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Abstract-Convolutional neural networks (CNNs) are becom­ 

ing attractive alternatives to traditional image-processing algo­ 
rithms in self-driving vehicles for automotive, military, and 

aerospace applications. The high computational demand of state-
of-the-art CNN architectures requires the use   of   hard­ ware 
acceleration on parallel devices. Field-programmable gate arrays 

(FPGAs) offer a great level of design flexibility, low power 
consumption, and are relatively low cost, which make them 
very good candidates for efficiently accelerating neural networks. 

Unfortunately, the configuration memories of SRAM-based 
FPGAs are sensitive to radiation-induced errors, which can 

compromise the circuit implemented on the programmable fabric 
and the overall reliability of the system. Through neutron beam 
experiments, we evaluate how lossless quantization processes and 

subsequent data precision reduction impact the area, perfor­ 
mance, radiation sensitivity, and failure rate of neural networks 
on FPGAs. Our results show   that an 8-bit integer design 

can deliver over six times more fault-free executions than a 32-
bit floating-point implementation. Moreover, we discuss the 

tradeoffs associated with varying degrees of parallelism in a 
neural network accelerator. We show that, although increased 
parallelism increases radiation sensitivity, the performance gains 

generally outweigh it in terms of global failure rate. 

llldex Terms-Field-programmable gate array (FPGA), neural 

networks, parallelism, reduced precision, reliability. 

I. INTRODUCTION 

N RECENT years,  the trillion   dollar  automotive   indus­ 

try has been very much focused on progressively adding 

technology to vehicles and  on  enabling  self-driving  capabili­ 

ties fl]. Through  the pairing of  sensorial  data collection  with 
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high-performance image processing , embedded computing 

systems used by companies like Mercedes-Benz [2]. Volvo [3]. 

and Tesla [4], are currently able to deliver semi-autonomous 

driving experiences. In fact, the push for autonomous vehicles 

is also very much true in military organizations (with the 

increased adoption of unmanned aerial vehicles (UAVs) [51) 

and in the space exploration sector (with the use of rovers and 

helicopters on Mars [6]. [7]). At the same time, convolutional 

neural networks (CNNs) have significantly  evolved  in terms 

of accuracy and became very attractive solutions for image 

processing and pattern recognition workloads [8]. Given  that 

all of the  aforementioned safety-critical applications  depend 

on reliable computer vision [9]-111]. CNNs emerge as great 

alternatives to more old-fashioned algorithms. 

Neural networks have a parallel structure, both in terms of 

neurons, and convolutional filters . Such inherent parallelism 

makes CNNs perfect candidates for efficient acceleration on 

parallel computing devices, such as application-specific inte­ 

grated circuits (ASICs), graphics-processing units (GPUs) , and 

field-programmable gate arrays (FPGAs) .  In  a  perfect  world, 

we would be able to define an optimal hardware architecture, 

fabricate  an  ASIC,  and  never  look  back.  However , the field 

of machine learning is ever evolving, which means that the 

requirements  for  accelerating   the  neural  network  topologie s 

of today might not be the same a few years in the future. 

Therefore, design flexibility and reprogrammability must be 

considered. GPUs currently offer parallel general-purpose 

arithmetic hardware and design flexibility at  the  software 

level. However , most state-of-the-art GPU architecture s are 

throughput-oriented [12] (rather than latency-oriented ) and not 

power-efficient [13]. FPGAs, on the other hand , offer full hard­ 

ware reprogrammability and lower power consumption [14]. 

which enables system patches (for architectural improvements, 

weight tuning,  bug fixing , and more), along with the ability 

for deployment on power constrained missions (which is often 

the case in space applications) (15] . 

Un fortuna tely , FPGAs are very sens1t1ve to radiation-

induced faults I 16]. More specifically, S RAM-ba sed FPGAs 

can experience single-event upset s (S EUs ) in their 

configuration memory.   which   affects   routing   con nec tions 

as well as modi fie s the  settings and content of   LUTs. 

DSPs, BRAMs, and FFs. With a  corrupted configuration 

memory . the design on the FPGA can start malfunc tioning 
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and providing erroneous  answer s.  Furthermore , each  type 

of logic resource available on the FPGA corresponds to a 

different percentage of the total configuration bits [17] and 

produces  a  different  type  of  error/failure  in  the  presence 

of SEUs. Therefore,  the  specific  mapping  of  the  circuit 

(i.e., the neural network accelerator) is an important 

component   of   overall   resilience.   More   broadly   speaking , 

it follows that reliability must always be taken into account 

when developing FPGA-based computational solutions for 

safety-critical applications . 

Previous works have discussed the general reliability of 

CNNs executing in ASICs [18].  GPUs  [19].  [20].  and 

FPGAs [21], [22]. Other studies have considered the tradeoffs 

in petformance and radiation sensitivity of using reduced and 

mixed precision in different computer architectures, while 

executing well-known benchmarks (including state-of-the-art 

neural networks for object detection) [23], [24].  Further­ 

more, the combined impact  of  accuracy  (or  lack  thereof) 

and radiation on the overall failure rate of  neural  networks 

was discussed and modeled [25]. This article focuses on the 

reliability benefits of reduced precision in CNNs, whenever 

paired with proper quantization techniques (that allow for zero 

loss of  accuracy). which is, to the best of our knowledge, 

a novel evaluation for FPGAs. We also evaluate architectural 

variations with majorly different degrees of parallelism and 

discuss the tradeoffs between area, speed, and reliability. 

In order to deliver high accuracy, CNNs require high 

computational complexity. As an example, the number of 

arithmetic operations required for processing each input image 

in Google's state-of-the-art InceptionV3 architecture is over 

5 billion [26]. On FPGAs, the need for higher computing 

power often translates to higher resource utilization, which in 

turn increases device cost, energy consumption, and sensitive 

area (i.e., radiation susceptibility) . In order to speed-up neural 

networks, designers have explored reducing the precision of 

data representation throughout the network . As a standard , 

state-of-the-art frameworks such as Google's TensorFlow use 

32-bit floating point at training time, but recently developed 

quantization techniques have allowed the deployment of 16-bit 

floating-point and even 8-bit integer versions of same network, 

with little to no accuracy loss [27]. The first contribution of this 

article is an evaluation on how such data precision reduction 

impacts the overall reliability of  CNNs.  Our experimental 

data show that it is possible to decrease the failure rate of a 

neural network by over 70%, simply using proper quantization 

methods and a corresponding 8-bit integer representation. 

Another important design decision for neural network hard­ 

ware accelerators is the degree of parallelism. as the architect 

must define how many  processing elements  (PEs) are going 

to be instantiated in the programmable logic of the FPGA. 

Strictly from the performance standpoint, it seems that the 

answer would he " as man y as possible ." However , paral­ 

lelism incr eases resource utilization, which in turn leads to 

increased radiation sensitivity , and, possibly , lower reliability. 

In addition , given the sizes of the current state-of-the-art 

neural network top olo gies, it is most often infeasible to imple­ 

ment ALL of the necessary  PEs (providin g maximum  paral­ 

le lism ). as the logic resources on FPGA devices are limited . 

There fore, as the second contribution of this article, we ana­ 

lyze and discuss the area, performance , and reliability tradeoffs 

associated with varying degrees of parallelism for neural 

network accelerators. We show that radiation sensitivity can 

vary as much as two orders of magnitude , when comparing the 

two ends of the parallelism spectrum (i.e., minimum number 

of PEs versus maximum number of PEs), while the estimated 

failure rate is over 7 x lower in the faster, more parallel design. 

The remainder of this article is organized as follows. 

Section II gives a more comprehensive background on neural 

networks, the available quantization tools, and the specifics of 

our case study CNN. Section lII discusses the details of our 

FPGA designs, methodology, and radiation beam experiment. 

Section IV presents our results regarding data precision reduc­ 

tion and degree of parallelism . Section V goes over our main 

conclusions as well as intentions for future work . 

 

II. BACKGROUND 

A. Convolutional Neural Networks 

Artificial neural networks (ANNs) are biologically inspired 

computational structures that are able to calculate their outputs 

by propagating data through sets of interconnected neurons, 

distributed across different layers. From a mathematical per­ 

spective. the output of a neural network is generated  hy a 

series of matrix multiplications, which, in turn, are calculated 

through a series of multiply accumulated operations. A CNN is 

a special kind of ANN, mostly dedicated to image-processing 

tasks. The first few layers in a CNN are responsible for 

extracting features from the input image (such as edges and 

shadows) before feeding the layers of fully connected neurons 

(responsible for classification and decision-making). By using 

convolution and pooling operations, it  is possible  to reduce 

the amount of data to be processed by the neurons, ultimately 

making the computation more efficient. All filters and neurons 

have weights associated with them, which are learned during 

an extensive training process. Input data is iteratively presented 

to  the model,  and  minor  adjustments  are  made after each 

ste p. Once the training is complete, the network is able to 

compute solutions for novel inpu ts , based on its learned set of 

weigh ts . 

 
B. Quantization of Neural Networks 

In order to achieve high levels of accuracy, CNNs end up 

being very much computationally expensive. As safety-critical 

applications usually require low latency systems and algo­ 

rithms, a number of simplification techniques have been 

developed for neural networks , such as weight trimming and 

quantization [28]. In this article, we focus on the latter. The 

main idea behind quantization is to reduce the precision in 

which the weights of a given model are represented , in order 

to speed-up computation and   reduce   resource   uti lization . 

At training time, all industry-leading frameworks use 32-hit 

floating point as a default. For the specific case of TensorFlow, 

they provide a subset of tools called Tenso rFlow Lite [29], 

which allows developer s to quantize their model s to lower 

precisions, such as 16-bit floating point (IEEE 's half -precisi on) 

and 8-hit integer . Previ ous works have shown th at careless 
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Fig.  I.    Topology  of  the  MNlST  CNN.  Striped  layers  have  weight s  associated  with  them  (which  go  through  the quantization  process_). 

 

 
quantization procedures can often compromise accuracy (point 

at which the efforts in reducing radiation-induced .e rrors cease 

to pay oft) [25]. The clever thing about TensorFlow 's tools 

is that their quantization process uses a small subset of the 

training data for calibration purposes. The end result is that 

the quantized models show little to no accuracy loss when 

compared to their 32-bit float counterpart. 

 
C. Related Work 

As stated before, this article is not the first to evaluate the 

reliability of CNNs. Prior work has studied neural network 

resilience on ASICs. proposing and  validating a framework 

for pre-silicon fault tolerance estimation, mostly based on 

topological characteristics [18). Furthermore, GPU-focused 

papers have experimentally evaluated the reliability of state-of­ 

the-art neural networks for object detection (with an emphasis 

on automotive applications), executing on different NVIDIA 

architectures. The authors have also tested an algorithm-based 

fault-tolerance (ABFf) technique for matrix multiplication, 

achieving significant error detection/correction rates [19]. [20]. 

Specifically on FPGAs, prior work has discussed the concept 

of error criticality and used extensive fault injection campaigns 

to identify differences in vulnerability across the layers in 

ANNs and CNNs . Additiona lly, a low-overhead selective hard­ 

ening strategy was proposed, for scenarios in which traditional 

triple modular redundancy (TMR) is not possible due  to 

limited resource availability [30]. Moreover , the correlation 

between faults in different logic resources of the FPGA and 

corresponding output errors was studied [31]. 

Finally. we  must acknowledge  that  the reliability  impact 

of reduced data precision on neural networks has also been 

explored before [24]. In such study, the authors have evaluated 

the different failure in time (FIT)  rates  of  a  CNN  on  a 

GPU, using double, single, and half-precision floating point. 

They have found that lower precision computation in GPUs 

reduces radiation sensitivity, while improving performance. 

Such finding further motivates our work. which intends to 

guide the design of reliable hardware accelerators for neural 

networks on FPGAs (by looking at precision and parallelism). 

 
D. MN!ST 

We have chosen the well-known Modified National Ins titu te 

of Standard s and Technology (MNIST) as our case study 

data set, since its sim plici ty translates to tractability for 

 
implementing and testing several design variations . We should, 

however, acknowledge that this aspect of our work limits the 

extent to which our experimental data can be fully generalized, 

as more complex CNNs could have different behaviors. The 

data set itself is composed by 60000 28 x 28 pixel images of 

handwritten decimal digits (from 0 to 9) [32]. As such, our 

neural network models receive 28 x 28 matrices as inputs and 

produce ten outputs (one for each decimal digit), where the 

index of the highest value corresponds to the classification. 

 

Ill. EXPERlMENTAL METHODOLOGY 

A. Designs Under Test 

In order to evaluate the tradeoffs associated with data 

precision reduction, we have implemented three versions of the 

MNIST CNN (FP32, FPl6, INT8) using the 28-nm Zynq-7000 

(XC7Z020) [33). Table I and Fig. 2 detail resource utilization 

and execution times. In addition to that, we should point out 

that the accuracy on all of the design variations has stayed the 

same (95%), regardless of the quantization process performed 

with TensorFlow Lite. Although a higher accuracy level could 

have been achieved, we opted for a very minimalist CNN 

topology (and implementation) , as detailed in Fig. 1. 

In order to evaluate  the  tradeoffs  associated  with degree 

of parallelism, we have implemented two versions of the 

MNIST CNN (Min PEs, Max PEs) using the 16-nm Zynq 

UltraScale+  (XCZU9EG)  [34). The first design (Min  PEs) 

has only one PE per layer of the network and represents the 

lower end of the parallelism spectrum. Likewise, the second 

design (Max PEs) has all of  the  necessary  PEs in each layer 

of the network and represents the top end of the parallelism 

spectrum. In other words. if there is a total of N operations 

involved in a layer 's computati on, the single PE version is 

going to take N iterations to finish, while the fully parallel 

implementation (in this case. with N PEs), will take only one 

clock cycle. The aforementioned simplicity/tractability of the 

MNIST CNN, along with the use of a high-end FPGA (as the 

one found on the UltraScale+ ), allow it to be implemented 

in a fully  parallel fashion. Table II and Fig. 3 provide details 

on resource utilization and execution times. Note that neither 

of the designs utilize DSPs. This is because both use 8-bit 

precision, which is too small for DSP inference at synthesis 

time. Also note that  the axes in  Fig. 3 are in  logarithmic 

scale. 
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TABLE I 

ZYNQ- 7000 R ESO URCE UTILIZATION TO IMPLEMENT THE MN!ST 

CNN USING 32-bit FLOATING POINT, 16-bil FLOATING 

POINT, AND 8-bil INTEGER 

TABLE II 

ZYNQ ULTRASCALE+ R ESO U RCE UT I LIZAT I O N TO IMPLEMENT THE 
MNIST CNN WITH VASTLY DIFFERENT DEGREES OF PARALLELISM 

 

MNlST Design LUTs (Logic) LUTs (Mem) FFs DSPs   MNlST Design LUTs (Logic) LUTs (Mem) FFs DSPs  

32-bit Float (FP32) 6.5k 1016 336 8   Min PEs 1.4k 280 240 0  

16 -bit Floa t (FPl6l 3.4k 510 240 4   Max PEs 212k 0 1 1.2k 0  

8- bit Integer (INT8) l .Sk 280 224 0 
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Fig. 2. Total resource utilization and execution times for three levels of data 

precision on the MNIST CNN. implemented on the Zynq-7000 . 

 

We should point out, hefore moving forward, that the 

training phases and quantization processes for all of our neural 

networks were fully completed ahead of the experiments (in a 

fault-free environment) . This means that the neural networks ' 

set of weights was not affected by radiation-induced upsets 

in any capacity. Furthermore, we must also mention that the 

input stimuli for our designs under tests (DUTs) is a subset 

of LOO images from the MNIST data set (all of which are 

correctly classified  in undisturbed executi ons). 

 
B. Radiation Experimental Setup 

Our radiation beam experiments were performed at the Los 

Alamos Neutron Science Center (LANSCE)  facility of  the 

Los Alamos National Laboratory (LANL). While LANSCE 's 

neutron spectrum  mimics the atmospheric one, the particle 

flux is about 8 orders of magnitude higher than the average 

terrestrial flux [(13 n/ (cm2 x h)] at sea level [35J). We ran our 

experiments for around 64 h, accumulating a total fluence in 

our DUTs of 344 x I 0 9 n/ cm2
, roughly equivalent to 3 million 

years of natural expos ur e. The experimental setup , with the 

Zynq-7000 and the Zynq UltraScale+ is shown in Fig. 4. 

mounted at the beam line. We specifically chose Zynq devices 

because their heterogeneous nature considerably simplifies the 

setup. Using the ARM processors, we are able to provide 

stimuli to the FPGA and implement result checking . Since 

the DOR is protected with ECC, input/output corruption 

becomes extremely unlikely. Furthermore , given the trivial 

nature of the C program, we very rarely observe hangs during 

execution (in which case. it suffices to power cycle the device) . 

A server PC controls/logs the expe1iment from outside the 

beam room. We are also able to distinguish between transient 

and permanent ups ets: Whenever an output error is observed, 

Fig. 3. Total resource utilization and execution times for two degrees of 

parallelism on the MNIST CNN, implemented on the Zynq UltraScale+. 

 

 
Fig . 4.  Neutron beam experiment at the LANSCE facility of LANL , USA . 

 
we run the same image again. If the second execution also 

presents corruptions. the upset is permanent. otherwise it is a 

single -event transient (SET) . However, we have not registered 

any of such transients in our neutron beam experiments. 

 

C. Ermr Criticality 

In most cases, CNNs are used for classification tasks, which 

means that not all errors need to be considered critical. In other 

words, even if the outputs computed by the network are 

different than the golden/expected ones, the classification of a 

given input image might still be correct. Hence, we identify 

two error classes in our neural networks: 

1) Tolerahle error: The network's outputs differ from the 

expected ones, hut the image classification still comes 

out correct (i.e., the image classification is correct 

despite the output corruptions). 

2) Critical error: The netw ork 's outputs differ from the 

expected ones, being severe enough to compromise the 

image classification (i.e.. an input image of the digit "7" 

is classified as the digit " l"). 
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A. Reduced Data Precision 
 

Using the experimental setup and methodology desc1ibed in 

Section III, we have tested three versions of the MNIST CNN 

with varying levels of data  precision  (FP32. FP16. 1NT8). 

Fig. 5 plots the neutrons  cross section of  the three designs. 

We classify  output  errors as tolerable or critical, depending 

on whether or not the image classification was affected (as 
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As we have shown in Table  I  and  Fig  2,  lower  preci­ 

sion hardware means lower resource utilization, which con­ 

sequently means that the sensitive area of the FPGA for each 
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design also gets reduced. Specifically, the 16-bit floating-point 

implementation uses about 40% less  resources  than  the 32-

bit version, while the 8-bit integer design decreases resource 

utilization by 64%. By analyzing Fig. 5, we can clearly see 

that, as we reduce precision, the probability of observing 

radiation-induced data corruptions diminishes. To be exact, the 

16-bit floating-point version of the network has a 22% lower 

chance of producing errors at the output, when compared to 

the original 32-bit design. Similarly, when using 8-bit 

integers. we see a massive 72% cross section reduction from 

FP32. 

A more nuanced result that can be drawn from our exper­ 

imental data  is  that  the  rate  of  critical  errors  (as  defined 

in Section  IIl-C)  is  very  different  across  the three designs. 

If we think about the way floating-point numbers are rep­ 

resented in computers (sign. exponent, and mantissa),  it is 

easy to conclude that radiation-induced corruptions  in  the 

sign and in the exponent of a number can cause  a  much 

greater discrepancy . As the IEEE 754 standard establishes, the 

32-bit floating-point representation uses 1 bit for the sign, 

8  bits  for  the  exponent.  and  23  for  the  mantissa.  while 

the 16-bit floating-point representation uses 1, 5, and 10, 

respectively. We can say that 28.13 % (9/32) of the bits in 

an FP32 word have a high potential of causing significant 

discrepancies between expected and computed outputs. while 

37.50% (6/16) of the bits in an FP16 word could lead to 

considerable differences . In our CNN, this ultimately means 

that , as we reduce precision from FP32 to FP16 , the likelihood 

of an output error affecting the final classification of the input 

image increases. This result can even be intuitively generalized 

for a hypothetical FPS representation, which would very likely 

have a critical error rate higher than FP16. However, this 

pattern does not continue when we further reduce precision 

to 8-bit integers. This is because there are no exponent bits in 

an integer representation, so when a given bit n gets corrupted , 

the difference between expected and computed value can only 

be ± n2 , as opposed to a x2n discrepancy in an exponent 

corruption of  a floating-point number.  In  our experiments, 

we have found that only 7% of the errors were critical in the 

FP32 design, while the error criticality rose to nearly 18% on 

the FP16 design and then fell back down to about 15 % on the 

INT8 version of the MNIST CNN. Regardless , 8-bit integer 

representation had the lowest absolute critical en-or rate out of 

all three implemen tations. 

Fig. 5. Neutron cross section for the FP32. FPl6, and INT8 versions of the 

MNIST CNN. 

 

 

 

Additionally, we have also observed instances where the 

CNN implemented on the FPGA did not provide any outputs 

after its expected execution time. This happens whenever the 

finite state machine  (FSM)  responsible for the control  logic 

of the hardware gets stuck, failing to reach its "done" state. 

Such instances are shown in  Fig. 5 as Crashes.  As this  type 

of event is much rarer than silent data corruptions (SDCs) 

(only  accounts  for  10%-20%  of  the  total  cross  section), 

the error bars do not allow us to draw any conclusions  from 

the experimental data. But, from an architectural perspective, 

we intuitively know that reducing the data precision only 

reduces the area occupied by the arithmetic pipeline and not 

the area occupied by the FSM, which means that the likelihood 

of observing crashes should be roughly the same across all 

three versions of the MNIST CNN. 

The impact of reducing data precision can further be 

explored as we make use the notion of tolerated relative error 

(TRE) (24]. Fig. 6 basically shows how the neutron cross 

sections would be reduced if we were to allow a certain 

percentage of tolerance for discrepancies  between expected 

and computed outputs. With a TRE of 0% , any bitflip in 

the output is considered an error. but  as  we  increase  the 

TRE, we staii to establish intervals of tole rance, instead of 

Boolean decisions. For example, with a TRE of 1%.  any 

output corruption from 99% to 101% of the expected/golden 

value would still be considered correct. Interestingly, with a 

TRE level of only  1%, the cross  section  of  tolerable errors 

on the 32-bit floating-point version of the CNN would be 

reduced by 43 %. This is because, as we previously discussed, 

23 out of 32 bits are reserved for the mantissa , which means 

that  most of  the radiation-induced corruptions  will  not have 

a very significant impact on an FP32 word. Extending the 

comparison, if we were to use the same 1% tolerance interv al, 

the error rate on the FP16 implementation would only improve 

by  8%,  while  the  8-bit  integer  version  would  not  change 

at all. It can then be said that , by treating neural networks 

as the inherently approximate computing  units that they are, 

the perceived/effective radiation sensitivity can be significantly 

reduced. The caveat is that TRE only helps reducing the tol­ 

erable portion of the cross section, as the image classification 
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Fig. 6. Reduction in the cross sections of the FP32, FP16, and 11'17'8 versions 

of the MNlST CNN, when establishing incremental tolerance intervals . 

TABLE Ill 

 
0.01 

 

 
Min PEs Max PEs 

MEBRFs FOR THE FP32. FP l o , AND lNT!l VERSIONS 

OF THE MNlST CNN 

FP32 FPl6 INT8 

MEBRF [x 10 15 ] 0.61  4.08 

 

depends on the comparison between all ten outputs, as opposed 

to their relationship with gold. 

In order to get a realistic estimate of the failure rate of an 

algorithm in a radioactive environment, the mean executions 

between failures (MEBF) metric is commonly utilized [361, 

given that it takes into account both radiation sensitivity as 

well as performance. However, neural networks fall into a 

special category of applications, since they have an associated 

level of accuracy  to  them.  Previous  works  have  modeled 

the overall failure rate of neural networks (considering both 

inaccuracy and radiation as sources of faults) [25]. as they 

analyzed binary quantization, which is rarely lossless . Since 

our CNN topology is simple, and our precision reduction was 

not so extreme,  accuracy  was  maintained  across  all  DUTs 

at 95%. Thus, we  focus  our analysis  strictly  on  the  effects 

of radiation, using the mean executions between radiation 

failures (MEBRF) metric. We show the MEBRF of our designs 

in Table lll. conside1ing the neutron flux at sea level [35] and 

the entire SDC cross section measurements (tolerable+critical 

errors). as legislation typically does not distinguish between 

error categories [37). Evidently , the INT8 version of the 

MNIST CNN is able to complete a much higher number of 

failure-free executions than the floating-point implementations. 

To be exact. FP32  experiences  over  six  times  the  failure 

rate of INT8, while FP16 fails over three times  as much as 

the integer-based design. This is because reduced precision 

hardware not only occupies less area. but is also faster. The end 

result is lower radiation sensitivity and higher reliability, a true 

win-win situation (provided that accuracy remains stable). 

B. Degree of Parallelism 

Using the experimental setup and methodology   described 

in Section Ill. we have tested two versions of the MNIST 

CNN with varying degrees of parallelism (Min PEs, Max PEs). 

As previously mentioned, the two designs in this analysis 

represent the two ends of the parallelism spectrum. On the 

one hand , we have a very sma ll, iterative design, which uses 

few resources (therefore, occupies less area), and takes longer 

Fig. 7. Neutron cross section for the Min PE and l'vla PE versions of the 

MNIST CNN. Note that the y-axis is in logarithmic scale. 

 

 

to complete the processing of input images (i.e ., has lower 

performance) . On the other side, we have a very large, fully 

parallel implementation, which occupies almost 100% of a 

state-of-the-art FPGA, but delivers extremely low latencv . 

Such scenario was made evident  in Section  in-A (Table i1 

and Fig. 3), but we believe that it is worth reiterating. 

Fig. 7 plots the neutron cross section of  the two designs. 

We classify output errors as tolerable or critical, depending on 

whether or not the image classification was affected. Noting 

that the  y-axis  is  in  logarithmic  scale,  and  the  difference 

in radiation sensitivity between the two implementations is 

striking: the fully parallel design is   l 33 times   more likely 

to experience radiation-induced en'Ofs. Interestingly. it uses 

130 times more resources than the version with far less PEs, 

confirming the direct relationship between resource utilization 

and cross section in SRAM-based FPGAs. 

Furthermore , we should point out that the percentage of 

critical errors observed in our experiments was roughly the 

same in the two design variations (16% and 17 %, for Min 

PEs  and  Max  PEs, respectively) . As there  is  no  variation 

in data precision here, the impact of data corruption during 

computation is about  the  same  in  both cases,  so  this  was 

an expected outcome. Finally, we can see that the more 

parallel version of the MNIST CNN did not experience any 

crashes. This is because, by being a fully pipelined. streaming 

architecture, it does not have/need any sort of FSM for control 

logic and therefore it never gets stuc k. 

Again. we should emphasize that the cross section onlv 

measures   the   level   of    radiation   sensitivity    of   an   alg;­ 

rit hm/circuit/ device. ln order to get an estimation of failure 

rate, one must also consider a performance metric (execution 

time) as a variable. Thus , we show the MEBRF of our DUTs 

in Table IV. considering the neutron flux at sea level [35]. 

Surprisingly,   despite   having   a much higher cross section, 

the fully parallel implementation of the network is able to 

complete over seven times more error-free executions than the 

smaller design. This is because, as reported in Section III-A 

(Fig. 3), the more  parallel design is over IOOO x faster. 

Different than the analysis in Section IV-A , where the 

precision reduction led to smaller and faster hardware , we are 

seeing that the degree of parallelism in an architecture is 

0 
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TABLE IV 

MEBRFs FOR THE MIN PE AND MAX PE VERSIONS OF THE MNIST CNN 

 
 

Min PEs Max PEs 

MEBRF [x 1017J 0.65 5.00 

 
always a tradeoff between area and performance, which both 

directly impact the overall  reliability  of  the system.  From 

our experimental data, it seems that a faster (more parallel) 

design is the one that will deliver  the  lower  failure  rate, 

since the performance gains are outweighing  the increased 

area and radiation sensitivity. However, as we said before, 
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CMOS28nm FinFET 16nm 

our case study CNN was specifically chosen to enable this 

analysis, and for most state-of-the-art neural network archi­ 

tectures, instantiating all of the necessary PEs in the FPGA 

would be unfeasible. Therefore, it follows that the optimal 

neural network hardware accelerator architecture (from the 

reliability standpoint) should really just be as parallel as 

possible. 

 

C. Technology Node 

Even though showcasing the difference between FPGAs in 

different technology nodes was not one of the main goals of 

this article, the INT8 circuit that was tested on the Zynq- 

7000 happens to be exactly the same as the Min PE design 

that was tested on the Zynq UltraScale+. Therefore. we have 

decided to plot and report their dynamic neutron cross sec­ 

tions in the same graph (Fig. 8). We can see that the older 28-

nm CMOS technology is around one order of magnitude more 

sensitive to the radiation of the newer 16-nm FinFET technology, 

which, considering statistical errors, is in line with the static 

cross section numbers reported by Xilinx [38]. 

A number of previous works have dived into the 

exploration of differences in radiation sensitivity across tech­ 

nology nodes, through a mixture of charge collection simula­ 

tions, and real-world beam experiments with neutrons/heavy 

ions (39], [40]. As such, our experimental data merely 

corroborates. 

 
V. CONCLUSION 

We have seen that reducing the data precision repre­ 

sentation in CNNs, through state-of-the-art machine-learning 

frameworks that allow  for  little  to  no  accuracy  loss  on 

their quantization processes, can significantly improve the 

overall reliability of safety-critical applications that rely on 

image processing. In summary, using a lower precision sim­ 

plifies the hardware  implemented  on  the  FPGA,  lowering 

its resource utilization, which means that it  becomes  less 

likely to get hit by impinging particles. At the same time , 

reduced precision hardware is usually faster, which further 

contributes to lowering  the failure  rate of  neural  networks. 

In addition to that, we have explored  how  the concept  of 

error criticality affects the reliability analysis of a CNN 

intended for a classification task and how the adoption of 

Fig. 8. N utron cross section  for  the  MNIST  CNN  on  the  28-nm Zynq-

7000 and the I 6-nm Zynq UltraScale+. 

 
tolerance intervals can significantly impact the overall relia­ 

bility of  an application.  ln general, we have concluded  that. 

as long as the accuracy level remains the same after the 

quantization, the designer of an efficient hardware accelerator 

should opt for using 8-bit integer as opposed to floating-point 

representations. 

Furthermore, we have analyzed how different degrees of 

parallelism (and the associated tradeoff between area and per­ 

formance) affect the reliability of neural network accelerators 

on FPGAs. We have shown that, in general, the performance 

gains obtained through higher parallelism overshadow the cost 

paid in increased circuit area. Although the studied maximum 

degree of parallelism is often out of reach for most state­ of-

the-art CNN topologies, our results point to the fact that 

hardware accelerators for neural networks should be as parallel 

as possible. for improved reliability. 

We believe that our findings regarding data precision and 

parallelism can offer some guidance for designing  efficient 

and reliable hardware accelerators for neural networks in the 

future. As  we have stated  before, the machine  learning field 

is in constant evolution, which means that the computing 

requirements for accelerating today's CNNs might not be the 

same in a few years' time. Our work can help novel accelerator 

architectures to be built with reliability in mind, ultimately 

enabling the deployment of neural networks in safety-critical 

applications. Finally. it is worth  mentioning that we did not 

see any differences in error likelihood across classes in our 

100-image input set. As  a  by-product  of  our  experiments, 

we were also able to compare the radiation sensitivities of 

FPGAs in different technology nodes. Our experimental data 

corroborate with prior stu dies. 

As future work , we intend to evaluate the reliability of 

Xilinx 's proprietary deep-processing unit (DPU) [41]. along 

with their recently released set of tools  Yitis  Al,  which 

enable for quantization and compilation of neural network 

models straight out of industry standard frameworks such as 

TensorFlow. We also intend to analyze and improve (through 

adoption of efficient hardening techniques) the reliability of 

systolic aITay structures for matrix mu ltiplication, which seems 

to be the current choice of architectural core for both Xilinx 's 

DPU and Google's tensor-processing unit (TPU) (42] . 
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