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Linear response of a periodically driven thermal dipolar gas
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We study the nonequilibrium dynamics of an ultracold, nondegenerate dipolar gas of 164Dy atoms in a
cylindrically symmetric harmonic trap. To do so, we investigate the normal modes and linear response of
the gas when driven by means of periodic modulations to the trap axial frequency. We find that the resonant
response of the gas depends strongly on the dipole alignment axis, owing to anisotropies in the differential cross
section of the atoms. We employ the use of the method of averages as well as numerical Monte Carlo methods
for our analysis. A striking result is that certain normal modes, termed “melting modes,” initiated in an
anisotropic out-of-equilibrium configuration, relax to equilibrium without oscillating.
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I. INTRODUCTION

The science of ultracold matter was greatly enriched with
the ability to cool and trap highly magnetic species such as
chromium [1–3], dysprosium [4–7], and erbium [8,9]. The
distinct anisotropy of the dipole-dipole interaction among
atoms like these has led to a host of novel phenomena in de-
generate Bose and Fermi gases. These include such things as
magnetostriction [10], quantum Rosenzweig instability [11],
self-bound dipolar droplets [12,13], anisotropic Fermi sur-
faces [14], quantum Newton’s cradles [15], and most recently
even a supersolid phase [16,17].

Comparatively little attention has been paid to thermal
dipolar gases at ultralow temperatures, that is, at tempera-
tures above Tc for bosons or well above TF for fermions,
where the dynamics of the gas obeys Maxwell-Boltzmann
statistics. Here the dipolar nature of the atoms can also be
quite significant. At a sufficiently low temperature T , and in
a modest magnetic field, the Zeeman splitting can exceed the
mean kinetic energy kBT , assuring that the atoms can remain
spin polarized in their ground states. Dynamics of the gas is
then dominated by the highly anisotropic cross section of the
colliding dipoles [18,19].

This anisotropy is made manifest when the gas is taken
out of equilibrium. For example, when the gas is suddenly
compressed in a certain direction, collisional relaxation will
cause its mean kinetic energy in the transverse direction to
rise, a process known as cross-dimensional rethermalization.
The rate of this rethermalization is a strong function of the
direction the dipoles are tilted with respect to the excitation
axis [19,20]. This effect was first demonstrated in fermionic
167Er and readily explained using the microscopic differential
cross section of the dipoles [21]. It was subsequently extended
to bosonic 162Dy and 164Dy, and used to make the first iden-
tification of the s-wave scattering length of dysprosium [22].
Dipolar collisions also influence the aspect ratio of the gas as
it expands freely [23].

More broadly, ultracold but thermal dipolar gases may
possess rich anisotropic dynamics when taken out of equilib-
rium. In this paper we take steps to characterize such a gas,
focusing on the regime of weak periodic drives and linear
responses to emphasize the unique character inherent in dipo-
lar scattering. In this regime, we derive a method-of-averages
model that incorporates the basic physics at play and allows
the determination of normal modes and their damping. We
validate this model by comparing its results to those of a
Monte Carlo simulation. The results show a strong anisotropy
in the response of the gas as the polarization axis is tilted
with respect to the direction along which the drive is applied.
We further characterize the gas’s response in terms of its
normal modes, much as was done previously for a gas of
hard spheres in Ref. [24]. This will lay the groundwork for
future investigations where the direction of dipolar polariza-
tion becomes a handle with which to study, manipulate, and
perhaps even exploit the anisotropic thermodynamics of the
gas.

This paper is organized as follows. In Sec. II, we provide
an overview of the physical system and discuss its relevant
details. In Sec. III, we briefly introduce the classical Boltz-
mann equation and tools employed to solve it. These tools
include the method of averages, which allows a derivation of
the Enskog equations (Secs. III A and III B), and numerical
Monte Carlo methods (Sec. III C). We examine the validity of
the Enskog equations in Sec. IV, then use it to investigate the
normal modes of the gas and its linear response in Sec. V.
Remarks on the exclusion of dipolar mean-field effects are
provided in Sec. VI, and conclusions are drawn in Sec. VII
with possible avenues for future works.

II. FORMULATION

We consider a gas of N magnetic atoms (dysprosium 164 in
the examples below), harmonically trapped in a cylindrically

2469-9926/2020/102(3)/033336(13) 033336-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4657-0880
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.033336&domain=pdf&date_stamp=2020-10-30
https://doi.org/10.1103/PhysRevA.102.033336


WANG, SYKES, AND BOHN PHYSICAL REVIEW A 102, 033336 (2020)

FIG. 1. The initial state of the gas at thermal equilibrium in a
cylindrically symmetric harmonic trap, elongated along the z axis.
The dipole alignment axis ε̂ lies in the x-z plane, for which the dipole
alignment angle α is the angle of inclination from the z axis.

symmetric confining potential:

U (q) = 1
2m

[
ω2
z z

2 + ω2
⊥(x

2 + y2)
]
. (1)

For concreteness, we will take the gas to be weakly trapped
along the axial direction z, while tightly trapped along the ra-
dial directions x and y (i.e., ωz < ω⊥). This identifies a unique
direction in space, ẑ, with respect to which the direction of the
dipoles’ polarization is defined. The geometry of the model is
shown in Fig. 1, where the dipoles are assumed to be polarized
in a direction ε̂ with respect to the z axis and make an angle α

with respect to it. The gas is assumed to be initially in thermal
equilibrium at a temperature T0 which is above the critical
temperature for Bose-Einstein condensation if the atoms are
bosons, and well above the Fermi temperature if they are
fermions. The gas therefore obeys Maxwell-Boltzmann statis-
tics.

We are interested in the linear response of the gas to a
weak, periodic drive. This is generated by a periodic modu-
lation of the trap frequency along the symmetry axis:

ω2
z (t ) = ω2

z,0[1 + δ sin(�t )], (2)

where the drive amplitude δ is a dimensionless amplitude that
is small compared to unity.

In response to the drive, the gas will warm up. Gener-
ally, the rate at which the heating occurs is governed by the

differential cross section dσ/d� of the atoms. This cross
section in turn depends on three parameters of the atoms:
(1) their s-wave scattering length, a (for bosons, as we will
assume here); (2) their magnetic dipole moment μ, expressed
as a magnetic dipole length ad = mμ0μ

2/(8π h̄2) where μ0 =
1.257 × 10−6 H/m is the vacuum permeability; and (3) the
angle α between the direction of the dipoles’ polarization axis
and the symmetry axis of the trap. The response of the gas as
a function of these three parameters, as well as the frequency
� of the drive, is our subject.

III. THEORETICAL METHODS

The dynamics of a gas of particles of mass m is given
by the evolution of its phase-space distribution f (q, p, t ) of
coordinates q and momenta p, as governed by the classical
Boltzmann equation:[ ∂

∂t
+ 1

m
p · ∇q + F · ∇p

]
f = I[ f ]. (3)

Here F = −∇U (q) − ∇UMF(q) is the force applied to the
atoms, which may originate both from the applied trapping
potential U and from the mean-field interaction UMF due to
the other atoms. We will argue below, however, that UMF is
irrelevant to our simulations.

Energy and momentum are redistributed in the gas via two-
body collisions, incorporated in the collision integral:

I[ f ] =
∫

d�p′
dσ

d�p′

∫
d3p1
m

‖p− p1‖( f ′ f ′
1 − f f1). (4)

As is conventional, this expression uses the shorthand nota-
tions f = f (q, p, t ) and f1 ≡ f (q1, p1, t ) for distributions of
the collision partners, while primes indicate their postcollision
distributions.

For dipolar bosons at ultracold temperatures, the differen-
tial cross section was derived in Ref. [19]. As mentioned, the
dipoles are assumed polarized so that their dipole moments lie
along an axis ε̂ fixed in the laboratory. We will take this axis
to lie in the x-z plane, so that its coordinates in the laboratory
frame are ε̂ = (ε sin α, 0, ε cosα). The differential cross sec-
tion is given by dσ/d�( p̂, p̂′) = | fscat ( p̂, p̂′)|2 in terms of the
scattering amplitude:

fscat ( p̂, p̂′) = ad√
2

[
−2

( a

ad

)
− 2( p̂ · ε̂)2 + 2( p̂′ · ε̂)2 − 4( p̂ · ε̂)( p̂′ · ε̂)( p̂ · p̂′)

1 − ( p̂ · p̂′)2
+ 4

3

]
(5)

where p̂ is the unit vector denoting the precollision relative
momentum between scatterers and p̂′ is the unit vector for the
postcollision relative momentum.

The gas is assumed to be prepared in thermal equi-
librium at time t = 0, for which the phase-space den-
sity distribution function adopts the Maxwell-Boltzmann
distribution:

feq(q, p) = N

Z
exp

[
− p2/2m +U (q)

kBT0

]
, (6)

where N is the system number of particles, T0 is the initial
temperature, and Z = ∫

d3qd3p exp [− p2/2m+U (q)
kBT

]. Starting at
time t = 0, the trap is driven according to Eq. (2).

As the driven gas evolves in time, it will begin to heat,
conceivably at different rates in the different directions. To
track this heating, we define a trio of pseudotemperatures by
evaluating the mean kinetic and potential energies, in three
coordinates:

T j = mω2
j

〈
q j

2
〉

2kB
+

〈
p j

2
〉

2mkB
, (7)
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where the brackets denote an ensemble average. The evolu-
tion of these pseudotemperatures with time is one of the key
observables in our results.

In the following we will develop two alternative ways of
computing the time evolution of the gas. One is the method
of averages, which simplifies the theory by tracking appro-
priate mean values over time, rather than the full phase-space
distribution. The second is a numerically robust Monte Carlo
method. Agreement between the two methods both validates
the approaches and identifies the limits of the linear-response
regime.

A. The method of averages

The gas is assumed to start at thermal equilibrium, whereby
its phase-space distribution f (q, p, t ) is a Gaussian function of
the phase-space coordinates as in Eq. (6). For a weak enough
driving amplitude, it is plausible that f remains approximately
Gaussian [25], whereby the collision integrals may be done
analytically to linear order. We therefore present analytic lin-
earized solutions to these two-body collision integrals similar
to those done in Refs. [24,26], but for anisotropic differential
cross sections. To enact this linearized ansatz, f is assumed to
be a Gaussian function at all times, characterized by the time
dependence of the spatial and momentum variances 〈q2j 〉 and
〈p2j〉 [27].

The linearized approximation thus admits the equations
of motion for the mean values of dynamical variables
χ (q, p). Such an approach is known as the method of av-
erages [28] and is performed by defining the phase-space
averages:

〈χ〉 ≡ 1

N

∫∫
d3pd3q f (q, p, t )χ (q, p, t ), (8)

where

N =
∫∫

d3pd3q f (q, p, t ). (9)

The equations of motion governing 〈χ〉 can then be derived
by multiplying the Boltzmann equation by χ and integrating
over all of phase space:

1

N

∫
d3pd3q χD f = 1

N

∫
d3pd3q χI[ f ], (10)

with D being the substantial derivative. To derive a self-
consistent set of equations of motion, we require χ to come

from the set of nine variables {q2j , p2j, q j p j}. The method
therefore results in the following system of nine coupled equa-
tions with j = x, y, z:

d
〈
q2j

〉
dt

− 2

m
〈qj p j〉 = 0, (11a)

d
〈
p2j

〉
dt

+ 2mω2
j 〈qj p j〉 = C

[
�p2j

]
, (11b)

d〈qj p j〉
dt

− 1

m

〈
p2j

〉 + mω2
j

〈
q2j

〉 = 0. (11c)

In these equations, collisions are incorporated through the
integral

C[�χ ] = 1

N

∫
d3qd3p

∫
d�p′

dσ

d�p′

×
∫

d3p1
m

‖p− p1‖[ f ′ f ′
1 − f f1]�χ, (12)

where �χ ≡ χ ′ + χ ′
1 − χ − χ1 denotes the amount by which

χ changes during a collision event. These nonlinear, cou-
pled equations are known as the Enskog equations of
change.

Notice that, in the absence of collisions (C = 0), these
equations decouple along the three axes qj . In this case, the
normal modes of the Enskog equations along each axis j come
in two varieties: a breathing mode of angular frequency 2ω j ,
in which 〈q2j 〉 and 〈p2j〉 are out of phase; and a stationary
mode of frequency ω j = 0, corresponding to the equilibrium
configuration. These modes are naturally modified by the
presence of collisions, notably by shifting and broadening
their resonant response functions. This shift and broadening
will, of course, depend on the dipolar properties of the cross
section.

B. Collision integrals

The Enskog equations are only complete when all C[�χ ]
collision terms are evaluated. For the observables χ = x2, y2,
and z2, C[�χ ] vanishes, since the collision occurs at a given
location, q = q′, hence �χ = 0. Additionally, the observ-
ables χ = xpx, ypy, and zpz also vanish, as can be seen by
evaluating the collision integral in the center-of-mass frame.
The only observables that contribute nontrivial collision inte-
grals are then χ = p2x, p

2
y, and p2z . The corresponding collision

integrals in the Enskog formalism are given by

C
[
�p2x

] ≈
( 8N

15π

)(
a2effmω3

kBT0

)[〈
p2y

〉 + 〈
p2z

〉 − 2
〈
p2x

〉] + ad
( 64N

105π

)(amω3

kBT0

)[(〈
p2x

〉 − 〈
p2y

〉)
cos(2α) − 5

〈
p2x

〉 + 2
〈
p2y

〉 + 3
〈
p2z

〉]
+ a2d

( 4N

315π

)(
mω3

kBT0

)[(〈
p2z

〉 − 〈
p2x

〉)
cos(4α) − 4

(〈
p2x

〉 − 〈
p2y

〉)
cos(2α) + 61

〈
p2x

〉 − 28
〈
p2y

〉 − 33
〈
p2z

〉]
, (13a)

C
[
�p2y

] ≈
( 8N

15π

)(
a2effmω3

kBT0

)[〈
p2x

〉 + 〈
p2z

〉 − 2
〈
p2y

〉] − ad
( 64N

105π

)(
amω3

kBT0

)[(〈
p2x

〉 − 〈
p2z

〉)
cos(2α) − 2

〈
p2x

〉 + 4
〈
p2y

〉 − 2
〈
p2z

〉]
+ a2d

( 16N

315π

)(
mω3

kBT0

)[(〈
p2x

〉 − 〈
p2z

〉)
cos(2α) − 7

〈
p2x

〉 + 14
〈
p2y

〉 − 7
〈
p2z

〉]
, (13b)
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C
[
�p2z

] ≈
( 8N

15π

)(
a2effmω3

kBT0

)[〈
p2x

〉 + 〈
p2y

〉 − 2
〈
p2z

〉] + ad
( 64N

105π

)(
amω3

kBT0

)[(〈
p2y

〉 − 〈
p2z

〉)
cos(2α) + 3

〈
p2x

〉 + 2
〈
p2y

〉 − 5
〈
p2z

〉]
+ a2d

( 4N

315π

)(
mω3

kBT0

)[(〈
p2x〉 − 〈

p2z〉
)
cos(4α) − 4

(〈
p2y〉 − 〈

p2z〉
)
cos(2α) − 33〈p2x〉 − 28〈p2y〉 + 61

〈
p2z〉

]
, (13c)

to linear order in 〈p2j〉.
This result is given in terms of an effective length scale

that combines the scattering length and the dipole length, via
a2eff ≡ 2(a2 − 4aad/3 + 4a2d/9), and in terms of the geometric
mean of trap frequencies, ω3 = ω2

⊥ωz,0. Details of this deriva-
tion can be found in Appendix A.

The collision integrals in Eqs. (13) are decomposed into
terms of increasing orders in ad , emphasizing the anisotropic
collisional effects. Note that these results match those of the
isotropic scatterers in Ref. [24] when we set ad = 0 and return
to isotropic scattering.

C. Numerical simulations

The Enskog equations have the advantage of being simple
to implement and, in principle, to provide analytical insight.
However, they are restricted to the limit of weak drive and
assume that the phase-space distribution remains nearly Gaus-
sian. It is therefore useful to establish a more robust numerical
method that is not limited to the perturbative regime.

Numerical time evolution of the gas is performed by
first approximating the phase-space distribution function with
a discrete ensemble of particles with phase-space loca-
tions (qk, pk ), randomly sampled from the initial distribution
f (q, p, 0). This gives the distribution

f (q, p) ≈ ξ

NT∑
k=1

δ3(q − qk )δ
3(p− pk ), (14)

where ξ = N/Nt and Nt is the number of numerically sim-
ulated particles which we refer to as “test particles.” All
simulations performed for this paper take Nt = N , which has
been proven to provide good stochastic convergence. This
allows us to drop further use of the variables Nt and ξ .

Trajectories of these test particles are computed by follow-
ing their Hamiltonian dynamics with the equations of motion

q̇ = p
m

, (15a)

ṗ = −∇qU (q; t ), (15b)

and are solved numerically using a fourth-order Runge-Kutta
method (RK4) [29]. We chose the RK4 over a symplectic
integrator (e.g., velocity Verlet) due to the explicit time de-
pendence in the Hamiltonian. This leads to changes in the
phase-space volume which the RK4 makes no assumptions
about. Moreover, energy drifts typically associated to the RK4
are negligible for the time intervals we simulate in this paper,
even with the numerical time step �t , for this integration
scheme chosen as much smaller than the mean time interval
between collisions.

Collisions are included using the direct simulation Monte
Carlo (DSMC) method [30,31]. For the present situation of

a cold, dipolar gas, this method has been implemented previ-
ously in Ref. [20], and we follow this implementation here.
We construct a discrete spatial grid of cubic grid cells with
constant volume determined by Vcell = β/nave. The parameter
β is an initialized guess of the number of particles that would
be contained in each cell and nave is the average number
density:

nave = N

(4π )3/2σxσyσz
, (16)

where σ j is the standard deviation of particle positions along
axis j. β is a free parameter of the simulation that can be
optimized. The number of grid cells varies with each time step
depending on the position of the particles.

The simulated particles are binned into each grid cell based
on their positions, for which collision processes are performed
in the following two main steps.

(1) Determination of collisions: A collision occurs when
the probability [32]

Pi j (collision) =
( �t

m�V

)
|prel| σ ( p̂) (17)

exceeds a random number R sampled from a uniform distribu-
tion U (0, 1), where prel = pi − p j and σ ( p̂) (total scattering
cross section) has the closed form [19]

σ (prel ) = π

9

[
72a2 − 24ada(1 − 3 cos2 η)

+ (11 − 30 cos2 η + 27 cos4 η)a2d
]

(18)

where η = cos−1( p̂ · ε̂) is the angle between the relative mo-
mentum and the dipole-alignment axis.

(2) Updating dynamical variables: If a collision is said to
proceed (from step 1), the postcollision momenta of the parti-
cles are then computed using the rejection sampling algorithm
described in Ref. [20].

More efficient numerical schemes exist in the literature
such as those which employ locally adaptive methods as
in Ref. [31]. However, the size of experiments we simulate
permits our current implementation to achieve excellent nu-
merical convergences in reasonable computational time. We
leave the task of optimization for subsequent iterations of
our simulation program, which, for instance, could be used
to investigate far-from-equilibrium systems.

Once the phase-space locations (qk, pk ) are given for each
test particle, the averages required to compute observables are
found in a straightforward way:〈

q2j
〉 = 1

N

N∑
k=1

q(k)j (t )2, (19a)

〈
p2j

〉 = 1

N

N∑
k=1

p(k)j (t )2, (19b)

where the sum over k runs over all simulated particles.
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TABLE I. Table of parameter values with which the system is
initialized. Da = 1.661 × 10−27 kg stands for Dalton (atomic mass
unit), a0 = 5.292 × 10−11 m is the Bohr radius, and μB = 9.274 ×
10−24 J/T is the Bohr magneton.

Parameter Symbol Value Unit

Number of particles N 80 000
Atomic mass number A 164 Da
Magnetic moment μ 10 (μB)
s-wave scattering length a 92 (a0)
Dipole length ad 199 (a0)
Initial gas temperature T0 426 nK
Axial trapping frequency ωz,0 2π × 40 Hz
Radial trapping frequency ω⊥ 2π × 400 Hz

IV. RESULTS

The chemical element with the largest magnetic dipole
moment is dysprosium, so it is the natural candidate for our
paper. In particular, all atomic species parameters adopted in
this paper are those of native 164Dy unless otherwise specified,
where for most simulations we incorporate the actual s-wave
scattering length of 164Dy as determined in Ref. [22]. Then
to subject the gas to a driving that is perturbative we set the
relative modulation amplitude in Eq. (2) equal to δ = 0.05.

Furthermore, we adopt the simulation parameters from the
Erbium experiment performed by Aikawa et al. in Ref. [21].
This ensures that the trapping frequencies ω, and number
of particles N , are such that the average number density of
the gas lands us in the weakly hydrodynamic regime. This
is where the mean collision rate is larger but on the order
of the trapping frequency, naveσ 〈v〉 � ω/2π . In this regime,
the influence of collisions will definitely be seen while the
influence of anisotropic scattering is unlikely to be washed
out by multiple collisions. Bose enhancement factors can also
be neglected by virtue of the mean occupation number in a
phase-space volume of h3 remaining close to 0.09. A similar
value and discussions are provided in Ref. [20], which uses
parameters close to those employed here. The parameters for
this paper are provided in Table I.

As a note, the thermal behavior and classical evolution of
the gas are ensured by virtue of the initial gas temperature
being significantly larger than the critical temperature of a
trapped, dipolar Bose gas [33,34]:

Tc ≈ T 0
c

[
1 − 0.728

(ω

ω̃

)
N−1/3 − cδ ã

λ0
c

+ (3 cos2 α − 1) g
(ωz,0

ω⊥

)cδμ0μ
2m

48π h̄2λ0
c

]
, (20)

where g(κ ) is the anisotropy function

g(κ ) =
⎧⎨⎩2κ2 + 1

1 − κ2
− 3κ2arctanh

√
1 − κ2

(1 − κ2)3/2
, κ 
= 1,

1, κ = 1,
(21)

where the critical temperature of a noninteracting Bose
gas is given as kBT 0

c ≈ 0.940h̄ωN1/3, ω̃ = (ωx + ωy + ωz )/3

is the arithmetic mean of the trapping frequencies, λ0
c =√

2π h̄2/(mkBT 0
c ) is the thermal de Broglie wavelength,

ã = a + (μ0mμ2)/(12π h̄2) is a modified contact-interaction
scattering length, and cδ ≈ 3.426 is a dimensionless pref-
actor. This formula grants that Tc ≈ 260–280 nK, which is
≈1.6 times less than T0. Furthermore, T0 only increases under
periodic driving.

A. Enskog and DSMC results for
anisotropic pseudotemperature

As the drive is along the z axis with trap frequency ωz =
2π × 40 Hz, it is expected that the gas will resonate at a
frequency ≈2ωz ∼ 2π × 80 Hz. The basic time-dependent
response of the gas to weak periodic perturbation is given
in Figs. 2 and 3 for nonresonant and resonant drives, respec-
tively. In both illustrative cases, the dipoles are polarized in
the x direction, with α = 90◦.

Figure 2 depicts off-resonant driving, at the driving
frequency � = 2π × 90 Hz. The three panels show the pseu-
dotemperatures for the three Cartesian axes. The blue dashed
curves give the results of numerically solving the Enskog
equations, while the red curve is the result from the DSMC.
In all three panels the agreement between the methods is quite
good, validating the Enskog equations as derived. In all cases
the DSMC produces noisier results from persistent collisions,
as expected.

The pseudotemperature in all three directions rises at the
same mean rate,≈27 nK/s, but in qualitatively different ways.
The greatest oscillation about the mean rise is, naturally,
in the z axis along which the drive is applied. Fluctuations
about the mean rise in the other directions are the result of
collisions. Atoms that are driven primarily along the z axis,
upon scattering, are more likely to scatter into the x direction
(along the polarization axis) than in the y direction, perpen-
dicular to the polarization axis, according to the differential
cross section. The anisotropic nature of the dipoles and their
scattering therefore plays a role in the initial rate of energy
distribution in the gas.

In Fig. 3 the gas is driven much closer to resonance,
at � = 2π × 80 Hz, hence the heating rate is much faster
than with � = 2π × 90 Hz. Here the results of the Enskog
approximation and the full dynamics in the DSMC are in
agreement, but only until ≈0.25 s, where the response of the
gas becomes nonlinear. This circumstance sets a limit over
which the linear-response theory is expected to apply to this
system. The general trend still holds, however, that deviations
from the mean heating rate are greatest in the z direction and
least in the y direction. Also of note is the transient delay in
the nondriven directions: while the z direction begins heating
immediately, the x and y pseudotemperatures require several
(≈5) trap oscillations (≈16 mean collision times) before be-
ginning to heat at a rate comparable to that of the z axis.

The agreement of results between both methods is robust
to other sets of values for the parameters listed in Table I,
so long as the physical regime of operation remains as dis-
cussed (weakly hydrodynamic and nondegenerate gas subject
to small amplitude drives).
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FIG. 2. Pseudotemperatures of a dipolar gas periodically driven along z: comparison between solutions from a numerical DSMC simulation
and the Enskog equations for off-resonant driving at � = 2π × 90 (Hz). (a) Tx . (b) Ty. (c) Tz. The numerical solution is shown by the solid
(red) line; the Enskog solutions are shown by the dashed (blue) line. The Enskog solutions are seen to model the heating rate, oscillation phase,
and amplitude accurately when compared to the numerical results. These results were obtained with α = 90◦.

B. Normal modes of a dipolar gas

The numerical results of the previous section verify that
there is a limit with sufficiently weak driving and sufficiently
short times where the response of the gas is linear and is
adequately described by the Enskog version of the theory.
Hereafter, we exploit this version to explore the normal modes
of the gas. To this end, we seek eigensolutions of the Enskog
equations in the absence of driving, setting δ = 0 in Eq. (2).

The linearized Enskog equations of change in Eqs. (11)
and (13) constitute a linear system of equations for nine
dynamical quantities that can be written in terms of a nine-
dimensional state vector:

ξ(t ) = [
m2ω2

z,0〈z2〉,
〈
p2z

〉
, mωz,0〈zpz〉,

m2ω2
⊥〈y2〉, 〈

p2y
〉
, mω⊥〈ypy〉,

m2ω2
⊥〈x2〉, 〈

p2x
〉
, mω⊥〈xpx〉

]T
. (22)

Cast in terms of this vector, the Enskog equations can be
written in the succinct form

ξ̇(t ) = �0ξ(t ), (23)

where �0 is a matrix of coefficients with units of frequency,
which can be read off from Eqs. (11) and (13). This allows the
identification of intrinsic normal modes (often referred to as
collective oscillations as in Refs. [24,35–37]) of this system
without time-dependent driving. The normal-mode solutions
are found by means of the ansatz

ξ(t ) = ξ0 + ξωe
iωt , (24)

where ξ0 is the equilibrium solution, ξω is a vector of rel-
ative amplitudes, and ω = ωr + i� is the complex-valued
frequency, with real part ωr being the frequency of oscilla-
tion and imaginary part � the damping rate. Substituting into
Eq. (24), the normal-mode frequencies satisfy the eigenvector
equation

�0ξω = iωξω. (25)

Solving the eigensystem, we find two varieties of unique
and dynamical eigenmodes: (1) three oscillatory modes with
oscillation frequencies close to the trap frequencies (illus-
trated in Fig. 4), that are damped due to cross-dimensional
rethermalization; and (2) two overdamped modes with ωr =
0, that relax to equilibrium without oscillating. We refer to

FIG. 3. Pseudotemperatures of a dipolar gas periodically driven along z: comparison between solutions from a numerical DSMC simulation
and the Enskog equations for close-to-resonant driving at � = 2π × 80 (Hz). (a) Tx . (b) Ty. (c) Tz. The numerical solution is shown by the
solid (red) line; the Enskog solutions are shown by the dashed (blue) line. The Enskog solutions are seen to closely follow the numerical
results within the linear regime (t up to 0.1 s shown in the embedded plots) but deviate once the response becomes nonlinear. These results
were obtained with α = 90◦.
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FIG. 4. Visualization of the dominant dynamics in oscillatory
modes. Arrows that point in opposing directions relative to the gas
cloud (ellipsoid) indicate dynamics that are out of phase. These
figures are for illustrative purposes.

the latter variety as “melting modes.” These solutions are
generalizations of the zero-frequency modes discussed at the
end of Sec. III A, with the addition of coupling between the
axes through collisions.

These solutions are presented with plots depicting the
eigenfrequency solutionsωr and �, as a function of the dipolar
tilt angle α, along with the associated time evolution of the
spatial eigenvector components Re{〈q2j 〉ωeiωt }, at select values
of α. In all cases, the eigenvectors are normalized to unity at
time t = 0.

Figure 5 illustrates the mode that oscillates primarily in the
z direction and, hence, has frequency ≈2ωz ∼ 2π × 80 Hz
[Fig. 5(a)]. The frequency of this mode rises only slightly as
the dipole is tilted from along the z axis (α = 0 to perpendic-
ular to this axis α = 90◦). By contrast, tilting the dipole has a
dramatic effect on the damping rate, cutting it nearly in half

FIG. 5. The normal mode along z. (a, b) Real ωr and imaginary
� parts of the eigenfrequency, respectively, as α is varied from 0
to 90◦. (c, d) Time evolution of the associated normal modes for
α = 0◦ and 90◦, where the solid (green) curve denotes the relative
amplitude of 〈z2〉, the dash-dotted (red) curve denotes the
relative amplitude of 〈y2〉, and the dashed (blue) curve denotes the
relative amplitude of 〈x2〉. The axial oscillations of this solution
initially dominate over the radial oscillations.

FIG. 6. Approximate breathing mode in the x-y plane. Data
format, colors, and markers follow those in Fig. 5. The radial oscil-
lations of this solution initially dominate over the axial oscillations
and are in phase, creating an approximate radial breathing mode.

as α is tuned from 0 to 90◦ [Fig. 5(b)]. This is a consequence
of the changing differential cross section as α is varied.

The character of the mode is illustrated by the time traces
of relative amplitudes about thermal equilibrium (denoted
�〈q2j 〉) in Figs. 5(c) and 5(d). The principal motion defining
this mode is excitation in the z direction. Hence the modest
excitations in x and y are driven by collisions. When α = 0
[Fig. 5(c)], cylindrical symmetry holds, and the differential
cross section sends atoms equally into the x and y excitations.
By contrast, when α = 90◦ the differential cross section favors
scattering into the x direction, and scatters hardly anything
into the y direction. Because of this, the overall scattering rate
is reduced, and therefore so is the damping rate.

The other two oscillatory modes have state-vector ampli-
tudes which are initially dominant in the radial directions,
shown in Figs. 6 and 7. These modes accordingly have res-
onant frequencies ωr ∼ 2ω⊥ ∼ 2π × 800 Hz. The mode in
Fig. 6 has radial oscillations in phase, much like a breathing
mode in the x-y plane. When α = 0 the amplitudes in the
two directions are equal [Fig. 6(c)]. However, the breathing is
distorted when the dipole alignment axis is tilted off the trap
axis of symmetry [Fig. 6(d)]. Along with this, the damping
rate decreases as the dipoles are tilted from α = 0 to 90◦. This
differentiation in amplitude is also seen in Fig. 7, whereby
in this solution the radial oscillations are π rad out of phase,
likened to a radial quadrupole mode. In contrast to the breath-
ing modes, the damping rate in this case increases as α grows
from 0 to 90◦.

The second variety of normal-mode solutions is those with
no oscillations (ωr = 0), which means that these modes, when
excited, strictly relax to thermal equilibrium with no addi-
tional dynamics. These are presented in Figs. 8 and 9. The
damping rates, �, of these solutions have a local extremum
at α ≈ 45◦, so plots of their time evolution are given for
α = 45◦, in addition to α = 0 and 90◦.
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FIG. 7. Approximate quadrupole mode in the x-y plane. Data
format, colors, and markers follow those in Fig. 5. The radial oscil-
lations of this solution initially dominate over the axial oscillations
and are π rad out of phase, creating an approximate radial quadrupole
mode.

The dynamic action of the melting modes is highly de-
pendent on the initial condition. Consider the first mode with
tilt angle α = 0, depicted in Fig. 8(c). The initial condition
requires the gas to be slightly compressed in the y direction
(red), and extended in the x direction (blue), much like a

FIG. 8. First melting mode solution. As in Fig. 5, the solid
(green) curve denotes the relative amplitude of 〈z2〉, the dash-dotted
(red) curve denotes the relative amplitude of 〈y2〉, and the dashed
(blue) curve denotes the relative amplitude of 〈x2〉. The 〈x2〉 and
〈z2〉 amplitudes appear to cross and exchange positions as α goes
from 0 to 90◦, breaking the radial symmetry. This mode solution
has no oscillatory component (ωr = 0), resulting in purely damping
dynamics.

FIG. 9. Second melting mode solution. Data format, colors, and
markers follow those in Fig. 8. This solution also has ωr = 0, where
symmetry between the radial axes is again broken when α increases
from 0 to 90◦.

radial quadrupole mode. However, for the particular distor-
tion shown, these initial amplitudes simply decay back to the
equilibrium size of the cloud, with no oscillation at all.

Interestingly, as the dipoles are tilted and α proceeds from
45◦ to 90◦, the initial distortion evolves into a slight compres-
sion of the gas in the y direction (red), coupled with a slight
extension in the z direction (green). The other melting mode is
depicted in Fig. 9. In this somewhat more complicated mode,
the initial condition for α = 0 requires a slight expansion in
z and a slight contraction in both x and y [Fig. 9(c)]. As the
dipole is tilted, the required distortion in the y direction (red)
changes from an initial compression to an initial extension.

These modes could in principle be realized experimentally
by means of a trap quench, similar to that done in Ref. [20],
that sets the appropriate initial shape of the gas. We suspect
however, that this would be rather difficult to accomplish for
several reasons. First, DSMC simulations have made apparent
a high sensitivity to initial conditions, in that these modes can
only be excited through an initial configuration very close to
thermal equilibrium. This raises concerns on signal to noise
ratios when these collective excitations are to be measured.
Additionally, fluctuations in the positions and momentum of
the atoms result in the excitation of other modes, causing
inevitable oscillations and other transient dynamics en route
to thermalization. These issues present an intriguing problem,
to be investigated in future works.

V. LINEAR RESPONSE OF A DIPOLAR GAS

In the previous section we considered anisotropy from the
perspective that motion can be different in the three Cartesian
directions, both in the normal modes and in the response
to a weak periodic drive. Here, instead, we show how the
collective heating of the driven gas is a function of the dipole
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orientation. We also note that this anisotropy is strongly af-
fected by the value of the s-wave scattering length.

The customary response function for resonantly driven sys-
tems is the transmissibility, defined as the ratio of the output
response to input driving amplitudes. Having linearized the
Enskog equations allows us to compute the transmissibility
from a linear frequency response function. The periodic trap
modulations are modeled by a change in the trap frequency
according to Eq. (2), resulting in additional terms in the En-
skog Eqs. (11). The modified equations can be written as

ξ̇(t ) = �0ξ(t ) + �̃(t )ξ(t ), (26)

where �0 is defined above as in the derivation of normal
modes, and

�̃(t )ξ(t )

= [
0,−2mω2

z,0〈zpz〉,−m2ω2
z,0〈z2〉, 0, 0, 0, 0, 0, 0

]T
× δ sin(�t ). (27)

Considering just the linear response by taking the limit
of t → 0, we approximate the time-dependent vector using
values of the Enskog state variables at thermal equilibrium,
〈zpz〉0 = 0, 〈z2〉0 = kBT0/(mω2

z,0). This permits the system to
be treated as driven by state-variable independent inputs, sat-
isfying ( d

dt
− �0

)
ξ(t ) = −mkBT0δ sin(�t )u3 (28)

≡ −h sin(�t )u3, (29)

where u3 is a vector with 1 in the third entry, and zeros
in the remaining eight entries. This formulation also identifies
the strength of the drive as h = mkBT0δ. Our goal is to find
the response relative to this drive amplitude. This now allows
us to derive a linear-response function (also known as the
Green’s function) in the time domain. To do so, we consider
the impulse response:[ d

dt
− �0

]
G(t − t ′) = Iδ(t − t ′), (30)

withG(t − t ′) being the response matrix, I the identity matrix,
and δ(t ) the Dirac-delta function. Utilizing the method of
Laplace transforms, the solution to this equation takes the
form

G(t − t ′) = �(t − t ′) exp[�0(t − t ′)], (31)

where �(t ) is the Heaviside step function. The response ma-
trix in frequency space is then obtained by taking a Fourier
transform:

G̃(�) = F{G(t )} = (i� − �0)
−1, (32)

the real part of which constitutes a reactance matrix and the
imaginary part of which constitutes a dissipation matrix.

At this point, we note that as long as the modulation fre-
quency is comparable (within the same order of magnitude)
to the collision rate, collisions allow for a redistribution of
energy between axes fast enough such that all axes heat at
effectively the same rate. This is clear from Figs. 2 and 3,
and can be shown true with other values of α and �. To this

end, we look for a collective transmissibility function from the
Green’s function, which is found to be

τ (α,�) = ωz,0

√
uT3

(
�2

0 + �2I
)−1

u3, (33)

with its detailed derivation provided in Appendix B.
To illustrate the effects of scattering anisotropies, we plot

τ (α,�) with three different dipolar characteristics: (1) purely
isotropic scatterers with no intrinsic dipole, as occurring, for
instance, in a gas with nonpolar atomic species; (2) dipolar
scatterers with a finite s-wave scattering length, representing a
gas of 164Dy atoms as we have considered so far in this paper;
and (3) purely dipolar scatterers with no s-wave scattering
length. This range of possibilities can of course be realized
by means of the many Fano-Feshbach resonances in the lan-
thanide species. For the sake of the theoretical comparison
presented here, we somewhat artificially tune the values of a
and ad such that the angular averaged total cross section,

σ = 1

2

∫ +1

−1
σ (prel )d (cos η), (34)

is the same in all three cases, so that each example is in the
same collisional regime. The results as presented in Fig. 10
clearly show how the resonant frequencies and energy ab-
sorbed by the gas vary with α.

Figure 10(a) shows the response of the gas in the absence
of dipoles, as a heat map of the response τ (α,�). This plot
establishes that the gas responds near resonantly at the � ∼
2π × 80 Hz frequency expected, slightly shifted to lower fre-
quencies. It also establishes a characteristic resonance width,
the full width at half maximum (FWHM), �� = 17.8 Hz,
due to the collisional damping. The resonance is of course
independent of α in the absence of dipoles.

Figure 10(b) considers the case of native 164Dy, with a =
92a0 and ad = 199a0. Here the response shows a distinct
anisotropy, with the resonance narrowest and least shifted at
α = 90◦, while broadening and shifting as α approaches 0 or
180◦. This behavior makes sense, given that the excitation
along z drives primarily the z mode depicted in Fig. 5. As
explained above, the damping in this mode decreases as α

approaches 90◦, as collisional excitation in the y direction is
not engaged [Fig. 5(d)]. Therefore, considering the system as
a damped, driven oscillator [38], the resonance is narrower
and more strongly peaked when α = 90◦.

By contrast, the mode in Fig. 10(c) shows the opposite
trend, with the resonance narrowing in the α = 0 and 180◦
limits. This is the case of purely dipole scattering, with a = 0
and ad = 367.2a0. In this case, the dominant z mode has the
characteristics shown in Fig. 11. By contrast to the mode in
Fig. 5, in this mode the cross section is sufficiently different
that the collisional damping rate � is an increasing function
of α, thus broadening the response resonance in Fig. 11(c)
when α = 90◦. The mode for α = 90◦ [Fig. 11(d)] illustrates
that the excitations in the x and y directions are slightly out
of phase, increasing the chance of collisions with momentum
components in the x-y plane, and therefore increases the over-
all collision rate �.

To summarize the anisotropy of the line shapes, for each
α we extract the resonance frequency �∗, and FWHM, ��.
The variation in these quantities with α is plotted in Fig. 12.
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FIG. 10. Transmissibility, τ (α,�): (a) with a = 109.5a0, ad = 0.0 (isotropic scatterers); (b) with a = 92.0a0, ad = 199.0a0 (dipolar
164Dy); and (c) with a = 0.0, ad = 367.2a0 (purely dipolar scatterers). The blue curves in panels (a), (b), and (c) track the peaks of each
line shape as α is varied. Note that increasing the scattering anisotropies (ad relative to a) increases the susceptibility of the gas (larger dipolar
character increases the resonant response).

These plots once again showcase the complementary behavior
between the gases with and without a scattering length.

VI. DISCUSSION OF MEAN-FIELD EFFECTS

Throughout this analysis, we have ignored all phenomena
associated to dipolar mean-field effects. In this section, we
justify this approximation given the parameters adopted in this
paper (Table I). To do so, we consider the total mean-field
energy per particle eMF which can be evaluated analytically
as in Ref. [39] for a cylindrical Gaussian with 〈x2〉 = 〈y2〉 =
〈q2⊥〉, to give

eMF = − N

48
√

π3

μ0μ
2

〈q2⊥〉
√

〈z2〉
h(ρ), (35)

where

h(ρ) = 1 + 2ρ2

1 − ρ2
− 3ρ2arctanh

√
1 − ρ2

(1 − ρ2)3/2
, (36)

FIG. 11. The normal mode along z with a = 0, ad = 367.2a0.
Data format, colors, and markers follow those in Fig. 6. The radial
oscillations indicate a preferential scattering into the y axis (larger
oscillations in y) when α = 90◦.

with ρ =
√
〈q2⊥〉/〈z2〉. The function h(ρ) is of order unity, so

we just consider the prefactor to get an order-of-magnitude
estimate for eMF. We compare this to the thermal energy per
particle kBT0 with a ratio at thermal equilibrium, which works
out to be

1

kBT0

(
N

48
√

π3

μ0μ
2

〈q2⊥〉0
√

〈z2〉0

)
≈ 9.0 × 10−3. (37)

This implies that the mean-field effects will indeed be in-
significant compared to phenomena associated to kinetic and
collisional processes.

However, in higher-density regimes, or for particles with
stronger dipole interactions such as polar molecules, mean-
field effects would desirably be included into the model.
Physics associated to such effects could present a wide va-
riety of interesting dynamical observations. We defer further
discussions on this to future publications.

VII. CONCLUSIONS

The nonequilibrium thermodynamics of an ultracold, dipo-
lar gas depends strongly on the anisotropy of the differential
scattering cross section of the dipolar gas constituents. Thus,
anisotropy plays a significant role even for ultracold gases
that are not quantum degenerate. To study the macroscopic

FIG. 12. Resonance frequency �∗ and FWHM �� of the linear-
response function as α is varied. (a) �∗, as a function of α. (b) ��,
as a function of α. Panels (a) and (b) compare between isotropic
scatterers [dot-dashed (black) line], dipolar scatterers with a = 92a0
[dashed (blue) line], and purely dipolar scatterers [solid (red) line].
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dynamics, we have derived closed-form expressions that con-
stitute the Enskog equations up to linear order from thermal
equilibrium. At short times and for weak driving, these ex-
pressions are in excellent agreement with direct Monte Carlo
simulations. This suggests that they provide a quantitative
means for us to understand such dipolar systems when probed
perturbatively. The extension of the Enskog formalism to
fermionic species is of course possible, as the differential
cross section is known, and this will be a subject of future
investigations.

We have shown that when subject to a weak periodic drive
by modulation of the trap axial frequency manifestation of
microscopic anisotropies in the gas’s macroscopic response
is evident from the preferential scattering into the x axis,
resulting in larger amplitude oscillations of Tx compared to
Ty. This was well explained through observation of the normal
modes, which highlights the α dependence of the anisotropic
character. The normal modes also illustrate the strong depen-
dence of the parametric heating rate of the gas on both the
s-wave scattering length and size and orientation of the atomic
dipoles.

Therefore, as a function of these experimentally con-
trollable parameters, the gas becomes a working fluid the
response of which to perturbation can be manipulated, which
may lead to further investigations and applications down the
line. Strikingly, the normal-mode analysis also identifies melt-
ing modes, anisotropic distortions of the gas that equilibrate
without exciting oscillations, even in a harmonic trap. The sig-
nificance of these modes and prospects for their observation
will be considered in future work.
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APPENDIX A: THE DIPOLAR COLLISION INTEGRAL

An explicit derivation of the collision integrals in the En-
skog formulation (CIE), C[�p2j], is presented here. To prevent
an overcluttering of this paper, several intermediate expres-
sions are omitted. Many of these are exceedingly long and not
particularly illuminating, involving integrals over polynomial
functions that can be evaluated with most modern symbolic
software.

The starting point to evaluate the CIE is the assertion of a
Gaussian ansatz:

f (q, p) = c(p)n(q), (A1a)

c(p) ≡
∏
j

1√
2π

〈
p2j

〉 exp
(

− p2j
2
〈
p2j

〉), (A1b)

n(q) ≡ N
∏
j

1√
2π

〈
q2j

〉 exp
(

− q2j
2
〈
q2j

〉), (A1c)

with subscripts j ∈ {x, y, z}. If we now recast the momenta
into center-of-mass coordinates, we get a decomposition into
a center-of-mass component P and a relative component pr .

This grants the reformulation of the CIE from Eq. (12) to

C[�χ ] =
∫

d3q
n2(q)
N

∫
d3pr
2m

prcr (pr )
∫

d�p′
dσ

d�p′
�χ

(A2)

where cr (pr ) takes the same form of c(p) but with the re-
placement p → pr and all factors of 2 converted to 4. As
mentioned, only the χ = p2j terms are nonvanishing, so the
integrals are separable (i.e., can be evaluated separately) in
position and momentum variables:

C
[
�p2j

] =
[∫

d3q
n2(q)
N

]
×

[∫
d3pr
2m

prcr (pr )
∫

d�p′
dσ

d�p′
�p2j

]
. (A3)

First evaluating the integral over d3q gives

Iq ≡ 1

N

∫
d3q n2(q) = N

8m
√

π3〈x2〉〈y2〉〈z2〉 , (A4)

which in the linearization adopts the variance values at ther-
mal equilibrium. This leaves the integrals over post- and
precollision momenta.

Evaluating the momentum integrals in Eq. (A3) is a dif-
ficult task for dipoles, predominantly due to the fact that the
differential cross section is anisotropic, preventing its factor-
ization out of the integral. This requires the coordinate frames
for integration to be consistent and carefully handled. In our
approach, we define two relevant coordinate frames: (1) the
laboratory frame (LF), defined with respect to the dipole
alignment axis such that

ε̂ = [sin α, 0, cosα]T , (A5)

and (2) the collision frame (CF), defined by the relative mo-
menta of colliding pairs of atoms with

ẑcf = p̂r . (A6)

It is necessary to perform integrals over both the LF coordi-
nates {pr, θ, φ} in which α is defined and the CF coordinates
{θCF, φCF} that define the postcollision relative momentum
(subscript CF is used instead of primes to be unambiguous
about the frame). As such, a transformation that relates these
two sets of variables is necessary and constructed using the
method of direction cosines:

R(CF → LF) =
[x̂ · x̂CF x̂ · ŷCF x̂ · ẑC
ŷ · x̂CF ŷ · ŷCF ŷ · ẑCF
ẑ · x̂CF ẑ · ŷCF ẑ · ẑCF

]
. (A7)

With this, the differential cross section can be obtained in
the CF with Eq. (5), for which the unit vectors in the CF are
given as

k̂ =
[0
0
1

]
, k̂′ =

[sin θCF cosφCF

sin θCF sin φCF

cos θCF

]
, (A8)

ε̂ =
[ sin α sin φ

sin α cos θ cosφ − cosα sin θ

sin α sin θ cosφ + cosα cos θ

]
. (A9)
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These result in the dot product terms:

k̂ · k̂′ = cos θCF, (A10a)

k̂ · ε̂ = sin α sin θ cosφ + cosα cos θ, (A10b)

k̂′ · ε̂ = sin θCF cosφCF sin α sin φ

+ sin θCF sin φCF(sin α cos θ cosφ − cosα sin θ )

+ cos θCF(sin α sin θ cosφ + cosα cos θ ). (A10c)

Plugging these into Eq. (5) and taking its absolute square
gives the differential cross section, which can be factorized
into terms of various orders in ad as functions of α:

dσB

d�p′
(α) = dσ

(0)
B

d�p′
(α) + dσ

(1)
B

d�p′
(α) + dσ

(2)
B

d�p′
(α), (A11)

where the superscripts on each term indicate the order of ad
dependence. This integral is then done term by term over d�p′

written as

I (CF)
p (pr, θ, φ) ≡

∫
d�p′

(
dσ

(0)
B

d�p′
+ dσ

(1)
B

d�p′
+ dσ

(2)
B

d�p′

)
�p2j .

(A12)

Now comes the integral over laboratory-frame coordinates.
To do this, a Taylor expansion of cr (pr ) is first done up to first
order around thermal equilibrium:

cr (pr ) ≈ ceqr (pr )
[
δpx

(
p2r sin

2 θ cos2 φ

4
〈
p2z

〉
0

− 1

2

)

+ δpy

(
p2r sin

2 θ sin2 φ

4
〈
p2z

〉
0

− 1

2

)

+ δpz

(
p2r cos

2 θ

4
〈
p2z

〉
0

− 1

2

)
+ 1

]
, (A13)

where

δp j ≡
〈
p2j

〉〈
p2z

〉
0

− 1, (A14)

ceqr (pr ) ≡ 1√(
4π

〈
p2z

〉
0

)3 exp
(

− p2r
4
〈
p2z

〉
0

)
, (A15)

with ceqr (pr ) being the equilibrium distribution of relative
momenta. It is noted that all terms in cr (pr ) with constant
coefficients multiplying ceqr (pr ) are trivial since the collision

integral vanishes at thermal equilibrium. Putting all this to-
gether gives

C
[
�p2j

]
(α) = Iq

∫
d3pr
2m

prcr (pr )I (CF)
p (pr, θ, φ), (A16)

which, when evaluated, leads to Eqs. (13).

APPENDIX B: DERIVATION OF THE TRANSMISSIBILITY

Having derived the Green’s function in Eq. (32), the solu-
tion to the driven problem can be derived by convolution with
the driving function:

ξ(t ) = ξ(0) +
∫ t

−∞
dt ′G(t − t ′)hu3 sin(�t ′), (B1)

where ξ(0) is the solution in the absence of driving. The
response ξR(t ) ≡ ξ(t ) − ξ(0) is therefore given by evaluating
the integral in Eq. (B1):

ξR(t ) =
∫ t

−∞
dt ′G(t − t ′)hu3 sin[�t ′] (B2a)

= h
∫ t

−∞
dt ′G(t ′)u3 sin[�(t − t ′)] (B2b)

= h
∫ t

−∞
dt ′G(t ′)u3

[
ei�(t−t ′ ) − ei�(t−t ′ )

2i

]
(B2c)

= h

2i

[
ei�t

∫ t

−∞
dt ′G(t ′)u3e−i�t ′

− e−i�t
∫ t

−∞
dt ′G(t ′)u3ei�t ′

]
(B2d)

= h

2i
[ei�t G̃(�)u3 − e−i�t G̃

∗
(�)u3] (B2e)

= Re{G̃(�)}hu3 sin(�t )

+ Im{G̃(�)}hu3 cos(�t ). (B2f)

Writing this componentwise and recasting the above ex-
pression into the amplitude and phase notation gives

[ξR(t )]i = |[G̃(�)hu3]i| sin{�t + arg[G̃(�)hu3]i}, (B3)

with [. . .]i denoting the individual vector elements. The trans-
missibility function τ (α,�) is then found by taking the ratio
of the amplitude of ξR to the drive amplitude h, which gives

τ (α,�) = ωz,0

√
uT3

(
�2

0 + �2I
)−1

u3. (B4)
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