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Buckling instabilities of layered materials are an important phenomenon that has been analyzed both
analytically and numerically, but generally only in the absence of surface pressure. In this study, we present
a linear stability analysis of the wrinkling of an inhomogeneous bilayer made up of dissimilar neo-Hookean
elastic materials, under uniaxial compression with pressure applied to the top surface. Using a variational
method, we investigate the effects of stiffness ratio and pressure boundary condition on buckling instabilities.
In all cases, the addition of surface pressure decreases the stability of the system to some extent. For softer

films, the pressure is the dominant influence on the instability of the system. In stiffer films, however, pressure
loading and stiffness ratio interact to affect the unstable state of the bilayer system. Our results indicate that
for a sufficiently high value of stiffness ratio u;/u, 2 10, the instability of the system does not depend on

pressure.

1. Introduction

The understanding of wrinkling and buckling behaviors of layered
materials is essential in various biological and engineering systems,
with examples ranging from brain development [1,2] to stretchable
electronics [3,4] and multilayer composites [5,6]. Under axial com-
pression, layered materials transition from a stable equilibrium to an
unstable state when the compressive load reaches a critical value.
These instabilities have been investigated since the middle of the 20th
century [7]. Researchers have since then identified how instabilities
depend on physical and mechanical properties such as layer thickness,
layer stiffness, and material anisotropy [8-10].

Wrinkling instabilities have been analyzed extensively for several
different layered structures, particularly bilayers consisting of a thin
film attached to a thicker substrate with different material proper-
ties. The wrinkling behavior of a material depends on the loading
condition [11], which could result from uniform compression of both
materials [12,13] or pre-stretch [14,15], growth [16,17], swelling [18,
191, or shrinking [20,21] in either of the two materials.

There has been much work on characterizing the critical strains and
wavelengths of bilayers with zero stress boundary conditions at the free
surface [22-24], but less is understood about the effects of external
pressure on the onset of buckling. This is relevant, however, as layered
systems are sometimes subjected to a boundary condition of constant or
variable pressure, such as water pressure on the earth’s crust at ocean
depths or wind pressure on structures. Pressure boundary conditions
are also common in the brain and other biological systems. Here, we

focus on the brain as a model system for a soft bilayered material
under pressure. We build on the large body of work modeling the
developing brain as a soft bilayer under planar compression [1,2,25].
At a macroscopic level, the brain consists of a thin outer layer of gray
matter (cortex) adhered to a larger volume of white matter (subcortex)
(Fig. 1). Although there is some disagreement in the literature, mechan-
ical characterization studies on the brain tissue have calculated that the
stiffness of white matter is 0.5 kPa to 2 kPa and gray matter 0.5 kPa to
3 kPa [26]. The outer cortical layer is surrounded by cerebrospinal fluid
(CSF), which exerts a pressure ranging from 0.2 kPa in infants to 6 kPa
in severe cases [27,28]. Studies have shown that the average normal
CSF pressure in adults is approximately 2 kPa, with high and low CSF
pressures in adults often associated with neurological disorders [29,30].

Previous studies have investigated the stability of spherical and
cylindrical multilayers with the presence of external/internal pres-
sure [31-40]. However, despite results demonstrating the influence of
pressure on instabilities, only limited research exists regarding the role
of non-zero stress boundaries on the instabilities of a bilayer made
of a thin flat film bound to a thick substrate. One recent paper [41]
briefly looked at the instabilities of a rectangular bilayer with normal
pressure acting on the top surface of the film, but based on their
plane-strain analysis they concluded that the pressure does not affect
wrinkling instabilities. However, previous work has emphasized the
effect of mechanical constraints on cortical folding patterns [42]. Thus,
here we are interested in determining whether the cerebrospinal fluid
pressure affects cortical instabilities.
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Fig. 1. Schematic of the human brain in situ (left) and as modeled here (right). Our
model contains (a) cerebrospinal fluid, (b) gray matter, and (c) white matter.

In this study, we consider the case of an inhomogeneous bilayer
under compression with pressure applied to the top surface. The film
and the substrate are both incompressible neo-Hookean material with
shear modulus y; and p, respectively. The bilayer undergoes a uniform
compression followed by an imposed wrinkling perturbation, where
we determine what amount of compression makes the buckled state
energetically favorable. We seek buckling instabilities to analyze the
effects of non-zero stress boundary conditions. Additionally, we discuss
the impacts of the stiffness ratio between film and substrate on the
buckling of the system.

2. Homogeneous deformation

In this section, we present an energy stability analysis to investi-
gate the response of a bilayer system that undergoes a homogeneous
deformation under an applied axial compression of 4, < 1 along with
applied in-plane and surface pressures. The coordinates of the material
points are denoted as X in the undeformed reference configuration
Q, surrounded by its boundary 0£, (Fig. 2). The coordinates in the
resulting uniformly-compressed state are defined by x. Throughout this
study, this uniformly compressed state is referred to as the intermediate
configuration £2; with its boundary denoted by 0%,. The displacement
vector field connecting the reference and intermediate configuration is
U = x — X, where the coordinates of the material points are related
by x; = 4X; (i = 1,2,3). Accordingly, the deformation gradient of
this homogeneous compression is F, = I + 0U/0X, where I is the
second-order identity tensor. The deformation gradient in matrix form
is

Upp+1 0 0
Fo=| o0 Upy +1 o |. .1)
0 0 Uss +1

The film and substrate are assumed to be incompressible neo-
Hookean hyperelastic materials. We allow for the possibility that the
shear moduli of the film and the substrate are different, u; # pu,
enabling our model to account for bilayer systems with a range of
mechanical properties. The strain energy density per unit reference
volume of the system is defined as

¥, = g[tr(CO) —u(@], 2.2)

expressed in terms of the right Cauchy—Green deformation tensor C, =
F{F, and its trace tr(Co) = [Uy | + 11> + [Up, + 112 + [Us 5 + 11%.

We consider a pressure loading condition on the boundary of the
reference domain, 0€,, where traction vectors T,, Tg, and T; are
imposed on the top and front faces of the cuboid bilayer system (with
the superscripts! and’ representing film and substrate, respectively).
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The traction is defined as T = P-N, where P is the first Piola—Kirchhoff
stress tensor and N = [N, N,, N;]” is the outward unit normal to the
surface in the reference configuration. We assume that the pressures are
constant, so the First Piola—Kirchhoff stress applied to the top surface is
P, = —Pye,®e,, and in-plane stresses from adjacent material in the film

and substrate are P, = —Pje; ® e; and P} = —Pje; ® e;, respectively.
Thus, the Piola—Kirchhoff tractions can be written as T, = —P, e,,
Tg = —P3f e3, and T = —P; e;. The total free energy functional II of

both strain energy density and loads is thus

(U, Py) :/ i [% [tr(Co) — tr(D] — Py[Jy — 1]] av —/ T.UdS
2

02
2.3)

where P, is the hydrostatic pressure acting as the Lagrange multiplier
to enforce the incompressibility condition, J; is the determinant of F,
and m = f, s for the film and the substrate, respectively.

Substitution of the obtained relations into Eq. (2.3) leads to

(U, Py) :/Q sy, [% (U + 12+ Uy + 1P + [Us 3 + 112 = 3]
0

= P[Uy, + MUy, + 1N[U33 + 11— 1]]dV

+/ P2U2N2dS+/ P{U;N;dS

0820 0p 0 th.fronl

+ / PSU3N,dS . (2.4
0823

0.front
We take the first variation of the functional with respect to displace-
ment field U and the Lagrange multiplier P, and integrate by parts
to remove the partial derivatives on the variations. Given that the
displacement field is U = X;[4; — 1le; + X,[4, — 1]e; + X3[4; — 1]es,
U;;; =0,( = 1,2,3). The stationary position of the energy functional is

obtained when the first variation of the energy functional vanishes,

0= 6II(U, Py) = / . [[Uu + 10[Uy + 1[Us 3 + 11— 1]5P0dV

29

i / [”f[UZ’ZH]_”fPO[Ul.I +1”U3,3+1]+P2]
d-QO,mp

X N,5U,dS

+ / : [ﬂr[Um + U= uPlUy; + 1[0, + 11+ P3f]
ag(t),fron(

X N36UzdS

+ / [;45[(/3,3 + 11— ugPlU,; + 11U + 1] + P;]
0828

0,front

X N38U5dS . (2.5)

Minimization of the potential energy functional over variations in P,
gives the constraint of incompressibility,

Uy + 1[Uys + N[Us3 + 11 = 1Ay 45 = 1. (2.6)

Minimizing the energy with respect to variations in U leads to the
following set of boundary condition equations:

0 =psdy — ug A Az Py + P,
0 =pe Ay — pe Ay Ay Py + P, 2.7)
and 0 =pgd3 — pgdi A Py + Py

These equations, using Eq. (2.6), yield the following results:
and P! =pP;, (2.8)

where we introduce the stiffness ratio f as the ratio of the shear moduli
of the film and surface, g = y;/u,. We use the Newton-Raphson method
to solve Eq. (2.8) for the exact value of transverse stretch A; that will
result from the applied pressures P, and P3f , axial stretch A;, and the
stiffness ratio f.
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Fig. 2. Kinematics of bilayer instabilities, relating the system of a film on an infinite-sized substrate in £, the reference configuration; €, the intermediate configuration under
homogeneous compression; and £2,, the deformed configuration with wrinkles of wavelength / and wave number k.

3. Perturbation deformation

Here we apply a linear stability analysis to find the buckling in-
stabilities of our bilayer system. Now the homogeneous compression is
followed by an imposed sinusoidal wrinkling deformation, transforming
the intermediate configuration, £, into the deformed configuration, Q,.
The displacement of particles in the body is u(x;,x,) = y — x, with y
and x representing the coordinates in the deformed and intermediate
configurations, respectively. The total displacement of a material point

from the reference configuration to the final deformed configuration is
u'(X) = UX) + uX) = x(X) - X + uX), (3.1)

where u(X) = u(4; X, 1,X,). Therefore, the total deformation gradient
will be

ou' JdU | ou
F-_I+-535 I+‘5i +‘5§
AL+ 0u; [0X, ouy/0X, 0
= ouy [0X, Ay +0uy/oX, O] (3.2)
0 0 A3

The total potential energy of the system is given by a functional over
the unit reference volume,

17(u‘,p)=/!2 ym[%[tr(C)—?a]—p[det(F)—1]]dV—/ T.u'dS, (3.3)
0

092
where C = FTF is the total right Cauchy—-Green deformation tensor
and p(4, X, 4, X5) = u,,[Py+P™(A; X, 1, X,)] is the Lagrange multiplier
to enforce the constraint of incompressibility, with u,, P, representing
the pressure in the uniformly compressed state and p,, P™(4,X,, 1, X>,)
(written as a function of coordinates in the reference configuration)
corresponding to the pressure required to maintain a constant volume
in the final configuration [11] and m = f,s for the film and the
substrate, respectively.

In order to obtain all variables in the intermediate configuration,
we perform a change of variables,

dv =dv/J,, where J) =1
0u[ ou; 6xk ou;

= —Fy,,. 3.4
0X,  ox, 0X, ox, K 3.4

Because the pressure is a configuration-dependent load, meaning that
the direction of the force remains normal to the top surface during
the deformation but the magnitude of the force is the same in all the
configurations [43], the following relation holds:

force=T-dS=t-ds, (3.5)

where t is the Cauchy traction in the intermediate configuration, and
ds is the surface in the intermediate configuration. The Cauchy traction
vector can be written in terms of the first Piola—Kirchhoff stress as

t=c-n=J;'PF} -n, (3.6)

where n = [n},n,,n;] is the unit normal to the surface in the interme-
diate configuration. By substituting Eqgs. (3.4) and (3.6) into Eq. (3.3),
the total potential energy of the bilayer system can be written in terms
of the quantities defined in the intermediate configuration as

1 2
H(um’Pm):Azﬂm |:§ [[u'l"!l+2u'1"’l+

+ L, + u’z"; #2411/ AR+ -3

2 2
u’z'fl + 1124

= Bylul'| +uy, +uf uy

It = Uy U]

m m
- P [“1,1 + ”2,2 + “1,1“2,2 - ”2,1”1,2]

+ Pyhouy, — P+ Pody ] do

+/(Sf P3f,13[u§+U3f]ds+/s P} s [ + U31ds,
front front

3.7)

where u; and u, are periodic functions along the x; and x, axes with
uz = 0 (Fig. 2), and u; ; denotes the derivative of the imposed wrinkling
displacement in the zth direction with respect to x;, the coordinates in
the intermediate configuration. Knowing that u is a periodic function,
/U u;; dv = 0 for i = 1,2,3. Following previous works [8,11,44,45], we
only consider the quadratic terms. We compute the first variation of the
functional with respect to u;(x), u,(x), and P(x) and integrate by parts
to find the stationary condition,

um

. _ 2
0—5”(Um,Pm)—'/~QAﬂm [ [}“1“'{',11 - P+ 1212]5'4,1"
; 13

um

2,2 m 2.m m
+[ 2 _P +’11 211]52

13

- [”'1",1 +u'2'fz]5Pm ] dv

—/ [ (L2247, = Py, = P™Iny
60,

i
m

Y12 ]
+[== + Pyl Iny | 6uy
212 2,1 1
4743

um

2,2
272
j'1)'3

+ L

= Py} = P"ny



M. Darayi and M.A. Holland

+ Ay

ot Poul,z]n|]5“;" ] ds. (3.8)

The Euler-Lagrange equations are obtained when each volume integral
is set equal to zero:

0= 22" T2 pn 3.9
=AU 22 1° (3.9)
13
Uy,
_ 2 2
0 —1212+21u;"1] P'2", (3.10)
13
and O—u’l'il+u’2"’2. (3.11)

We assume that both film and substrate are adhered to each other,
with traction and displacement continuity existing across the interface,
located at the origin (see Fig. 2). As the substrate is modeled as
infinitely thick, the displacements at the bottom (x, = —oo0) must
vanish. Thus, the boundary conditions are given as

i i i

for i=1,2.

at x, =0 and O=u; at x,=-

(3.12)

The surface integrals in Eq. (3.8) must also vanish, yielding the natural
boundary equations,

O=ﬁ+P0u;1 at x,=h
173
f
u .
0:ﬁ+P0u'2,2 P at x;=h

4. Linear perturbation analysis

We seek the unstable state of the bilayer using a linear stability
analysis for a wrinkling pattern of the form

ui'(xy, %) = f1"(x;) sin(kx;)
uy (x1, %) = fy'(x;) cos(kxy)

P"(xy,x,) = f1(xy) cos(kx,) , 4.1

where f O 8 and f3" are three unknown functions, k is the wave num-
ber in the intermediate configuration, and / = 2z /k is the wavelength
in the intermediate configuration. These quantities are related to their
reference counterparts (Fig. 2) by

ORI SRR S

= —. 4.2)
A3 o A

Substituting Eq. (4.1) into the Euler-Lagrange equations (Egs. (3.9)—

(3.11)) yields an ordinary differential equation with respect to f 7
and f;", with solution [45]:

k2 2
ui'(xy, %) = [c{"e_kxz - cg’ek"2 + cg"/l%}ge kaidaxy _ cf{'if@ekilhxz]
X sin(kx,),

k2 2
us(xy, %) = [ci"e_kxz + cg”ek"2 +cile kajAsxy o cz""ek’ll’lﬂ?] cos(kx;),

1 _
P"(xy,x) = [/lf - ﬁ] [c{”ke kxy c;’kek"Z] cos(kx;), (4.3)
13
where ¢ (m = f, s) are coefficients to be determined from the es-
sential and natural boundary conditions. From the essential boundary
condition on the bottom, Eq. ((3.12)b),

0= usl(xl,—oo) = u;(xl,—oo) — c? =0, cg =0, (4.4)
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and from the condition of displacement continuity, Eq. ((3.12)a),

Ui (x,0) =ul(x;.0) — 0= —c] +c] — ST A +cfAT Ay —c; — A2 A5,
(4.5)

u;(xl,0)=u§(x1,0)—> 0=cf+c£+c§+c§—c;—ci. (4.6)

Substituting Eq. (4.3) into the four natural boundary equations, Eq.
(3.13), we obtain four linear algebraic equations:

1 f —kh f kh f,4,2 —kiZizh £ 4,2 ki2izh
= |- — — 1A3h _ 143
2/12 [ cle cze 03/11}.36 64}.1/136 ]
173

2 2
- P [cfe_kh + céekh + c§e kayash ciekﬁlhh] 4.7)

_ |1 Fo—kh £ kh _ £32, —kA2Ash | .2, KkA2A3h
0= [W +PO] [—cle +eet —cgAiAze BN oy A Aze ]
173

2 1 £ —kh _ f kh
= |4 g | L™ -] (4.8)
11/13
g1 £ f_ f,402_ f,452 ff L f g
0=p—5 5 [~ =~ A% — latid] - pRy [e] + ¢S+ S+ cf]
173
1 C o
- W] [=& =1 45] + By [ + <] 4.9
L7173
! 1
0=p | 55 +P| [l +e—Saji+cjaihs] =B [ 4 = 5 | [e] -]
/1113 11/13

1 ) , 1

- _+p0] [3 + 3 A225] + [,1 __] =

2192 2 471 1 212 2
|:/11A3 AIA3

The essential and natural boundary conditions from Egs. (4.5)-(4.10)
form a set of six equations with six unknown constants ¢” (i = 1, 2,

i
3, 4, m = s, f, where c? = 0 and c§ = 0). To examine the stability
of the bilayer, we solve this system of equation numerically. The

corresponding system of equations has a form of

(4.10)

M [cf, cg, cg, ci,c;,cZ]T =0

(4.11)
where M is a 6 x 6 matrix given in Box I. The stationary of the
potential energy is where a non-trivial solution for this system exists, or
det(M) = 0. Utilizing Ridder’s bracketing method [46], we numerically
solve Eq. (4.11) for various axial and in-plane stretches (4;, 4;) and
shear moduli ratios (f) to consider the effects of stiffness ratio and
applied external pressure on wrinkling. The resulting critical strains
resulting from the eigenvalue problem are the unstable points of our
system, and the threshold critical values are the minimum critical strain
and its corresponding wavelength.

Note that the effect of surface and transverse pressures (P, P3f , and
P;) is accounted for in the value of transverse stretch that results
from the prescribed loading. Eq. (2.8) shows that the in-plane pressure
exerted on the film P; and the substrate P; are related by stiffness ratio
B; thus we only use the applied pressures to the film’s surfaces (P,, P3f )
to analyze the buckling behavior of the system, normalizing them both
by the shear modulus of the film ;.

5. Results and discussion

As one motivating factor for our study is to determine the effects of
CSF pressure on cortical folding, we focus on systems where the shear
moduli of the two materials are similar, 0.1 < f < 4. Considering the
range of gray matter shear modulus (0.5 kPa to 3 kPa) and physiological
CSF pressure (0.2 kPa to 2 kPa), the normalized pressure P, /y; is chosen
between 0.1 and 4. We further assume that the in-plane pressure, PSf s
is proportional to the pressure applied to the top surface, P3f =13P,.

5.1. Effect of pressure on transverse stretch

Here, we show that the surface and in-plane pressures naturally
lead to changes in the transverse stretch based on Eq. (2.8) (Fig. 3).



M. Darayi and M.A. Holland

International Journal of Non-Linear Mechanics 127 (2020) 103589

-1 1 s s -1 -2
1 1 1 1 -1 -1
_KkH KH
2 2,
[/121/12 + P0:| e MM |:Azljz +P0] i [A% + PO] e—KH [ﬂ% +PO] oKH 0 0
M= 1”3 e 173 K
12 2
— [P+ A 1B [P+ 2]t - [ﬁ‘—% + PO] A2 jzeKH [ﬁ + PO] A2 zeKT 0 0
1 1 2 2 1 2
B [_ﬁ&% + PO] B [_A‘f&% + PO] B[22+ Ry B[22+ Py “7R " p -i-p
1 1 1
| AR+ A =B [Py + 4] p [z +P0'Wz] -p [z +Po’1f/13] Pyt a7 -+ PodiAs

Box I.

This behavior arises because applying surface pressure to the bilayer
under uniaxial compression will change the stretch in the thickness
direction and require compensating changes in the transverse stretch.
We consider a combination of values for P, and P3f , including cases
where P, > P{ (sz = 0 and P{ = 0.8P, in Fig. 3, top row) and
cases in which P, < P3f (P3f = 13P, and P3f = 2P, in Fig. 3, bottom
row). Resulting transverse stretches are compared with a bilayer under
uniaxial compression with no applied surface pressure.

For a given value of axial stretch 4;, when the surface pressure
dominates (Fig. 3, top) the transverse stretch increases as the sur-
face pressure increases, and when the transverse pressure dominates
(Fig. 3, bottom) increasing the surface pressure decreases the transverse
stretch. In both cases, the transverse stretch resulting from a pressure
loading boundary deviates from the transverse stretch of a bilayer with
zero-stress boundary condition subjected to compression. This analy-
sis indicates that deformation should be expected to exhibit changes
depending on pressure loading boundary conditions.

5.2. The relative influence of stiffness ratio and pressure on the stability of
the bilayer

To investigate the effects of stiffness ratio and pressure at the top
surface on a film-substrate system, we analyzed the threshold critical
strain for 1600 combination of stiffness ratio and normalized surface
pressure (Fig. 4). We consider four regions in Fig. 4 with distinct
behaviors. In region A, the film is softer than the substrate and under
low pressure (Fig. 6a). In this regime, the stiffness ratio has almost
no effect on the stability of the system, but the stability decreases
as the normalized pressure increase from O to 2. Region B represents
the stiffer film regime with low applied pressure (Fig. 6b). Here,
the stability decreases as f§ increases. Furthermore, while increases in
pressure still decrease the stability, the pressure has less of an effect
as the film becomes stiffer. In region C, where the film is softer and
under higher pressures, the stiffness ratio maintains its dominance, with
the maximum stability of the system being found as g — 0 (Fig. 7).
In region D, with stiff films under higher pressures, the instability
of the system is dominated by the stiffness ratio when the stiffness
contrast between the film and the substrate are very low, while pressure
dominates at moderate stiffness ratios (Fig. 4, far right). Finally, we
note that discontinuities in the threshold critical strain occur at the
boundary between regions B and D, and in region C, which will be
discussed later.

5.3. Bilayer with stress-free vs. non-zero stress boundary condition

We reproduced the results of our previous study [11] for the case of
a bilayer with a stress-free boundary condition under both plane strain
(43 = 1) and uniaxial compression (4; = 1/ \/A_l ). We compared these
results with our system of a 3D bilayer under uniaxial compression

with the addition of a pressure boundary condition (Fig. 5). The thresh-
old values illustrate that the pressure boundary condition affects the
stability of a film/substrate system by decreasing the threshold strain
for the onset of instability. The results demonstrate that the system
under uniform compression with pressure applied to the top surface
is more unstable than the same system without pressure, under both
plane strain compression (Fig. 5a) and uniaxial compression (Fig. 5b).
The effect of pressure is more significant on systems with stiffer films
(B > 1) than on systems with softer films (8 < 1).

5.3.1. Influence of stiffness ratio on stability in the presence of pressure

In order to examine the influence of stiffness ratio on the stability,
we hold the pressure constant and calculate the critical strain for a
range of normalized wavelength (L, = L/H;) for various values of
stiffness ratios g (Figs. 6 and 7). First, we consider the case where
the pressure is P,/u; = 0.5 (regions A and B in Fig. 4). In the soft-
film regime (region A), the threshold strain values are the same for
different stiffness ratios, meaning that the stability of the system does
not depend on the stiffness ratio (Fig. 6a). However, in region B, the
system becomes much more unstable as the film gets stiffer than the
substrate (Fig. 6b).

Next, the same analysis is performed with a similar range of stiffness
ratio, except for a pressure loading which is higher than the film’s
stiffness (P,/u; = 3.5, regions C and D in Fig. 4). The results show
that the stiffness ratio strongly affects the stability of the bilayer in
the cases of both soft and stiff films (Fig. 7). This is notable, as
previous research on bilayers without surface pressure has indicated
that instability properties are the same for all soft-film systems (f <
1) [11]. We also note that the effect of stiffness is not monotonic, with
the stability of the bilayer increasing as the stiffness ratio approaches
one, and decreasing as the stiffness ratio increases or decreases from
there.

5.3.2. Influence of pressure on the stability

In the previous section, we considered two cases for the normalized
pressure, P,/u; = 0.5 and P,/u; = 3.5, and discussed the effect of soft
and stiff films. Here we consider a broader range of normalized pressure
values (Fig. 8). As seen in region A of Fig. 4, soft films with P,/u; <2
show no effect from the stiffness ratio. Instead, their buckling behavior
is dominated by the effects of pressure (Fig. 8a); increasing the pressure
decreases the stability of the bilayer significantly. As the film gets stiffer
than the substrate (region B of Fig. 4), both increasing pressure and the
stiffness ratio decrease the threshold critical strain values.

The buckling behavior of the bilayer under compression changes
strikingly as the pressure increases, P,/u; > 2 (Fig. 4, region C and D),
with an instantaneous increase in the threshold strains (Fig. 8b). This
implies that an increase in normalized pressure temporarily increases
the buckling stability of the system, while further increases in pressure
make the system more unstable.
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5.3.3. Discontinuous variation of threshold strains observed in soft film
regime

The threshold strain diminishes to its minimum value continuously
as pressure increases in both regions A and B. In Section 5.3.2, we
discussed that a sudden increase in the threshold strains arises when
P,/u; becomes greater than 2. In region D, where the film is stiffer
than the substrate, the buckling resistance of the bilayer increases when
P,/u; > 2, and it can be seen that the threshold strains suddenly jump
from its minimum. This is because in this region, our analytical solution
predicts that the system will approach, but not reach, an unstable point
under low levels of compression (4; 5 1). Instead, the unstable point
is predicted to occur under low levels of tension (A; Z 1). Further
investigation, including finite element and/or experimental approaches
might be necessary to reveal the actual nature of the instability in this

region. This phenomenon does not occur precisely at P,/u; = 2 in the
regime of soft films (Fig. 4, region C), but rather at higher values of
pressure. Also, in region C, we observe that as the stiffness of the film
increases (the stiffness ratio approaches one), the bilayer system will
endure higher amounts of pressure before buckling happens.

5.3.4. Regions of pressure-insensitivity

As the stiffness ratio increases, the threshold strain appears to
approach an asymptotic value (Figs. 8a and 8b). When we expand the
range of stiffness ratios to 1 < # < 100, this becomes more clear. As the
stiffness contrast of the system increases, it becomes very unstable, and
the effect of applied pressure on the instability seems to vanish. This
shows that the effect of pressure is only relevant for sufficiently low
stiffness contrast, g < 10 (Fig. 9). This is similar to the findings of our
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previous study that concluded that loading mode only affects stability
when g <10 [11].

6. Conclusion

Although the effect of stiffness ratio in a bilayer system has been
heavily studied, there has been little investigation into the effect of
applied pressure on stability. In this study, we investigated the wrin-
kling response of an inhomogeneous bilayer structure, consisting of a
dissimilar film and a substrate, under varying levels of applied surface
pressure. We focused on bilayered materials with similar mechanical
properties, as we intended to investigate the influence of the cere-
brospinal fluid pressure on the instabilities of the brain tissue. We
applied a variational method to minimize the free energy functional for
the 3-D bilayer model and obtained the equations for the eigenvalue
problem. Using a linear stability analysis of a film/substrate bilayer
under compression, we showed that the pressure plays a role in the
instability of the system. In a brief comparison, we show that the bilayer
system under uniform compression with pressure applied to the top
surface is always more unstable than the same system under uniaxial
compression or plane strain compression. Our study indicates that
when the film is softer than the substrate, the instability of the system
generally does not depend on the stiffness ratio. On the other hand,
the effects of pressure on the instability vanish when the ratio between

the stiffness of the film and substrate exceeds 10. Also, the pressure
loses its influence when the stiffness ratio approaches one. Finally, we
identified a discontinuity in threshold strains when the pressure is more
than two times the film’s stiffness, indicating an instant increase in
the stability of the film/substrate bilayer. The results of this linearized
stability study show the significance of surface pressure effects on the
bilayer buckling behavior, and the need to account for these effects
particularly in systems with sufficiently low stiffness contrast.
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