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On the Complexity of Minimum-Cost Networked
Estimation of Self-Damped Dynamical Systems

Mohammadreza Doostmohammadian

Abstract- In this article, we consider the optimal design
of networked estimators to minimize the communication/
measurement cost under the networked observability constraint.
This problem is known as the minimumeostnetworked estimation
problem, which is generally claimed to be NP-hard. The main
contribution of this work is to provide a polynomial-order solution
for this problem under the constramnt that the underlying
dynamical system is self~damped. Using structural analysis,
we subdivide the main problem into two NP-hard subproblems
known as (i) optimal sensor selection, and (ii) minimum-cost
communication network. For self-damped dynamical systems, we
provide a polynomial-order solution for s ubproblem (i). Further,
weshow that the subproblem (ii) is of polynomial-ordercomplexity
if the links in the communication network are bidirectional. We
provide an illustrativeexample toexplain the methodologies.

Index Terms- Computational complexity, networked estima-
tion, observability, self~-damped dynamical system, structural
analysis.

1 INTRODUCTION

ETW ORKED estimation has been a topic of significant
interest in the literature [1)- [6], where a group ofagents' is
assigned to talce meas urements and share information over a
communication network in order toestimate the state-vectorof a
dynamical system. This paper studies the complexity of Mini-
mum-Cost Networked Estimation (MCNE) for self-damped
dynamical systems, crucial in many large-scale applications.
Because of the large size, only solutions with polynomial-order
complexity are desirable. Self-damped dynamical system is a
type of system in which the state of each node in the system is
influenced, among others, by itself [7]- [9]. Structurally repre-
senting thissystem by a digraph, each state node contains a self-
cycle. Such systems are prevalent, for example, in epidemic
models[10J andeco-systems [11). Also, in discretizationof con-
tinuous-time systems the discretized system matrix always has
non-zero diagonal entries, implying that its associated system
digraph contains a self-link onevery state node. Such discretized
models may bederived via Euler's method or Tustin's method as
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discussed in [12]. See more examples of discrete-time represen-
tations for modeling the target-tracking systems in [13)- [17].
The self-damped assumption is also considered in estimation
scenarios as in [18].

For self-damped systems, we relax the MCNE problem into
two subproblems: (i) Minimum-Cost Sensor Selection (MCSS)
problem, and (ii) Minimum-Cost Communication Network
(MCCN) problem. We separately discuss the computational
comp lexity of each problem The MCSS problem is to find the
optimal sensorplacementto minimize thecostofmeasurements.
This costmay represent sensor expenses, or utility/energy con-
sumptionbysensors[19].Ontheotherhand,theMCCN problem
istooptimally design thecommunication networlcto minimize
the communication cost at the agents, where the cost may repre-
sent communication reliability [20], communication energy/
power [21], or distance (also referred to as capacity-infrastruc-
turecost) [22),among others.

Related literature: Optimal sensorselection [23], [24] and dual
problem of optimal actuator placement [25), [26) is shown to be
NP-harci2in the literature. The problem of optimal selection of
sensors (information gatherers) is shown to be reducible to a min-
imum set covering problem [23). The problem of optimal input
selection is shown tobe reducibletor-hitting set problem in [25).
These references imply that the MCSS problem is NP-hard, in
general. On the other hand,cost-optimal communication network
design is considered in [18], [20]-[ 22], [27]-[ 29]. In [27], trade-
offsbetween optimal sensor placementand minimization ofcom-
munication cost is claimed to be NP-hard and therefore a near-
optimal solution is proposed. The near-optimal approximation®
solution in [27] is ofcomplexity O(n log (n)). In [22),communi-
cation to a central unit based on Poisson-Voronoi spanning tree
with application to tracking in mobile communication systems is
discussed. In the literature, a few references consider the optimal
communication network design under obse rvability con-
straints [18), [28), [29); in these works, the main objective is to
design the network such that the communication cost to a central
base is minimized while satisfying observability constraint as a
necessary condition for centralized estimations . For example, the

2NP-hardness (Non-deterministic Polynomial-time hardness) is the defin-
ingproperty of a class of problems that has no solution in the time-complexity
upperboundedby a polynomial function of the inputparameters.

3 For NP-hard problems, typically a p-approximation algorithm is pro-
vided with provable guarantees on the fac tor p of the returned solution to the
optimal one.

* Note that in works [ 18], [28], [29] although the authors claim adistrib-
utedframework, they indeedconsiderthe estimation viaa central node (or the
root node) in the sensor network.
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complexity of the cost-optimal design of the communication net-
work for centralized estimationin [18] is proved to be in O(n®).
However, the general MCCN problem is known to be NP-

hard [30].

Contributions The main contributions of this paper are as
follows, First, in Section ID, we reformulate the MCNE prob-
lem for self-damped systems using structured systems theory
and decompose the problem into MCSS and MCCN subpro-
blems. In this direction, we generalize the optimal centralized
estimation problem in [18], [28], [29] to the networked case,
where the problem is cons traine d with networked observability.
Second, in Section N , we prove existence of a polynomial-
order solution for MCSS problem in the case the syste m is self-
damped. We reformulate this problem as a linear assignment
problem with a solution of complexity O(N?) based on the
Hungarian method. It should be noted that, as claimed in [23],
for general systems the MCSS problem is NP-hard. Third, in
Section V, we show that generally NP-hard MCCN problem
has polynomial-order solutions under bidirectional link con-
straint, i.e., when the co mmunication adjacency matrix is sym-
metric. Note that the main contribution of this work is not to
generate an algorithm as the solution to the MCNE problem but
determining the complexity of the solution.It should be empha-
sized that in this paper, we determine the minimum number of
agents such that each agent measures one necessary state for
observability of the unde rlying self-damped dynamical system.
In other words, the case of minimal systemobservability is con-
sidered here. The case where more measurements of the system
are given, for example, to improve the estimation performance
or to reduce the cost of network communication,is left as future
researchdirection.

II. MCNE PROBLEM STATEMENTf

We consider discrete-time LTI dynamics in the form:

X+ 1) = Ax(k )+ v(K) (1)

y(k) = Cx(k) + r(k) 2
whe re k is the time-index, x E NI" represents the state of the
dynamical system, Y E RN is system measurement, v and r
respectively represent syste m and measurement noise® and A
and C respectively represe nt system and measurement matri-
ces. The discrete-time model (1) may be derived from the dis-
cretization of continuous-time models in the form,

x = Ax 3)
Applying the Euler's method [12] fordiscretization of (3) with
sampling time T,

°The noise is inherent to any estimation scenario. Although, in this paper
we do notdirectly use the noise in our analysis, we consider the noise terms as
in most general case the concept of estimation and observability are tightly
related with noise. It should be noted that the cost-optimal design in this paper
is irrespective of the noise terms. Ho wever, after designing the sensor-net-
work, thedistributed estimation scenario aims to track the noise-corrupted sys-
tem states.
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x((k+1)T) (I+T.A)x(kT) (4)
w he re [ is th e identity matrix. In fact, the Euler's method is
the approximation to the following discrete-time model of

continuous-time system (3):
x((k+ 1)T) = exp (T.A)x(KT) 5

Another approximation to the above model is by using the
Tustin's method [12] for discretizationof (3) as follows:

x((k+1)T) =~ (I—%fl)_l (I+§fl)x(kT) (6)

In both discretized models (4) and (6) the diagonal entries
of the discrete-time syste m matrices are non-zero (due to the
identity matrix /). It should be mentioned both Euler's and
Tustin's methods are discrete-time approximations of continu-
ous-time system model, and both give approximate solutions
to the continuous-time model (3).

In general, system estimation necessitates the pair (A ,C) to
be observable ©. In networked estimation, the group of agents/
estimators are connected such that the system is observable to
every agent/estimator via the local measurement matrices Ci
at each agenti with C = [C[ ... Ci_ IT Since the pair (A, C)
is not necessarily observable at any agent, the agents recover
the observability deficiency by sharing measurements or state
predictions over a communication network 9u. To keep the
exposition simple and without loss of generality, we assume
each measurement Yii s taken by one sensor/agent i. At every time-
step K, every agent i shares its information with other agents in
its neighborhood N - By sharing necessary informa- tion over
9u every agent is capable of tracking the global state of the
dynamical system. In this regard, the necessary condi- tion for
networked estimation is networked observability
defined as follows [3]- [6], [31]:

Definition I: For the dynamical system (4 ,{ C}i) moni-
tored by a network 9u of agents with adjacency matrix U, the

networked syste m is observable by each agent if the pair
(U ® A,De) is observable, where De is defined as:

> ien, € Cj

Dc 2 (7)

and the set {V1, ..., NN } is the set of neighboring agents,
where IV ;is the set of agent j's neighbors.

It should be noted that the (A, C) -o bservability is necessary
for (U ® A, De )-observability, but is not sufficient; the next
section explains moreconditions for networked observability. If
the networked observability is satisfied, a feedback gain matrix
may exist such that every agent achieves asymptotic omni-
science on the dynamical system state [3]- [6], [31]. This simply

6 Throughout this paper, we use structured system theory where the observ-
ability analysis is structural and generic. For notation simplicity, observability
implies structuralor genericobservability.
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implies that the error dynamics at every agent is bounded and
achieves asymptotic mean-squared stability. The idea in this
paper is to design the measurement matrix and communication
network such that certain cost is minimized. The cost of net-
worked estimation is twofold: the measurement cost and the
communication cost The problem is to minimize these costs
while networked observability constraint is satisfied, termed as
the Minimum-Cost Networlced Estimation (MCNE) problem.

Problem Fonnulation 1: Consider the system matrix and
measurement matrix pair (A, C). The measurement of state j
by agent i is assigned with a cost 8/ and the communication

from agent i to agent j is assigned with a cost /i/* j Th en, the
probl em is to so lve th e fo 1lo wing:
N, n N n
min LL 8i:Cii t LI_ lipi;
=l =1
s.t. (U0 A, Dc)-observability, ®)
Cii E {0,1}
Ui; E {0,1}

where the matrices C =~ {0, I}nxnand U = {O, 1} nxn repre-
sent the 0 - 1 structure of C and U matrices, respectively.

Remark 1: The general MCNE problem is NP-hard to solve.

We prove this remark in the next sections as we reformulate the
problem using structural analysis. In this paper, we solve
the MCNE problem for self-damped systems.

Definition 2: Self-damped systems are where the evolution
of every state x; is a function of, among other states, the state Xi
itself. In structured systems theory, a self-damped system is
modeled by a graph with a self-loop on every state node
[31- [81,[31].

The self-dampedsystem dynamics is prevalent in discretized
representations of continuous-time systems, as in the men-
tioned Euler's and Tustin's discretized models. The main prob-
lem addressed in this paper is on the complexity of MCNE
problem under self-damped system constraint. We investigate
if there is a polynomial-order solution for this problem; and Iif
not, is there an efficient (with polynomial-order complexity)
approximate algorithm to solve the problem, and what is the
p-approximationof the solution? To answer these questions, in
the next sectio ns, using structured systems theory we reformu-
late the problem for self-damped systems into two subproblems
and find the complexity of the solution for eac h subproblem.

Assumptions: The following assumptions are made through-
out the paper:

(1) The underlying system to be estimated is self-damped.

(i) The system matrix 4 is not necessarily irreducible.”,
see the comments after Lemma 1.

Minimum number of measurements for ( A,C )-observ-
ability are available.

The communication links in the network of agents/sen-
sors are bidirectional.

(iii)
(iv)
7 A reducible matrix A is such that, by simultaneous row/column permuta-

tions, it can be transformed into block upper/lower-triangular form. Otherwise,
it isirreducible [32]
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(v) Each agent measures one system state.
Regard ing Assumption (v), it should be mentioned that
the methodology can be extended to the case where
agents take more than one measurements, discussed in
Sections V and VII.

ill. REFORMULATION BASEDONSTRUCTURED
SYSTEMS THEORY

In this paper, a structural (also referred to as generic)
approach is adopted to solve the MCNE problem. It is known
that many properties of the system emerge from the system
structure and are irrespective of the numerical values of system
variables [33]. Among these properties are system controlla-
bility and observability [31], [34], [35]. It is known that the val-
uesof system parameters for which a generic property doesnot
hold lies on an algebraic subspace with zero I.ebesgue measure
[33]. This implies that the structural observability resul ts in the
observability for almost all values of system/measureme nt
parameters. Determination of the zero-measure algebraic sub-
space for which structural observability doesnot imply observ-
ability is case-specific and generally can be formulated based
on the dependencies of system parameters and is out of scope
of this paper.

In the rest of the paper, consider matrix A~ {0, 1}mn as
the 0 - 1 structure of system matrix A and C =~ {0, 1}nxn as
the 0 - 1 structure of measurement matrix C. Based on the
structured systems theory, A and C can be represented by a
graph known as system digraph. The (A, C)-observability
generically e merges from this graphical model. For self-
damped systems, the system digraph contains a self-loop on
every state node. Mathematically, this implies that Aii = 1 for
all i E {1, ..., n}, and therefore, it is known that self-damped
systems are structurally full-rank [35]. For such systems, the
observability can be analyzed via certain components in the
system digraph as we discuss below.

Definition 3: In a system digraph, a component in which
every state has a path to every other state in the same compo-
nent is called a Strongly Connected Component (SCC). A SCC
with no outgoing links to other SCCs is called as parent SCC,
denoted by SP, and a non-parent SCC is called child SCC.The
partial order of SCCs is denoted by -<, i .e ., § 7 -<< Si implies
that there is a directed path from Si to S,. Define the set
SPZ{.S],‘, e .. } asthesetofall parentsecs.

Remark 2: The algorithm for decomposing a system
digraph into SCCs and determining their partial order (parent-
child classification) is called depth-first-search algorithm with
computational comple xity O(n? ) [36], with n as the number
of graph nodes.

The following theorem relates the observability of self-
damped systems with SCCs in their system digraph, in a generic
sense.

Theorem 1: A self-damped system digraph is observable if
and only if for each parent SCC, S , the re is one state node
Xi E S measured by an agent.

Proof- The proof follows the main theorem on structural
observability developed in [32], [37]. Based on this theorem,
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two necessary and suffic ie nt conditions on the system digraph
for structural observability are as follows: (i) there is a
directed path form every state node to an output (or measure-
ment), and (ii) there is a family of disjoint cycles spanning all
nodes in the system digraph.®

Sufficiency: Based on the definition of the self-damped
systems the condition (ii) is already satisfied. Note that
based on the definition, there is a path from every child
SCC to (at least) one parent SCC. Having an output Y from
one state in every parent SCC, S1.J, i mplies the output-con-
nectivity of all state nodes in the same parent SCC, and fur-
ther, all states in the child SCCs connected to S7J via a
directed path, i.e., every Sf for which Sf-< S1Jis also con-
nected to the output Y ¢ Thi s holds for every parent and
child SCC. This satisfies the condition (i) for structural
observability and the theorem follows.

Necessity: We prove the necessity by contradiction.Con-
sider the case where (at least) one parent SCC, say Sf, has no

outgoing measurement. Therefore, the node states in Sf are
notconnected to any output. This is because (i) no agents mea-

sure a state node in Sf, and (ii) based on the definition of par-
ent SCC, there is no path from states in Sf to any other
output-connected SCC. This implies that the output-connec-
tivity is not satisfied, and therefore the system is not
observable. |

Next, we extend the observability results to networked
estimation acquired by a network of agents. In this sense, the
network must be specifically designed to ensure networked
observability as follows.

Theorem 2: Let a self-damped system have all the measure-
ments for structural observability at the agents (Theorem 1).
For the networked estimation protocol to achieve asymptotic
omniscience on system state (networked observability accord-
ing to Definition 1), the network Qu is sufficient to be Strongly
Connected (SC).

Proof- The proof outline is similar to the proof of Theo-
rem 1. To satisfy the networked observability (according to
the definition), the pair (U ® A, De) must be observable. Fol-
lowing the structural observability in [32], [37], for the self-
damped underlying system, every agent applies self informa-
tion for networked estimation (along with the information of
neighbors). This implies that the matrix U ® A is structurally
full-rank and the rank condition for structural observability is
satisfied [3]- [6], [35]. In the networked system graph associ-
ated to U ® A, the Strong Connectivity of 91 implies that
access to the measurements/outputs is shared among all agents
via a path. In the networked system graph including self-
damped sub-systems, according to Theorem | every parent
SCC, say S1 jz is ou tput-connected. Assume agent i takes (at
least) one state measurement Y in S7J. Th ¢ Strong-connectiv-
ity of Qu imp lies that there is a directed path from every agent,
say k, to agent i . Therefore, all the states in the sub-system
associated to the agent k are connec ted via this path to the
output Y measured by the agent i. This holds for all agents

8 The condition (i) for structural observability is known as output connec-
tivity condition and condition (ii) is known as rank condition.
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measuring a state in parent SCCs, and therefo re the output-
connectivity of all parent secs follows from strong-connec-
tivity of Qu. The output-connectivity of child SCCs follows
from the similar argument as in Theorem 1, and the output-
connectivity cond ition of the structural observability theorem
in [32], [37] follows. This implies that SC network among
agents is sufficie nt for networked estimation/observability. l

Lemma 1: Assuming each agent takes one measurement,
the minimum number of agents to estimate the state of a self-
damped dynamical system is equal to [} |, where || is the
cardinality of the set. Further, for this minimum number of
agents, the SC network among agents is necessary for net-
worked obse rvability/esimation.

Proof: The proof follows the proof of Theorems I and 2.
Note that measuring a state node in every parent SCC is neces-
sary and sufficient for observability. Assuming every agent
takes one state measurement, the minimum number of agents
to satisfy observability is equal to the number of parent SCCs,
ie., 1sv 1. Next, assume we have the minimum number of
agents each measuring a state in a parent SCC. In the network
estimationscenario, having an SC network each agent's infor-
mation (regarding the parent SCC measured by that agent)
reaches to every other agent via a directed path. This implies
that in the networked system every parent SCC is observable
toevery agent. Let assume thatthe communication network is
not SC. This implies that (at least) there is no directed path
from one agent, say a, to another agent, say b. Therefore, the
information of parent SCC Sf measured by agent a cannot
reach to agent b. Note that we have the minimum number of
agents/measurements and, therefo re, no other agent is measur-
ing any state node in Sf. This implies that the states in Sf* are
not observable to agent b and the networked observability is
violated. Therefore, for minimum number of agents, the net-
worked estimation error cannot attain steady-state stability
over anon-SC network. |

Note that the networked observability results in this section
are particularly defined for non-SC system digraphs, i.e., the
case system matrix A is reducible. In case the system digraph
is SC, according to Theorem 1, only one measurement is nec-
essary and sufficie nt for structural observability. Therefore,
only one agent may perform the estimation and the concept of
networked observability is irrelevant. This justifies Assump-
tion (ii) in this paper. In case having more than one agent,
measuring perhaps different state nodes in the SC system
digraph, there is no need for the communication network of
agents to be SC and it might be even disconnected.

It should be mentioned that, following the same line of jus-
tification as in Lemma 1, the necessary SC network condition
can be extended to the case where agents take two or more dis-
tinct measurements. If no two agents share a measurement of
the same parent SCC, the SC network among agents is

9 Note that here without loss of generality we assume every agent meas-
ures the states in one parent SCC. In case the numberof agents is less than
Spl, some agents measure the states in more parent SCCs. Assuming no two
agents take measurement from the same parent SEC we still need an SC net-
work among these agents. In fact, the key point here is that the information of
every parent SCC reaches to every other agent via a directed path.
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necessary for networked observability. The Strong Connectiv-
ity of multi-agent communication network is a typical assump-
tion in networked estimation literature as in [1]- [6], [35], and
also in optimal design of sensor networks as in [18]. In this
paper, we consider networked estimation via the minimum
number of measurements eac h from a parent SCC. This is to
minimize the measurement costs. Based on the results of The-
orem 1, Theorem 2 and Lemma 1, assuming networked esti-
mation with minimum number of measurements defined in
Lemma 1 each assigned to one agent, one can relax the net-
worked observability constraint and reformulate the MCNE
problem (8) for self-damped systems into two subproblems as
follows:

Problem Formulation 2: Consider the setup in Problem
Formulation 1 for a self-damped system. The problem can be
subdivided into Minimum-Cost Sensor Selection (MCSS)
problem:

N n
min LL
i=1 j=1

s.t. (A,C) observability,

8ijCii

CijE{0, 1}

Aji=1, ViE{l,.. ,n} (9)
and Minimum-Cost Communication Network (MCCN)
problem:

N n

min L L 11iPii
=1

s.t. 9u is SC,
UijE{O,1}

In o rd e r to justify the above formulation, note that based on
Theorems 1 and 2 and Lemma 1, the networked observability
constraint in  Problem Formulation 1 can be decomposed
into (i) (A, C)-observability constraint for which every parent
SCC is measurgd by (at least) one agent related to the opti-
mization term r: L 'l j?& JCij, and (ii) strong-connedivity
of multi-agent network related to the optimization term

L J=t 1Ji jUi j- Further wenote that,

min( t tl& cj ij+t tl 1iP i)
N n

N n
=minL L &ij+tmin LL
=1 =1 i=1j=1

1iPij  cll)

This is because both summations (including the weights 8 j and
1iJ j) are positive, therefore the minimization of the sum
is equivalent to the minimization of each term. The
(A, C )-observability constraint in (9), which according to Theo-
rem | implies that one state node in every parent SCC must be
measured, is related to MCSS problem. On the other hand, the
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constraint 91 being SC in (10), according to Theorem 2 and
Lemma 1, is related to MCCN problem. Notice that the con-
straint Aii = 1, Vi E {1, ..., n} formulates the self-damped
system constraint. From these arguments, the MCNE problem is
decomposed into MCSS and MCCN optimization problems sep-
arately discussed in the next sections. Based on the structured
systems theory, with the given assumptions the optimality and
complexity of the MCNE problem is almost always the same as
the MCSS and MCCN problems. We shoulde mphasize that this
decomposition is only valid for self-damped systems, and for
generalsystems suchdecomposition mightbe irrelevant.

N. MCSS PROBLEM: ALGORITHM AND COMPLEXITY

Reca 11 that the MCSS problem is the problem of identifying
the states to be measured such that a certain cost of measure-
ments is minimized while satisfying observability condition
for inference purposes.

Remark 3. For general systems the MCSS problem is
NP-hard.

Note that for general systems (not necessarily self-damped),
the MCSS problem is proved to be reducible to minimum set
covering p roblem and therefore is NP-hard [23]. In this section,
we find a polynomial-order solution under self-damped system
constraint. First, we add two new constraints on the state-mea-
surement pairs. For minimization purposes, we assume that
each agent is assigned to measure one "and only one state,
implying that each Ci is a row vector and IJJ:, Gj=1. Also,

ac h state is at most measured by one agent, implying that
F: + 1 Cii it 1. Adding these conditions the new MCSS formu-
lation is as follows:

Problem Formulation 3: Co nside ring that every agent
measures onlyone state, the MCSS problem has the following
form:

N n

min LL
i=1j=1

s.t. (A,C) observability,

8ijCii

CijE{O,1}
N
LCij:l
=1
n
L cij=1

il
Aii =1, ViE{1,..,n} (12)
Using the results of Theorem 1, the (A, C) -observability
constraint can be relaxed as having one state measurement
from each parent SCC § to be assigned with an agent i. The
agent measures the state in parent SCC that has minimum mea-
surement cost.In this direction, redefine the state measurement
cost matrix § by a new parent SCC measurement cost matrix ii
as follows:

Ayj = min(8i), Tm € S} (13)
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Note that the new cost matrix /1is N x N. The refore, instead of
C,a new assignment matrix needs to be defined relating the par-
ent SCCs to agents. Denote this O - 1 matrix by Z = {Zii }. An
element Zii = 1 implies that agent i is assigned to measurethe
minimum-cost state in parent SCC j and #/ii denotes this cost
Recalling that measuring all N parent SCCs guarantees the
(A, C)-observability (Theorem 1) and the fact that parent
SCCs do not share state nodes [36), the new optimization for-
mulation is asfollows:

Problem Formulation 4: Redefining the agent-SCC cos t
matrix /1 and introducing the agent-SCC assignment matrix
Z, the MCSS problem has the following form:

N n

L L /lzii
i=1j=1

s.t. Zii E {0,1}
N

min

z:=zii=1
i=1
n
z=zij=1 (14
=1

Note that | Zii = 1 implies that each parent SCC is
measured by one agent, and | Zii = 1 implies that each
agent makes one measurement of a pare nt SCC. The above
formulation is a /linear assignment problem, which is well-
known in combinatorial optimization. This problem is dis-
cussed in the literature to a great extent. For extensive surveys
on this problem and generalizations see [38), [39). The most
well-known polynomial-order solution for linear assignment
problem is the Hungarian method [40). The pseudo-code for
the Hungarian method is given in Algorithm IV. The comput-
ational comple xity of this algorithm is O( N°). Recalling that
the formulation (14) is equivalent to the formulation (9) leads
to the following remark,

Remark 4. The computational comple xity of MCSS prob-
lem solution for self-damped system is O( N3 ), where N is the
number of agents (or parent SCCs).

V. MCCNPROBLEM: ALGORITHM ANDCOMPLEXITY

Recal 1 that MCCN problem is to find the minimum weight
(cost) strongly-connected subgraph spanning all nodes (agents)
in the communication network.

Remark 5: For general (directed) communication networks
the MCCN problem is NP-hard.

This is because the MCCN problem is reducible to directed
Hamiltonian cycle problem and therefo re is NP-hard [30),
[41]. This problem is also known as minimum spanning strong
sub(di)graph in literature [42). For approximation algorithms
to this NP-hard problem, [43), [44) provide a 1.62-approxima-
tion algorithm, and [45) proposes a LS-approximation algo-
rithm. We consider an undirected communication network
among agents, i.e., the communication links are all bidirec-
tional. This simply implies that if two agents are in the com-
munication range of each other, e.g., in a wireless sensor

IEEEIRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL 7, NO. 3,JULY-SEPTEMBER 2020

Algorithm 1 Pseudo-Code for the Hungarian Algorithm

Given: Cost matrix 6. = [6.:]] ;
fori=1, ..., Ndo
‘Ui = smallest entry in rowi of 6.;
forj=1,..,Ndo
L= 8.ij-ui
end
end
for;j=1,..,Ndo
Jj = smallest entry in column j oft.;

ori=1,. N d
8= 8-V

end
end
S = an in dependent set of zeros of max size in 11,
g=1Si;
while g < N do

Cover 11,

k =smallestentry in 11 notcovered by a line;
fori=1, ..., Ndo
forj=1,..,Ndo
if !4 Jis npt coveredthen

S8ii=6.;i-k
end
ifii ;j is covered twicethen
iivi =ii;i tk
end
end
end
S = an independent set of zeros of max size in 11,
g=ISI;
end

fori=1,..,Ndo
forj=1,..,Ndo
if/l;j E Sthen
Z;i—1
end
else
7:i=0
end
end
end
Return Z = [Z; ];

network, both agents share their information. This is a typical
assumption in the lite ratureof networked estimation as in [2],
[5]. This assumption changes the problem as in the following:

Problem Formulation 5: Considering bidirectional co m-
munication among agents, the MCCN problem has the follow-
ing form:

A
min Zuvias lipij
=1 j=1
9u is SC,
UiiE{O,1}
U is symmetric

s .t

(15)
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The above problem can be reformulated as a well-known
problem in combinatorial optimization and discrete mathe-
matics, known as minimum weight spanning tree. Two
classic polynomial-order solutions (with  complexity
O(N ?log (N))) for this problem are Prim algorithm [46]
and Kruskal algorithm [47]. However, a more efficient
distributed algorithm with computational complexity
O(Nlog(N)) is proposed in [48]. The pseudo-code for the
distributed algorithm is given in [48] and excluded here
due to space limitation. Recalling that the formulation (15)
is the equivalent form of the formulation (10), we deduce
the following.

Remark 6: The computational complexity of the most effi-
cient solution to MCCN problem for undirected networks
(with bidirectional links) is O(N log(N)).

A. Remarks on SC Communication Network Condition

Note that with the help of Assumptions (i)-(v), we show in
Lemma 1 that SC communication network among agents is
necessary for networked estimation. However, in general,
for networked estimation there might be cases for which
some of the given assumptions are violated and therefore the
agents' network is not necessarily SC. Assume that we are
interested to reduce the number of communications among
agents by, for example, increasing the number of system
measurements taken by agents. In this direction, consider
three cases:

* Case (I): Following Assumption (v) let each agent take
one measurement Consider the number of agents to be
N1 and the number of parent Sees tobe N2 < NI. In
thecommunication network, every agent needs to receive
the information of the other N2 - 1 parent sees via
directed paths. In such case, although the network is not
necessarily SC, the amount of communications is more
than the case where N> agents each measure one parent
sec and share information over (smaller) SC network.

e Case (ll): consider N2 measurements ¢ ach from one par-
ent SCC are assigned to N1 < N2 agents, implying that
some agents take more than one measurement. Since no
two agents share a measurement and following the same
reasoning as inLemma 1, the SC communication network
is a necessary condition and MCCN problem formula-
tion(15) follows.

e Case (I1l): consider N1 measurements more than neces-
sary N, < N1 parent sec observations. Let us assign
these measurements to N3 < N1 agents, where some
agents may share measurements from one or more par-
ent SCCs. In this case, the minimum communication
network is not necessarily SC and could be dis-
connected. Therefore, recalling the bidirectional link
assumption among agents, the SC condition on 9uis
relaxed to having a disconnected group of smaller SC
sub-networks. Recall that the solution to the MCCN
problem subject to SC undirected network condition is
shown to be minimum weight spanning tree. According
to the definition, removing any link from a spanning
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Fig. L. This figure shows a system digraph, where each node represents a
state of the dynamical system. For simplicity the self-cycle at each node is not
represented in the figure. The system contains five parent SCCs (shown by
dashed squares).

tree yields a disconnected network of smaller trees
knwon as aforest [49]. Therefore, one may run similar
algorithm over SC sub-networks and find the minimum
weight spanning forest as the solution. See more infor-
mation in [50].
To summarize, the communication cost in the Case (I)
is not less than the MCCN problem formulation (15)
while the measurement cost is more than the MCSS
problem formulation (12). Case (II) can be considered
as an extension to the MCCN problem formulation (15)
and the MCSS problem formulation (12) where agents
take more than one measurement to reduce the amount
of communications. In Case (III) the SC network con-
straint in the MCCN problem formulation (15) is
relaxed and the minimum weight spanning forest is
given as a solution, while the MCSS problem formula-
tion (12) is NP-hard in this case [23] as some agents
may share measurements from one or more parent
SCCs. We again mention that in this paper we consider
minimum cost networked estimation accompanied with
minimum number of measurements distinctly assigned
to the agents.

VI. ILLUSTRATIVE EXAMPLE

In this section, we provide an example to explain the
methodology for Minimum-Cost Sensor Selection and Mini-
mum-Cost Communication Network design. Consider an
example system digraph with 18 state nodes shown in Fig. 1.
This graph represents the structure of a system in the form
(1). Note that we assume every state node in the graph con-
tains a self-cycle, which is not shown for simplicity of the
figure. Having a self-cycle on every node the system is self-
damped. Using the dep th-first-search algori thm, it can be
verified that the graph contains 6 SCCs among which 5 have
no outgoing links and therefore are parent sees, marked by
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Fig. 2. This figure shows the optimal communication network among five
agents measuring the parent SCCs in system digraph in Fig. 1. The links are
bidirectional and the graph represent the minimum cost spanning tree.

blue squares. Based on the Theorem 1, the minimum number
of agents to estimate this system is 5. Measurement of every
state by each agent/sensor has a cost representing the matrix

8. For this example, this agent-state measurement cost 8 is
randomly generated in the range [0,10]. To assign the states
to be measured by agents, using (13), the minimum cost state
measurement in each parent SCC is considered to obtain
cost matrix Li. This agent-SCC measurement cost matrix is
as follows:

( $147205070 50 o 03314)

Li= 12699 5.4688 9.5717 9.1574 8.4913
9.1338 9.5751 4.8538 7.9221 9.3399
6.3236 9.6489 8.0028 9.5949 6.7874

In order to solve the MCSS problem, based on the Formula-
tion 4, using Hungarian method the minimum-cost states in
parent SCCs are assigned to the agents. This is done using
MATLAB function assignDetectionsToTracks. The
algorithmusedbyMA 1LABisofcomplexity O(N2), where N
is the number of agents. The non-zero entries of optimal mea-
surement struc tured matrix C are as follows: C(1 , 10) = 1,
C2,17)=1,C(3,6)=1,C(4,11) = 1,C(5,16) = 1.

For networked estimation/observa bility the communica-
tion network among these agents needs to be SC, as stated
in Theorem 2. In the communication network of agents the
links are assumed to be bidirectional, and the symmetric
communication cost matrix 771 s cons id e r ed randomly as

follows:
7.2459  6.07845.4711 33 0 )

[}
( 72.59 * 4.8588 2.1386 2.7136
11=  6.0784 4.8588 * 8.5787 3.4038
5.4711 2.1386 8.5787 * 4.4812

3.3048 2.7136 3.4038 4.4812 *

To solve the MCCN problem (Problem Formulation 5) we use
MATLAB function gr a phmi n sp an tr ee . The algorithm is
of complexity O( N2 log (N)). The algorithm returns the non-
zero entries of optimal co mmunication network matrix U for

this problem as follows: U(5,1)=U(,5) =1, U(5,2) =

VII.
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U(2,5=1,U0053)=U(35=1,U4,2)=U(2,4) = 1.
This communication network of agents is shown in Fig. 2.
Note that sharing state-predictions over this communication
network U among agents measuring states according to C
res u Its in an observable networked estimation of the self-
damped syste m, while the networked observability cost is
minimized. All the algorithms used to optimally design the
0 - 1 matrices C and U are structural and of polynomial time
complexity.

CONCLUSIONS

It should be noted, following Remarks 3 and 5, the MCSS
problem and the MCCN problem being generally NP-hard
implies that the main MCNEproblem in equation (8) is NP-hard
as stated in Remark 1. However, based on Remarks 2, 4, and 6
the MCNE problem for self-damped system constraint under
bidirectional communication links is ofcomputational complex-

ity O(n? + N 3)with n as the number of state nodes (system
size) and N as the numberof parent SCCs or agents (communi-
cation network size). If the number of agents is less than number
of syste m states (N < nf/) the computationalcomplexity of this
problem isO(n?) .

Although in this paper we assume that the minimum num-
ber of measurements are each assigned to one agent, the solu-
tion can be extended to the case that every agent takes two (or
more) distinct measurements. In such case, the communication
network is smaller and the communication costs are less. We
should emphasize that agents should take measurements from
distinct parent SCCs, otherwise, in case agents share meas-
urements of parent SCCs, the MCSS problem is NP-hard to
solve [23].

It should be noted that for general systems, i.e., systems that
are not necessarily self-damped, other than parent SCCs, con-
tractions are the key components to ensure observability [51],
[52]. Unlike parent SCCs, the contractions share nodes and
therefore for such systems it is not possible to reformulate the
MCSS problem as a linear assignment. One solution is to
apply greedy algorithms, which is the direction of our future
research. Further, the communication network condi tion for
networked observability also requires more than strong con-
nectivity. For such systems, the network of agents requires
certain hubs measuring nodes in contractions along with SC
network of agents measuring parent SCCs [31]. Therefore the
MCCN problem is more complicated as it is our ongoing
research.
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