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A B S T R A C T

Buckling instabilities of layered materials are an important phenomenon that has been analyzed both
analytically and numerically, but generally only in the absence of surface pressure. In this study, we present
a linear stability analysis of the wrinkling of an inhomogeneous bilayer made up of dissimilar neo-Hookean
elastic materials, under uniaxial compression with pressure applied to the top surface. Using a variational
method, we investigate the effects of stiffness ratio and pressure boundary condition on buckling instabilities.
In all cases, the addition of surface pressure decreases the stability of the system to some extent. For softer
films, the pressure is the dominant influence on the instability of the system. In stiffer films, however, pressure
loading and stiffness ratio interact to affect the unstable state of the bilayer system. Our results indicate that
for a sufficiently high value of stiffness ratio 𝜇f∕𝜇s ≳ 10, the instability of the system does not depend on
pressure.
1. Introduction

The understanding of wrinkling and buckling behaviors of layered
aterials is essential in various biological and engineering systems,
ith examples ranging from brain development [1,2] to stretchable
lectronics [3,4] and multilayer composites [5,6]. Under axial com-
ression, layered materials transition from a stable equilibrium to an
nstable state when the compressive load reaches a critical value.
hese instabilities have been investigated since the middle of the 20th
entury [7]. Researchers have since then identified how instabilities
epend on physical and mechanical properties such as layer thickness,
ayer stiffness, and material anisotropy [8–10].
Wrinkling instabilities have been analyzed extensively for several

ifferent layered structures, particularly bilayers consisting of a thin
ilm attached to a thicker substrate with different material proper-
ies. The wrinkling behavior of a material depends on the loading
ondition [11], which could result from uniform compression of both
aterials [12,13] or pre-stretch [14,15], growth [16,17], swelling [18,
9], or shrinking [20,21] in either of the two materials.
There has been much work on characterizing the critical strains and

avelengths of bilayers with zero stress boundary conditions at the free
urface [22–24], but less is understood about the effects of external
ressure on the onset of buckling. This is relevant, however, as layered
ystems are sometimes subjected to a boundary condition of constant or
ariable pressure, such as water pressure on the earth’s crust at ocean
epths or wind pressure on structures. Pressure boundary conditions
re also common in the brain and other biological systems. Here, we

∗ Corresponding author at: Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
E-mail address: maria-holland@nd.edu (M.A. Holland).

focus on the brain as a model system for a soft bilayered material
under pressure. We build on the large body of work modeling the
developing brain as a soft bilayer under planar compression [1,2,25].
At a macroscopic level, the brain consists of a thin outer layer of gray
matter (cortex) adhered to a larger volume of white matter (subcortex)
(Fig. 1). Although there is some disagreement in the literature, mechan-
ical characterization studies on the brain tissue have calculated that the
stiffness of white matter is 0.5 kPa to 2 kPa and gray matter 0.5 kPa to
3 kPa [26]. The outer cortical layer is surrounded by cerebrospinal fluid
(CSF), which exerts a pressure ranging from 0.2 kPa in infants to 6 kPa
in severe cases [27,28]. Studies have shown that the average normal
CSF pressure in adults is approximately 2 kPa, with high and low CSF
pressures in adults often associated with neurological disorders [29,30].

Previous studies have investigated the stability of spherical and
cylindrical multilayers with the presence of external/internal pres-
sure [31–40]. However, despite results demonstrating the influence of
pressure on instabilities, only limited research exists regarding the role
of non-zero stress boundaries on the instabilities of a bilayer made
of a thin flat film bound to a thick substrate. One recent paper [41]
briefly looked at the instabilities of a rectangular bilayer with normal
pressure acting on the top surface of the film, but based on their
plane-strain analysis they concluded that the pressure does not affect
wrinkling instabilities. However, previous work has emphasized the
effect of mechanical constraints on cortical folding patterns [42]. Thus,
here we are interested in determining whether the cerebrospinal fluid
pressure affects cortical instabilities.
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Fig. 1. Schematic of the human brain in situ (left) and as modeled here (right). Our
model contains (a) cerebrospinal fluid, (b) gray matter, and (c) white matter.

In this study, we consider the case of an inhomogeneous bilayer
under compression with pressure applied to the top surface. The film
and the substrate are both incompressible neo-Hookean material with
shear modulus 𝜇f and 𝜇s, respectively. The bilayer undergoes a uniform
ompression followed by an imposed wrinkling perturbation, where
e determine what amount of compression makes the buckled state
nergetically favorable. We seek buckling instabilities to analyze the
ffects of non-zero stress boundary conditions. Additionally, we discuss
he impacts of the stiffness ratio between film and substrate on the
uckling of the system.

. Homogeneous deformation

In this section, we present an energy stability analysis to investi-
ate the response of a bilayer system that undergoes a homogeneous
eformation under an applied axial compression of 𝜆1 < 1 along with
pplied in-plane and surface pressures. The coordinates of the material
oints are denoted as 𝐗 in the undeformed reference configuration
0 surrounded by its boundary 𝜕𝛺0 (Fig. 2). The coordinates in the
esulting uniformly-compressed state are defined by 𝐱. Throughout this
tudy, this uniformly compressed state is referred to as the intermediate
onfiguration 𝛺i with its boundary denoted by 𝜕𝛺i. The displacement
ector field connecting the reference and intermediate configuration is
= 𝐱 − 𝐗, where the coordinates of the material points are related
y 𝑥𝑖 = 𝜆𝑖𝑋𝑖 (i = 1,2,3). Accordingly, the deformation gradient of
his homogeneous compression is 𝐅0 = 𝐈 + 𝜕𝐔∕𝜕𝐗, where 𝐈 is the
econd-order identity tensor. The deformation gradient in matrix form
s

0 =
⎡

⎢

⎢

⎣

𝑈1,1 + 1 0 0
0 𝑈2,2 + 1 0
0 0 𝑈3,3 + 1

⎤

⎥

⎥

⎦

. (2.1)

The film and substrate are assumed to be incompressible neo-
ookean hyperelastic materials. We allow for the possibility that the
hear moduli of the film and the substrate are different, 𝜇f ≠ 𝜇s,
nabling our model to account for bilayer systems with a range of
echanical properties. The strain energy density per unit reference
olume of the system is defined as

0 =
𝜇
2
[

tr(𝐂0) − tr(𝐈)
]

, (2.2)

expressed in terms of the right Cauchy–Green deformation tensor 𝐂0 =
𝐅𝑇
0 𝐅0 and its trace tr(𝐂0) = [𝑈1,1 + 1]2 + [𝑈2,2 + 1]2 + [𝑈3,3 + 1]2.
We consider a pressure loading condition on the boundary of the

eference domain, 𝜕𝛺0, where traction vectors 𝐓2, 𝐓f
3, and 𝐓s

3 are
mposed on the top and front faces of the cuboid bilayer system (with
he superscriptsf ands representing film and substrate, respectively).
 s

2

he traction is defined as 𝐓 = 𝐏 ⋅𝐍, where 𝐏 is the first Piola–Kirchhoff
tress tensor and 𝐍 = [𝑁1, 𝑁2, 𝑁3]𝑇 is the outward unit normal to the
urface in the reference configuration. We assume that the pressures are
onstant, so the First Piola–Kirchhoff stress applied to the top surface is
2 = −𝑃2𝐞2⊗𝐞2, and in-plane stresses from adjacent material in the film
nd substrate are 𝐏f

3 = −𝑃 f
3 𝐞3 ⊗ 𝐞3 and 𝐏s

3 = −𝑃 s
3𝐞3 ⊗ 𝐞3, respectively.

hus, the Piola–Kirchhoff tractions can be written as 𝐓2 = −𝑃2 𝐞2,
f
3 = −𝑃 f

3 𝐞3, and 𝐓s
3 = −𝑃 s

3 𝐞3. The total free energy functional 𝛱 of
oth strain energy density and loads is thus

(𝐔, 𝑃0) = ∫𝛺0

𝜇𝑚
[ 1
2
[

tr(𝐂0) − tr(𝐈)
]

− 𝑃0[𝐽0 − 1]
]

d𝑉 − ∫𝜕𝛺0

𝐓 ⋅ 𝐔d𝑆 ,

(2.3)

here 𝑃0 is the hydrostatic pressure acting as the Lagrange multiplier
o enforce the incompressibility condition, 𝐽0 is the determinant of 𝐹0,
nd 𝑚 = f , s for the film and the substrate, respectively.
Substitution of the obtained relations into Eq. (2.3) leads to

𝛱(𝐔, 𝑃0) =∫𝛺0

𝜇𝑚
[ 1
2
[

[𝑈1,1 + 1]2 + [𝑈2,2 + 1]2 + [𝑈3,3 + 1]2 − 3
]

− 𝑃0
[

[𝑈1,1 + 1][𝑈2,2 + 1][𝑈3,3 + 1] − 1
]

]

d𝑉

+ ∫𝜕𝛺0,top

𝑃2𝑈2𝑁2d𝑆 + ∫𝜕𝛺f
0,f ront

𝑃 f
3𝑈3𝑁3d𝑆

+ ∫𝜕𝛺s
0,f ront

𝑃 s
3𝑈3𝑁3d𝑆 . (2.4)

e take the first variation of the functional with respect to displace-
ent field 𝐔 and the Lagrange multiplier 𝑃0, and integrate by parts
o remove the partial derivatives on the variations. Given that the
isplacement field is 𝐔 = 𝑋1[𝜆1 − 1]𝐞1 + 𝑋2[𝜆2 − 1]𝐞2 + 𝑋3[𝜆3 − 1]𝐞3,
𝑖,𝑖𝑖 = 0 , (𝑖 = 1, 2, 3). The stationary position of the energy functional is
btained when the first variation of the energy functional vanishes,

≐ 𝛿𝛱(𝐔, 𝑃0) = ∫𝛺0

𝜇𝑚
[

[𝑈1,1 + 1][𝑈2,2 + 1][𝑈3,3 + 1] − 1
]

𝛿𝑃0d𝑉

+ ∫𝜕𝛺0,top

[

𝜇f [𝑈2,2 + 1] − 𝜇f𝑃0[𝑈1,1 + 1][𝑈3,3 + 1] + 𝑃2

]

× 𝑁2𝛿𝑈2d𝑆

+ ∫𝜕𝛺f
0,f ront

[

𝜇f [𝑈3,3 + 1] − 𝜇f𝑃0[𝑈1,1 + 1][𝑈2,2 + 1] + 𝑃 f
3

]

× 𝑁3𝛿𝑈3d𝑆

+ ∫𝜕𝛺s
0,f ront

[

𝜇s[𝑈3,3 + 1] − 𝜇s𝑃0[𝑈1,1 + 1][𝑈2,2 + 1] + 𝑃 s
3

]

× 𝑁3𝛿𝑈3d𝑆 . (2.5)

Minimization of the potential energy functional over variations in 𝑃0
gives the constraint of incompressibility,

[𝑈1,1 + 1][𝑈2,2 + 1][𝑈3,3 + 1] = 𝜆1𝜆2𝜆3 = 1 . (2.6)

Minimizing the energy with respect to variations in 𝐔 leads to the
following set of boundary condition equations:

0 =𝜇f𝜆2 − 𝜇f𝜆1𝜆3𝑃0 + 𝑃2 ,

0 =𝜇f𝜆3 − 𝜇f𝜆1𝜆2𝑃0 + 𝑃 f
3 , (2.7)

and 0 =𝜇s𝜆3 − 𝜇s𝜆1𝜆2𝑃0 + 𝑃 s
3 .

These equations, using Eq. (2.6), yield the following results:

0 = 𝜆23 +
𝑃 f
3

𝜇f
𝜆3 −

1
𝜆21𝜆

2
3

− 1
𝜆1𝜆3

𝑃2
𝜇f

and 𝑃 f
3 = 𝛽𝑃 s

3 , (2.8)

here we introduce the stiffness ratio 𝛽 as the ratio of the shear moduli
f the film and surface, 𝛽 = 𝜇f∕𝜇s. We use the Newton–Raphson method
o solve Eq. (2.8) for the exact value of transverse stretch 𝜆3 that will
result from the applied pressures 𝑃2 and 𝑃 f

3 , axial stretch 𝜆1, and the
tiffness ratio 𝛽.
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Fig. 2. Kinematics of bilayer instabilities, relating the system of a film on an infinite-sized substrate in 𝛺0, the reference configuration; 𝛺𝑖, the intermediate configuration under
homogeneous compression; and 𝛺𝑡, the deformed configuration with wrinkles of wavelength 𝑙 and wave number 𝑘.
t
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. Perturbation deformation

Here we apply a linear stability analysis to find the buckling in-
tabilities of our bilayer system. Now the homogeneous compression is
ollowed by an imposed sinusoidal wrinkling deformation, transforming
he intermediate configuration, 𝛺i, into the deformed configuration, 𝛺𝑡.
he displacement of particles in the body is 𝐮(𝑥1, 𝑥2) = 𝜒 − 𝐱, with 𝜒
nd 𝐱 representing the coordinates in the deformed and intermediate
onfigurations, respectively. The total displacement of a material point
rom the reference configuration to the final deformed configuration is
t (𝐗) = 𝐔(𝐗) + 𝐮(𝐗) = 𝐱(𝐗) − 𝐗 + 𝐮(𝐗) , (3.1)

here 𝐮(𝐗) = 𝐮(𝜆1𝑋1, 𝜆2𝑋2). Therefore, the total deformation gradient
ill be

= 𝐈 + 𝜕𝐮t
𝜕𝐗

= 𝐈 + 𝜕𝐔
𝜕𝐗

+ 𝜕𝐮
𝜕𝐗

=
⎡

⎢

⎢

⎣

𝜆1 + 𝜕𝑢1∕𝜕𝑋1 𝜕𝑢1∕𝜕𝑋2 0
𝜕𝑢2∕𝜕𝑋1 𝜆2 + 𝜕𝑢2∕𝜕𝑋2 0

0 0 𝜆3

⎤

⎥

⎥

⎦

. (3.2)

The total potential energy of the system is given by a functional over
he unit reference volume,

(𝐮t , 𝑝) = ∫𝛺0

𝜇𝑚
[ 1
2
[tr(𝐂) − 3] − 𝑝[det(𝐅) − 1]

]

d𝑉 − ∫𝜕𝛺0

𝐓 ⋅ 𝐮𝐭d𝑆 , (3.3)

where 𝐂 = 𝐅𝑇𝐅 is the total right Cauchy–Green deformation tensor
and 𝑝(𝜆1𝑋1, 𝜆2𝑋2) = 𝜇𝑚[𝑃0+𝑃𝑚(𝜆1𝑋1, 𝜆2𝑋2)] is the Lagrange multiplier
to enforce the constraint of incompressibility, with 𝜇𝑚𝑃0 representing
the pressure in the uniformly compressed state and 𝜇𝑚𝑃𝑚(𝜆1𝑋1, 𝜆2𝑋2)
written as a function of coordinates in the reference configuration)
orresponding to the pressure required to maintain a constant volume
n the final configuration [11] and 𝑚 = f , s for the film and the
substrate, respectively.

In order to obtain all variables in the intermediate configuration,
we perform a change of variables,

d𝑉 = d𝑣∕𝐽0, where 𝐽0 = 1
𝜕𝑢𝑖
𝜕𝑋𝐽

=
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑥𝑘
𝜕𝑋𝐽

=
𝜕𝑢𝑖
𝜕𝑥𝑘

𝐅0,𝑘𝐽 . (3.4)

Because the pressure is a configuration-dependent load, meaning that
the direction of the force remains normal to the top surface during
the deformation but the magnitude of the force is the same in all the
configurations [43], the following relation holds:

force = 𝐓 ⋅ d𝐒 = 𝐭 ⋅ d𝐬 , (3.5)
3

where 𝐭 is the Cauchy traction in the intermediate configuration, and
d𝐬 is the surface in the intermediate configuration. The Cauchy traction
vector can be written in terms of the first Piola–Kirchhoff stress as

𝐭 = 𝝈 ⋅ 𝐧 = 𝐽−1
0 𝐏𝐅𝑇

0 ⋅ 𝐧 , (3.6)

where 𝐧 = [𝑛1, 𝑛2, 𝑛3] is the unit normal to the surface in the interme-
diate configuration. By substituting Eqs. (3.4) and (3.6) into Eq. (3.3),
he total potential energy of the bilayer system can be written in terms
f the quantities defined in the intermediate configuration as

(𝐮𝑚, 𝑃𝑚) =∫𝛺
𝜇𝑚

[

1
2

[

[𝑢𝑚
2

1,1 + 2𝑢𝑚1,1 + 𝑢𝑚
2

2,1 + 1]𝜆21

+ [𝑢𝑚1,2 + 𝑢𝑚
2

2,2 + 2𝑢𝑚2,2 + 1]∕𝜆21𝜆
2
3 + 𝜆23 − 3

]

− 𝑃0[𝑢𝑚1,1 + 𝑢𝑚2,2 + 𝑢𝑚1,1𝑢
𝑚
2,2 − 𝑢𝑚2,1𝑢

𝑚
1,2]

− 𝑃𝑚[𝑢𝑚1,1 + 𝑢𝑚2,2 + 𝑢𝑚1,1𝑢
𝑚
2,2 − 𝑢𝑚2,1𝑢

𝑚
1,2]

+ 𝑃2𝜆2𝑢
𝑚
2,2 − 𝑃2 + 𝑃2𝜆2

]

d𝑣

+ ∫𝛿𝛺f
f ront

𝑃 f
3 𝜆3 [𝑢f3 + 𝑈 f

3 ]d𝑠 + ∫𝛿𝛺s
front

𝑃 s
3 𝜆3 [𝑢s3 + 𝑈 s

3]d𝑠 ,

(3.7)

where 𝑢1 and 𝑢2 are periodic functions along the 𝑥1 and 𝑥2 axes with
𝑢3 = 0 (Fig. 2), and 𝑢𝑖,𝑗 denotes the derivative of the imposed wrinkling
displacement in the 𝑖th direction with respect to 𝐱𝑗 , the coordinates in
the intermediate configuration. Knowing that 𝑢 is a periodic function,
∫𝑣 𝑢𝑖,𝑖 d𝑣 = 0 for 𝑖 = 1, 2, 3. Following previous works [8,11,44,45], we
only consider the quadratic terms. We compute the first variation of the
functional with respect to 𝑢1(𝐱), 𝑢2(𝐱), and 𝑃 (𝐱) and integrate by parts
to find the stationary condition,

0 ≐ 𝛿𝛱(𝐮𝑚, 𝑃𝑚) = ∫𝛺𝑖

𝜇𝑚
[

[

𝜆21𝑢
𝑚
1,11 − 𝑃𝑚

,1 +
𝑢𝑚1,22
𝜆21𝜆

2
3

]

𝛿𝑢𝑚1

+
[

𝑢𝑚2,22
𝜆21𝜆

2
3

− 𝑃𝑚
,2 + 𝜆21𝑢

𝑚
2,11

]

𝛿𝑢𝑚2

−
[

𝑢𝑚1,1 + 𝑢𝑚2,2
]

𝛿𝑃𝑚
]

d𝑣

−∫𝛿𝛺𝑖

𝜇𝑚
[

[

[𝜆21𝑢
𝑚
1,1 − 𝑃0𝑢

𝑚
2,2 − 𝑃𝑚]𝑛1

+ [
𝑢𝑚1,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
𝑚
2,1]𝑛2

]

𝛿𝑢𝑚1

+
[

[
𝑢𝑚2,2
2 2

− 𝑃0𝑢
𝑚
1,1 − 𝑃𝑚]𝑛2
𝜆1𝜆3
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+ [𝜆21𝑢
𝑚
2,1 + 𝑃0𝑢1,2]𝑛1

]

𝛿𝑢𝑚2
]

d𝑠 . (3.8)

The Euler–Lagrange equations are obtained when each volume integral
is set equal to zero:

0 = 𝜆21𝑢
𝑚
1,11 +

𝑢𝑚1,22
𝜆21𝜆

2
3

− 𝑃𝑚
,1 , (3.9)

0 =
𝑢𝑚2,22
𝜆21𝜆

2
3

+ 𝜆21𝑢
𝑚
2,11 − 𝑃𝑚

,2 , (3.10)

nd 0 = 𝑢𝑚1,1 + 𝑢𝑚2,2 . (3.11)

We assume that both film and substrate are adhered to each other,
with traction and displacement continuity existing across the interface,
located at the origin (see Fig. 2). As the substrate is modeled as
infinitely thick, the displacements at the bottom (𝑥2 = −∞) must
vanish. Thus, the boundary conditions are given as

𝑢s𝑖 = 𝑢f𝑖 = 𝑢𝑖 at 𝑥2 = 0 and 0 = 𝑢s𝑖 at 𝑥2 = −∞

for 𝑖 = 1, 2 .
(3.12)

The surface integrals in Eq. (3.8) must also vanish, yielding the natural
oundary equations,

=
𝑢f1,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
f
2,1 at 𝑥2 = ℎ

0 =
𝑢f2,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
f
2,2 − 𝑃 f at 𝑥2 = ℎ

= 𝛽

[

𝑢f1,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
f
2,1

]

−

[

𝑢s1,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
s
2,1

]

at 𝑥2 = 0

0 = 𝛽

[

𝑢f2,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
f
2,2 − 𝑃 f

]

−

[

𝑢s2,2
𝜆21𝜆

2
3

+ 𝑃0𝑢
s
2,2 − 𝑃 s

]

at 𝑥2 = 0 .

(3.13)

4. Linear perturbation analysis

We seek the unstable state of the bilayer using a linear stability
analysis for a wrinkling pattern of the form

𝑢𝑚1 (𝑥1, 𝑥2) = 𝑓𝑚
1 (𝑥2) sin(𝑘𝑥1)

𝑢𝑚2 (𝑥1, 𝑥2) = 𝑓𝑚
2 (𝑥2) cos(𝑘𝑥1)

𝑃𝑚(𝑥1, 𝑥2) = 𝑓𝑚
3 (𝑥2) cos(𝑘𝑥1) , (4.1)

where 𝑓𝑚
1 , 𝑓

𝑚
2 , and 𝑓𝑚

3 are three unknown functions, 𝑘 is the wave num-
ber in the intermediate configuration, and 𝑙 = 2𝜋∕𝑘 is the wavelength
in the intermediate configuration. These quantities are related to their
reference counterparts (Fig. 2) by

ℎ = 𝐻𝐹0,22 =
𝐻
𝜆1𝜆3

and 𝑘 = 𝐾
𝐹0,11

= 𝐾
𝜆1

. (4.2)

Substituting Eq. (4.1) into the Euler–Lagrange equations (Eqs. (3.9)–
(3.11)) yields an ordinary differential equation with respect to 𝑓𝑚

1 , 𝑓
𝑚
2 ,

and 𝑓𝑚
3 , with solution [45]:

𝑢𝑚1 (𝑥1, 𝑥2) =
[

𝑐𝑚1 𝑒
−𝑘𝑥2 − 𝑐𝑚2 𝑒

𝑘𝑥2 + 𝑐𝑚3 𝜆
2
1𝜆3𝑒

−𝑘𝜆21𝜆3𝑥2 − 𝑐𝑚4 𝜆
2
1𝜆3𝑒

𝑘𝜆21𝜆3𝑥2
]

× sin(𝑘𝑥1) ,

𝑢𝑚2 (𝑥1, 𝑥2) =
[

𝑐𝑚1 𝑒
−𝑘𝑥2 + 𝑐𝑚2 𝑒

𝑘𝑥2 + 𝑐𝑚3 𝑒
−𝑘𝜆21𝜆3𝑥2 + 𝑐𝑚4 𝑒

𝑘𝜆21𝜆3𝑥2
]

cos(𝑘𝑥1) ,

𝑃𝑚(𝑥1, 𝑥2) =

[

𝜆21 −
1

𝜆21𝜆
2
3

]

[

𝑐𝑚1 𝑘𝑒
−𝑘𝑥2 − 𝑐𝑚2 𝑘𝑒

𝑘𝑥2
]

cos(𝑘𝑥1) , (4.3)

where 𝑐𝑚𝑖 (m = f, s) are coefficients to be determined from the es-
sential and natural boundary conditions. From the essential boundary
condition on the bottom, Eq. ((3.12)b),

0 = 𝑢s (𝑥 ,−∞) = 𝑢s (𝑥 ,−∞) ⟶ 𝑐s = 0, 𝑐s = 0 , (4.4)
1 1 2 1 1 3 l

4

and from the condition of displacement continuity, Eq. ((3.12)a),

𝑢s1(𝑥1, 0) = 𝑢f1(𝑥1, 0) ⟶ 0 = −𝑐f1 + 𝑐f2 − 𝑐f3𝜆
2
1𝜆3 + 𝑐f4𝜆

2
1𝜆3 − 𝑐s2 − 𝑐s4𝜆

2
1𝜆3 ,

(4.5)

𝑢s2(𝑥1, 0) = 𝑢f2(𝑥1, 0) ⟶ 0 = 𝑐f1 + 𝑐f2 + 𝑐f3 + 𝑐f4 − 𝑐s2 − 𝑐s4 . (4.6)

Substituting Eq. (4.3) into the four natural boundary equations, Eq.
3.13), we obtain four linear algebraic equations:

= 1
𝜆21𝜆

2
3

[

−𝑐f1𝑒
−𝑘ℎ − 𝑐f2𝑒

𝑘ℎ − 𝑐f3𝜆
4
1𝜆

2
3𝑒

−𝑘𝜆21𝜆3ℎ − 𝑐f4𝜆
4
1𝜆

2
3𝑒

𝑘𝜆21𝜆3ℎ
]

− 𝑃0

[

𝑐f1𝑒
−𝑘ℎ + 𝑐f2𝑒

𝑘ℎ + 𝑐f3𝑒
−𝑘𝜆21𝜆3ℎ + 𝑐f4𝑒

𝑘𝜆21𝜆3ℎ
]

(4.7)

0 =

[

1
𝜆21𝜆

2
3

+ 𝑃0

]

[

−𝑐f1𝑒
−𝑘ℎ + 𝑐f2𝑒

𝑘ℎ − 𝑐f3𝜆
2
1𝜆3𝑒

−𝑘𝜆21𝜆3ℎ + 𝑐f4𝜆
2
1𝜆3𝑒

𝑘𝜆21𝜆3ℎ
]

−

[

𝜆21 −
1

𝜆21𝜆
2
3

]

[

𝑐f1𝑒
−𝑘ℎ − 𝑐f2𝑒

𝑘ℎ] (4.8)

0 =𝛽 1
𝜆21𝜆

2
3

[

−𝑐f1 − 𝑐f2 − 𝑐f3𝜆
4
1𝜆

2
3 − 𝑐f4𝜆

4
1𝜆

2
3
]

− 𝛽𝑃0
[

𝑐f1 + 𝑐f2 + 𝑐f3 + 𝑐f4
]

−

[

1
𝜆21𝜆

2
3

]

[

−𝑐s2 − 𝑐s4𝜆
4
1𝜆

2
3
]

+ 𝑃0
[

𝑐s2 + 𝑐s4
]

(4.9)

0 =𝛽

[

1
𝜆21𝜆

2
3

+ 𝑃0

]

[

−𝑐f1 + 𝑐f2 − 𝑐f3𝜆
2
1𝜆3 + 𝑐f4𝜆

2
1𝜆3

]

− 𝛽

[

𝜆21 −
1

𝜆21𝜆
2
3

]

[

𝑐f1 − 𝑐f2
]

−

[

1
𝜆21𝜆

2
3

+ 𝑃0

]

[

𝑐s2 + 𝑐s4𝜆
2
1𝜆3

]

+

[

𝜆21 −
1

𝜆21𝜆
2
3

]

[

−𝑐s2
]

(4.10)

The essential and natural boundary conditions from Eqs. (4.5)–(4.10)
form a set of six equations with six unknown constants 𝑐𝑚𝑖 (i = 1, 2,
3, 4; m = s, f, where 𝑐s1 = 0 and 𝑐s3 = 0). To examine the stability
of the bilayer, we solve this system of equation numerically. The
corresponding system of equations has a form of

𝐌 [𝑐f1, 𝑐
f
2, 𝑐

f
3, 𝑐

f
4, 𝑐

s
2, 𝑐

s
4]

𝑇 = 0 (4.11)

where 𝐌 is a 6 × 6 matrix given in Box I. The stationary of the
potential energy is where a non-trivial solution for this system exists, or
det(𝐌) = 0. Utilizing Ridder’s bracketing method [46], we numerically
solve Eq. (4.11) for various axial and in-plane stretches (𝜆1, 𝜆3) and
shear moduli ratios (𝛽) to consider the effects of stiffness ratio and
applied external pressure on wrinkling. The resulting critical strains
resulting from the eigenvalue problem are the unstable points of our
system, and the threshold critical values are the minimum critical strain
and its corresponding wavelength.

Note that the effect of surface and transverse pressures (𝑃2, 𝑃 f
3 , and

𝑃 s
3 ) is accounted for in the value of transverse stretch that results
from the prescribed loading. Eq. (2.8) shows that the in-plane pressure
exerted on the film 𝑃 f

3 and the substrate 𝑃
s
3 are related by stiffness ratio

; thus we only use the applied pressures to the film’s surfaces (𝑃2, 𝑃 f
3 )

o analyze the buckling behavior of the system, normalizing them both
y the shear modulus of the film 𝜇f .

. Results and discussion

As one motivating factor for our study is to determine the effects of
SF pressure on cortical folding, we focus on systems where the shear
oduli of the two materials are similar, 0.1 < 𝛽 < 4. Considering the
ange of gray matter shear modulus (0.5 kPa to 3 kPa) and physiological
SF pressure (0.2 kPa to 2 kPa), the normalized pressure 𝑃2∕𝜇f is chosen
etween 0.1 and 4. We further assume that the in-plane pressure, 𝑃 f

3 ,
s proportional to the pressure applied to the top surface, 𝑃 f

3 = 1.3𝑃2.

.1. Effect of pressure on transverse stretch

Here, we show that the surface and in-plane pressures naturally

ead to changes in the transverse stretch based on Eq. (2.8) (Fig. 3).
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a
(

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 𝜆21𝜆3 𝜆21𝜆3 −1 −𝜆21𝜆3

1 1 1 1 −1 −1
[

1
𝜆21𝜆

2
3
+ 𝑃0

]

𝑒
− 𝐾𝐻

𝜆21𝜆3

[

1
𝜆21𝜆

2
3
+ 𝑃0

]

𝑒
𝐾𝐻
𝜆21𝜆3

[

𝜆21 + 𝑃0
]

𝑒−𝐾𝐻 [

𝜆21 + 𝑃0
]

𝑒𝐾𝐻 0 0

−
[

𝑃0 + 𝜆21
]

𝑒
− 𝐾𝐻

𝜆21𝜆3
[

𝑃0 + 𝜆21
]

𝑒
𝐾𝐻
𝜆21𝜆3 −

[

1
𝜆21𝜆

2
3
+ 𝑃0

]

𝜆21𝜆3𝑒
−𝐾𝐻

[

1
𝜆21𝜆

2
3
+ 𝑃0

]

𝜆21𝜆3𝑒
𝐾𝐻 0 0

𝛽
[

1
𝜆21𝜆

2
3
+ 𝑃0

]

𝛽
[

1
𝜆21𝜆

2
3
+ 𝑃0

]

𝛽
[

𝜆21 + 𝑃0
]

𝛽
[

𝜆21 + 𝑃0
]

− 1
𝜆21𝜆

2
3
− 𝑃0 −𝜆21 − 𝑃0

𝛽
[

𝑃0 + 𝜆21
]

−𝛽
[

𝑃0 + 𝜆21
]

𝛽
[

1
𝜆3

+ 𝑃0𝜆21𝜆3
]

−𝛽
[

1
𝜆3

+ 𝑃0𝜆21𝜆3
]

𝑃0 + 𝜆21
1
𝜆3

+ 𝑃0𝜆21𝜆3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Box I.
5

w
r
s

his behavior arises because applying surface pressure to the bilayer
nder uniaxial compression will change the stretch in the thickness
irection and require compensating changes in the transverse stretch.
e consider a combination of values for 𝑃2 and 𝑃 f

3 , including cases
here 𝑃2 > 𝑃 f

3 (𝑃 f
3 = 0 and 𝑃 f

3 = 0.8𝑃2 in Fig. 3, top row) and
ases in which 𝑃2 < 𝑃 f

3 (𝑃
f
3 = 1.3𝑃2 and 𝑃 f

3 = 2𝑃2 in Fig. 3, bottom
ow). Resulting transverse stretches are compared with a bilayer under
niaxial compression with no applied surface pressure.
For a given value of axial stretch 𝜆1, when the surface pressure

ominates (Fig. 3, top) the transverse stretch increases as the sur-
ace pressure increases, and when the transverse pressure dominates
Fig. 3, bottom) increasing the surface pressure decreases the transverse
tretch. In both cases, the transverse stretch resulting from a pressure
oading boundary deviates from the transverse stretch of a bilayer with
ero-stress boundary condition subjected to compression. This analy-
is indicates that deformation should be expected to exhibit changes
epending on pressure loading boundary conditions.

.2. The relative influence of stiffness ratio and pressure on the stability of
he bilayer

To investigate the effects of stiffness ratio and pressure at the top
urface on a film–substrate system, we analyzed the threshold critical
train for 1600 combination of stiffness ratio and normalized surface
ressure (Fig. 4). We consider four regions in Fig. 4 with distinct
ehaviors. In region A, the film is softer than the substrate and under
ow pressure (Fig. 6a). In this regime, the stiffness ratio has almost
o effect on the stability of the system, but the stability decreases
s the normalized pressure increase from 0 to 2. Region B represents
he stiffer film regime with low applied pressure (Fig. 6b). Here,
he stability decreases as 𝛽 increases. Furthermore, while increases in
ressure still decrease the stability, the pressure has less of an effect
s the film becomes stiffer. In region C, where the film is softer and
nder higher pressures, the stiffness ratio maintains its dominance, with
he maximum stability of the system being found as 𝛽 → 0 (Fig. 7).
n region D, with stiff films under higher pressures, the instability
f the system is dominated by the stiffness ratio when the stiffness
ontrast between the film and the substrate are very low, while pressure
ominates at moderate stiffness ratios (Fig. 4, far right). Finally, we
ote that discontinuities in the threshold critical strain occur at the
oundary between regions B and D, and in region C, which will be
iscussed later.

.3. Bilayer with stress-free vs. non-zero stress boundary condition

We reproduced the results of our previous study [11] for the case of
bilayer with a stress-free boundary condition under both plane strain
𝜆3 = 1) and uniaxial compression (𝜆3 = 1∕

√

𝜆1). We compared these
results with our system of a 3D bilayer under uniaxial compression
5

with the addition of a pressure boundary condition (Fig. 5). The thresh-
old values illustrate that the pressure boundary condition affects the
stability of a film/substrate system by decreasing the threshold strain
for the onset of instability. The results demonstrate that the system
under uniform compression with pressure applied to the top surface
is more unstable than the same system without pressure, under both
plane strain compression (Fig. 5a) and uniaxial compression (Fig. 5b).
The effect of pressure is more significant on systems with stiffer films
(𝛽 > 1) than on systems with softer films (𝛽 < 1).

.3.1. Influence of stiffness ratio on stability in the presence of pressure
In order to examine the influence of stiffness ratio on the stability,

e hold the pressure constant and calculate the critical strain for a
ange of normalized wavelength (𝐿̄c = 𝐿∕𝐻f ) for various values of
tiffness ratios 𝛽 (Figs. 6 and 7). First, we consider the case where
the pressure is 𝑃2∕𝜇f = 0.5 (regions A and B in Fig. 4). In the soft-
film regime (region A), the threshold strain values are the same for
different stiffness ratios, meaning that the stability of the system does
not depend on the stiffness ratio (Fig. 6a). However, in region B, the
system becomes much more unstable as the film gets stiffer than the
substrate (Fig. 6b).

Next, the same analysis is performed with a similar range of stiffness
ratio, except for a pressure loading which is higher than the film’s
stiffness (𝑃2∕𝜇f = 3.5, regions C and D in Fig. 4). The results show
that the stiffness ratio strongly affects the stability of the bilayer in
the cases of both soft and stiff films (Fig. 7). This is notable, as
previous research on bilayers without surface pressure has indicated
that instability properties are the same for all soft-film systems (𝛽 <
1) [11]. We also note that the effect of stiffness is not monotonic, with
the stability of the bilayer increasing as the stiffness ratio approaches
one, and decreasing as the stiffness ratio increases or decreases from
there.

5.3.2. Influence of pressure on the stability
In the previous section, we considered two cases for the normalized

pressure, 𝑃2∕𝜇f = 0.5 and 𝑃2∕𝜇f = 3.5, and discussed the effect of soft
and stiff films. Here we consider a broader range of normalized pressure
values (Fig. 8). As seen in region A of Fig. 4, soft films with 𝑃2∕𝜇f < 2
show no effect from the stiffness ratio. Instead, their buckling behavior
is dominated by the effects of pressure (Fig. 8a); increasing the pressure
decreases the stability of the bilayer significantly. As the film gets stiffer
than the substrate (region B of Fig. 4), both increasing pressure and the
stiffness ratio decrease the threshold critical strain values.

The buckling behavior of the bilayer under compression changes
strikingly as the pressure increases, 𝑃2∕𝜇f > 2 (Fig. 4, region C and D),
with an instantaneous increase in the threshold strains (Fig. 8b). This
implies that an increase in normalized pressure temporarily increases
the buckling stability of the system, while further increases in pressure
make the system more unstable.
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Fig. 3. Transverse stretch 𝜆3 vs. axial stretch 𝜆1. 𝑃2 < 𝑃 f
3 in top row, and 𝑃2 > 𝑃 f

3 in bottom row. The gray-dashed line represents the result for a stress-free bilayer under uniaxial
ompression where 𝜆3 = 1∕

√

𝜆1.
Fig. 4. Normalized pressure vs. stiffness ratio. The threshold critical strain is calculated for 1600 combinations of the normalized pressure and stiffness ratio, with 𝑃3 = 1.3𝑃2.
r
.3.3. Discontinuous variation of threshold strains observed in soft film
egime

The threshold strain diminishes to its minimum value continuously
s pressure increases in both regions A and B. In Section 5.3.2, we
iscussed that a sudden increase in the threshold strains arises when
2∕𝜇f becomes greater than 2. In region D, where the film is stiffer
han the substrate, the buckling resistance of the bilayer increases when
2∕𝜇f > 2, and it can be seen that the threshold strains suddenly jump
rom its minimum. This is because in this region, our analytical solution
redicts that the system will approach, but not reach, an unstable point
nder low levels of compression (𝜆1 ⪅ 1). Instead, the unstable point
s predicted to occur under low levels of tension (𝜆1 ⪆ 1). Further
nvestigation, including finite element and/or experimental approaches
ight be necessary to reveal the actual nature of the instability in this
6

egion. This phenomenon does not occur precisely at 𝑃2∕𝜇f = 2 in the
regime of soft films (Fig. 4, region C), but rather at higher values of
pressure. Also, in region C, we observe that as the stiffness of the film
increases (the stiffness ratio approaches one), the bilayer system will
endure higher amounts of pressure before buckling happens.

5.3.4. Regions of pressure-insensitivity
As the stiffness ratio increases, the threshold strain appears to

approach an asymptotic value (Figs. 8a and 8b). When we expand the
range of stiffness ratios to 1 < 𝛽 < 100, this becomes more clear. As the
stiffness contrast of the system increases, it becomes very unstable, and
the effect of applied pressure on the instability seems to vanish. This
shows that the effect of pressure is only relevant for sufficiently low
stiffness contrast, 𝛽 ≲ 10 (Fig. 9). This is similar to the findings of our
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Fig. 5. Critical strain vs. normalized wavelength for eight different stiffness ratios, ranging from 0.1 (softer film) to 4 (stiffer film). Solid lines depict non-zero stress boundary
conditions (𝑃2∕𝜇f = 0.5, 𝑃3 = 1.3𝑃2) of a cuboid bilayer under uniaxial compression, while dashed lines depict zero stress boundary conditions under (a) plane strain and (b)
uniaxial compression [11]. The inset in (a) shows that the threshold critical values for 𝛽 < 1 do differ, although only slightly, in the pressure and no-pressure case.

Fig. 6. Critical strain vs. critical wavelength for multiple stiffness ratios at 𝑃2∕𝜇f = 0.5, 𝑃3 = 1.3𝑃2.

Fig. 7. Critical strain vs. critical wavelength for multiple stiffness ratios at 𝑃2∕𝜇f = 3.5, 𝑃3 = 1.3𝑃2.

7
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Fig. 8. Threshold critical strain vs. stiffness ratio for multiple normalized pressures. The dashed–dotted lines in (a) and (b) are the threshold strains of Figs. 6 (where 𝑃2∕𝜇f = 0.5)
and 7 (where 𝑃 ∕𝜇 = 3.5), respectively.
2 f

Fig. 9. Threshold strain values in stiff film regime under different normalized pressures 𝑃2∕𝜇f , across a large range of stiffness ratios.
V
&

D

c
i

A

previous study that concluded that loading mode only affects stability
when 𝛽 ≲ 10 [11].

6. Conclusion

Although the effect of stiffness ratio in a bilayer system has been
heavily studied, there has been little investigation into the effect of
applied pressure on stability. In this study, we investigated the wrin-
kling response of an inhomogeneous bilayer structure, consisting of a
dissimilar film and a substrate, under varying levels of applied surface
pressure. We focused on bilayered materials with similar mechanical
properties, as we intended to investigate the influence of the cere-
brospinal fluid pressure on the instabilities of the brain tissue. We
applied a variational method to minimize the free energy functional for
the 3-D bilayer model and obtained the equations for the eigenvalue
problem. Using a linear stability analysis of a film/substrate bilayer
under compression, we showed that the pressure plays a role in the
instability of the system. In a brief comparison, we show that the bilayer
system under uniform compression with pressure applied to the top
surface is always more unstable than the same system under uniaxial
compression or plane strain compression. Our study indicates that
when the film is softer than the substrate, the instability of the system
generally does not depend on the stiffness ratio. On the other hand,
the effects of pressure on the instability vanish when the ratio between
 [

8

the stiffness of the film and substrate exceeds 10. Also, the pressure
loses its influence when the stiffness ratio approaches one. Finally, we
identified a discontinuity in threshold strains when the pressure is more
than two times the film’s stiffness, indicating an instant increase in
the stability of the film/substrate bilayer. The results of this linearized
stability study show the significance of surface pressure effects on the
bilayer buckling behavior, and the need to account for these effects
particularly in systems with sufficiently low stiffness contrast.
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