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ABSTRACT

Solution of the pressure Poisson equation is often the most expensive aspect of solving the incompress-
ible form of Navier-Stokes. For a single phase deterministic model the pressure calculation is costly. Ex-
panded to an intrusive stochastic multiphase framework, the simulation expense grows dramatically due
to coupling between the stochastic pressure field and stochastic density. To address this issue in a deter-
ministic framework, Dodd and Ferrante (“A fast pressure-correction method for incompressible two-fluid
flows” Journal of Computational Physics, 273, 416-434, 2014) discuss a decomposed pressure correction
method which utilizes an estimated pressure field and constant density to modify the standard pressure
correction method. The resulting method is useful for improving computational cost for one-fluid for-
mulations of multiphase flow calculations. In this paper, we extend the decomposed pressure correction
method to intrusive uncertainty quantification of multiphase flows. The work improves upon the original
formulation by modifying the estimated pressure field. The new method is assessed in terms of accuracy
and reduction in computational cost with oscillating droplet, damped surface wave, and atomizing jet test
cases where we find convergence of results with the proposed method to those of a traditional pressure
correction method and analytic solutions, where appropriate.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Methods of uncertainty quantification (UQ) can be placed into
two categories: intrusive and non-intrusive. The non-intrusive cat-
egory includes approaches such as Monte Carlo [1], collocation
methods [2], and non-intrusive polynomial chaos (PC) [3]. The lat-
ter two essentially improve on a Monte Carlo by presenting a bet-
ter way to select the input values so not as many simulations need
to be run. In all cases a standard solver can be utilized, which is
run many times with parameters selected from a distribution of
inputs to compile a database of simulation results. This database is
then used to calculate useful statistics of the system in question.

Unlike non-intrusive flow solvers, intrusive UQ methods require
a change in the fundamental structure of the solver resulting from
modified equations created by the inclusion of stochastic (random)
variables. An intrusive solver is created with stochastic variables
which store information as a function of added uncertainty dimen-
sions. Stochastic variables developed as a function of uncertainty
may take several forms, including PC [4] and Karhunen-Loeve ex-
pansions [5,6]. Each of these methods offer their own advantages.
The advantage of PC lies in the ability to utilize any number of
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uncertainty dimensions, the availability of a number of orthogonal
basis function families, and the straightforward integration of con-
tinuous PC variables into many systems of differential equations.
Assuming stable intrusive and non-intrusive UQ schemes, compu-
tational cost comparisons are based on the time it takes to gener-
ate a reliable source of statistical information on the system being
modeled.

Considering UQ applications to multiphase flow dynamics, ap-
plication of intrusive UQ methods to gas-liquid flows is a devel-
oping field. Le Maitre et al. [7,8] first developed the stochastic
Navier-Stokes equations for single-phase incompressible flows uti-
lizing a PC expansion. Since these works, several studies have im-
plemented a PC-based approach to single-phase flows for a vari-
ety of test cases [9-11]. Previous work by Turnquist and Owkes
[12] provided the first intrusive UQ method for gas-liquid mul-
tiphase flows named the multiUQ framework. The current work
builds on this previous work by reducing the computational cost.

In either intrusive or non-intrusive UQ methodology, much
computational expense is devoted to solving the pressure Poisson
equation. To numerically solve the incompressible Navier-Stokes
equations, the standard pressure correction method (SPCM), first
introduced by Chorin [13], is a commonly used approach. With the
SPCM, time is discretized so that at every time step the convective,
viscosity, and any source terms are evaluated and used to predict
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the velocity without the pressure term. Continuity (or mass con-
servation) is then used to enforce a divergence free condition at
the next time step, while also creating an elliptic Poisson equation
to solve for pressure. The approach makes it possible to solve the
Navier-Stokes equations with imposed boundary conditions at rea-
sonable computational expense. Further work has been done to ex-
pand the method, including improvements to order [14] and appli-
cation to unstructured grids [15]. When using the SPCM in a multi-
phase scenario, the pressure Poisson equation becomes coupled to
density, which adds computational cost and limits the possible al-
gorithms used to solve. In an effort to counter this cost and follow-
ing the work of Dong and Shen [16], Dodd and Ferrante [17] pro-
posed a decomposed pressure correction method (DPCM) which
would allow for using a fast Fourier transform (FFT) based solver.
While numerical errors are added to the model, computational cost
is reduced; certainly the trade off is worth consideration.

Given the computational cost improvements of a DPCM in the
deterministic setting, it seemed reasonable to apply this method-
ology to the multiUQ framework [12]. Because of the coupled na-
ture of non-linear terms in the stochastic Navier-Stokes equations
due to the use of PC variables, the simulation expense grows at an
exponential rate. This so-called curse of dimensionality increases
the computational cost very rapidly for intrusive UQ. However,
the same curse also affects non-intrusive methods. For example,
the use of a Monte-Carlo [1] approach with two or more uncer-
tain variables requires a way to compare the effect of one un-
certain variable on another, compounding the number of simula-
tions run to get convergent statistics. Due to this problem, under-
standing the interaction in uncertainty between multiple variables
in a multiphase system is extremely expensive. Use of accurate
and cost effective numerical techniques will bring these analyses
within reach.

This narrative seeks to develop a more efficient pressure cor-
rection approach for stochastic multiphase flows by applying the
DPCM to the multiUQ framework outlined in Turnquist and Owkes
[12]. A mathematical development of the stochastic DPCM is intro-
duced, followed by a derivation of the numerical methods. We then
present test cases which illustrate the computational improvement
over previously published methods and the error associated with
the density decoupled approach. Finally, we close with a summary
of the results and a discussion of where this work will fit in mov-
ing forward.

2. Mathematical development

Since the focus of this work is to develop an efficient pres-
sure solver for stochastic multiphase flows, we begin with a de-
velopment of the stochastic equations for fluid motion. Assuming
the fluids are incompressible, this motion can be explained by the
Navier-Stokes equations, where
%+u~Vu=—nVP+nV~[u(Vu+ V)| +nf,8 (1)
for velocity u, time t, specific volume n = 1/p (for density p),
pressure P, dynamic viscosity p, and surface tension force f, =
okn, where n is the interface normal vector, o is the surface ten-
sion coefficient, and « is the curvature of the interface between
the two fluids. The surface tension force is only applied at the in-
terface boundary, which is denoted by the Dirac delta function §s.
Additionally, conservation of mass for the incompressible form of
Navier-Stokes is accomplished with the continuity equation,

V.u=0. (2)

To represent the stochastic variables, this work utilizes the PC
expansion as developed by Wiener [4], where some variable i,
which varies in space ¥ and time t, may be allowed to vary in any
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number of uncertainty dimensions ¢ such that

N
V&) =D Y OP(E) = Vi (X, )i (8), 3)
k=0
for basis weights ¥, (x,t). ¢ (¢) for k=0,...,N is a set of N+ 1
orthogonal basis functions upon which the variable is projected.
Any of several sets of orthogonal polynomials may be used, in-
cluding Legendre, Hermite, Laguerre, and Chebychev, though it has
been shown each works well for certain function behaviors. For ex-
ample, Wiener [4] showed the Hermite polynomials can represent
Gaussian distributions with a small number of basis functions.
Allowing uncertainty to exist about all variables (except time)
in Eq. (1), we substitute the stochastic velocity u,¢;, specific
volume 7@y, pressure B¢, viscosity ¢y, and surface tension
Fo.1k®- Utilizing different free-indices k, I, m for each multiplied
variable (i.e. 0@, P¢;, etc.), the result is

u
akt¢k +wdy - Vuidy = -y VP

AV - [ (Vitm®m + Vitmdn) |
+ nk(ﬁkf(r:ld)lv (4)

and is one form of the stochastic Navier-Stokes equations. We also
have the stochastic continuity equation

V. uk¢k =0 (5)

Because this form is difficult to work with and the real values of
interest are the basis weights, we utilize the property of orthogo-
nality inherent in the basis functions. For the Legendre polynomi-
als

1
/ ¢k¢b8§ — {(()¢I<¢b)
-1

To this end, we first multiply Eq. (4) by a test function ¢, resulting
in

ou
akt¢k Gb + Wi - Vi pipy, = — 1 b VP Bi by

+mdiV - (b (Vim@m + Vtndn) | s
k@i f 51D Po- (7)

To leverage the property of orthogonality, we then integrate over
the region of orthogonality, [-1, 1],

1 8 1
/ %m¢b+uk¢k~vuz¢l¢bd§ =/ —NkPk VPP
-1 -1

+ NV - [Ml¢l(vum¢m + VTum¢m)]¢b
+ kS 5 1P Ppde (8)

and divide through by the integral (¢,¢,) to get a more useful
form of the stochastic Navier-Stokes equations,

k=>b

kb (6)

ou
Bitb + - VuyGp = —mi VPG
+meV - [ (Vttm + V) [Camb + M o1Cuans 9)

forb=0,..., N where
_ fjl Prepippdl _ (D1 p)

o I duppdl s (10)
and

_ (D1 Pmby)
b = = By py) (1)

are 3rd and 4th order multiplication tensors containing the con-
stants of integration. Additionally, the stochastic continuity equa-
tions are

V.u,=0 (12)
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forb=0,...,N.

Calculation of the surface tension force is not trivial.
Egs. (9) and (12) are implemented in an incompressible two-phase
system utilizing a conservative level set interface capturing scheme
as outlined in Turnquist and Owkes [12]. The surface tension is
then found by way of a continuum surface force method, as first
described by Brackbill et al. [18]. Tryggvason et al. [19] discuss
smoothing the interface over a color function, in this case the con-
servative level set v, such that Vi ~ VH = né;. This methodol-
ogy operates as a smoothed Heaviside function, H(x), in which the
stochastic implementation also deviates in the uncertainty domain,
ie. v (x.¢)~H(x, ).

A deterministic curvature is calculated by way of the level set,
utilizing
Kk =-V.n, (13)

for a unit normal about the interface, n = Vi /|V|. Allowing un-
certainty to exist about the level set, and thus the unit normal vec-
tors and curvature, we then have a stochastic curvature

— 1 ! Vwk(pk
Ko = o) [, Vi e (14)

which is calculated with a Gaussian quadrature. To avoid projecting
discontinuous unit normal vectors onto continuous basis functions,
a unit normal is calculated at each quadrature point, thus project-
ing curvature « onto the selected basis functions ¢,. We then cal-
culate a stochastic surface tension force as

Fob = 01kt (Vi) Camp- (15)

3. Numerical methodology

Computations are done on a two-dimensional rectangular do-
main with a structured Cartesian mesh. Scalar values such as pres-
sure P, level set V¥, density p, and viscosity u are held at the cell
center. Subscripts on PI”j denote discrete spatial indexing in the x
and y directions, respectively, while superscripts denote time dis-
cretization. Vector components of velocity u, surface tension f,,
and continuous normal vector r are held at the cell walls. Second-
order finite difference operators are used for spatial derivatives un-
less otherwise noted.

3.1. Stochastic standard pressure correction

In the standard pressure correction method, the Navier-Stokes
equations are discretized in time such that

* __ qqn

u Atu =—u"-Vu'+ "V [u"(Vu" + V") | + 0" f585 (16)
n+1 _ ap*

u . u — _r]n+lvpn+1’ (17)

where the superscript indicates the time level, i.e., At = ™1 —¢7,
As shown, a predicted velocity field u* is calculated without the
pressure field. Spatial discretization for Vu™ in the convective term
is accomplished with a basic first order upwinding scheme for sta-
bility. Focusing on Eq. (16), we expand a deterministic equation to
the stochastic realm by substitution of stochastic variables, multi-
plication of a test function ¢,, and integration over ¢ to arrive at
u* _ un

b

At b — —u;j . Vu?Ck,b

+mpV - [ (Vg + V) | Cams + 07 fo:Cap, - (18)
for calculation of stochastic predicted velocity field weights u;.

We then take the divergence of Eq. (17) to find pressure P"t1,
while enforcing the incompressible constraint V-u™1 =0. In a
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multiphase system the density field varies and leads to a coupling
of density to pressure in the elliptic pressure Poisson equation

pn+1 V Lut
At

In a deterministic model Eq. (19) is one of the most computa-
tionally expensive pieces of the solver. When building an intru-
sive UQ system, computational expense is compounded. Expanding
Eq. (19) into a stochastic regime we have

pn+1 V. u
%Cklb — PtV VPR gy (20)

for b=0,...,N, resulting in N+ 1 coupled pressure Poisson equa-
tions, i.e. P™1 exists on both sides of the equation. The pressure
Poisson equations are coupled through the 4th-order tensor Cppy
from the multiplication of density, specific volume, pressure gradi-
ent and test function ¢, which results in a very expensive step to
compute the pressure. While the multiplication tensor can be re-
duced by dropping all zero values, the equation becomes increas-
ingly expensive as more basis functions are required (i.e. increasing
N).

v2pn+l — _ pn+1vnn+1 . VP’HI, (]9)

2 1
v2pnt =

3.2. Stochastic decomposed pressure correction

To reduce the compounding computational cost of calculating
a stochastic pressure field, it is useful to decompose the density
and pressure into constant and variable components. What is ben-
eficial for a deterministic multiphase system is increasingly more
beneficial in a stochastic system as the number of basis functions
and uncertain variables used is increased. As mentioned previ-
ously, Dodd and Ferrante [17] discussed a modification of the SPCM
where the pressure-density term of Eq. (17) is modified such that

77n-¢—1 VP! ~ novpnﬂ + (nn-H _ UO)VIS (21)

for some estimated pressure field P and constant specific volume
No = 1/pg. As shown, this substitution couples the needed pres-
sure field P! to a constant density term pg, of which the gra-
dient is zero. More specifically, as the estimated pressure field P
approaches the new pressure field P"t1, the constant density term
is canceled out, such that

Allm [novpn+1 + (nn+1 _ no)vﬁ] — nn+1 VP”+1. (22)
P—pn+1

While the constant density term is essentially arbitrary, for numer-
ical stability, pg = min(pq, p) [17]. Substitution of Eq. (21) into
the resulting system of equations for the modified pressure cor-
rection method is then

* __ qqN

L =t VUV [ (Ve V) |+ 8 (23)
n+1 _ ap% N

% = VP! — (™1 — 1) VP. (24)

A pressure Poisson equation is found by taking the divergence
of Eq. (24) and enforcing V - u™! = 0, leaving

V u* A
v2prl — o5~ ooV - (,’n+1 _ UO)VP' (25)

This equation is linear and can be easily calculated by a num-
ber of linear solution algorithms that exist. Additionally, expand-
ing Eq. (25) for stochastic use by substitution of PC variables and
integration over { we have

*

A b — poV - (g = 10) VACub, (26)

V2Pl;‘l+l = po
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(a) Projection (Eq. 29)
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(b) Semi-Lagrangian (Eq. 35)

Fig. 1. Illustration of the differences in the projection and semi-Lagrangian approaches to estimation of P. Blue lines indicate the position of a one-dimensional liquid droplet.
At left we see that the projection approach utilizes pressures P* and P"-! that are within the liquid and gas phases, respectively, to estimate P. At right we see that the
semi-Lagrangian approach utilizes pressures P" and P"-! that are both in the liquid phase to estimate P. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

which are N+1 decoupled pressure Poisson equations, ie. P!
exists only on the left hand side. There are two efficiency ben-
efits: (1) the right hand side now only requires 3rd-order ten-
sor Cy, from the multiplication of specific volume, pressure gra-
dient, and test function ¢, (since pq is constant) and (2) the right
hand side is constant. Each basis weight P;“ can be calculated
by use of any solution algorithm, such as those contained within
the HYPRE [20] package maintained by Lawrence Livermore Na-
tional Lab, which was utilized for this study. This is significantly
less costly than the stochastic SPCM, where the coupling of pres-
sure and density required looping over the multiplication tensor
Cump for each iteration of the pressure solver.

To complete the stochastic Navier-Stokes equations with the
DPCM, we also include stochastic variables in Eqs. (23) and
(24) leading to

u* _ un
thb = —uz . Vquk,b
+mpV - [ (Vg + V) | Cams + 07 f5:Cas - (27)
w :
A = —no VP — (! = 10) VAGap- (28)

3.2.1. Estimation of P

Calculation of P! relies on P, thus the accuracy of the fi-
nal pressure field is a function of (P—P"1). Dodd and Fer-
rante [17] showed constant extrapolation was significantly less ac-
curate than linear extrapolation, where

P=2p"—pr-1, (29)

However, this simple approximation is subject to limitations, as
discussed in the example of a rising air bubble in water by Dong
and Shen [16], as well as Cifani [21], who made efforts to improve
it. In a multiphase flow, the passage of the interface over a given
location results in a pressure jump. Utilizing Eq. (29), at a grid
point where the interface has just arrived, the estimate of P for
the next time step would be for another pressure jump, as illus-
trated in Fig. 1(a), where there is a pressure jump between points
P"-1 and P", which will be extrapolated through Eq. (29) causing
another pressure jump. Inversely, at points where the interface has
just left, the estimate of P would be for another pressure drop. A
double jump exists at the front and back of a moving droplet for
P. This jump requires multiple time steps to clear away from any
given cell, but exists about the interface throughout the simulation.
While the DPCM does maintain a divergence free velocity field, the
difference (13—P"‘+1 near the interface creates pressure fluctua-
tions which are non-physical and introduce error to the simulation,

as discussed by Cifani [21], and will be discussed in Section 4.1.3 of
the present work.

Alternatively, to avoid the issue caused by a simple linear pro-
jection, a semi-Lagrangian interpolation method is proposed where
the location of each grid point are transported backwards with the
velocity field, and the pressure P at that point is found with bi-
linear interpolation (for a 2-D system). More specifically, a particle
x; located at the cell center at t"*! can be traced back to its previ-
ous location using the differential equation

ox
5=
discretized with an explicit Euler approach, e.g., " = x; — u" At and
x"1 = x; — 2u"At. Once " and x"~! are located, the pressure is
found via bi-linear interpolation of the nearest grid points. Due to
the stochastic velocity field, the previous locations x" and x"~! are
uncertain. We defined a particle x; at the cell center and track it
back through an uncertain velocity field. Following substitution of
stochastic velocity u,¢;, multiplication by a test function, and inte-
gration over ¢, we discretize Eq. (30) to find the previous particle
locations

u, (30)

— (D) 4
X; _mx,—ugAt and (31)
X = 8k~ 2ul At

Even in a deterministic setting, depending on the location of
this particle, the nearest neighbors may be shifted to one of the
four quadrants surrounding the central pressure P, ;. For explana-
tion, assuming the particle to be in the third quadrant, the semi-
Lagrangian pressure P" at (x,y) may be found with

~ 1 P.n_l. P'n—l' L _an

n _ o an n o ]] it i+1,j-1 yi—=Yy

R =yl = X’][B’.’f N |
(32)

Rather than utilize a quadrature, the average particle location xjj
is used (i.e. ¢g = 1). Thus, the four nearest neighbors to xjj (based
on the quadrant it falls in) are used to calculate the pressure field
P" utilizing bi-linear interpolation. Importing uncertain variables,
multiplying by a test function and integrating, we then find a
stochastic bi-linear interpolation

pn 1 1 ¢b

pPr. . .
YL (dppy) Jo1 AxAy m g 5
Xiiq — x1 Xbo — x: || Eirli 1 Li+1,j-171
[ i+1 — Xg¢o 0%o 1]|: Pl O Pll:qi,j—ld)l (33)

iy
Yi=Yo%o |4
I:ygfﬁo - Y- ¢
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Performing the integration over ¢, and noting the simplification by
utilizing the average previous location, we have

) 1 B » Pg L 1;1 Lict
Pl’;:i.j = m [Xi+1 - Xg XS - xi] |: Plﬁ:,j] P&:'j;
yj ]_ yg—l ) (34)
Yo Vi

Once this interpolated pressure P" has been calculated, and utiliz-
ing the interpolated pressure from the previous time step P"~1, we
can again extrapolate to the next time for our estimate

p=2p"—p". (35)

The difference here is that we are tracking the interface as it ar-
rives and moves through any given grid point, as illustrated in
Fig. 1(b). While this provides a reasonable and bounded estimate
of P, which avoids a double jump, this estimate can be further im-
proved using an iterative approach, where each successive iteration
can utilize an improved estimation of the pressure P as described
in the next section.

3.3. Iterative midpoint method

Given that the updated velocity field u™! is calculated using
both the calculated pressure field P™+! and P, the best calcula-
tion of the next time iteration occurs when P = P"1. To imple-
ment this, aniterative midpoint scheme is used. For the first it-
eration, we utilize Eq. (23) to find u*. To get an initial calcula-
tion of u™! (Eq. (24)) the estimated pressure field is calculated
using either the linear projection method (Eq. (29)) or the semi-
Lagrangian approach (Eq. (35)). On subsequent iterations we then
modify Eq. (23) with midpoint information such that

u*&:,n = —u12 2 4ol 2y.

[Mn+l/2 (Vu”“/z + VTun-H/Z)] + 77"+1/2fg+1/255, (36)

using u™1/2 = (u" 4+ u™1)/2. Interface transport is also accom-
plished with this midpoint scheme for consistent time location
of variables. Thus, we calculate midpoint values of the level set
Y172 which we use to find specific volume 5™1/2 viscos-
ity u™1/2 and surface tension f*!/2. For pressure correction
(Eq. (24)) of subsequent iterations we use the previous calculation
of P™1 as P, converging to the best estimate of P'+1, i.e. P — P+l
Furthermore, within each midpoint step, while the right hand side
of Navier-Stokes is constant, it is possible to further iterate over
the pressure solver, which improves the estimate of P"*1 while by-
passing the expense of solving the rest of the Navier-Stokes equa-
tions.

As shown in Fig. 2, the estimate of the pressure field P is con-
tinually updated throughout the iterative process, converging to
P™1 and reducing the error inherent in the method. The maxi-
mum number of midpoint (N;;) and pressure iterations (Np) can
be reduced if some convergence criterion is reached (variable con-
verge). Note, there is a compounding effect of updating P inside
the midpoint loop. For low density ratios (< 100) and/or slow ve-
locity fields it is sufficient to loop over the pressure solver once
(i.e. Np = 1). However, at high density ratios and/or rapidly evolv-
ing systems it is necessary to improve our estimate of the next
pressure field, increasing our value of Np. This can be done in lieu
of reducing the time step size, or CFL value, as suggested by Dodd
and Ferrante [17].

To obtain second-order accuracy in the time marching scheme,
it is only necessary to perform two midpoint iterations (i.e. Ny =
2). Given that updating the midpoint loop runs through all cal-
culations of the level set, velocity, and pressure solver, it makes
sense to reduce this number and iterate over the pressure solver to
converge the estimate of P to P'*+1. However, in practice it is not
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this straightforward, since the first step of the midpoint method
is essentially an explicit Euler prediction, which is then improved
by another iteration. Thus, our first estimates of P are based on a
first-order accurate prediction. Through testing we have found that
increasing Ny, helps to converge P, resulting in fewer overall itera-
tions of the pressure Poisson equation per time step, as discussed
in more detail in Section 4.1.1.

It also makes sense to discuss the oddity of looping several
times over the most expensive part of the simulation in an at-
tempt to improve computational efficiency. The improvement of
efficiency comes from a combination of the ability to use more ef-
ficient solution methods and the uncoupled nature of the pressure
Poisson equation. When using the SPCM, convergence of P™1 is
slow, and due to the coupling of density and pressure each ba-
sis weight P! is linked to all others. With the DPCM each basis
weight is solved separately, significantly reducing the number of
calculations at each time step due to not looping over 4th-order
multiplication tensor Cp,,;,- The decoupling reduces the computa-
tional cost growth as basis functions are added, i.e.the computa-
tional cost savings grows with N.

4. Test cases and computational assessment

Two test cases are used to evaluate the accuracy and efficiency
of the proposed method, while a third is used to test the method
on a more complicated scenario. First, an oscillating droplet case
is used as there exists an analytic solution providing the oscilla-
tion period [22]. This case tests the ability of the surface tension
force to drive flow. Second, a damped surface wave, which also
has an analytic solution [23], is used to judge the accuracy of the
interplay between viscosity and surface tension. Finally, the third
test case is an atomizing jet, which demonstrates the ability of the
method to resolve difficult physical situations. For each case, the
semi-Langrangian projection method of Eq. (35) is utilized for best
results, with comparison to Eq. (29) in a high density ratio sce-
nario. These three tests focus on how the modified pressure pro-
jection method effects the solution and computational cost.

4.1. Oscillating droplet

The oscillating droplet is a common benchmark test for vali-
dating the accuracy and abilities of a multiphase solver [24-27].
Rather than inducing flow from the boundary, this flow is driven
by the surface tension force, which allows for an indirect test of
the accuracy of the numerical method to calculate the surface ten-
sion by comparison of the analytic oscillation period to that deter-
mined from the simulation. As mentioned, the period of oscillation
was defined by Lord Rayleigh [22] and described in 2-D by Fyfe
et al. [28], where

. :Zn‘/% (37)

for period T and unperturbed radius R = +/AB of an ellipse de-
scribed by x2/A% +y?/B? =1, with semi-major and semi-minor
axes A and B, respectively.

There are peculiarities to this case, some discussed by Salih and
Ghosh Moulic [29]. First, the period of oscillation as defined by
Lord Rayleigh [22] assumed an inviscid system, thus viscosity is
not present in Eq. (37) and cannot affect the period of oscillation.
As discussed by Salih and Ghosh Moulic [29], it is found that vis-
cosity serves to dampen the amplitude of oscillations. Second, the
period of oscillation of the simulation is found indirectly by com-
puting the total kinetic energy of the system,

KE; = % /V ot udv., (38)
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do while ((mp_iter.lt .Nm).and.(res.lt.converge))

do while ((p_iter.lt .Np).and.(resP.lt.converge))

| Eq. 25

correction

! Transport the interface (update the level set)

1 !/ Loop owver time

2 do n = 1,niter

3

4 ! Estimate pressure field (Calculate P_hat)
5 call projectPhat ! Eq.
6

7 ! Perform midpoint iterations
8 mp_iter = 0

9

Lo mp_iter = mp_iter + 1

11 ! Calculate wustar

12 call velocityPredict

13

14 ! Loop over pressure solver
L5 p-iter =0

L6

7 p-iter = p_iter + 1

18 ! Compute pressure with
19 call DDpressureSolver

20 P_hat = P(n+1)

21 end do

p2

P3 ! Perform pressure

R4 call velocityCorrect

25

P6

R7 call interfaceTransport

28

P9 end do

B0 end do

28 or Eq. 34

Poisson solver

step

Fig. 2. Pseudo code describing the procedural order for an iterative approach to the fast pressure solver. While loops are performed until a small change is reached

(i.e. res.It.converge) or to a max number of iterations.

This works in part because the system begins as a static ellipse
with only the potential energy of surface tension imposed. Kinetic
energy then should grow and peak, but slowly diminish as the sur-
face tension force then counteracts the movement of the fluid, at
some point reaching the maximum ellipsoid shape about the 2nd
dimension, when a minima of movement is taking place.

We look at variations of the oscillating droplet case with an ini-
tial ellipse of A=0.25 cm and B=0.15 cm centered in a [0, 2]?
domain. Liquid properties are first set to v; = v, = 0 for viscosity
(in keeping with the original analytic result) while p; = 1.0 g/cm3
and p, = 0.01 g/cm? are set for density. Surface tension coefficient
is set at o = 72.8 g/s2 for all simulations.

4.1.1. Comparison to traditional pressure correction

In the implementation of the DPCM, there are two parameters,
Nc and Np, that can be used to improve the predicted pressure P.
The effect of the number of midpoint iterations N, is first investi-
gated to determine if simply increasing N;; to improve the veloc-
ity, pressure, and level set transport will be enough to converge
P. With this approach to the numerical scheme, the magnitude of
kinetic energy was found to be largely affected by the number of
midpoint iterations, while the period is shifted slightly. Fig. 3(a) il-
lustrates this effect for a range of N;; and mesh sizes. This is due
to the continually improved estimate of P with each iteration. Also
shown is the more rapid decay of kinetic energy with smaller Ny,.

We must also determine if it is sufficient to run only two mid-
point iterations (N;j = 2) to achieve 2nd-order accuracy in time,
but loop over the pressure solver multiple times. Fig. 3(b) illus-

trates the solution tendency to this approach over a range of Np
with Ny, = 2. We find that while this approach also appears to be
convergent, there is much slower improvement of kinetic energy
magnitude. Again, as the estimate of P converges to P!  the dif-
ference in the velocity field between the two correction methods
shrinks.

4.1.2. Determination of Ny and Np

We can see from Fig. 3 that finding a proper P is necessary, and
that it is likely better to iterate over both the midpoint scheme and
the pressure solver. It is thus useful to find the most efficient com-
bination of midpoint and pressure iterations in hopes of achieving
an acceptable level of error while keeping computational expense
relatively low. To determine the most efficient possible simulation
layout, 42 simulations were run on a 64 x 64 mesh with the oscil-
lating droplet method, using the SPCM results as a baseline. Tests
were run over a range of values, N, = [2,7] and Np = [1, 7], with
the goal of minimizing both the error of DPCM results and total
computational time. Both models were allowed to run to a given
divergence level (i.e. V-u <1 x 10~™) with a set time step. Error
was then described as the difference in kinetic energy between the
two methods,

Eqifr = KEg:spem — KEg:ppm, (39)

at each time step. An average error Egg was calculated for each
simulation, as well as an associated standard error to calculate a
95% confidence interval about the average.
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Fig. 3. Global kinetic energy of an oscillating droplet for a range of midpoint iterations (Nn,) and a range of pressure iterations (Np) on a 128 x 128 mesh. At left, the pressure
is only calculated once per midpoint iteration, i.e. Np = 1. At right, simulations were run with the minimum number of midpoint iterations, i.e. Ny, = 2.
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Fig. 4. Relationship of simulation time on the error Ey between solutions of the DPCM and SPCM (left) and the impact of midpoint iterations on error Egg (right).

Additionally, error bars in represent a 95% confidence interval about Eg.

Table 1

Simulation run times of several combinations for DPCM.
Reported error is the average difference between DPCM
and SPCM over three oscillations.

Nm  Np Time (min)  Error (Eg)  95% CI
2 SPCM 3.769 - -

5 4 1.304 0.041 0.0025
6 3 1.269 0.034 0.0021
6 4 1.548 0.026 0.0017
6 5 1.752 0.021 0.0014
7 2 1.125 0.041 0.0024

The results of these 42 tests are illustrated in Fig. 4, which de-
scribe the relationship between simulation time and error Eq to
the SPCM. The error can be continually reduced, but with growing
expense. We can see convergence of the error trending to zero as
more iterations are added, shown in Fig. 4(b). Also shown in the
reduction in the confidence interval as N, increases. While there
is no clear combination to choose, it appears several combinations
along the bottom on the curve in Fig. 4(a) offer a balance of rel-
atively small error and computational efficiency. These combina-
tions are highlighted in Table 1, and further show the trade-off be-
tween computational effort and accuracy.

Given that several observations appear reasonable, the combi-
nation of Nj, = 6 and Np = 3 was chosen for its relatively low error
and computational expense. The choice of N =6 and Np =4 re-

duces error by 24% but increased simulation time by 22%, i.e. there
are diminishing returns. However, we note even the most expen-
sive case tested with the DPCM, where N, =7 and Np =7 had a
run time of 2.664 min compared to 3.769 min for the SPCM, offer-
ing an ~ 30% speedup. To test the chosen combination of N =6
and Np = 3 for mesh convergence we compared the difference in
the total simulation run time for 100 iterations (using four Intel
Core i7 2.5 Ghz processors) between standard and decomposed
pressure correction methods, as shown in Fig. 5. As seen, we have
a significant speedup with the DPCM, which grows with mesh re-
finement.

4.1.3. Methods for calculating P

An oscillating droplet with a high density ratio (e.g. an air and
water system) is more numerically difficult to resolve. In the DPCM
framework, it is even more important to have a reasonable esti-
mate of P to reduce computational errors. This is because the con-
stant density term pg is then orders of magnitude different from
the highest density fluid. This exacerbates the errors caused by the
difference between P and P™!, and thus the errors in the result-
ing velocity field. Given this issue, we also consider the effect of
a simple linear approximation (Eq. (29)), which creates unrealistic
and non-physical jumps near the interface. This causes huge varia-
tions in the velocity field near the interface, and can cause simula-
tion instabilities leading to failure. We compare this with the pro-
posed semi-Lagrangian extrapolation which bounds P by the local
maxima and minima of the current pressure field while tracking



B. Turnquist and M. Owkes

o DPCM
4071 o spcm . 1
i
~30¢ ]
g
&
£ 20f 1
£
2 10¢ ]
0 I~ ] \.
64 128 256

Mesh Size

(a) Time scale

Computers and Fluids 221 (2021) 104930

2 — ‘ :
e DPCM

15l © sPcMm o |

E 1} |

8: [e]

= 05f 1

(]

E [}

B oor 1

%C o L4

= 05f ]
L]

-1 - L L

64 128 256

Mesh Size

(b) Log time scale

Fig. 5. Computational time of oscillating droplet simulations over a range of mesh sizes for a set number of iterations.
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Fig. 6. Effect of the estimation method used to calculate P on solutions of a high density ratio oscillating droplet for a 64 x 64 mesh. In each case Ny, = 2.

movement of the interface. This provides a stable first estimate
which does avoids a double jump and maintains a more stable es-
timate of P.

Fig. 6 directly compares the two estimation schemes. As shown,
simply utilizing the basic linear projection method (Eq. (29)) is a
very poor estimate without iterating the pressure solver multiple
times (i.e. the case of Np = 1). By comparison, the proposed semi-
Lagrangian method (Eq. (35)) has a more stable oscillation when
Np = 1. Additionally, the method converges more rapidly to the
SPCM when the estimate of P is improved by iterating the pres-
sure solver.

4.14. Translating droplet

To further consider the affect of the estimation scheme on P we
consider the case of an oscillating droplet placed in a moving ve-
locity field. We again utilize the fluid properties of air and water,
with an initial ellipse the same as in previous cases. The only dif-
ference is that the initial velocity field is set to u = 10 cm/s every-
where, with a continuous inflow of u;, = 10 throughout the sim-
ulation. The goal is to exacerbate the issue caused by the double
jump present in the linear estimation of P.

Fig. 7 displays the results of several simulations utilizing either
the linear or semi-Lagragian estimate of P. We see that without it-
eration, the linear estimate is unstable, while the semi-Langragian
estimate remains stable. Iteration over either method quickly im-
proves stability, converging to the results found with the SPCM,
which we can see in Fig. 7(c) for simulations with N =6 and
Np = 3. Given a large number of iterations, either method is use-

ful. However, the semi-Lagangian method is most applicable and
perhaps necessary for implementations of the DPCM that are not
iterative, or in situations where fast results can be useful (i.e. run-
ning the iterative scheme with only 1 pressure iteration) for pre-
liminary findings.

4.1.5. Stochastic viscosity simulations

Given a stochastic multiphase solver, it is possible to look at the
effect of viscosity in multiphase flow dynamics. Continuing with
the example of the oscillating droplet, we now impose uncertainty
about the viscosity of both fluids in the system, holding all other
variables equal from the deterministic simulations shown previ-
ously. To impose uncertainty about viscosity we utilize a uniform
distribution for each phase, i.e.,

v; =0.014+0.01 and
v, = 0.15+0.15¢.

This allows us to test a range of cases from an inviscid situation
to one where viscosity is double that of air and water. Fig. 8(a)
displays the results of this test case. We can see the increase in
viscosity causes added decay of the kinetic energy in the system.
Additionally, we see the viscosity has a negligible impact on the
period of oscillation, suggesting the inviscid assumption made by
Lord Rayleigh [22] is reasonable. While these three solutions were
all created by one stochastic simulation (in addition to an infinite
number of others), it is necessary to run three deterministic sim-
ulations to compare. Fig. 8 shows the results of the UQ simulation
closely match that of the three deterministic simulations.

(40)
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Fig. 7. Results of a translating oscillating droplet for two methods of estimating P. The left two plots depict simulations using the linear and semi-Lagrangian estimation
methods, respectively, over a range of Np with N;;, = 2. The plot at right compares the two methods with the settled upon combination of N, =6 and Np = 3.
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Fig. 8. Results of a stochastic oscillating droplet with variability about viscosity on a 64 x 64 mesh. At left are results from a single stochastic simulation, while at right are

results from three deterministic simulations for comparison.
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Fig. 9. Computational time for a set number of iterations over a range of basis functions using two types of pressure correction methods in a stochastic simulation.

Since the stochastic simulations with the proposed DPCM
method can reproduce the results from these three deterministic
simulations, it is useful to compare the computational cost of the
SPCM method and the DPCM method. For this comparison, we are
interested in determining the effect of basis order N on the com-
putational time, and the efficiency gained by implementing the
DPCM. Timing tests were run using 100 time iterations with a con-
vergence level of 10~12 for both the traditional and proposed pres-
sure correction methods. All computations are performed on four
2.5 GHz Intel Core i7 processors with a 642 mesh. Fig. 9 illustrates

the time taken to run these iterations over a range of basis func-
tions. Given the large difference in computational time, a semi-log
plot is also presented. As shown, the cost of the SPCM grows much
more rapidly than that of the DPCM as basis order is increased.

4.2. Damped surface wave

We now look at the interaction between viscosity and surface
tension as outlined by Prosperetti [23] and utilized by Herrmann
[30] among others [25,31,32]. This case consists of two viscous flu-
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Fig. 10. Amplitude of a damped surface wave with a density ratio of p;/p, = 1 for three different mesh sizes. Analytic solution described by Prosperetti [23] shown with

the solid black line.

ids separated by a horizontal interface initialized with a slight per-
turbation. This is described by the signed distance function g(x, t)
used to initialize the level set, where

g(x,t:O):y—yO-i-Aocos(x—hzg>, (41)
with y, =7, Ao =0.01A, wavelength A =2m, and hg = A/Ny for
the number of mesh points in the x-direction Ny. Simulations are
performed in a [0, 2] x [0, 27r] domain. Numerical results of the
wave amplitude are compared to the expected theoretic amplitude

suggested by Prosperetti [23], in the case of two fluids with equal
kinematic viscosity, where

4(1-4B)v2A,

Aexp(t) = Werfc(ﬁ)
4 2 42)
Ziw2A, ) (
+ 3 S0 _exp [ (22 - v)t]erfe(zivt
> s ewlle —v)Jerc(a)
and z; are the roots of
4 —4BvZ2 +2(1 —68)vZ% +4(1 - 3B8)v3/%z (43)

+(1-4B8)v? + w2 =0.

The inviscid oscillation frequency is given by wo, = /o /(p1 + p2).
with parameter B = p1py/(01 + p2)°. and Z; =TT j.i (2 — 2)-
The amplitude of the numerical model is found by monitoring the
height of the wave which is located at the center of the domain.

4.2.1. Deterministic simulations
Following the test cases of Herrmann [30], two determinis-
tic cases are explored for a surface tension of o =2 S%. In the

first case we use densities of p; = 0, =1 ﬁ with a viscosity of

v = 0.064720863 # In the second case a density ratio of 1000 is
used, with p; = 1000 -%; and p, =1 -25, and both fluids have a

cm3 cm3’
viscosity of v = 0.0064720863 % In all cases the DPCM method
is used with N, =6 and Np = 3.

Results of the case of density ratio one are shown in Fig. 10,
which displays a convergence of results with mesh refinement.
Additionally, the error of the simulation is shown, where E(t) =
(A(t) — Aexp) /Ao. It is useful to point out that in this simulation,
where the two fluids have equal density, the use of the DPCM
introduces very minor errors into the model as p, = p; = p;. Be-
cause of this we can quickly find P = P"+1, through iterative con-
vergence. In fact, it was found that during the simulation, conver-
gence was reached after 2 pressure iterations.

10

Results for the high density ratio case, where p;/0, = 1000,
are shown in Fig. 11. In this simulation we see even better agree-
ment with analytic results than in the previous case. With mesh
refinement, the solution rapidly converges to that of Eq. (42). Look-
ing also at the comparison to the SPCM, we see they are some-
what different as the SPCM has a maximum error of E(t) ~ 0.0084,
while for the DPCM E(t) ~ 0.0128 for the 32 x 32 mesh. Of course,
this solution difference could be minimized further by increas-
ing the number of iterations. But again, the trade-off is at a
greater computational expense. It is perhaps more useful to re-
fine the mesh for a better solution given the convergence offer-
ings (e.g. E(t) ~0.0028 for the 128 x 128 mesh with DPCM vs.
E(t) ~ 0.0019 with SPCM).

4.2.2. Stochastic surface wave

The purpose of the damped surface wave case is to test the
ability of the solver to accurately predict situations where vis-
cosity and surface tension forces interact. To test the ability of
the stochastic solver to handle this interaction with uncertainty
present, we will now assume there is some uncertainty about the
viscosity of the fluids. As the analytic solution assumes equal vis-
cosity fluids, we will maintain that assumption, but impose a uni-
form distribution. Again we will look at both a unity and high den-
sity ratio test case to determine the ability of the solver. For the
equal density case we define the kinematic viscosity with v(¢) =
0.064720863 + 0.0323604315¢. In the high density ratio case we
use v(¢) = 0.0064720863 + 0.00323604315¢.

Fig. 12 displays the expected and numerical results of the
stochastic equal density case. This simulation was run with order
N =5 given the low amount of movement about the interface. For
reference, the case of A(t,¢ =0) is the same case presented in
the deterministic section, where viscosity v({ = 0) = 0.064720863.
For this particular solution, we see very similar results to those
found by the deterministic model, and it appears much of the er-
ror results from a phase difference. Note, all amplitude values are
found during the course of a single simulation of the stochastic
solver.

Applying an uncertain viscosity to the case of the high density
ratio (p1/p02 = 1000) we find similar behavior to that shown in the
deterministic model runs. Fig. 13 displays expected and numeri-
cal results for a UQ case with N, =6, Np =3, and N = 5. As with
the deterministic solutions, the DPCM methodology appears to be
more closely aligned to analytic results than the unity density ra-
tio case. Additionally, it appears the case of the largest viscosity
has the smallest deviation from analytic expectations.
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Fig. 11. Amplitude of a damped surface wave with a density ratio of p;/p, = 1000 for three different mesh sizes with both pressure correction methods. Iteration counts
for DPCM solutions are Ny, = 6 and Np = 3. Analytic solution described by Prosperetti [23] shown with the solid black line.
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Fig. 12. Amplitude of a damped surface wave with a density ratio of p;/p0, =1 for a 64 x 64 mesh with Ny

viscosities as described by Prosperetti [23] shown at left.

4.3. Atomizing jet

To highlight the ability of the proposed solver to solve complex
and potentially real-world situations, we present the results of 2-D
deterministic and stochastic atomizing jets. We compare the veloc-
ity field found with the DPCM to that of the standard method, the
location and shape of the interface, as well as the difference be-
tween the pressure fields found by each.

For the deterministic jet, the fluid characteristics include kine-
matic viscosities of vy = 0.01 # and v, =0.15 # densities of
p1=1.0 £ and p; =0.001 ;. a surface tension coefficient of
o=728 S%, and an incoming velocity of 1000 € occurring in a

1

6, Np =3, and N =5. Analytic solutions for 3 possible

1 cm? domain. Given the incoming diameter of the inlet tube is
Dy = 0.1 cm, the incoming Reynold’s number is Rep = 1 x 104,

4.3.1. Comparison to traditional pressure correction

We first compare the interface locations of the two methods
through time for a 2-D atomizing jet. As previously mentioned, a
reasonable method for improving the estimate of the pressure field
P is to iterate over the pressure Poisson equation. For this scenario,
we have set CFL=0.75 to maintain stability. As shown in Fig. 14,
the location of the interface can be significantly different when P #
P™1, As this quantity is improved by increasing Np, the interface
location converges to the traditional pressure correction method.
However, we also see the diminishing gains by only increasing Np.
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Fig. 13. Amplitude of a damped surface wave with a density ratio of p;/0, = 1000 for a 64 x 64 mesh with N, =6, Np = 3, and N = 5. Analytic solutions for 3 possible

viscosities as described by Prosperetti [23] shown at left.

(a) 64 x 64, Np =

(d) 128 x 128, Np = 1

(b) 64 x 64, Np = 3

(e) 128 x 128, Np = 3

(c) 64 x 64, Np =5

(f) 128 x 128, Np = 5

Fig. 14. Interface location as a function of the number of pressure iterations for 2 different mesh sizes of a 2-D jet at time t = 0.0015 s. Black and red lines indicate the
interface location for the traditional and density decoupled correction methods, respectively. All simulations are run with Ny, = 2. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Next, utilizing the combination Ny =6 and Np = 3 suggested
previously, we look at a direct comparison of the difference be-
tween the velocity fields of the two pressure solution methods,
where ugif = Uspcy — Uppem in @ deterministic simulation. Fig. 15
displays the difference in the velocity fields between SPCM and
DPCM. Peak values occur in the coarsest mesh at a few cell loca-
tions, with a difference of ~ 1%. This error diminishes as the mesh
is refined, as shown in the figure.

4.3.2. Stochastic jet

Since the goal of utilizing the DPCM is to improve the effi-
ciency of stochastic models, we now look at a case involving uncer-
tainty. To showcase the ability of the method to resolve a system

12

with a great deal of uncertainty, we present a case with uncer-
tainty about the velocity of an incoming jet. For simplicity, we uti-
lize again a uniform distribution, where u;,, = (1000 + 100¢) cm/s,
or a variation of 410%. All other fluid parameters remain the
same.

Fig. 16 depicts the range of solutions given this degree of uncer-
tainty about the incoming fluid. We also see the results of two de-
terministic solutions for comparison. As shown, the effect of only
a 10% variation in fluid velocity results in a rather dramatic dif-
ference in the possible solutions. Also shown is the probability of
being in the liquid phase. With this map we can see regions where
the fluid phase is known, and others where the interface is uncer-
tain.
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Fig. 15. Velocity field difference, ug;;, between traditional and proposed pressure solver for 3 different mesh sizes of a 2-D atomizing jet at time ¢t = 0.0005 s.
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Fig. 16. At top is the solution of a stochastic atomizing jet with uncertainty about incoming velocity on a 642 grid over time. Bounding solutions are shown for fastest (black
line) and slowest (red dashed) incoming velocities. Color map indicates the probability of being in the liquid phase. At bottom are results of two deterministic simulations
for comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

We have presented a modified pressure correction method, ex-
tending the density decoupled approach of Dodd and Ferrante
[17] to an intrusive stochastic multiphase solver. Deviations from
the standard pressure correction method arise due to differences
between the estimated pressure P and the actual pressure P™+1,
We propose a method to reduce these deviations by imposing a
semi-Lagrangian extrapolation method for a better initial estimate
of P, then further improve P by iterating over the pressure solver.
Results from an oscillating droplet, surface wave, and atomizing
jet show convergence of the decomposed pressure correction ap-
proach to that of the standard pressure correction method.

Given convergence of the DPCM to SPCM, we discussed an
efficient combination of pressure and midpoint iterations which
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significantly reduced computational cost over the SPCM with lit-
tle added error. Due to the iterative approach to convergence,
some deviation threshold must be decided to limit the num-
ber of iterations taken. We then balance accuracy and computa-
tional cost, which is typical of numerical solutions in any sys-
tem of differential equations. Other possibilities are also reported
which significantly speed up simulation times while shrinking
deviations from the traditional pressure correction as mesh is
refined.

The decomposed pressure correction methodology for applica-
tion to stochastic gas-liquid multiphase systems reduces computa-
tional cost dramatically. Decoupling the pressure Poisson equations
allows for the use of more sophisticated linear solvers. As a result,
we see growing computational cost improvement as the basis or-
der, mesh, and uncertainty increase.
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Appendix A. Computational cost

The computational cost was assessed with the oscillating
droplet test on a 642 mesh over a range of midpoint and pressure
iterations. A single run of the SPCM was used to test against for
average kinetic energy error, Egig. All tests were run out to 3 os-
cillations for tracking of numerical dissipation. Total pressure steps
taken throughout the simulation were also tracked, as well as the
average number of pressure iterations per time step taken to solve
the pressure Poisson equation. The results of the efficiency study
are outlined in Table A.2 below.

Simulation run times and associated metrics for finding the best combination of N. and Np. The error is the average kinetic energy difference between a DPCM
simulation and the SPCM. A 95% confidence interval is calculated about the error i.e. (Eg; = CI). Highlighted rows indicate best possibilities.

Average iterations/step Error (Egigr) 95% Confidence interval

Nn Np Simulation time (min) Total pressure iterations
2 1 0.279 40,610
3 1 0.399 60,932
4 1 0.481 81,219
5 1 0.590 101,489
6 1 0.685 121,777
7 1 0.813 142,039
2 2 0.389 81,287
3 2 0.506 121,865
4 2 0.663 162,400
5 2 0.806 202,945
6 2 0.958 243,450
7 2 1.125 283,963
2 3 0.471 121,894
3 3 0.643 182,767
4 3 0.865 243,456
5 3 1.053 304,247
6 3 1.269 364,985
7 3 1.453 425,795
2 4 0.524 162,594
3 4 0.783 243,558
4 4 1.041 324,518
5 4 1.304 405,577
6 4 1.548 486,559
7 4 1.753 567,620
2 5 0.653 203,240
3 5 0.987 304,346
4 5 1.244 405,613
5 5 1.481 506,926
6 5 1.752 608,150
7 5 2.103 709,467
2 6 0.701 243,772
3 6 1.069 365,160
4 6 1.415 486,678
5 6 1.719 608,191
6 6 2.056 729,727
7 6 2.355 851,252
2 7 0.874 284,329
3 7 1.257 425,972
4 7 1.622 567,710
5 7 1.964 709,466
6 7 2.370 851,239
7 7 2.664 993,080

54 0.176 0.0110
81 0.134 0.0082
108 0.100 0.0062
135 0.084 0.0051
162 0.067 0.0041
189 0.062 0.0037
108 0.159 0.0095
162 0.116 0.0068
217 0.080 0.0049
271 0.064 0.0037
325 0.046 0.0028
379 0.041 0.0024
163 0.152 0.0096
244 0.104 0.0063
325 0.065 0.0041
406 0.050 0.0030
487 0.034 0.0021
568 0.031 0.0018
217 0.146 0.0095
325 0.093 0.0057
433 0.054 0.0035
541 0.041 0.0025
649 0.026 0.0017
757 0.024 0.0014
271 0.140 0.0092
406 0.083 0.0052
541 0.047 0.0031
676 0.035 0.0021
811 0.021 0.0014
946 0.020 0.0012
325 0.133 0.0089
487 0.074 0.0047
649 0.040 0.0027
811 0.030 0.0018
973 0.017 0.0012
1135 0.016 0.0010
379 0.126 0.0086
568 0.067 0.0042
757 0.035 0.0024
946 0.026 0.0016
1135 0.015 0.0011
1324 0.014 0.0009
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