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a b s t r a c t 

Solution of the pressure Poisson equation is often the most expensive aspect of solving the incompress- 

ible form of Navier–Stokes. For a single phase deterministic model the pressure calculation is costly. Ex- 

panded to an intrusive stochastic multiphase framework, the simulation expense grows dramatically due 

to coupling between the stochastic pressure field and stochastic density. To address this issue in a deter- 

ministic framework, Dodd and Ferrante (“A fast pressure-correction method for incompressible two-fluid 

flows” Journal of Computational Physics, 273, 416–434, 2014) discuss a decomposed pressure correction 

method which utilizes an estimated pressure field and constant density to modify the standard pressure 

correction method. The resulting method is useful for improving computational cost for one-fluid for- 

mulations of multiphase flow calculations. In this paper, we extend the decomposed pressure correction 

method to intrusive uncertainty quantification of multiphase flows. The work improves upon the original 

formulation by modifying the estimated pressure field. The new method is assessed in terms of accuracy 

and reduction in computational cost with oscillating droplet, damped surface wave, and atomizing jet test 

cases where we find convergence of results with the proposed method to those of a traditional pressure 

correction method and analytic solutions, where appropriate. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Methods of uncertainty quantification (UQ) can be placed into 

wo categories: intrusive and non-intrusive. The non-intrusive cat- 

gory includes approaches such as Monte Carlo [1] , collocation 

ethods [2] , and non-intrusive polynomial chaos (PC) [3] . The lat- 

er two essentially improve on a Monte Carlo by presenting a bet- 

er way to select the input values so not as many simulations need 

o be run. In all cases a standard solver can be utilized, which is 

un many times with parameters selected from a distribution of 

nputs to compile a database of simulation results. This database is 

hen used to calculate useful statistics of the system in question. 

Unlike non-intrusive flow solvers, intrusive UQ methods require 

 change in the fundamental structure of the solver resulting from 

odified equations created by the inclusion of stochastic (random) 

ariables. An intrusive solver is created with stochastic variables 

hich store information as a function of added uncertainty dimen- 

ions. Stochastic variables developed as a function of uncertainty 

ay take several forms, including PC [4] and Karhunen–Loeve ex- 

ansions [5,6] . Each of these methods offer their own advantages. 

he advantage of PC lies in the ability to utilize any number of 
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ncertainty dimensions, the availability of a number of orthogonal 

asis function families, and the straightforward integration of con- 

inuous PC variables into many systems of differential equations. 

ssuming stable intrusive and non-intrusive UQ schemes, compu- 

ational cost comparisons are based on the time it takes to gener- 

te a reliable source of statistical information on the system being 

odeled. 

Considering UQ applications to multiphase flow dynamics, ap- 

lication of intrusive UQ methods to gas-liquid flows is a devel- 

ping field. Le Maître et al. [7,8] first developed the stochastic 

avier–Stokes equations for single-phase incompressible flows uti- 

izing a PC expansion. Since these works, several studies have im- 

lemented a PC-based approach to single-phase flows for a vari- 

ty of test cases [9–11] . Previous work by Turnquist and Owkes 

12] provided the first intrusive UQ method for gas-liquid mul- 

iphase flows named the multiUQ framework. The current work 

uilds on this previous work by reducing the computational cost. 

In either intrusive or non-intrusive UQ methodology, much 

omputational expense is devoted to solving the pressure Poisson 

quation. To numerically solve the incompressible Navier–Stokes 

quations, the standard pressure correction method (SPCM), first 

ntroduced by Chorin [13] , is a commonly used approach. With the 

PCM, time is discretized so that at every time step the convective, 

iscosity, and any source terms are evaluated and used to predict 

https://doi.org/10.1016/j.compfluid.2021.104930
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104930&domain=pdf
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he velocity without the pressure term. Continuity (or mass con- 

ervation) is then used to enforce a divergence free condition at 

he next time step, while also creating an elliptic Poisson equation 

o solve for pressure. The approach makes it possible to solve the 

avier–Stokes equations with imposed boundary conditions at rea- 

onable computational expense. Further work has been done to ex- 

and the method, including improvements to order [14] and appli- 

ation to unstructured grids [15] . When using the SPCM in a multi- 

hase scenario, the pressure Poisson equation becomes coupled to 

ensity, which adds computational cost and limits the possible al- 

orithms used to solve. In an effort to counter this cost and follow- 

ng the work of Dong and Shen [16] , Dodd and Ferrante [17] pro-

osed a decomposed pressure correction method (DPCM) which 

ould allow for using a fast Fourier transform (FFT) based solver. 

hile numerical errors are added to the model, computational cost 

s reduced; certainly the trade off is worth consideration. 

Given the computational cost improvements of a DPCM in the 

eterministic setting, it seemed reasonable to apply this method- 

logy to the multiUQ framework [12] . Because of the coupled na- 

ure of non-linear terms in the stochastic Navier–Stokes equations 

ue to the use of PC variables, the simulation expense grows at an 

xponential rate. This so-called curse of dimensionality increases 

he computational cost very rapidly for intrusive UQ. However, 

he same curse also affects non-intrusive methods. For example, 

he use of a Monte-Carlo [1] approach with two or more uncer- 

ain variables requires a way to compare the effect of one un- 

ertain variable on another, compounding the number of simula- 

ions run to get convergent statistics. Due to this problem, under- 

tanding the interaction in uncertainty between multiple variables 

n a multiphase system is extremely expensive. Use of accurate 

nd cost effective numerical techniques will bring these analyses 

ithin reach. 

This narrative seeks to develop a more efficient pressure cor- 

ection approach for stochastic multiphase flows by applying the 

PCM to the multiUQ framework outlined in Turnquist and Owkes 

12] . A mathematical development of the stochastic DPCM is intro- 

uced, followed by a derivation of the numerical methods. We then 

resent test cases which illustrate the computational improvement 

ver previously published methods and the error associated with 

he density decoupled approach. Finally, we close with a summary 

f the results and a discussion of where this work will fit in mov- 

ng forward. 

. Mathematical development 

Since the focus of this work is to develop an efficient pres- 

ure solver for stochastic multiphase flows, we begin with a de- 

elopment of the stochastic equations for fluid motion. Assuming 

he fluids are incompressible, this motion can be explained by the 

avier–Stokes equations, where 

∂ u 

∂t 
+ u · ∇ u = −η∇P + η∇ ·

[
μ

(∇ u + ∇ 
T u 

)]
+ η f σ δs (1) 

or velocity u , time t, specific volume η = 1 /ρ (for density ρ), 

ressure P, dynamic viscosity μ, and surface tension force f σ = 

κn , where n is the interface normal vector, σ is the surface ten- 

ion coefficient, and κ is the curvature of the interface between 

he two fluids. The surface tension force is only applied at the in- 

erface boundary, which is denoted by the Dirac delta function δs . 
dditionally, conservation of mass for the incompressible form of 

avier–Stokes is accomplished with the continuity equation, 

 · u = 0 . (2) 

To represent the stochastic variables, this work utilizes the PC 

xpansion as developed by Wiener [4] , where some variable ψ, 

hich varies in space x and time t, may be allowed to vary in any
2 
umber of uncertainty dimensions ζ such that 

( x , t, ζ) = 

N ∑ 

k =0 

ψ k ( x , t) φk ( ζ) = ψ k ( x , t) φk ( ζ) , (3)

or basis weights ψ k ( x , t) . φk ( ζ) for k = 0 , . . . , N is a set of N + 1

rthogonal basis functions upon which the variable is projected. 

ny of several sets of orthogonal polynomials may be used, in- 

luding Legendre, Hermite, Laguerre, and Chebychev, though it has 

een shown each works well for certain function behaviors. For ex- 

mple, Wiener [4] showed the Hermite polynomials can represent 

aussian distributions with a small number of basis functions. 

Allowing uncertainty to exist about all variables (except time) 

n Eq. (1) , we substitute the stochastic velocity u k φk , specific 

olume ηk φk , pressure P k φk , viscosity μk φk , and surface tension 

f σ : k φk . Utilizing different free-indices k, l, m for each multiplied 

ariable (i.e. ηk φk , P l φl , etc.), the result is 

∂ u k φk 

∂t 
+ u k φk · ∇ u l φl = −ηk φk ∇P l φl 

+ ηk φk ∇ ·
[
μl φl 

(∇ u m φm + ∇ 
T u m φm 

)]
+ ηk φk f σ : l φl , (4) 

nd is one form of the stochastic Navier–Stokes equations. We also 

ave the stochastic continuity equation 

 · u k φk = 0 . (5) 

ecause this form is difficult to work with and the real values of 

nterest are the basis weights, we utilize the property of orthogo- 

ality inherent in the basis functions. For the Legendre polynomi- 

ls 
 1 

−1 

φk φb δζ = 

{〈 φk φb 〉 k = b 
0 k � = b 

. (6) 

o this end, we first multiply Eq. (4) by a test function φb , resulting

n 

∂ u k φk 

∂t 
φb + u k φk · ∇ u l φl φb = −ηk φk ∇P l φl φb 

+ ηk φk ∇ ·
[
μl φl 

(∇ u m φm + ∇ 
T u m φm 

)]
φb 

+ ηk φk f σ : l φl φb . (7) 

o leverage the property of orthogonality, we then integrate over 

he region of orthogonality, [ −1 , 1] , ∫ 1 
−1 

∂ u k φk 

∂t 
φb + u k φk · ∇ u l φl φb dζ = 

∫ 1 
−1 

−ηk φk ∇P l φl φb 

+ ηk φk ∇ ·
[
μl φl 

(∇ u m φm + ∇ 
T u m φm 

)]
φb 

+ ηk φk f σ : l φl φb dζ , (8) 

nd divide through by the integral 〈 φb φb 〉 to get a more useful 

orm of the stochastic Navier–Stokes equations, 

∂ u b 

∂t 
+ u k · ∇ u l C klb = −ηk ∇P l C klb 

+ ηk ∇ ·
[
μl 

(∇ u m + ∇ 
T u m 

)]
C klmb + ηk f σ : l C klb , (9) 

or b = 0 , . . . , N where 

 klb = 

∫ 1 
−1 φk φl φb dζ∫ 1 

−1 φb φb dζ
= 

〈 φk φl φb 〉 
〈 φb φb 〉 (10) 

nd 

 klmb = 

〈 φk φl φm φb 〉 
〈 φb φb 〉 (11) 

re 3rd and 4th order multiplication tensors containing the con- 

tants of integration. Additionally, the stochastic continuity equa- 

ions are 

 · u = 0 (12) 
b 
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or b = 0 , . . . , N. 

Calculation of the surface tension force is not trivial. 

qs. (9) and (12) are implemented in an incompressible two-phase 

ystem utilizing a conservative level set interface capturing scheme 

s outlined in Turnquist and Owkes [12] . The surface tension is 

hen found by way of a continuum surface force method, as first 

escribed by Brackbill et al. [18] . Tryggvason et al. [19] discuss 

moothing the interface over a color function, in this case the con- 

ervative level set ψ, such that ∇ ψ ≈ ∇ H = n δs . This methodol-

gy operates as a smoothed Heaviside function, H( x ) , in which the 

tochastic implementation also deviates in the uncertainty domain, 

.e. ψ( x , ζ) ≈ H( x , ζ) . 

A deterministic curvature is calculated by way of the level set, 

tilizing 

= −∇ · n , (13) 

or a unit normal about the interface, n = ∇ ψ/ |∇ ψ | . Allowing un-

ertainty to exist about the level set, and thus the unit normal vec- 

ors and curvature, we then have a stochastic curvature 

b = 

1 

〈 φb φb 〉 
∫ 1 

−1 

∇ψ k φk 

|∇ψ l φl | φb dζ , (14) 

hich is calculated with a Gaussian quadrature. To avoid projecting 

iscontinuous unit normal vectors onto continuous basis functions, 

 unit normal is calculated at each quadrature point, thus project- 

ng curvature κ onto the selected basis functions φk . We then cal- 

ulate a stochastic surface tension force as 

f σ : b = σk κl ( ∇ψ m ) C klmb . (15) 

. Numerical methodology 

Computations are done on a two-dimensional rectangular do- 

ain with a structured Cartesian mesh. Scalar values such as pres- 

ure P, level set ψ, density ρ, and viscosity μ are held at the cell 

enter. Subscripts on P n 
i, j 

denote discrete spatial indexing in the x 

nd y directions, respectively, while superscripts denote time dis- 

retization. Vector components of velocity u , surface tension f σ , 

nd continuous normal vector r are held at the cell walls. Second- 

rder finite difference operators are used for spatial derivatives un- 

ess otherwise noted. 

.1. Stochastic standard pressure correction 

In the standard pressure correction method, the Navier–Stokes 

quations are discretized in time such that 

u 
∗ − u 

n 

�t 
= −u 

n · ∇ u 
n + ηn ∇ ·

[
μn 

(∇ u 
n + ∇ 

T u 
n 
)]

+ ηn f 
n 
σ δs (16) 

u 
n +1 − u 

∗

�t 
= −ηn +1 ∇P n +1 , (17) 

here the superscript indicates the time level, i.e., �t = t n +1 − t n . 

s shown, a predicted velocity field u ∗ is calculated without the 

ressure field. Spatial discretization for ∇ u n in the convective term 

s accomplished with a basic first order upwinding scheme for sta- 

ility. Focusing on Eq. (16) , we expand a deterministic equation to 

he stochastic realm by substitution of stochastic variables, multi- 

lication of a test function φb , and integration over ζ to arrive at 

u 
∗
b 
− u 

n 
b 

�t 
= −u 

n 
k · ∇ u 

n 
l C klb 

+ ηn 
k ∇ ·

[
μn 

l 

(∇ u 
n 
m 

+ ∇ 
T u 

n 
m 

)]
C klmb + ηn 

k f 
n 
σ : l C klb , (18) 

or calculation of stochastic predicted velocity field weights u ∗
b 
. 

We then take the divergence of Eq. (17) to find pressure P n +1 , 

hile enforcing the incompressible constraint ∇ · u n +1 = 0 . In a 
3 
ultiphase system the density field varies and leads to a coupling 

f density to pressure in the elliptic pressure Poisson equation 

 
2 P n +1 = 

ρn +1 ∇ · u 
∗

�t 
− ρn +1 ∇ηn +1 · ∇P n +1 . (19) 

n a deterministic model Eq. (19) is one of the most computa- 

ionally expensive pieces of the solver. When building an intru- 

ive UQ system, computational expense is compounded. Expanding 

q. (19) into a stochastic regime we have 

 
2 P n +1 

b 
= 

ρn +1 
k 

∇ · u 
∗
l 

�t 
C klb − ρn +1 

k 
∇ηn +1 

l 
· ∇P n +1 

m 
C klmb (20) 

or b = 0 , . . . , N, resulting in N + 1 coupled pressure Poisson equa-

ions, i.e. P n +1 exists on both sides of the equation. The pressure 

oisson equations are coupled through the 4 th -order tensor C klmb 

rom the multiplication of density, specific volume, pressure gradi- 

nt and test function φb , which results in a very expensive step to 

ompute the pressure. While the multiplication tensor can be re- 

uced by dropping all zero values, the equation becomes increas- 

ngly expensive as more basis functions are required (i.e. increasing 

). 

.2. Stochastic decomposed pressure correction 

To reduce the compounding computational cost of calculating 

 stochastic pressure field, it is useful to decompose the density 

nd pressure into constant and variable components. What is ben- 

ficial for a deterministic multiphase system is increasingly more 

eneficial in a stochastic system as the number of basis functions 

nd uncertain variables used is increased. As mentioned previ- 

usly, Dodd and Ferrante [17] discussed a modification of the SPCM 

here the pressure-density term of Eq. (17) is modified such that 

n +1 ∇ P n +1 ≈ η0 ∇ P n +1 + 

(
ηn +1 − η0 

)∇ ̂
 P (21) 

or some estimated pressure field ˆ P and constant specific volume 

0 = 1 /ρ0 . As shown, this substitution couples the needed pres- 

ure field P n +1 to a constant density term ρ0 , of which the gra- 

ient is zero. More specifically, as the estimated pressure field ˆ P 

pproaches the new pressure field P n +1 , the constant density term 

s canceled out, such that 

lim 

ˆ  → P n +1 

[
η0 ∇P n +1 + 

(
ηn +1 − η0 

)∇ ̂
 P 
]

= ηn +1 ∇P n +1 . (22) 

hile the constant density term is essentially arbitrary, for numer- 

cal stability, ρ0 = min (ρ1 , ρ2 ) [17] . Substitution of Eq. (21) into 

he resulting system of equations for the modified pressure cor- 

ection method is then 

u 
∗ − u 

n 

�t 
= −u 

n · ∇ u 
n + ηn ∇ ·

[
μn 

(∇ u 
n + ∇ 

T u 
n 
)]

+ ηn f 
n 
σ δs (23) 

u 
n +1 − u 

∗

�t 
= −η0 ∇P n +1 −

(
ηn +1 − η0 

)∇ ̂
 P . (24) 

A pressure Poisson equation is found by taking the divergence 

f Eq. (24) and enforcing ∇ · u n +1 = 0 , leaving 

 
2 P n +1 = ρ0 

∇ · u 
∗

�t 
− ρ0 ∇ ·

(
ηn +1 − η0 

)∇ ̂
 P . (25) 

his equation is linear and can be easily calculated by a num- 

er of linear solution algorithms that exist. Additionally, expand- 

ng Eq. (25) for stochastic use by substitution of PC variables and 

ntegration over ζ we have 

 
2 P n +1 

b 
= ρ0 

∇ · u 
∗
b − ρ0 ∇ ·

(
ηn +1 
k 

− η0 

)∇ ̂
 P l C klb , (26) 
�t 
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Fig. 1. Illustration of the differences in the projection and semi-Lagrangian approaches to estimation of ˆ P . Blue lines indicate the position of a one-dimensional liquid droplet. 

At left we see that the projection approach utilizes pressures P n and P n −1 that are within the liquid and gas phases, respectively, to estimate ˆ P . At right we see that the 

semi-Lagrangian approach utilizes pressures P n and P n −1 that are both in the liquid phase to estimate ˆ P . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

w

e

e

s

d

h

b

t

t

l

s

C

D

(

3

n

r

c

P

H

d

a  

i

l

p

t

t

P

a

j

d

P

g

W

d

t

a  

t

j

t

v

l

x

o

d

x

f

t

u

b

s

g

l

x

x

t

f

t

L

P

R

i

o

P

m

s

P

hich are N + 1 decoupled pressure Poisson equations, i.e. P n +1 

xists only on the left hand side. There are two efficiency ben- 

fits: (1) the right hand side now only requires 3 rd -order ten- 

or C klb from the multiplication of specific volume, pressure gra- 

ient, and test function φb (since ρ0 is constant) and (2) the right 

and side is constant. Each basis weight P n +1 
b 

can be calculated 

y use of any solution algorithm, such as those contained within 

he HYPRE [20] package maintained by Lawrence Livermore Na- 

ional Lab, which was utilized for this study. This is significantly 

ess costly than the stochastic SPCM, where the coupling of pres- 

ure and density required looping over the multiplication tensor 

 klmb for each iteration of the pressure solver. 

To complete the stochastic Navier–Stokes equations with the 

PCM, we also include stochastic variables in Eqs. (23) and 

24) leading to 

u 
∗
b 
− u 

n 
b 

�t 
= −u 

n 
k · ∇ u 

n 
l C klb 

+ ηn 
k ∇ ·

[
μn 

l 

(∇ u 
n 
m 

+ ∇ 
T u 

n 
m 

)]
C klmb + ηn 

k f 
n 
σ : l C klb (27) 

u 
n +1 
b 

− u 
∗
b 

�t 
= −η0 ∇P n +1 

b 
−

(
ηn +1 
k 

− η0 

)∇ ̂
 P l C klb . (28) 

.2.1. Estimation of ˆ P 

Calculation of P n +1 relies on ˆ P , thus the accuracy of the fi- 

al pressure field is a function of 
(
ˆ P − P n +1 

)
. Dodd and Fer- 

ante [17] showed constant extrapolation was significantly less ac- 

urate than linear extrapolation, where 

ˆ 
 = 2 P n − P n −1 . (29) 

owever, this simple approximation is subject to limitations, as 

iscussed in the example of a rising air bubble in water by Dong 

nd Shen [16] , as well as Cifani [21] , who made effort s to improve

t. In a multiphase flow, the passage of the interface over a given 

ocation results in a pressure jump. Utilizing Eq. (29) , at a grid 

oint where the interface has just arrived, the estimate of ˆ P for 

he next time step would be for another pressure jump, as illus- 

rated in Fig. 1 (a), where there is a pressure jump between points 

 
n −1 and P n , which will be extrapolated through Eq. (29) causing 

nother pressure jump. Inversely, at points where the interface has 

ust left, the estimate of ˆ P would be for another pressure drop. A 

ouble jump exists at the front and back of a moving droplet for 
ˆ  . This jump requires multiple time steps to clear away from any 

iven cell, but exists about the interface throughout the simulation. 

hile the DPCM does maintain a divergence free velocity field, the 

ifference 
(
ˆ P − P n +1 

)
near the interface creates pressure fluctua- 

ions which are non-physical and introduce error to the simulation, 
4 
s discussed by Cifani [21] , and will be discussed in Section 4.1.3 of

he present work. 

Alternatively, to avoid the issue caused by a simple linear pro- 

ection, a semi-Lagrangian interpolation method is proposed where 

he location of each grid point are transported backwards with the 

elocity field, and the pressure ˜ P at that point is found with bi- 

inear interpolation (for a 2-D system). More specifically, a particle 

 i located at the cell center at t 
n +1 can be traced back to its previ- 

us location using the differential equation 

∂ x 

∂t 
= u , (30) 

iscretized with an explicit Euler approach, e.g., x n = x i − u n �t and 

 
n −1 = x i − 2 u n �t . Once x n and x n −1 are located, the pressure is 

ound via bi-linear interpolation of the nearest grid points. Due to 

he stochastic velocity field, the previous locations x n and x n −1 are 

ncertain. We defined a particle x i at the cell center and track it 

ack through an uncertain velocity field. Following substitution of 

tochastic velocity u k φk , multiplication by a test function, and inte- 

ration over ζ , we discretize Eq. (30) to find the previous particle 

ocations 

 
n 
b 

= 

〈 φb 〉 〈 φb φb 〉 x i − u 
n 
b 
�t and 

 
n −1 
b 

= 

〈 φb 〉 〈 φb φb 〉 x i − 2 u 
n 
b 
�t. 

(31) 

Even in a deterministic setting, depending on the location of 

his particle, the nearest neighbors may be shifted to one of the 

our quadrants surrounding the central pressure P i, j . For explana- 

ion, assuming the particle to be in the third quadrant, the semi- 

agrangian pressure ˜ P n at (x, y ) may be found with 

˜ 
 
n 
i, j = 

1 

�x �y 

[
x i +1 − x n x n − x i 

][P n −1 
i +1 , j 

P n −1 
i +1 , j−1 

P n −1 
i, j 

P n −1 
i, j−1 

][
y j − y n 

y n − y j−1 

]
. 

(32) 

ather than utilize a quadrature, the average particle location x n 
0 

s used (i.e. φ0 = 1 ). Thus, the four nearest neighbors to x n 
0 
(based 

n the quadrant it falls in) are used to calculate the pressure field 
˜  n utilizing bi-linear interpolation. Importing uncertain variables, 

ultiplying by a test function and integrating, we then find a 

tochastic bi-linear interpolation 

˜ 
 
n 
b: i, j 

= 

1 

〈 φb φb 〉 
∫ 1 

−1 

φb 

�x �y 
·

[
x i +1 − x n 0 φ0 x n 0 φ0 − x i 

][P n 
l: i +1 , j 

φl P n 
l: i +1 , j−1 

φl 

P n 
l: i, j 

φl P n 
l: i, j−1 

φl 

]
[

y j − y n 0 φ0 

y n 0 φ0 − y j−1 

]
dζ . 

(33) 
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erforming the integration over ζ , and noting the simplification by 

tilizing the average previous location, we have 

˜ 
 
n 
b: i, j = 

1 

�x �y 

[
x i +1 − x n −1 

0 
x n −1 
0 

− x i 
][P n 

b: i +1 , j 
P n 
b: i +1 , j−1 

P n 
b: i, j 

P n 
b: i, j−1 

]
[

y j − y n −1 
0 

y n −1 
0 

− y j−1 

]
. (34) 

nce this interpolated pressure ˜ P n has been calculated, and utiliz- 

ng the interpolated pressure from the previous time step ˜ P n −1 , we 

an again extrapolate to the next time for our estimate 

ˆ 
 = 2 ̃  P n − ˜ P n −1 . (35) 

he difference here is that we are tracking the interface as it ar- 

ives and moves through any given grid point, as illustrated in 

ig. 1 (b). While this provides a reasonable and bounded estimate 

f ˆ P , which avoids a double jump, this estimate can be further im- 

roved using an iterative approach, where each successive iteration 

an utilize an improved estimation of the pressure ˆ P as described 

n the next section. 

.3. Iterative midpoint method 

Given that the updated velocity field u n +1 is calculated using 

oth the calculated pressure field P n +1 and ˆ P , the best calcula- 

ion of the next time iteration occurs when ˆ P = P n +1 . To imple- 

ent this, aniterative midpoint scheme is used. For the first it- 

ration, we utilize Eq. (23) to find u ∗. To get an initial calcula- 
ion of u n +1 ( Eq. (24) ) the estimated pressure field is calculated 

sing either the linear projection method ( Eq. (29) ) or the semi- 

agrangian approach ( Eq. (35) ). On subsequent iterations we then 

odify Eq. (23) with midpoint information such that 

u ∗−u n 

�t 
= −u 

n +1 / 2 · ∇ u 
n +1 / 2 + ηn +1 / 2 ∇·[

μn +1 / 2 
(∇ u 

n +1 / 2 + ∇ 
T u 

n +1 / 2 
)]

+ ηn +1 / 2 f 
n +1 / 2 
σ δs , 

(36) 

sing u n +1 / 2 = ( u n + u n +1 ) / 2 . Interface transport is also accom- 

lished with this midpoint scheme for consistent time location 

f variables. Thus, we calculate midpoint values of the level set 

 
n +1 / 2 , which we use to find specific volume ηn +1 / 2 , viscos- 

ty μn +1 / 2 , and surface tension f n +1 / 2 
σ . For pressure correction 

 Eq. (24) ) of subsequent iterations we use the previous calculation 

f P n +1 as ˆ P , converging to the best estimate of P n +1 , i.e. ˆ P → P n +1 .

urthermore, within each midpoint step, while the right hand side 

f Navier–Stokes is constant, it is possible to further iterate over 

he pressure solver, which improves the estimate of P n +1 while by- 

assing the expense of solving the rest of the Navier–Stokes equa- 

ions. 

As shown in Fig. 2 , the estimate of the pressure field ˆ P is con-

inually updated throughout the iterative process, converging to 

 
n +1 and reducing the error inherent in the method. The maxi- 

um number of midpoint ( N m ) and pressure iterations ( N P ) can

e reduced if some convergence criterion is reached (variable con- 

erge). Note, there is a compounding effect of updating ˆ P inside 

he midpoint loop. For low density ratios ( ≤ 100 ) and/or slow ve- 

ocity fields it is sufficient to loop over the pressure solver once 

i.e. N p = 1 ). However, at high density ratios and/or rapidly evolv- 

ng systems it is necessary to improve our estimate of the next 

ressure field, increasing our value of N p . This can be done in lieu

f reducing the time step size, or CFL value, as suggested by Dodd 

nd Ferrante [17] . 

To obtain second-order accuracy in the time marching scheme, 

t is only necessary to perform two midpoint iterations (i.e. N m = 

 ). Given that updating the midpoint loop runs through all cal- 

ulations of the level set, velocity, and pressure solver, it makes 

ense to reduce this number and iterate over the pressure solver to 

onverge the estimate of ˆ P to P n +1 . However, in practice it is not 
5 
his straightforward, since the first step of the midpoint method 

s essentially an explicit Euler prediction, which is then improved 

y another iteration. Thus, our first estimates of ˆ P are based on a 

rst-order accurate prediction. Through testing we have found that 

ncreasing N m helps to converge ˆ P , resulting in fewer overall itera- 

ions of the pressure Poisson equation per time step, as discussed 

n more detail in Section 4.1.1 . 

It also makes sense to discuss the oddity of looping several 

imes over the most expensive part of the simulation in an at- 

empt to improve computational efficiency. The improvement of 

fficiency comes from a combination of the ability to use more ef- 

cient solution methods and the uncoupled nature of the pressure 

oisson equation. When using the SPCM, convergence of P n +1 is 

low, and due to the coupling of density and pressure each ba- 

is weight P n +1 
b 

is linked to all others. With the DPCM each basis 

eight is solved separately, significantly reducing the number of 

alculations at each time step due to not looping over 4 th -order 

ultiplication tensor C klmb . The decoupling reduces the computa- 

ional cost growth as basis functions are added, i.e.the computa- 

ional cost savings grows with N. 

. Test cases and computational assessment 

Two test cases are used to evaluate the accuracy and efficiency 

f the proposed method, while a third is used to test the method 

n a more complicated scenario. First, an oscillating droplet case 

s used as there exists an analytic solution providing the oscilla- 

ion period [22] . This case tests the ability of the surface tension 

orce to drive flow. Second, a damped surface wave, which also 

as an analytic solution [23] , is used to judge the accuracy of the 

nterplay between viscosity and surface tension. Finally, the third 

est case is an atomizing jet, which demonstrates the ability of the 

ethod to resolve difficult physical situations. For each case, the 

emi-Langrangian projection method of Eq. (35) is utilized for best 

esults, with comparison to Eq. (29) in a high density ratio sce- 

ario. These three tests focus on how the modified pressure pro- 

ection method effects the solution and computational cost. 

.1. Oscillating droplet 

The oscillating droplet is a common benchmark test for vali- 

ating the accuracy and abilities of a multiphase solver [24–27] . 

ather than inducing flow from the boundary, this flow is driven 

y the surface tension force, which allows for an indirect test of 

he accuracy of the numerical method to calculate the surface ten- 

ion by comparison of the analytic oscillation period to that deter- 

ined from the simulation. As mentioned, the period of oscillation 

as defined by Lord Rayleigh [22] and described in 2-D by Fyfe 

t al. [28] , where 

= 2 π

√ 

( ρ1 + ρ2 ) R 3 

6 σ
(37) 

or period τ and unperturbed radius R = 

√ 

AB of an ellipse de- 

cribed by x 2 /A 2 + y 2 /B 2 = 1 , with semi-major and semi-minor

xes A and B, respectively. 

There are peculiarities to this case, some discussed by Salih and 

hosh Moulic [29] . First, the period of oscillation as defined by 

ord Rayleigh [22] assumed an inviscid system, thus viscosity is 

ot present in Eq. (37) and cannot affect the period of oscillation. 

s discussed by Salih and Ghosh Moulic [29] , it is found that vis- 

osity serves to dampen the amplitude of oscillations. Second, the 

eriod of oscillation of the simulation is found indirectly by com- 

uting the total kinetic energy of the system, 

E g = 

1 

2 

∫ 
ρu · u dV. (38) 
V 
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Fig. 2. Pseudo code describing the procedural order for an iterative approach to the fast pressure solver. While loops are performed until a small change is reached 

(i.e. res.lt.converge) or to a max number of iterations. 
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his works in part because the system begins as a static ellipse 

ith only the potential energy of surface tension imposed. Kinetic 

nergy then should grow and peak, but slowly diminish as the sur- 

ace tension force then counteracts the movement of the fluid, at 

ome point reaching the maximum ellipsoid shape about the 2 nd 

imension, when a minima of movement is taking place. 

We look at variations of the oscillating droplet case with an ini- 

ial ellipse of A = 0 . 25 cm and B = 0 . 15 cm centered in a [0 , 2] 2 

omain. Liquid properties are first set to ν1 = ν2 = 0 for viscosity 

in keeping with the original analytic result) while ρ1 = 1 . 0 g / cm 
3 

nd ρ2 = 0 . 01 g / cm 
3 are set for density. Surface tension coefficient 

s set at σ = 72 . 8 g / s 2 for all simulations. 

.1.1. Comparison to traditional pressure correction 

In the implementation of the DPCM, there are two parameters, 

 c and N P , that can be used to improve the predicted pressure ˆ P .

he effect of the number of midpoint iterations N c is first investi- 

ated to determine if simply increasing N m to improve the veloc- 

ty, pressure, and level set transport will be enough to converge 
ˆ  . With this approach to the numerical scheme, the magnitude of 

inetic energy was found to be largely affected by the number of 

idpoint iterations, while the period is shifted slightly. Fig. 3 (a) il- 

ustrates this effect for a range of N m and mesh sizes. This is due

o the continually improved estimate of ˆ P with each iteration. Also 

hown is the more rapid decay of kinetic energy with smaller N m . 

We must also determine if it is sufficient to run only two mid- 

oint iterations ( N m = 2 ) to achieve 2 nd -order accuracy in time,

ut loop over the pressure solver multiple times. Fig. 3 (b) illus- 
6 
rates the solution tendency to this approach over a range of N P 

ith N m = 2 . We find that while this approach also appears to be

onvergent, there is much slower improvement of kinetic energy 

agnitude. Again, as the estimate of ˆ P converges to P n +1 , the dif- 

erence in the velocity field between the two correction methods 

hrinks. 

.1.2. Determination of N m and N P 

We can see from Fig. 3 that finding a proper ˆ P is necessary, and 

hat it is likely better to iterate over both the midpoint scheme and 

he pressure solver. It is thus useful to find the most efficient com- 

ination of midpoint and pressure iterations in hopes of achieving 

n acceptable level of error while keeping computational expense 

elatively low. To determine the most efficient possible simulation 

ayout, 42 simulations were run on a 64 × 64 mesh with the oscil- 

ating droplet method, using the SPCM results as a baseline. Tests 

ere run over a range of values, N m = [2 , 7] and N P = [1 , 7] , with

he goal of minimizing both the error of DPCM results and total 

omputational time. Both models were allowed to run to a given 

ivergence level (i.e. ∇ · u < 1 × 10 −14 ) with a set time step. Error 

as then described as the difference in kinetic energy between the 

wo methods, 

 diff = KE g: SPCM − KE g: DPCM , (39) 

t each time step. An average error Ē diff was calculated for each 

imulation, as well as an associated standard error to calculate a 

5% confidence interval about the average. 



B. Turnquist and M. Owkes Computers and Fluids 221 (2021) 104930 

Fig. 3. Global kinetic energy of an oscillating droplet for a range of midpoint iterations ( N m ) and a range of pressure iterations ( N P ) on a 128 × 128 mesh. At left, the pressure 

is only calculated once per midpoint iteration, i.e. N P = 1 . At right, simulations were run with the minimum number of midpoint iterations, i.e. N m = 2 . 

Fig. 4. Relationship of simulation time on the error Ē diff between solutions of the DPCM and SPCM (left) and the impact of midpoint iterations on error Ē diff (right). 

Additionally, error bars in represent a 95% confidence interval about Ē diff. 

Table 1 

Simulation run times of several combinations for DPCM. 

Reported error is the average difference between DPCM 

and SPCM over three oscillations. 

N m N P Time (min) Error ( ̄E diff) 95% CI 

2 SPCM 3.769 – –

5 4 1.304 0.041 0.0025 

6 3 1.269 0.034 0.0021 

6 4 1.548 0.026 0.0017 

6 5 1.752 0.021 0.0014 

7 2 1.125 0.041 0.0024 
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The results of these 42 tests are illustrated in Fig. 4 , which de-

cribe the relationship between simulation time and error Ē diff to 

he SPCM. The error can be continually reduced, but with growing 

xpense. We can see convergence of the error trending to zero as 

ore iterations are added, shown in Fig. 4 (b). Also shown in the 

eduction in the confidence interval as N m increases. While there 

s no clear combination to choose, it appears several combinations 

long the bottom on the curve in Fig. 4 (a) offer a balance of rel-

tively small error and computational efficiency. These combina- 

ions are highlighted in Table 1 , and further show the trade-off be- 

ween computational effort and accuracy. 

Given that several observations appear reasonable, the combi- 

ation of N m = 6 and N P = 3 was chosen for its relatively low error

nd computational expense. The choice of N m = 6 and N = 4 re-
P 

7 
uces error by 24% but increased simulation time by 22%, i.e. there 

re diminishing returns. However, we note even the most expen- 

ive case tested with the DPCM, where N m = 7 and N P = 7 had a

un time of 2.664 min compared to 3.769 min for the SPCM, offer- 

ng an ≈ 30 % speedup. To test the chosen combination of N m = 6

nd N P = 3 for mesh convergence we compared the difference in 

he total simulation run time for 100 iterations (using four Intel 

ore i7 2.5 Ghz processors) between standard and decomposed 

ressure correction methods, as shown in Fig. 5 . As seen, we have 

 significant speedup with the DPCM, which grows with mesh re- 

nement. 

.1.3. Methods for calculating ˆ P 

An oscillating droplet with a high density ratio (e.g. an air and 

ater system) is more numerically difficult to resolve. In the DPCM 

ramework, it is even more important to have a reasonable esti- 

ate of ˆ P to reduce computational errors. This is because the con- 

tant density term ρ0 is then orders of magnitude different from 

he highest density fluid. This exacerbates the errors caused by the 

ifference between ˆ P and P n +1 , and thus the errors in the result- 

ng velocity field. Given this issue, we also consider the effect of 

 simple linear approximation ( Eq. (29) ), which creates unrealistic 

nd non-physical jumps near the interface. This causes huge varia- 

ions in the velocity field near the interface, and can cause simula- 

ion instabilities leading to failure. We compare this with the pro- 

osed semi-Lagrangian extrapolation which bounds ˆ P by the local 

axima and minima of the current pressure field while tracking 
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Fig. 5. Computational time of oscillating droplet simulations over a range of mesh sizes for a set number of iterations. 

Fig. 6. Effect of the estimation method used to calculate ˆ P on solutions of a high density ratio oscillating droplet for a 64 × 64 mesh. In each case N m = 2 . 

m

w

t

s

v

t  

L

N

S

s

4

c

l

w

f  

w

u

j

t

e

e

p

w  

N

f

p

i

n

l

4

e

t

a

v

o

d

ν

ν

t  

d

v

A

p

L

a

n

u

c

ovement of the interface. This provides a stable first estimate 

hich does avoids a double jump and maintains a more stable es- 

imate of ˆ P . 

Fig. 6 directly compares the two estimation schemes. As shown, 

imply utilizing the basic linear projection method ( Eq. (29) ) is a 

ery poor estimate without iterating the pressure solver multiple 

imes (i.e. the case of N P = 1 ). By comparison, the proposed semi-

agrangian method ( Eq. (35) ) has a more stable oscillation when 

 P = 1 . Additionally, the method converges more rapidly to the 

PCM when the estimate of ˆ P is improved by iterating the pres- 

ure solver. 

.1.4. Translating droplet 

To further consider the affect of the estimation scheme on ˆ P we 

onsider the case of an oscillating droplet placed in a moving ve- 

ocity field. We again utilize the fluid properties of air and water, 

ith an initial ellipse the same as in previous cases. The only dif- 

erence is that the initial velocity field is set to u = 10 cm/s every-

here, with a continuous inflow of u in = 10 throughout the sim- 

lation. The goal is to exacerbate the issue caused by the double 

ump present in the linear estimation of ˆ P . 

Fig. 7 displays the results of several simulations utilizing either 

he linear or semi-Lagragian estimate of ˆ P . We see that without it- 

ration, the linear estimate is unstable, while the semi-Langragian 

stimate remains stable. Iteration over either method quickly im- 

roves stability, converging to the results found with the SPCM, 

hich we can see in Fig. 7 (c) for simulations with N m = 6 and

 = 3 . Given a large number of iterations, either method is use- 
P 

8 
ul. However, the semi-Lagangian method is most applicable and 

erhaps necessary for implementations of the DPCM that are not 

terative, or in situations where fast results can be useful (i.e. run- 

ing the iterative scheme with only 1 pressure iteration) for pre- 

iminary findings. 

.1.5. Stochastic viscosity simulations 

Given a stochastic multiphase solver, it is possible to look at the 

ffect of viscosity in multiphase flow dynamics. Continuing with 

he example of the oscillating droplet, we now impose uncertainty 

bout the viscosity of both fluids in the system, holding all other 

ariables equal from the deterministic simulations shown previ- 

usly. To impose uncertainty about viscosity we utilize a uniform 

istribution for each phase, i.e., 

1 = 0 . 01 + 0 . 01 ζ and 

2 = 0 . 15 + 0 . 15 ζ . 
(40) 

This allows us to test a range of cases from an inviscid situation 

o one where viscosity is double that of air and water. Fig. 8 (a)

isplays the results of this test case. We can see the increase in 

iscosity causes added decay of the kinetic energy in the system. 

dditionally, we see the viscosity has a negligible impact on the 

eriod of oscillation, suggesting the inviscid assumption made by 

ord Rayleigh [22] is reasonable. While these three solutions were 

ll created by one stochastic simulation (in addition to an infinite 

umber of others), it is necessary to run three deterministic sim- 

lations to compare. Fig. 8 shows the results of the UQ simulation 

losely match that of the three deterministic simulations. 
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Fig. 7. Results of a translating oscillating droplet for two methods of estimating ˆ P . The left two plots depict simulations using the linear and semi-Lagrangian estimation 

methods, respectively, over a range of N P with N m = 2 . The plot at right compares the two methods with the settled upon combination of N m = 6 and N P = 3 . 

Fig. 8. Results of a stochastic oscillating droplet with variability about viscosity on a 64 × 64 mesh. At left are results from a single stochastic simulation, while at right are 

results from three deterministic simulations for comparison. 

Fig. 9. Computational time for a set number of iterations over a range of basis functions using two types of pressure correction methods in a stochastic simulation. 
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Since the stochastic simulations with the proposed DPCM 

ethod can reproduce the results from these three deterministic 

imulations, it is useful to compare the computational cost of the 

PCM method and the DPCM method. For this comparison, we are 

nterested in determining the effect of basis order N on the com- 

utational time, and the efficiency gained by implementing the 

PCM. Timing tests were run using 100 time iterations with a con- 

ergence level of 10 −12 for both the traditional and proposed pres- 

ure correction methods. All computations are performed on four 

.5 GHz Intel Core i7 processors with a 64 2 mesh. Fig. 9 illustrates 
[

9 
he time taken to run these iterations over a range of basis func- 

ions. Given the large difference in computational time, a semi-log 

lot is also presented. As shown, the cost of the SPCM grows much 

ore rapidly than that of the DPCM as basis order is increased. 

.2. Damped surface wave 

We now look at the interaction between viscosity and surface 

ension as outlined by Prosperetti [23] and utilized by Herrmann 

30] among others [25,31,32] . This case consists of two viscous flu- 
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Fig. 10. Amplitude of a damped surface wave with a density ratio of ρ1 /ρ2 = 1 for three different mesh sizes. Analytic solution described by Prosperetti [23] shown with 

the solid black line. 
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ds separated by a horizontal interface initialized with a slight per- 

urbation. This is described by the signed distance function g( x , t) 

sed to initialize the level set, where 

( x , t = 0) = y − y o + A o cos 

(
x − h g 

2 

)
, (41) 

ith y o = π, A o = 0 . 01 λ, wavelength λ = 2 π, and h g = λ/N x for

he number of mesh points in the x -direction N x . Simulations are 

erformed in a [0 , 2 π ] × [0 , 2 π ] domain. Numerical results of the

ave amplitude are compared to the expected theoretic amplitude 

uggested by Prosperetti [23] , in the case of two fluids with equal 

inematic viscosity, where 

 exp (t) = 

4 ( 1 −4 β) ν2 A o 
8 ( 1 −4 β) ν2 + ω 2 o erfc 

(√ 

νt 
)

+ 

4 ∑ 

i =1 

z i ω 
2 
o A o 

Z i 
(
z 2 
i 

− ν
) exp 

[(
z 2 i − ν

)
t 
]
erfc 

(
z i 

√ 

t 
) (42) 

nd z i are the roots of 

 
4 − 4 β

√ 

νz 3 + 2 ( 1 − 6 β) νz 2 + 4 ( 1 − 3 β) ν3 / 2 z 

+ ( 1 − 4 β) ν2 + ω 
2 
o = 0 . 

(43) 

he inviscid oscillation frequency is given by ω o = 

√ 

σ/ ( ρ1 + ρ2 ) , 

ith parameter β = ρ1 ρ2 / ( ρ1 + ρ2 ) 
2 
, and Z i = 

∏ 4 
j =1 , j � = i 

(
z j − z i 

)
. 

he amplitude of the numerical model is found by monitoring the 

eight of the wave which is located at the center of the domain. 

.2.1. Deterministic simulations 

Following the test cases of Herrmann [30] , two determinis- 

ic cases are explored for a surface tension of σ = 2 g 

s 2 
. In the

rst case we use densities of ρ1 = ρ2 = 1 g 

cm 
3 with a viscosity of 

= 0 . 064720863 cm 
2 

s . In the second case a density ratio of 10 0 0 is

sed, with ρ1 = 10 0 0 g 

cm 
3 and ρ2 = 1 g 

cm 
3 , and both fluids have a

iscosity of ν = 0 . 0064720863 cm 
2 

s . In all cases the DPCM method 

s used with N m = 6 and N P = 3 . 

Results of the case of density ratio one are shown in Fig. 10 ,

hich displays a convergence of results with mesh refinement. 

dditionally, the error of the simulation is shown, where E(t) = 

A (t) − A exp ) /A o . It is useful to point out that in this simulation,

here the two fluids have equal density, the use of the DPCM 

ntroduces very minor errors into the model as ρo = ρ1 = ρ2 . Be- 

ause of this we can quickly find ˆ P = P n +1 , through iterative con- 

ergence. In fact, it was found that during the simulation, conver- 

ence was reached after 2 pressure iterations. 
10 
Results for the high density ratio case, where ρ1 /ρ2 = 10 0 0 , 

re shown in Fig. 11 . In this simulation we see even better agree-

ent with analytic results than in the previous case. With mesh 

efinement, the solution rapidly converges to that of Eq. (42) . Look- 

ng also at the comparison to the SPCM, we see they are some- 

hat different as the SPCM has a maximum error of E(t) ≈ 0 . 0084 ,

hile for the DPCM E(t) ≈ 0 . 0128 for the 32 × 32 mesh. Of course,

his solution difference could be minimized further by increas- 

ng the number of iterations. But again, the trade-off is at a 

reater computational expense. It is perhaps more useful to re- 

ne the mesh for a better solution given the convergence offer- 

ngs (e.g. E(t) ≈ 0 . 0028 for the 128 × 128 mesh with DPCM vs. 

(t) ≈ 0 . 0019 with SPCM). 

.2.2. Stochastic surface wave 

The purpose of the damped surface wave case is to test the 

bility of the solver to accurately predict situations where vis- 

osity and surface tension forces interact. To test the ability of 

he stochastic solver to handle this interaction with uncertainty 

resent, we will now assume there is some uncertainty about the 

iscosity of the fluids. As the analytic solution assumes equal vis- 

osity fluids, we will maintain that assumption, but impose a uni- 

orm distribution. Again we will look at both a unity and high den- 

ity ratio test case to determine the ability of the solver. For the 

qual density case we define the kinematic viscosity with ν(ζ ) = 

 . 064720863 + 0 . 0323604315 ζ . In the high density ratio case we

se ν(ζ ) = 0 . 0064720863 + 0 . 00323604315 ζ . 
Fig. 12 displays the expected and numerical results of the 

tochastic equal density case. This simulation was run with order 

 = 5 given the low amount of movement about the interface. For 

eference, the case of A (t, ζ = 0) is the same case presented in 

he deterministic section, where viscosity ν(ζ = 0) = 0 . 064720863 . 

or this particular solution, we see very similar results to those 

ound by the deterministic model, and it appears much of the er- 

or results from a phase difference. Note, all amplitude values are 

ound during the course of a single simulation of the stochastic 

olver. 

Applying an uncertain viscosity to the case of the high density 

atio ( ρ1 /ρ2 = 10 0 0 ) we find similar behavior to that shown in the

eterministic model runs. Fig. 13 displays expected and numeri- 

al results for a UQ case with N m = 6 , N P = 3 , and N = 5 . As with

he deterministic solutions, the DPCM methodology appears to be 

ore closely aligned to analytic results than the unity density ra- 

io case. Additionally, it appears the case of the largest viscosity 

as the smallest deviation from analytic expectations. 
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Fig. 11. Amplitude of a damped surface wave with a density ratio of ρ1 /ρ2 = 10 0 0 for three different mesh sizes with both pressure correction methods. Iteration counts 

for DPCM solutions are N m = 6 and N P = 3 . Analytic solution described by Prosperetti [23] shown with the solid black line. 

Fig. 12. Amplitude of a damped surface wave with a density ratio of ρ1 /ρ2 = 1 for a 64 × 64 mesh with N m = 6 , N P = 3 , and N = 5 . Analytic solutions for 3 possible 

viscosities as described by Prosperetti [23] shown at left. 
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.3. Atomizing jet 

To highlight the ability of the proposed solver to solve complex 

nd potentially real-world situations, we present the results of 2-D 

eterministic and stochastic atomizing jets. We compare the veloc- 

ty field found with the DPCM to that of the standard method, the 

ocation and shape of the interface, as well as the difference be- 

ween the pressure fields found by each. 

For the deterministic jet, the fluid characteristics include kine- 

atic viscosities of ν1 = 0 . 01 cm 
2 

s and ν2 = 0 . 15 cm 
2 

s , densities of

1 = 1 . 0 g 

cm 
3 and ρ2 = 0 . 001 g 

cm 
3 , a surface tension coefficient of

= 72 . 8 g 

s 2 
, and an incoming velocity of 10 0 0 cm 

s occurring in a

H

11 
 cm 
2 domain. Given the incoming diameter of the inlet tube is 

 H = 0 . 1 cm, the incoming Reynold’s number is Re D = 1 × 10 4 . 

.3.1. Comparison to traditional pressure correction 

We first compare the interface locations of the two methods 

hrough time for a 2-D atomizing jet. As previously mentioned, a 

easonable method for improving the estimate of the pressure field 
ˆ  is to iterate over the pressure Poisson equation. For this scenario, 

e have set CFL = 0 . 75 to maintain stability. As shown in Fig. 14 ,

he location of the interface can be significantly different when ˆ P � = 

 
n +1 . As this quantity is improved by increasing N P , the interface 

ocation converges to the traditional pressure correction method. 

owever, we also see the diminishing gains by only increasing N . 
P 
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Fig. 13. Amplitude of a damped surface wave with a density ratio of ρ1 /ρ2 = 10 0 0 for a 64 × 64 mesh with N m = 6 , N P = 3 , and N = 5 . Analytic solutions for 3 possible 

viscosities as described by Prosperetti [23] shown at left. 

Fig. 14. Interface location as a function of the number of pressure iterations for 2 different mesh sizes of a 2-D jet at time t = 0 . 0015 s . Black and red lines indicate the 

interface location for the traditional and density decoupled correction methods, respectively. All simulations are run with N m = 2 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Next, utilizing the combination N m = 6 and N P = 3 suggested 

reviously, we look at a direct comparison of the difference be- 

ween the velocity fields of the two pressure solution methods, 

here u diff = u SPCM 
− u DPCM 

in a deterministic simulation. Fig. 15 

isplays the difference in the velocity fields between SPCM and 

PCM. Peak values occur in the coarsest mesh at a few cell loca- 

ions, with a difference of ≈ 1% . This error diminishes as the mesh 

s refined, as shown in the figure. 

.3.2. Stochastic jet 

Since the goal of utilizing the DPCM is to improve the effi- 

iency of stochastic models, we now look at a case involving uncer- 

ainty. To showcase the ability of the method to resolve a system 
12 
ith a great deal of uncertainty, we present a case with uncer- 

ainty about the velocity of an incoming jet. For simplicity, we uti- 

ize again a uniform distribution, where u in = (10 0 0 + 100 ζ ) cm / s ,

r a variation of ±10% . All other fluid parameters remain the 

ame. 

Fig. 16 depicts the range of solutions given this degree of uncer- 

ainty about the incoming fluid. We also see the results of two de- 

erministic solutions for comparison. As shown, the effect of only 

 10% variation in fluid velocity results in a rather dramatic dif- 

erence in the possible solutions. Also shown is the probability of 

eing in the liquid phase. With this map we can see regions where 

he fluid phase is known, and others where the interface is uncer- 

ain. 
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Fig. 15. Velocity field difference, u diff, between traditional and proposed pressure solver for 3 different mesh sizes of a 2-D atomizing jet at time t = 0 . 0 0 05 s . 

Fig. 16. At top is the solution of a stochastic atomizing jet with uncertainty about incoming velocity on a 64 2 grid over time. Bounding solutions are shown for fastest (black 

line) and slowest (red dashed) incoming velocities. Color map indicates the probability of being in the liquid phase. At bottom are results of two deterministic simulations 

for comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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. Conclusions 

We have presented a modified pressure correction method, ex- 

ending the density decoupled approach of Dodd and Ferrante 

17] to an intrusive stochastic multiphase solver. Deviations from 

he standard pressure correction method arise due to differences 

etween the estimated pressure ˆ P and the actual pressure P n +1 . 

e propose a method to reduce these deviations by imposing a 

emi-Lagrangian extrapolation method for a better initial estimate 

f ˆ P , then further improve ˆ P by iterating over the pressure solver. 

esults from an oscillating droplet, surface wave, and atomizing 

et show convergence of the decomposed pressure correction ap- 

roach to that of the standard pressure correction method. 

Given convergence of the DPCM to SPCM, we discussed an 

fficient combination of pressure and midpoint iterations which 
13 
ignificantly reduced computational cost over the SPCM with lit- 

le added error. Due to the iterative approach to convergence, 

ome deviation threshold must be decided to limit the num- 

er of iterations taken. We then balance accuracy and computa- 

ional cost, which is typical of numerical solutions in any sys- 

em of differential equations. Other possibilities are also reported 

hich significantly speed up simulation times while shrinking 

eviations from the traditional pressure correction as mesh is 

efined. 

The decomposed pressure correction methodology for applica- 

ion to stochastic gas-liquid multiphase systems reduces computa- 

ional cost dramatically. Decoupling the pressure Poisson equations 

llows for the use of more sophisticated linear solvers. As a result, 

e see growing computational cost improvement as the basis or- 

er, mesh, and uncertainty increase. 
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Table A2 

Simulation run times and associated metrics for finding the best combination

simulation and the SPCM. A 95% confidence interval is calculated about the erro

N m N P Simulation time (min) Total pressure iterations 
2 1 0.279 40,610 

3 1 0.399 60,932 

4 1 0.481 81,219 

5 1 0.590 101,489 

6 1 0.685 121,777 

7 1 0.813 142,039 

2 2 0.389 81,287 

3 2 0.506 121,865 

4 2 0.663 162,400 

5 2 0.806 202,945 

6 2 0.958 243,450 

7 2 1.125 283,963 

2 3 0.471 121,894 

3 3 0.643 182,767 

4 3 0.865 243,456 

5 3 1.053 304,247 

6 3 1.269 364,985 

7 3 1.453 425,795 

2 4 0.524 162,594 

3 4 0.783 243,558 

4 4 1.041 324,518 

5 4 1.304 405,577 

6 4 1.548 486,559 

7 4 1.753 567,620 

2 5 0.653 203,240 

3 5 0.987 304,346 

4 5 1.244 405,613 

5 5 1.481 506,926 

6 5 1.752 608,150 

7 5 2.103 709,467 

2 6 0.701 243,772 

3 6 1.069 365,160 

4 6 1.415 486,678 

5 6 1.719 608,191 

6 6 2.056 729,727 

7 6 2.355 851,252 

2 7 0.874 284,329 

3 7 1.257 425,972 

4 7 1.622 567,710 

5 7 1.964 709,466 

6 7 2.370 851,239 

7 7 2.664 993,080 

14 
ational efforts were performed on the Hyalite High-Performance 

omputing System, operated and supported by University Infor- 

ation Technology Research Cyberinfrastructure at Montana State 

niversity. 

ppendix A. Computational cost 

The computational cost was assessed with the oscillating 

roplet test on a 64 2 mesh over a range of midpoint and pressure 

terations. A single run of the SPCM was used to test against for 

verage kinetic energy error, Ē diff. All tests were run out to 3 os- 

illations for tracking of numerical dissipation. Total pressure steps 

aken throughout the simulation were also tracked, as well as the 

verage number of pressure iterations per time step taken to solve 

he pressure Poisson equation. The results of the efficiency study 

re outlined in Table A.2 below. 

 and N P . The error is the average kinetic energy difference between a DPCM 

 ̄E diff ± CI ). Highlighted rows indicate best possibilities. 

Average iterations/step Error ( ̄E diff) 95% Confidence interval 
54 0.176 0.0110 

81 0.134 0.0082 

108 0.100 0.0062 

135 0.084 0.0051 

162 0.067 0.0041 

189 0.062 0.0037 

108 0.159 0.0095 

162 0.116 0.0068 

217 0.080 0.0049 

271 0.064 0.0037 

325 0.046 0.0028 

379 0.041 0.0024 

163 0.152 0.0096 

244 0.104 0.0063 

325 0.065 0.0041 

406 0.050 0.0030 

487 0.034 0.0021 

568 0.031 0.0018 

217 0.146 0.0095 

325 0.093 0.0057 

433 0.054 0.0035 

541 0.041 0.0025 

649 0.026 0.0017 

757 0.024 0.0014 

271 0.140 0.0092 

406 0.083 0.0052 

541 0.047 0.0031 

676 0.035 0.0021 

811 0.021 0.0014 

946 0.020 0.0012 

325 0.133 0.0089 

487 0.074 0.0047 

649 0.040 0.0027 

811 0.030 0.0018 

973 0.017 0.0012 

1135 0.016 0.0010 

379 0.126 0.0086 

568 0.067 0.0042 

757 0.035 0.0024 

946 0.026 0.0016 

1135 0.015 0.0011 

1324 0.014 0.0009 

https://doi.org/10.13039/100000001


B. Turnquist and M. Owkes Computers and Fluids 221 (2021) 104930 

R

 

[

[  

[

[  

[

[

[

[

[

[

[

[

[

[

eferences 

[1] Metropolis N , Ulam S . The Monte Carlo method. J Am Stat Assoc

1949;44(247):335–41 . 

[2] Malik M, Zang T, Hussaini M. A spectral collocation method for the Navier–
Stokes equations. J Comput Phys 1985;61(1):64–88. doi: 10.1016/0021-9991(85) 

90061-0 . 
[3] Hosder S, Walters R, Perez R. A non-intrusive polynomial chaos method for un- 

certainty propagation in CFD simulations. 44th AIAA Aerospace sciences meet- 
ing and exhibit. aerospace sciences meetings. American Institute of Aeronau- 

tics and Astronautics; 2006. doi: 102514/62006-891 . 

[4] Wiener N. The homogeneous chaos. Am J Math 1938;60(4):897–936. doi: 10. 
2307/2371268 . 

[5] Karhunen K . Über lineare methoden in der wahrscheinlichkeitsrechnung, 37. 
Sana; 1947 . 

[6] Loeve M.. Probability theory: foundations, random sequences1955. 
[7] Le Maétre O, Knio OM, Najm HN, Ghanem RG. A stochastic projection method 

for fluid flow. J Comput Phys 2001;173(2):481–511. doi: 10.1006/jcph.2001. 
6889 . 

[8] Le Maétre O, Reagan MT, Najm HN, Ghanem RG, Knio OM. A stochas- 

tic projection method for fluid flow: II. Random process.. J Comput Phys 
2002;181(1):9 . http://search.ebscohost.com.proxybz.lib.montana.edu/login. 

aspx?direct=true&db=a9h&AN=8513921&login.asp&site=ehost-live 
[9] Xiu D, Karniadakis GE. Modeling uncertainty in flow simulations via gen- 

eralized polynomial chaos. J Comput Phys 2003;187(1):137–67. doi: 10.1016/j. 
advwatres.2013.10.003 . 

[10] Sochala P, Le Maître O. Polynomial chaos expansion for subsurface flows with 

uncertain soil parameters. Adv Water Resour 2013;62:139–54. doi: 10.1016/j. 
advwatres.2013.10.003 . 

[11] El-Beltagy MA, Wafa MI. Stochastic 2D incompressible Navier–Stokes solver 
using the vorticity-stream function formulation.. J Appl Math 2013:1–

14 . http://search.ebscohost.com.proxybz.lib.montana.edu/login.aspx?direct= 
true&db=a9h&AN=95251122&site=ehost-live 

12] Turnquist B, Owkes M. multiUQ: an intrusive uncertainty quantification tool 

for gas-liquid multiphase flows. J Comput Phys 2019;399:108951. doi: 10.1016/ 
j.jcp.2019.108951 . 

[13] Chorin AJ . Numerical solution of the Navier–Stokes equations. Math Comput 
1968;22(104):745–62 . 

[14] Van Kan J . A second-order accurate pressure-correction scheme for viscous in- 
compressible flow. SIAM J Sci Stat Comput 1986;7(3):870–91 . 

[15] Thomadakis M, Leschziner M. A Pressure-correction method for the solution 

of incompressible viscous flows on unstructured grids. Int J Numer Methods 
Fluids 1996;22(7):581–601. doi: 10.1002/(SICI)1097-0363(19960415)22:7 < 581:: 

AID- FLD365 > 3.0.CO;2- R . 
[16] Dong S, Shen J. A time-stepping scheme involving constant coefficient matri- 

ces for phase-field simulations of two-phase incompressible flows with large 
density ratios. J Comput Phys 2012;231(17):5788–804. doi: 10.1016/j.jcp.2012. 

04.041 . 
15 
[17] Dodd MS, Ferrante A. A fast pressure-correction method for incompressible 
two-fluid flows. J Comput Phys 2014;273:416–34. doi: 10.1016/j.jcp.2014.05.024 . 

[18] Brackbill J, Kothe D, Zemach C. A continuum method for modeling surface ten- 
sion. J Comput Phys 1992;100(2):335–54. doi: 10.1016/0021- 9991(92)90240- Y . 

[19] Tryggvason G , Scardovelli R , Zaleski S . Direct numerical simulations of gas–liq- 
uid multiphase flows. Cambridge University Press; 2011 . 

20] Chow E , Cleary A , Falgout R . Design of the Hypre Preconditioner Library. Tech.
Rep.. Lawrence Livermore National Lab, CA (US); 1998 . 

21] Cifani P. Analysis of a constant-coefficient pressure equation method for 

fast computations of two-phase flows at high density ratios. J Comput Phys 
2019;398:108904. doi: 10.1016/j.jcp.2019.108904 . 

22] Lord Rayleigh FRS. VI. On the capillary phenomena of jets. Proc R Soc Lond
1879;29(196–199):71–97. doi: 10.1098/rspl.1879.0015 . 

23] Prosperetti A. Motion of two superposed viscous fluids. Phys Fluids 
1981;24(7):1217–23. doi: 10.1063/1.863522 . 

24] Desjardins O, Moureau V, Pitsch H. An accurate conservative level 

set/ghost fluid method for simulating turbulent atomization. J Comput 
Phys 2008;227(18):8395–416. doi: 10.1016/j.jcp.2008.05.027 . 

25] Owkes M, Desjardins O. A discontinuous Galerkin conservative level set 
scheme for interface capturing in multiphase flows. J Comput Phys 

2013;249:275–302. doi: 10.1016/j.jcp.2013.04.036 . 
26] Garrick DP, Owkes M, Regele JD. A finite-volume HLLC-based scheme for com- 

pressible interfacial flows with surface tension. J Comput Phys 2017;339:46–

67. doi: 10.1016/j.jcp.2017.03.007 . 
27] Bellotti T, Theillard M. A coupled level-set and reference map method for inter- 

face representation with applications to two-phase flows simulation. J Comput 
Phys 2019;392:266–90. doi: 10.1016/j.jcp.2019.05.003 . 

28] Fyfe D, Oran E, Fritts M. Surface tension and viscosity with lagrangian hydrody- 
namics on a triangular mesh. J Comput Phys 1988;76(2):349–84. doi: 10.1016/ 

0021-9991(88)90147-7 . 

29] Salih A., Ghosh Moulic S.. Oscillation of a Liquid Drop in a Zero-Gravity Envi- 
ronment - A Benchmark Problem for Two-Phase Flow Computations. Roorkee, 

India; 2002,. 
30] Herrmann M. A balanced force refined level set grid method for two-phase 

flows on unstructured flow solver grids. J Comput Phys 2008;227(4):2674–706. 
doi: 10.1016/j.jcp.20 07.11.0 02 . 

31] Popinet S, Zaleski S. A front-tracking algorithm for accurate representation of 

surface tension. Int J Numer Methods Fluids 1999;30(6):775–93. doi: 10.1002/ 
(SICI)1097- 0363(19990730)30:6 〈 775::AID- FLD864 〉 3.0.CO;2- # . 

32] McCaslin JO, Desjardins O. A localized re-initialization equation for the con- 
servative level set method. J Comput Phys 2014;262:408–26. doi: 10.1016/j.jcp. 

2014.01.017 . 

http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0001
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0001
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0001
https://doi.org/10.1016/0021-9991(85)90061-0
https://doi.org/102514/62006-891
https://doi.org/10.2307/2371268
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0005
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0005
https://doi.org/10.1006/jcph.2001.6889
http://search.ebscohost.com.proxybz.lib.montana.edu/login.aspx?direct=true%26db=a9h%26AN=8513921%26login.asp%26site=ehost-live
https://doi.org/10.1016/j.advwatres.2013.10.003
https://doi.org/10.1016/j.advwatres.2013.10.003
http://search.ebscohost.com.proxybz.lib.montana.edu/login.aspx?direct=true%26db=a9h%26AN=95251122%26site=ehost-live
https://doi.org/10.1016/j.jcp.2019.108951
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0013
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0014
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0014
https://doi.org/10.1002/(SICI)1097-0363(19960415)22:7<581::AID-FLD365>3.0.CO;2-R
https://doi.org/10.1016/j.jcp.2012.04.041
https://doi.org/10.1016/j.jcp.2014.05.024
https://doi.org/10.1016/0021-9991(92)90240-Y
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0019
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0020
http://refhub.elsevier.com/S0045-7930(21)00096-7/sbref0020
https://doi.org/10.1016/j.jcp.2019.108904
https://doi.org/10.1098/rspl.1879.0015
https://doi.org/10.1063/1.863522
https://doi.org/10.1016/j.jcp.2008.05.027
https://doi.org/10.1016/j.jcp.2013.04.036
https://doi.org/10.1016/j.jcp.2017.03.007
https://doi.org/10.1016/j.jcp.2019.05.003
https://doi.org/10.1016/0021-9991(88)90147-7
https://doi.org/10.1016/j.jcp.2007.11.002
https://doi.org/10.1002/(SICI)1097-0363(19990730)30:6$<$775::AID-FLD864>3.0.CO;2-#
https://doi.org/10.1016/j.jcp.2014.01.017

	A fast, decomposed pressure correction method for an intrusive stochastic multiphase flow solver
	1 Introduction
	2 Mathematical development
	3 Numerical methodology
	3.1 Stochastic standard pressure correction
	3.2 Stochastic decomposed pressure correction
	3.2.1 Estimation of 

	3.3 Iterative midpoint method

	4 Test cases and computational assessment
	4.1 Oscillating droplet
	4.1.1 Comparison to traditional pressure correction
	4.1.2 Determination of  and 
	4.1.3 Methods for calculating 
	4.1.4 Translating droplet
	4.1.5 Stochastic viscosity simulations

	4.2 Damped surface wave
	4.2.1 Deterministic simulations
	4.2.2 Stochastic surface wave

	4.3 Atomizing jet
	4.3.1 Comparison to traditional pressure correction
	4.3.2 Stochastic jet


	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Computational cost
	References


