesnot 

hold lies on an algebraic subspace with zero I.ebesgue measure 

[33]. This implies that the structural observability resul ts in the 

observability for almost all values of system/measureme nt 

parameters. Determination of the zero-measure algebraic sub­ 

space for  which  structural observability doesnot imply  observ­ 

where the matrices C ~ {0, 1}Nxn and U ~ {0, 1}NxN repre­ 

sent the 0 - 1 structure of C and U matrices, respectively. 

Remark 1: The general MCNE problem is NP-hard to solve. 

We prove this remark in the next sections as we reformulate the 

problem using structural analysis. In this paper, we solve 

the MCNE problem for self-damped systems. 

Definition 2: Self-damped systems are where the evolution 

of every state Xi is a function of, among other states, the state Xi 

itself. In structured systems theory, a self-damped system is 

modeled by a graph with a  self-loop  on  every  state  node 

[3]- [8], [31]. 

The self-dampedsystem dynamics is prevalent in discretized 

representations of continuous-time systems, as in the men­ 

tioned Euler's and Tustin's discretized models. The main prob­ 

lem addressed in this paper is on the complexity of MCNE 

problem under self-damped  system constraint.  We investigate 

if there is a polynomial-order solution for this problem; and if 
not, is there an efficient (with polynomial-order complexity) 

approximate algorithm to solve the problem, and what is the 

p-approximationof the solution? To answer these questions, in 

the next sectio ns, using structured systems theory we reformu­ 

late the problem for self-damped systems into two subproblems 

and find the complexity of the solution for eac h subproblem. 

Assumptions: The following assumptions are made through­ 

out the paper: 

(i) The underlying system to be estimated is self-damped. 

(ii) The system  matrix  A  is  not  necessarily  irreducible.1 , 

see the comments after Lemma 1. 

(iii) Minimum number of measurements for ( A,C )-observ­ 

ability are available. 

(iv) The communication links in the network of agents/sen­ 

sors are bidirectional. 

 
7 

A reducible matrix A is such that, by simultaneous row/column permuta­ 

tions, it can be transformed into block upper/lower-triangular form. Otherwise, 

it is irreducible [32] 

ability is case-specific and generally can be formulated based 

on the dependencies of system parameters and is out of scope 

of this paper. 

In the rest of the paper, consider matrix A~ {0 , 1}nxn  as  

the 0 -  1 structure of system  matrix A and C ~ {0 , 1}Nxn as 

the 0 - 1 structure of measurement matrix C. Based on the 

structured systems theory, A and C can be represented by a 

graph known as system digraph. The (A, C)-observability 

generically e merges from this graphical model. For self­ 

damped systems, the system digraph contains a self-loop on 

every state node. Mathematically, this implies  that Aii  = 1 for 

all i E {1, ... , n}, and therefore, it is known that self-damped 

systems are structurally full-rank [35]. For such systems, the 

observability can be analyzed via certain components in the 

system digraph as we discuss below. 

Definition 3: In a system digraph, a component in which 

every state has a path to every other state in the same compo­ 

nent is called a Strongly Connected Component (SCC). A SCC 

with no outgoing links  to other  SCCs is called as parent SCC, 

denoted by SP, and a non-parent SCC is called child SCC.The 

partial order of SCCs is denoted by -<, i .e ., S i -< Si implies 

that   the re  is   a  directed  path  from  Si  to  S ;.  Define   the  set 

sP ={.s1;, • .. .} as th e se t of all par en t secs. 

Remark 2: The algorithm for decomposing a system 

digraph into SCCs and determining their partial order (parent­ 

child classification) is called depth-first-search algorithm with 

computational comple xity O(n2 ) [36], with n as the number 

of graph nodes. 

The following theorem relates the observability of self­ 

damped systems with SCCs in their system digraph, in a generic 

sense. 

Theorem 1: A self-damped system digraph is observable if 

and only if for each parent  SCC, S , the re  is  one  state node 

Xi E S measured by an agent. 

Proof- The proof follows the main theorem on structural 

observability developed in [32], [37]. Based on this theorem, 
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two necessary and suffic ie nt conditions on the system digraph 

for structural observability are as follows: (i) there is a 

directed path form every state node to an output (or measure­ 

ment), and (ii) there is a family of disjoint cycles spanning all 

nodes in the system digraph.8 

Sufficiency: Based on the definition of the self-damped 

systems the condition (ii) is already satisfied. Note  that 

based  on  the  definition,   there   is  a  path  from  every child 

SCC to (at least) one parent SCC. Having an output Yi   from 
one state  in every  parent SCC,  S1J, i mplies  the output-con­ 

nectivity of all state  nodes  in the same parent SCC, and fur­ 

ther, all states in the child SCCs connected to S1J via a 

directed path, i.e., every Sf for which Sf -< S1J i s  al so con­ 

nected  to  the  output  Yi  •  Thi  s   holds  for  every  parent  and 

child SCC. This satisfies the condition (i) for structural 

observability and the theorem follows. 
Necessity: We prove the necessity by contradiction.Con­ 

sider the case where (at least) one parent SCC, say Sf, ha s no 

outgoing measurement. Therefore, the node states in Sf are 
notconnected to any output. This is because (i) no agents mea­ 

sure a state node in Sf, and (ii) based on the definition of par­ 

ent  SCC,  there  is  no path from states  in  Sf  to any   other 

output-connected SCC. This implies  that the output-connec­ 

tivity is not satisfied, and therefore the system is not 

observable. ■ 
Next, we extend the observability results to networked 

estimation acquired by a network of agents. In this sense, the 

network must be specifically designed to ensure networked 

observability as follows. 

Theorem 2: Let a self-damped system have all the measure­ 

ments for structural observability at the agents (Theorem 1). 

For the networked estimation protocol to achieve asymptotic 

omniscience on system state (networked observability accord­ 

ing to Definition 1), the network Qu is sufficient to be Strongly 

Connected (SC). 

Proof- The proof outline is similar to the proof of Theo­ 

rem l. To satisfy the networked observability (according  to 

the definition), the pair (U ® A, De) must be observable. Fol­ 

lowing the structural observability in [32], [37], for the self­ 

damped underlying system, every agent applies self informa­ 

tion for networked estimation (along with the information of 

neighbors). This implies that the matrix U ® A is structurally 

full-rank and the rank condition for structural observability is 

satisfied [3]- [6], [35]. In the networked system graph associ­ 

ated to U ® A, the Strong Connectivity of 9u implies that 

access to the measurements/outputs is shared among all agents 

via  a  path. In  the  networked  system  graph  including self­ 

damped sub-systems, according to Theorem l every  parent 
SCC, say S1J, i s  ou tput-connected. Assume agent i takes (at 

least) one state measurement Yi   in S1J. Th  e  Strong-connectiv­ 

ity of Qu imp lies that there is a directed path from every agent, 

say k, to agent i . Therefore, all the states in the sub-system 

associated to the agent k are connec ted via this path to the 

output Yi   measured  by the  agent i.  This  holds for all agents 

 
8 The condition (i) for structural observability is known as output connec­ 

tivity condition and condition (ii) is known as rank condition. 

measuring a state in parent SCCs, and therefo re the output­ 

connectivity of all parent secs follows from strong-connec­ 

tivity of Qu. The output-connectivity of child SCCs follows 

from the similar argument as in Theorem 1, and the output­ 

connectivity cond ition of the structural observability  theorem 

in  [32],  [37]  follows.   This  implies   that  SC  network among 

agents is sufficie nt for networked estimation/observability. ■ 
Lemma  1:   Assuming  each  agent  takes  one measurement, 

the minimum number of agents to estimate the state of a self­ 

damped dynamical  system is equal  to ISv  l, where I·I is  the 
cardinality  of  the  set.  Further,  for  this  minimum  number of 

agents, the SC network among agents is necessary for net­ 

worked obse rvability/estimation9. 

Proof· The proof follows the proof of Theorems l and 2. 

Note that measuring a state node in every parent SCC is neces­ 

sary and sufficient for observability. Assuming every agent 

takes one state measurement, the minimum number of agents 

to satisfy observability is equal to the number of parent SCCs, 

i.e., 1sv 1. Next, assume we have the minimum number of 
agents each  measuring a  state in a parent SCC. In  the network 

estimationscenario, having an SC network each agent's infor­ 

mation (regarding the parent SCC measured by that agent) 

reaches to every other agent via a directed path. This implies 

that in the networked system every parent SCC is observable 

to every agent. Let assume that the communica tion network is 

not  SC. This  implies  that  (at least) there  is no directed path 

from one agent, say a, to another agent, say b. Therefore, the 

information of parent SCC Sf measured by agent a cannot 

reach to agent b. Note that we have the minimum number of 
agents/measurements and, therefo re, no other agent is measur­ 

ing any state node in Sf. This implies that the states in Sf  are 

not  observable  to agent b and the  networked  observability is 

violated. Therefore, for minimum number of agents, the net­ 

worked estimation  error cannot  attain  steady-state stability 

over a non-SC network. ■ 
Note that the networked observability results in this section 

are particularly defined for non-SC system digraphs, i.e., the 

case system matrix A is reducible. In case the system digraph 

is SC, according to Theorem 1, only one measurement is nec­ 

essary and sufficie nt for structural observability. Therefore, 

only one agent may perform the estimation and the concept of 

networked observability is irrelevant. This justifies Assump­ 

tion (ii) in this paper. In case having more than one agent, 

measuring perhaps different state nodes in the SC system 

digraph, there is no need for the communication network of 

agents to be SC and it might be even disconnected. 

It should be mentioned that, following the same line of jus­ 

tification as in Lemma 1, the necessary SC network condition 

can be extended to the case where agents take two or more dis­ 

tinct measurements. If no two agents share a measurement of 

the   same   parent  SCC,  the   SC  network  among  agents is 

 
9 Note that here without loss of generality we assume every agent meas­ 

ures the states in one parent sec. In case the numberof agents is less than 
ISpl, some agents measure the states in more parent SCCs. Assuming no two 
agents take  measurement from the same parent sec we still need  an SC net­ 

work among these agents. In fact, the key point here is that the information of 

every parent SCC reaches to every other agent via a directed path. 
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necessary for networked observability. The Strong Connectiv­ 

ity of multi-agent communication network is a typical assump­ 

tion in networked estimation literature as in [1]- [6], [35], and 

also in optimal design of sensor networks as in [18]. In this 

paper, we consider networked estimation via the minimum 

number of measurements eac h from a parent SCC. This is to 

minimize the measurement costs. Based on the results of The­ 

orem 1, Theorem 2 and Lemma 1, assuming networked esti­ 

mation with minimum number of measurements defined in 

Lemma 1 each assigned to one agent, one can relax the net­ 

worked observability constraint and reformulate the MCNE 

problem (8) for self-damped systems into two subproblems as 

follows: 

Problem Formulation 2: Consider the setup in Problem 

Formulation 1 for a self-damped system. The problem can be 

subdivided into Minimum-Cost Sensor Selection (MCSS) 

problem: 

 
N n 

min    LL 8i jCii 
i=  l    j= l 

s.t. (A,C) observability, 

Ci j E {0, 1} 

.A;i  =  l ,   'v'i E {1, ...  ,n} (9) 

 
and Minimum-Cost Communication Network (MCCN) 

problem: 

N n 

min L L 11i P ii 
i= l j=l 

s . t .   9 u    is  SC, 

Ui j E {O, 1 } 

constraint 9u being SC in (10), according to Theorem 2 and 

Lemma 1, is related to MCCN problem. Notice that the con­ 

straint Aii = 1, 'v'i E {1, ... , n} formulates the self-damped 

system constraint. From these arguments, the MCNE problem is 

decomposed into MCSS and MCCN optimization problems sep­ 

arately discussed in the next sections. Based on the structured 

systems theory, with the given assumptions, the optimality and 

complexity of the MCNE problem is almost always the same as 

the MCSS and MCCN problems. We shoulde mphasize that this 

decomposition is only valid for self-damped systems, and for 

generalsystems suchdecomposition mig ht be irrelevant. 

 

N. MCSS PROBLEM: ALGORITHM AND COMPLEXITY 

Reca ll that the MCSS problem is the problem of identifying 

the states to be measured such that a certain cost of measure­ 

ments is minimized while satisfying observability  condition 

for inference purposes. 

Remark 3: For general systems the MCSS problem is 

NP-hard. 

Note that for general systems (not necessarily self-damped), 

the MCSS problem is proved to be reducible to minimum set 

covering p roblem and therefore is NP-hard [23]. In this section, 

we find a polynomial-order solution under self-damped system 

constraint. First, we add two new constraints on the state-mea­ 

surement pairs. For minimization purposes, we assume that 

each  agent  is  assigned  to  measure  one  and  only  one state, 

implying that eac h Ci is a row vector and "I:'J=1  Ci j = 1.  Also, 

eac h state  is at  most  measured  by  one  agent, implying that 

1 Cii :::: 1. Adding these conditions the new MCSS formu­ 

lation is as follows: 

Problem Formulation 3: Co nside ring that every agent 

measures onlyone state, the MCSS problem has the following 

form: 

 

In o rd e r to justify the above formulation, note that based on 

Theorems  1  and  2  and  Lemma  1,   the   networked  observability 

constraint in  Problem Formulation  1  can  be  decomposed 

into (i) (A, C)-observability constraint for which every parent 

SCC is measured by (at least) one agent related to the  opti­ 

mization  term 1 'I:j=1  8i jCi j,  and  (ii)  strong-connectivity 
of   multi-agent   network   related   to   the   optimization  term 

1 L J=t 1Ji jUi j· Further wenote that, 

min(  t ti8 icj  i j + t ti 11i P  ii) 

N n N n 

= min L L   8ci j i j + min  LL 11i P i j c11) 
i=  l  j= l i= l j= l 

 

This is because both summations (including the weights 8i j and 

1iJ  j)  are  positive,  therefore  the  minimization  of  the  sum  

is equivalent  to  the  minimization   of   each   term.   The 

(A,C )-observability constraint in (9), which according to Theo­ 

rem 1 implies that one state node in every parent sec must be 

measured, is related to MCSS problem. On the other hand, the 

N n 

min   LL 8i jCii 
i= l j= l 

s.t . (A,C) observability, 

Ci j E {O,1 } 

N 

L Ci j :::: 1 
i= l 

n 

L c i1 = 1 
j= l 

A ii  = 1,  'v'i E { 1 , ... , n} (12)
 

 
Using the results of Theorem 1, the (A, C) -observability 

constraint can be relaxed as having one state measurement 

from each parent SCC S to be assigned with an agent i. The 

agent measures the state in parent SCC that has minimum mea­ 

surement cost.In this direction, redefine the state measurement 

cost matrix 8 by a new parent SCC measurement cost matrix ii 

as follows: 

(13) 
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i4 j 

N n 

Note that the new cost matrix /1is N x N. The refore, instead of 

C,a new assignment matrix needs to be defined relating the par­ 

ent SCCs to agents. Denote this O - 1 matrix by Z = {Zii }. An 

element Zii   = 1 implies that agent i is assigned to measure the 

minimum-cost state in pare nt SCC j and tlii denotes this cost 

Recalling that measuring all N parent SCCs guarantees the 

(A, C)-observability (Theorem 1) and the fact that parent 

SCCs do not share state nodes [36), the new optimization for­ 

mulation is as follows: 

Problem Formulation 4: Redefining the agent-SCC cos t 

matrix /1 and introducing the agent-SCC assignment  matrix 

Z, the MCSS problem has the following form: 

 
N n 

 
 

Algorithm 1 Pseudo-Code for the Hungarian Algorithm 
 

 

Given:Cost matrix 6. = [6.;j] ; 
for i = 1, ... , N do 

'Ui = smallest entry in rowi of 6.; 
for j = l , ... , N do 

t.; j = 8.i j - 'U,j 

end 

end 

for j = 1 , ... , N do 

Vj = smallest entry in column j oft.; 

for:_i  =  1 1  ...     ,  N   do 

8,;j = 8,;j - Vj 

end 

end 

min L L /1izi ii 
i= l j= l 

s.t .  Z ii E {0 , 1} 

N 

z:= z ii = 1 
i= l 

n 

z:= z i j = 1 
j= l 

 

 

 

 

 

 

 
(14) 

S = an in dependent set of zeros of max size in ii; 
q= ISi ; 
while q < N do 

Cover ii; 
k = smallest entry in ii not covered by a line; 

for i = 1, ... , N do 

for j = 1, ... , N do 

if i s npt covered then 

8.ii = 6.;i - k 

end 

Note that 1 Zii = 1 implies that each parent SCC is 

measured by one  agent, and 1 Zii = 1  implies  that each 
agent  makes  one  measurement of  a  pare nt SCC. The above 

formulation is a linear assignment problem, which is well­ 

known in combinatorial optimization. This problem is dis­ 

cussed in the literature to a great extent. For extensive surveys 

on this problem and generalizations see [38), [39). The most 

well-known polynomial-order solution for linear assignment 

problem is the Hungarian method [40). The pseudo-code for 

the Hungarian method is given in Algorithm IV. The comput­ 

ational comple xity of this algorithm is O( N3 
).  Recalling that 

the formulation (14) is equivalent to the formulation (9) leads 

to the following remark, 

Remark 4: The computational comple xity of MCSS prob­ 

lem solution for self-damped system is O( N3 
), where N is the 

number of agents (or parent SCCs). 

 

V. MCCN PROBLEM: ALGORITHM AND COMPLEXITY 

Recal l that MCCN problem is to find the minimum weight 

(cost) strongly-connected subgraph spanning all nodes (agents) 

in the communication network. 

Remark 5: For general (directed) communication networks 

the MCCN problem is NP-hard. 

This is because the MCCN problem is reducible to directed 

Hamiltonian cycle problem and therefo re is NP-hard [30), 

[41]. This problem is also known as minimum spanning strong 

sub(di)graph in literature [42). For approximation algorithms 

to this NP-hard problem, [43), [44) provide a 1.62-approxima­ 

tion algorithm, and [45) proposes a LS-approximation algo­ 

rithm. We consider an undirected communication network 

among agents, i.e., the communication links are all bidirec­ 

tional. This simply  implies  that  if  two agents are in  the com­ 

munication  range of each other, e.g.,  in  a  wireless  sensor 

if ii ;j is covered twicethen 

ii;i =ii;i +k 

end 

end 

end 

S = an independent set of zeros of max size in ii; 
q= ISI ; 

end 

for i = 1 , ... , N do 

for j = l , ... , N do 

if /l;j E S th en 

Z ;i = 1 

end 

else 

Z ;i  =0 
end 

end 

end 

Return Z = [Z; j]; 
 

 

 

network, both agents share their information. This is a typical 

assumption in the lite ratureof networked estimation as in [2], 

[5]. This assumption changes the problem as in the following: 

Problem Formulation 5: Considering bidirectional co m­ 

munication among agents, the MCCN problem has the follow­ 

ing form: 

 
 

min  z:::z:,:: 1ip  i j 
i=  l    j= l 

s .t.   9u  is SC, 

Uii E {O, 1 } 

U  is  symmetric (15)
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The above problem can be reformulated as a well-known 

problem in combinatorial optimization and discrete mathe­ 

matics, known as minimum weight spanning tree. Two 

classic polynomial-order  solutions   (with   complexity 

O(N 2 log (N))) for this problem are Prim algorithm [46] 

and Kruskal algorithm [47]. However, a more efficient 

distributed algorithm with computational complexity 

O(Nlog(N)) is proposed in [48]. The pseudo-code for the 

distributed algorithm is given in [48] and excluded  here 

due to space limitation. Recalling that the formulation (15) 

is the equivalent form of the formulation (10), we deduce 

the following. 

Remark 6: The computational complexity of the most effi­ 

cient solution to MCCN problem for undirected networks 

(with bidirectional links) is O(N log (N)). 

 
A. Remarks on SC Communication Network Condition 

Note that with the help of Assumptions (i)-(v), we show in 

Lemma l that SC communication network among agents is 

necessary for networked estimation. However, in general, 

for networked estimation there might be cases for which 

some of the given assumptions are violated and therefore the 

agents' network is not necessarily SC. Assume that we are 

interested to reduce the number of communications among 

agents by, for example, increasing the number of system 

measurements taken by agents. In this direction, consider 

three cases: 

• Case (I): Following Assumption (v) let each agent take 

one measurement Consider the number of agents to be 

N1 and the number of parent Sees tobe N2 <  N1. In 

the communication network, every agent needs to receive 

the information of the other N2 - 1 parent sees via 

directed paths. In such case, although the network is not 

necessarily SC, the amount of communications is more 

than the case where N2 agents each measure one parent 

sec    and share information  over (smaller) SC network. 

• Case (II): consider N2 measurements e ach from one par­ 

ent SCC are assigned to N1 < N2 agents, implying that 

some agents take more than one measurement. Since no 

two agents share a measurement and following the same 

reasoning as inLemma 1, the SC communication network 

is a necessary condition and MCCN problem formula­ 

tion (15) follows. 

• Case (Ill): consider N1 measurements more than neces­ 

sary N2 < N1 parent sec observations. Let us assign 

these measurements to N3 < N1 agents, where some 

agents may share measurements from one or more par­ 

ent SCCs. In this case, the minimum communication 

network is not necessarily SC and could be dis­ 

connected.  Therefore,  recalling  the   bidirectional link 

assumption  among  agents,  the  SC condition  on  9u is 

relaxed to having a disconnected group of smaller SC 

sub-networks. Recall that the solution to the MCCN 

problem subject to SC undirected network condition is 

shown to be minimum weight spanning tree. According 

to  the definition,  removing  any  link  from  a spanning 

 

 

 
,·- ·-·-·- ·-·- 
I 

!Xis 
I 

 

 

Fig. I. This figure shows a system digraph,  where each  node represents a 
state of the dynamical system. For simplicity the self-cycle at each node is not 
represented in the figure. The system contains five parent SCCs (shown by 
dashed squares). 

 

tree yields a disconnected network of smaller trees 

knwon as aforest [49]. Therefore, one may run similar 

algorithm over SC sub-networks and find the minimum 

weight spanning forest as the solution. See more infor­ 

mation in [50]. 

To summarize, the communication  cost in the Case (I)  

is not less than the MCCN problem formulation (15) 

while the measurement cost is more than the MCSS 

problem formulation (12).  Case (II) can  be considered 

as an extension to the MCCN problem formulation (15) 

and the MCSS problem formulation (12) where agents 

take more than one measurement to reduce the  amount 

of communications. In Case (III) the SC network con­ 

straint in the MCCN problem formulation (15)  is 

relaxed and the minimum weight spanning forest  is 

given as a solution, while the MCSS problem formula­ 

tion (12) is NP-hard in this case [23] as some agents  

may share measurements from one or more parent  

SCCs. We again mention that in this paper we consider 

minimum cost networked estimation accompanied with 

minimum number of measurements distinctly  assigned 

to the agents. 

 

 
VI. ILLUSTRATIVE EXAMPLE 

In this section, we provide an example to explain the 

methodology for Minimum-Cost Sensor Selection and Mini­ 

mum-Cost Communication Network design. Consider an 

example system digraph with 18 state nodes shown in Fig. 1. 

This  graph  represents  the structure  of  a  system in  the form 

(1). Note that we assume every state node in the graph con­ 

tains a self-cycle, which is not shown for simplicity of the 

figure. Having a self-cycle on every node the system is self­ 

damped. Using the dep th-first-search algori thm, it can be 

verified that the graph contains 6 SCCs among which 5 have 

no outgoing  links  and  therefore  are  parent sees, marked by 
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2 

U( 2,5) = 1, U(5,3) = U(3,5) = 1, U(4, 2) = U(2,4) = 1. 

This communication network of agents is shown in Fig. 2. 

Note that sharing state-predictions over this communication 

network U among agents measuring states according to C 
res u lts in an observable networked estimation of the self­ 

damped syste m, while the networked observability cost is 

minimized. All the algorithms used to optimally design the 

0 - 1 matrices C and U are structural and of polynomial time 

complexity. 
 

Fig. 2. This figure shows the optimal communication network among five 

agents measuring the parent SCCs in system digraph in Fig. l. The links are 

bidirectional and the graph represent the minimum cost spanning tree. 

 
 

blue squares. Based on the Theorem l, the  minimum  number 

of agents to estimate this system is 5. Measurement of every 

state by each agent/sensor has a cost representing the matrix 

8. For this example, this agent-state measurement cost 8 is 

randomly generated in the  range  [0,10]. To assign  the  states 

to be measured by agents, using (13), the minimum cost state 

measurement in each parent SCC is considered  to  obtain 

cost matrix Li. This agent-SCC measurement  cost  matrix  is 

as follows: 

( 81472 0.9754 1.5761 1.4189 65574) 

 
 

In order to solve the MCSS problem, based on the Formula­ 

tion 4, using Hungarian method the minimum-cost states in 

parent SCCs are assigned to the agents. This is done using 

MATLAB function assignDetectionsToTracks. The 

algorithm used by MA1LAB is of complexity O(N3
) , where N 

is the number of agents. The non-zero entries of optimal mea­ 

surement struc tured matrix C are as follows: C(l , 10) = 1, 

C(2, 17) = 1, C(3,6) = 1, C(4,11) = 1, C(5, 16) = 1. 

For networked estimation/observa bility the communica­ 

tion network among these  agents needs  to  be SC, as  stated 

in Theorem 2. In the communication network of agents the 

links are assumed to be bidirectional, and the symmetric 

communication cost matrix 17 i s cons id e r ed randomly as 

follows: 

7 .2 459 6.0784 5.4711 330 ) 

 

 

VII. CONCLUSIONS 

It should be noted, following Remarks 3 and 5, the MCSS 

problem and the MCCN problem being generally NP-hard 

implies that the main MCNEproblem in equation (8) is NP-hard 

as stated in Remark l . However, based on Remarks 2, 4, and 6 

the MCNE problem for self-damped system constraint under 

bidirectional communication links is ofcomputational complex­ 

ity O(n2 + N 3) with n as the number of state nodes (system 

size) and N as the numberof parent SCCs or agents (communi­ 

cation network size). If the number of agents is less than number 

of syste m states (N < nJ) the computationalcomplexity of this 

problem is O(n2
) . 

Although in this paper we assume that the minimum num­ 

ber of measurements are each assigned to one agent, the solu­ 

tion can be extended to the case that every agent takes two (or 

more) distinct measurements. In such case, the communication 

network is smaller and the communication costs are less. We 

should emphasize that agents should take measurements from 

distinct parent SCCs, otherwise, in case agents share meas­ 

urements of parent SCCs, the MCSS problem is NP-hard to 

solve [23]. 

It should be noted that for general systems, i.e., systems that 

are not necessarily self-damped, other than pare nt SCCs, con­ 

tractions are the key components to ensure observability [51], 

[52]. Unlike parent SCCs, the contractions share nodes and 

therefore for such systems it is not possible to reformulate the 

MCSS problem as a linear assignment. One solution is to 

apply greedy algorithms, which is the direction of our future 

research. Further, the communication network condi tion for 

networked observability also requires more than strong con­ 

nectivity. For such systems, the network of agents requires 

certain hubs measuring nodes in contractions along with SC 

network of agents measuring parent SCCs [31]. Therefore the 

MCCN problem is more complicated as it is our ongoing 

( 72:59 * 4.8588 2.1386 2.7136 
research. 

11 = 6 .0 784 4 .8588 * 8.5787 3.4038 

* 4.4812 

4.4812 * 

To solve the MCCN problem (Problem Formulation 5) we use 

MATLAB function gr a phmi n sp an tr  ee . The algorithm is 

of complexity O( N2 log (N)). The algorithm returns the non-

zero entries of optimal co mmunication network matrix U for 

this problem as follows: U(5 ,1 ) = U(l , 5) = 1, U(5,2) = 
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