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Speeding up particle slowing using shortcuts to adiabaticity
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We propose a method for slowing particles by laser fields that potentially has the ability to generate large
forces without the associated momentum diffusion that results from the random directions of spontaneously
scattered photons. In this method, time-resolved laser pulses with periodically modified detunings address an
ultranarrow electronic transition to reduce the particle momentum through repeated absorption and stimulated
emission cycles. We implement a shortcut to adiabaticity approach that is based on Lewis-Riesenfeld invariant
theory. This affords our scheme the advantages of adiabatic transfer, where there can be an intrinsic insensitivity
to the precise strength and detuning characteristics of the applied field, with the advantages of rapid transfer
that are necessary for obtaining a short slowing distance. For typical parameters of a thermal oven source that
generates a particle beam with a central velocity on the order of meters per second, this could result in slowing
the particles to near stationary in less than a millimeter. We compare the slowing scheme to widely implemented
slowing techniques that rely on radiation pressure forces and show the advantages that potentially arise when the
excited-state decay rate is small. Thus, this scheme is a particularly promising candidate to slow narrow-linewidth
systems that lack closed cycling transitions, such as occurs in certain molecules.
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I. INTRODUCTION

For decades, laser cooling atoms and molecules to near
absolute zero has been at the forefront of research into the
interactions of light and matter [1–4]. Ultracold ensembles
provide test beds for exploring fundamental physics [5], can
create low-temperature superfluids such as Bose-Einstein and
fermionic condensates [6,7], and can be used as platforms
for quantum simulators [8]. Since atom and molecule sources
typically produce particles with high velocities, it is usually
necessary to first perform a precursor stage that removes a
substantial fraction of the kinetic energy associated with the
random thermal motion, as shown in Fig. 1(a). An assort-
ment of particle slowing methods have been developed for
this precursor stage, including Stark and Zeeman decelera-
tors [9–12], centrifuge decelerators [13], electrostatic trapping
methods [14], frequency-chirped laser slowing [15], white
light slowing [16,17], and angled slowing [18], among oth-
ers. Once slowed, the particles may possess sufficiently low
kinetic energy that they can be efficiently loaded into a finite-
depth electromagnetic trap [4], such as a magneto-optical
trap (MOT), and then be cooled using light [19,20], cooled
through evaporation that redistributes energy through two-
body collisions [21], or sympathetically cooled with another
species [22].

The ability to produce a large number of ultracold particles
is made difficult by practical shortcomings of slowing meth-
ods, such as a large slowing distance that requires significant
physical space, or substantial spread in the final velocities
of the particles. Furthermore, the main hindrance to slowing
particles that lack closed cycling transitions is that there may
be leakage of population to dark electronic states that are

not coupled with the fields that perform the laser cooling
and slowing, resulting in the loss of the particle from the
system. Even if this does not occur, spontaneous emission of
many photons creates momentum diffusion due to the random
emission direction, and this results in heating and a finite limit
on the achievable temperatures. These issues make methods
that increase slowing forces and minimize the number of scat-
tering events through enhanced control of tailored coherent
dynamics, such as sawtooth-wave adiabatic passage (SWAP)
cooling [23–28], the Allen-Eberly scheme [29], stimulated
Raman adiabatic passage (STIRAP), the adiabatic passage
force, and the bichromatic force [30–35] enticing candidates
to consider for particle slowing. However, one concern is that
in order to satisfy an intrinsic adiabaticity condition, the time
evolution should typically be slow and this could result in a
long stopping time and associated large stopping distance.

In order to speed up adiabatic processes while still achiev-
ing substantial population transfer, there has been a growing
interest in so-called “shortcuts to adiabaticity” [36], i.e., pro-
cesses that are able to transform systems from an initial
quantum state to the same final quantum state as an ideal
adiabatic process but in much less time. In this paper, we
present a fast, simple, and robust particle slowing scheme that
employs one such shortcut method: inverse engineering based
on Lewis-Riesenfeld invariants (LRI) [37–42]. The slowing
scheme involves driving sped-up transitions from a stable
ground state to an excited state and back using counterprop-
agating, pulsed lasers with intensity and detuning profiles
prescribed by the LRI shortcut method, as shown schemati-
cally in Fig. 1(b). By applying this protocol many times, the
particle can in principle be subject to the impulse of many
photon momenta without emitting spontaneous photons. In
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FIG. 1. (a) Schematic of the normalized velocity distributions P(v) of the particle beam before (solid) and after (dashed) the slowing
process. We characterize the initial distribution by a Gaussian function with a standard deviation σv and mean velocity v̄. (b) Particles exit an
atom or molecule source and are collimated into the slowing region. The spatial setup of the sequentially pulsed counterpropagating lasers,
which have time-dependent frequencies ω1(t ) and ω2(t ), and a sample particle with velocity v in the laboratory frame are displayed in the
slowing region. The circular inset shows the two-level internal structure of each particle.

Sec. II, we further motivate the use of our slowing scheme.
In Sec. III, we outline the general theory of LRI-based inverse
engineering. In Sec. IV, we present our theoretical model and
derive the laser intensity and detuning profiles that result from
the LRI shortcut method. In Sec. V, we study the resulting
classical forces, slowing times, and slowing distances, demon-
strating that we are able to generate higher forces than what
is achieved with radiation pressure as employed in methods
such as Zeeman slowing. In Sec. VI, we simulate particle
slowing dynamics by applying our method to various atomic
and molecular species with narrow linewidth transitions. In
Sec. VII, we study our slowing scheme’s robustness to various
systematic errors that one may encounter when implementing
the protocol in an experimental setting, and compare these re-
sults to slowing with π -pulse transitions and SWAP slowing.

II. MOTIVATION FOR THE SPEED-UP PROTOCOL

The concept of coherent transfer between quantum states is
a ubiquitous component of most quantum control techniques.
The most basic way to achieve such a transfer between two
electronic quantum states is to apply a resonant, coherent light
pulse for a time t = π/�, where � is the Rabi frequency.
While this Rabi-flopping “π -pulse” method completely trans-
fers population, at least in principle, it is not robust to small
errors in �, the frequency ω of the light source, or coupling
to other states outside of the two-level manifold. Moreover,
this method is of limited utility when the goal is to transfer
population in many particles that possess a distribution of
velocities.

A robust solution to these problems is to chirp the laser
frequency through the resonance, as was shown by Landau
and Zener in their theory of adiabatic passage [43]. However,
such a method is limited in the sense that the laser chirp-
ing must be adiabatic, i.e., sufficiently slow compared to the
strength of the coupling �. Another potentially detrimental
problem that arises from this slow evolution is the particle’s
tendency to relax from the quantum state with higher energy
to the quantum state with lower energy through the process
of spontaneous emission, which would disturb the coherent
slowing process and introduce unwanted momentum diffu-
sion. This motivates transferring as quickly as possible, and
thereby satisfying the requirements, i.e., � � �, for adiabatic
rapid passage [44]. Furthermore, in the neighborhood of the

resonance, there are significant oscillations in the populations
that result from the precession of the Bloch vector as it travels
along the Bloch sphere [45,46], which can complicate the
amount of population transfer.

As we will show, our derivation of an alternative scheme
for coherent transfer, by use of LRI theory, ameliorates every
issue we have discussed thus far. We drive a different path
along the Bloch sphere (see Sec. IVD) in order to speed up
the transfer time and remove the high-frequency population
oscillations while utilizing the same amount of laser power.
But perhaps the most appealing feature of our scheme is the
ability to exactly transfer population between quantum states
in a finite time, which in principle permits high-fidelity slow-
ing of a particle with arbitrarily high momentum to near rest.

III. LEWIS-RIESENFELD INVARIANT-BASED
INVERSE ENGINEERING

In this section, we present a brief overview of the LRI
shortcut method. This approach allows us to derive specific
laser intensity and detuning profiles that can be used to gener-
ate fast dynamics with the same results as adiabatic processes.

A dynamical invariant Î (t ) is a Hermitian operator with a
time-independent expectation value, i.e.,

〈Î〉 = 〈�(t )|Î (t )|�(t )〉 = const, (1)

where |�(t )〉 is the state vector evolved by the Hamiltonian
Ĥ (t ). It can be shown that the states |ψn(t )〉, defined by a
gauge transformation

|ψn(t )〉 = eiαn (t )|φn(t )〉 (2)

of the eigenbasis |φn(t )〉 of Î (t ), are each a solution to the
time-dependent Schrödinger equation. In Eq. (2), the “Lewis-
Riesenfeld phases” αn(t ) are defined as

αn(t ) = 1

h̄

∫ t

t0

〈φn(t
′)|ih̄ ∂

∂t ′
− Ĥ (t ′)|φn(t

′)〉dt ′, (3)

where t0 is some initial reference time and h̄ is the reduced
Planck constant. It follows that a general solution |�〉 to the
Schrödinger equation can be decomposed as

|�(t )〉 =
∑
n

cn|ψn(t )〉 =
∑
n

cne
iαn (t )|φn(t )〉, (4)
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FIG. 2. Left: frequency diagram of an isolated subset of states in the laboratory frame. The laser frequencies ωi( p̄, t ) [see Eq. (9)] are
dynamically updated according to the solution derived from the Lewis-Riesenfeld invariant shortcut method to promote quick, coherent transfer
from (a) |g, p̄〉 to |e, p̄− h̄k〉, followed by (b) |e, p̄− h̄k〉 to |g, p̄− 2h̄k〉. Right: experimental parameters and particle dynamics over a |p̄〉 →
| p̄− 2h̄k〉 sequence of period 2T . (c) Square-pulse Rabi frequency profiles �1(t ) (red) and �2(t ) (blue) with amplitude � [see Eq. (28)].
(d) Lewis-Riesenfeld detuning profile δ(t ) [see Eq. (29)] with cutoff frequency±δcut [see Eq. (42)] for each laser. (e) Ideal excited-state fraction
Pe dynamics. (f) Ideal average momentum 〈 p̂〉 dynamics. Parameters are T = 0.032/ωr, � = 100ωr, δcut = 250ωr, � = 0, p̄ = 100h̄k, and
β = 0.85π/2.

where cn are time-independent amplitudes [37]. From Eq. (4),
the unitary time-evolution operator in the invariant basis is

Û (t ) =
∑
n

eiαn (t )|φn(t )〉〈φn(t0)|, (5)

which can be used to solve for the Hamiltonian:

Ĥ (t ) = ih̄
∂Û (t )

∂t
Û †(t ). (6)

These results indicate numerous benefits for this method.
In particular, if Ĥ (t ) and Î (t ) are designed to commute at t0
and some final time t f , i.e.,

[Ĥ (t0), Î (t0)] = [Ĥ (t f ), Î (t f )] = 0, (7)

then the final state |�(t f )〉 will maintain the initial popula-
tions for each eigenstate [36], and we therefore recover the
results of an adiabatic process without the requirement of slow
time evolution. Also, by combining Eqs. (5) and (6), we can
explicitly inverse engineer the Hamiltonian in the invariant
basis:

Ĥ (t ) = − h̄
∑
n

α̇n|φn(t )〉〈φn(t )|

+ ih̄
∑
n

|∂tφn(t )〉〈φn(t )|. (8)

Equations (6)–(8) define what is meant by invariant-based
inverse engineering. Equating the Hamiltonian in the invariant
basis to the original Hamiltonian creates a map between the
physical parameters and the auxiliary parameters that define
the invariant operator. In Sec. IVC, we will use this procedure
to derive the laser intensity and detuning profiles for each
single-photon transition in our slowing scheme.

IV. MODEL

We consider the experimental setup depicted in Fig. 1(b).
As shown in the circular inset, we consider each particle to

possess two internal electronic states labeled |g〉 and |e〉 with
an energy separation of h̄ωa, where ωa is a frequency assumed
to be in the optical domain. The excited state |e〉 can decay to
the ground state |g〉 at a rate given by the natural linewidth �.
We track motion along one dimension, for which the particle
has position and momentum operators ẑ and p̂. A thermal
beam of particles exits an atom or molecule source (e.g., an
oven) at a high average velocity v̄ and potentially large veloc-
ity spread σv . The goal is to quickly remove kinetic energy
from the particles such that an appreciable fraction of the
final distribution is centered on zero velocity [see Fig. 1(a)].
In order to achieve this goal, the particle beam sequentially
interacts with pulsed slowing lasers aligned parallel to the
beam axis upon entering the slowing region. The essential
dynamics is displayed in Fig. 2 and is as follows: The coun-
terpropagating laser (laser 1) is switched on, and the particle
absorbs a photon and transits to |e〉. Then, laser 1 is switched
off as the copropagating laser (laser 2) is switched on, and the
particle emits a photon by stimulated emission, transitioning
back to |g〉. By conservation of momentum, the particle has
experienced an impulse of 2h̄k by the end of the sequence. By
repeating many times, we can remove many photon momenta
from the particle without the emission of spontaneous pho-
tons, contingent that the operation occurs quickly compared
to any decoherence processes.

We set the Rabi frequency of each laser �i(t ) (with
i = 1, 2) to follow a square pulse temporal profile. The peak
value � [see Fig. 2(c)] will be derived from the LRI shortcut
method. This choice of waveform relaxes the requirement of
exactly aligning the centers of periodic Rabi frequency and
laser detuning profiles in time as is needed in other proto-
cols [33,34,47], and thus makes the process more robust. We
parametrize the instantaneous frequencies ω1(t ) and ω2(t ) of
each laser field in the form

ω1( p̄, t ) = ωa − δ(t ) − kv̄ + ωr,

ω2( p̄, t ) = ωa + δ(t ) + kv̄ − 3ωr, (9)
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so that, after accounting for the mean particle velocity v̄ =
p̄/m, each laser is resonant with the transitions displayed in
Figs. 2(a) and 2(b) when the detuning δ(t ) is zero. We will
derive an explicit form for δ(t ) from the LRI shortcut method.
Here, ωr ≡ h̄k2/2m is the recoil frequency of the transition,
i.e., h̄ωr is the kinetic energy obtained by an atom at rest
from the absorption of a single photon, and m is the particle
mass. Also, we have made the typical approximation that the
wave number ki(t ) of each laser is equal to the constant k at
all times, even though the frequency is varying. It should be
pointed out that although we have chosen specific signs for
δ(t ) in each laser frequency ωi( p̄, t ) [see Eq. (9)], these are
not the only conventions that can be employed to result in
slowing.

A. System dynamics

When applied to a system with momentum p̄ = mv̄, the
Hamiltonian takes the general form

Ĥ ( p̄, t ) = Ĥself + Ĥint( p̄, t ), (10)

where

Ĥself = p̂2

2m
+ h̄ωa

2
σ̂ z (11)

is the particle’s free-evolution Hamiltonian. The quantity
σ̂ z ≡ |e〉〈e| − |g〉〈g| is the usual Pauli spin matrix. Under the
dipole and rotating-wave approximations, the particle-field
interaction Hamiltonian Ĥint( p̄, t ) in the Schrödinger picture
is given by

Ĥint( p̄, t ) = h̄

2
σ̂−[�1(t )e

i[kẑ+η1( p̄,t )]

+�2(t )e
−i[kẑ−η2( p̄,t )]] + H.c., (12)

where σ̂− ≡ |g〉〈e| is the lowering operator. The quantity
ηi( p̄, t ) is the accumulated phase from an initial time t0 for
each laser field [see Eq. (9)]:

ηi( p̄, t ) ≡
∫ t

t0

ωi( p̄, t
′)dt ′. (13)

In order to capture the relevant physics in the first half of
the sequence, we omit the second term in Eq. (12) (since laser
2 is off) and transform into the interaction picture defined by
the Hamiltonian

Ĥ0(t ) = p̂2

2m
+ h̄

2
[ωa − δ(t )]σ̂ z. (14)

The resulting interaction picture Hamiltonian Ĥ1( p̄, t ) is

Ĥ1( p̄, t ) = h̄δ(t )

2
σ̂ z + h̄�1(t )

2
(σ̂− exp{i[kẑ

+ k(v̂ − v̄)t + ωrt]} + H.c.), (15)

where v̂ = p̂/m is the velocity operator. The interaction
picture Hamiltonian for the second half Ĥ2( p̄, t ) is found
by the substitutions 1 → 2, δ(t ) → −δ(t ), k → −k, and
ωr → −3ωr . After the complete evolution with Ĥ1( p̄, t ) fol-
lowed by Ĥ2( p̄, t ), the momentum p̄ is updated to p̄− 2h̄k for
the laser detunings [i.e., see Eq. (9)] under the assumption that
the particle momentum has been changed accordingly, and the
process repeated.

We incorporate the effects of incoherent dynamics due to
spontaneous emission and its associated recoil by evolving the
density matrix operator ρ̂ of the system under the quantum
master equation

d ρ̂

dt
= 1

ih̄
[Ĥ, ρ̂] + L̂(ρ̂), (16)

where the Lindblad superoperator L̂ is

L̂(ρ̂) = −�

2

[
σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂− − 2

5
(3 σ̂−ρ̂σ̂+

+ eikẑσ̂−ρ̂σ̂+e−ikẑ + e−ikẑσ̂−ρ̂σ̂+eikẑ )
]
. (17)

Here, � is the optical transition linewidth, and, for conve-
nience, we have approximated the continuous dipole radiation
pattern as allowing only the three discrete recoil possibilities
that correspond to whole intervals of photon quanta. This
implies possible impulses �p of −h̄k, 0, and h̄k along the
slowing axis with associated probabilities of 1

5 ,
3
5 , and

1
5 ,

respectively [48].

B. Eigensystem in a momentum subspace

Our next task is to find appropriate forms for the Rabi
frequencies �i(t ) and detuning δ(t ) by following the short-
cut protocol. In order to do this, we will perform analytical
calculations for transfer 1 in a small, isolated subsetW ( p̄) of
the full composite Hilbert space:

W ( p̄) = {|g, p̄〉, |e, p̄− h̄k〉} = {|G〉, |E〉}. (18)

The subset

W ′( p̄) = {|e, p̄− h̄k〉, |g, p̄− 2h̄k〉} (19)

is used to calculate the corresponding quantities for transfer
2 [see Fig. 2(b)], but we do not explicitly show the derivation
here as it follows in a straightforward manner. We expect
the resulting shortcuts to be useful for application to the
entire Hilbert space because the dynamics that result from the
interaction with each traveling wave are relatively simple,
i.e., there are no multiphoton resonances that would cause
population transfer to other quantum states [49]. In Sec. VI,
we apply the resulting Rabi frequencies and laser frequencies
from this calculation to the entire system in a numerical
simulation.

The interaction Hamiltonian Ĥ1(t ) written in the subspace
W ( p̄) is given by

Ĥ (W )
1 (t ) = h̄δ(t )

2
σ̂ z
W + h̄�1(t )

2
σ̂ x
W , (20)

where σ̂ z
W ≡ |E〉〈E | − |G〉〈G| and σ̂ x

W ≡ |G〉〈E | + |E〉〈G|. As
we will show in Sec. IVC, we cast the invariant eigenvectors
in a similar form as the eigenvectors of Ĥ (W )

1 (t ) to apply the
LRI shortcut method. The eigenvalues of Ĥ (W )

1 (t ) are

E±(t ) = ± h̄�̃1(t )

2
, (21)
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where �̃1(t ) ≡
√

δ(t )2 + �1(t )2 is the generalized Rabi fre-
quency. The corresponding instantaneous eigenvectors are

|+〉 = cos

(
χ

2

)
|E〉 + sin

(
χ

2

)
|G〉,

|−〉 = sin

(
χ

2

)
|E〉 − cos

(
χ

2

)
|G〉, (22)

with the mixing angle defined by cosχ ≡ δ(t )/�̃1(t ).
In general, if a system begins in an eigenstate of the Hamil-

tonian and the time evolution obeys the conditions of the
adiabatic approximation, the state of the particle will sim-
ply adiabatically follow, only picking up an inconsequential
global phase. Therefore, if one chooses experimental param-
eters such that the particle is initialized in one of the dressed
states and the dressed state adiabatically evolves from |G〉 to
|E〉 (or vice versa), then we can change the particle momen-
tum by h̄k. However, these adiabatic states must evolve slowly
to satisfy the adiabatic condition that arises from Landau-
Zener theory. We shall now speed up this adiabatic passage by
constructing a driving Hamiltonian based on the LRI shortcut
method.

C. Deriving detuning profiles from the auxiliary equations

We are now in a position to design an invariant operator in
order to end up with the desired final populations using the
formalism established in Sec. III. We provide the details of
this process in Appendix and give the important results here.

We parametrize the eigenvectors of the invariant Î (t ) in
parallel to Eq. (22):

|φ+(t )〉 = cos

(
γ

2

)
eiβ |E〉 + sin

(
γ

2

)
|G〉,

|φ−(t )〉 = sin

(
γ

2

)
|E〉 − cos

(
γ

2

)
e−iβ |G〉, (23)

where γ = γ (t ) and β = const are auxiliary angles. We have
introduced the unitary phase eiβ parametrized by β as an addi-
tional degree of freedom to explore with the shortcut protocol
(see Sec. IVD). From Eqs. (3) and (8), the auxiliary equations
are

γ̇ = �1(t ) sin β, (24)

δ(t ) = �1(t ) cot γ cosβ, (25)

which must satisfy the boundary conditions

γ (t0) = 0, γ (t f ) = π (26)

in order to align |φ−(t )〉 with |G〉 and |E〉 at the initial and
final times t0 and t f , respectively. Note that the choice of the
invariant eigenvector does not affect the resulting form of�(t )
and δ(t ).

Together, Eqs. (24)–(26) directly determine the experimen-
tal parameters δ(t ) and �1(t ). In the general case of �1(t ) �=
const, we would be faced with the task of choosing, from
an infinite set of Hamiltonians, a particular form of γ (t ) and
β(t ) that satisfies Eqs. (24)–(26) [38]. However, we will now
simplify the discussion by restricting the solution to the form
�1(t ) = � = const, whereby the auxiliary equations (24) and
(25) can be solved analytically, which we now show. Let us

label the time required to perform the shortcut as T . Defining
t0 = 0 (and therefore t f = T ), the auxiliary equation for γ

using γ (0) = 0 yields

γ (t ) = (� sin β )t . (27)

The other boundary condition γ (T ) = π [see Eq. (26)] re-
quires that

π = �T sin β. (28)

Combining Eqs. (27) and (28) and substituting the result into
Eq. (25), we find that

δ(t ) = π cot β

T
cot

(πt

T

)
. (29)

We provide a plot of δ(t ) for a particular choice of β and T in
Fig. 2(d).

We have now found a particular Hamiltonian that will
drive the transition |G〉 → |E〉 with dynamics that need not
be adiabatic. The analogous solution can be used for laser
2 to drive the transition |e, p̄− h̄k〉 → |g, p̄− 2h̄k〉 using
precisely the same theoretical formalism. The method may
be optimized further with respect to different cost functions
(e.g., see Ref. [50]).

D. Bloch sphere trajectories

Different choices of the auxiliary angle β [see Eq. (23)]
can result in very distinct dynamics as the particle is trans-
ferred from |G〉 to |E〉, which can be seen by investigating the
associated Bloch sphere trajectories. The resulting trajectories
under the interaction Hamiltonian Ĥ1(t ) [see Eq. (20)] are
purely longitudinal and are parametrized by the azimuthal
angle φ(β ) = π + β. For a more appropriate comparison,
we instead work in the time-independent interaction picture
defined by the self-energy of the particle [see Eq. (11)], which
results in the interaction picture Hamiltonian

ĤI (t ) = h̄�

2
(eiθ (t )|E〉〈G| + H.c.) (30)

in the subspaceW (p) [see Eq. (18)], where

θ (t ) ≡
∫ t

t0

δ(t ′) dt ′ (31)

is the accumulated phase of the detuning δ(t ) derived from the
LRI shortcut method [see Eq. (29)].

Bloch sphere trajectories for three choices of β are dis-
played in Fig. 3. For the sake of comparison, we chose to fix
the Rabi frequency� across all trajectories so that the slowing
periods T are completely determined by β [see Eq. (28)]. A
choice of auxiliary angle satisfying β = (r + 1

2 )π for integer
r minimizes the slowing period T ; this is simply resonant
Rabi flopping [δ(t ) = 0]. For r = 0, i.e., a resonant π pulse,
the system follows the purely longitudinal Bloch sphere tra-
jectory (yellow, dotted curve). This choice of β can lead to
experimental challenges, such as inefficient transfer due to
sensitivity to errors in � (see Sec. VII). On the other hand,
a choice of auxiliary angle satisfying β ≈ sπ for integer s
causes T to tend to infinity, as in an adiabatic process. We ap-
proximate the choice s = 0 by using the very small auxiliary
angle β = 1

40
π
2 , which results in a trajectory that precesses
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FIG. 3. Bloch sphere trajectories (thick curves) between the ini-
tial state |G〉 and final state |E〉 parametrized by the auxiliary angle
β [see Eq. (23)] in the free-energy interaction picture [see Eq. (30)].
We set the Rabi frequency � to be equal for all trajectories, and the
slowing periods T are given by Eq. (28). The cutoff detunings for
β = 1

40
π

2 and β = 1
2

π

2 are δcut = 318� and δcut = 225�, respectively
[see Eq. (42)].

significantly (blue, solid curve). This choice also comes with
complications, such as a high chance of spontaneous emission
and a large slowing distance. We take all of these considera-
tions into account and choose from the range 0 
 β < π/2
in our slowing simulations in Sec. VI, which results in an
intermediate trajectory (red, dashed-dotted curve).

V. SLOWING DYNAMICS IN CLASSICAL PHASE SPACE

The usefulness of the LRI shortcut method is ultimately
determined by whether or not it can achieve a practical device
that is competitive with the current state of the art. With this in
mind, we calculate the resulting classical force, slowing time,
slowing distance, scattering rate, and number of scattered
photons of this method and compare the results to commonly
implemented processes that rely on radiation pressure (RP),
such as a Zeeman or Stark decelerator. These quantities are
derived below and collected in Table I.

We use Eq. (28) in order to calculate the classical force FLRI
exerted on the particle during each sweep:

FLRI = h̄k

T
= �h̄k sin β

π
. (32)

The classical force from RP is given by

FRP = �h̄kρee �
�h̄k

2
, (33)

where ρee is the excited-state fraction, and the inequality is
saturated at infinite laser power [4].

Next, we consider the time required to transfer the particle
to zero momentum. We assume the particle begins the slowing
process in the state |g, p̄0〉. It receives an impulse of h̄k against
its motion after every sweep for a total time

�tLRI = T p̄0/h̄k = πζ0

� sin β
, (34)

where ζ0 ≡ p̄0/h̄k. Assuming that the force FRP remains con-
stant, the slowing time for RP is

�tRP = ζ0

�ρee
(35)

since approximately one scattered photon is required per
slowing photon.

We now calculate the distance a particle in the final mo-
mentum wave packet travels in physical space throughout
the slowing process in order to reach zero momentum. We
approximate p(t ) to be linear:

p(t ) ≈ p̄0 − h̄kt/T (36)

so we may write the slowing distance as

�xLRI = pavg
m

�t = ωrT ζ 2
0

2π
λ, (37)

where pavg = p̄0/2 is the time-averaged momentum and λ

is the wavelength of the transition. Because laser power is
typically the limiting experimental factor, we use Eq. (28) to
rewrite Eq. (37) as

�xLRI = ωrζ
2
0

2� sin β
λ. (38)

Using Eq. (33), we can obtain a similar expression for the RP
slowing distance:

�xRP = ωrζ
2
0

2πρee�
λ. (39)

Comparing the LRI and RP results, we find that our scheme is
able to exert higher forces, and therefore slow particles in less
time and in a shorter distance, with fewer scattered photons
when � sin β � π�ρee. For choices of sin β and ρee on the
order of unity, this amounts to the limit � � �.

In the LRI analysis, we have not incorporated any effects
due to dissipation. Since the slowing mechanism is purely co-
herent in nature, it would be ideal if there were no spontaneous
emission events. This can be achieved in several ways: the
use of ultranarrow-linewidth transitions, applying the entire

TABLE I. Comparison of slowing dynamics between the shortcut slowing scheme based on Lewis-Riesenfeld invariants and radiation-
pressure slowing. If � sin β � π�ρee, the shortcut slowing scheme results in larger forces, shorter slowing times, shorter slowing distances,
and fewer scattered photons than RP.

Slowing method Force F Slowing time �t Slowing distance �x Scattering rate Rs Scattered photons N

Lewis-Riesenfeld
�h̄k sin β

π

πζ0

� sin β

ωrζ
2
0

2� sin β
λ

�

2

�

�

π

2 sin β
ζ0

Radiation pressure �h̄kρee
ζ0

�ρee

ωrζ
2
0

2πρee�
λ �ρee ζ0
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slowing protocol in a time shorter than the lifetime of the
excited state (which typically requires extremely high laser
power but also results in very small slowing distances), or
applying the shortcut protocol on a Raman transition between
internal ground states. The last method is beyond the scope of
this work, but may extend the application of this protocol to
other atomic and molecular species. Nevertheless, the scatter-
ing rate Rs of each slowing technique is approximately

Rs
LRI ≈ �

2
; Rs

RP ≈ �ρee �
�

2
(40)

since the particles in the LRI scheme are in the excited state
for roughly half of the time, suggesting that the scattering
rates are on the same order. However, the expected number
of scattered photons N = Rs�t for each technique is

NLRI ≈ �

�

π

2 sin β
ζ0; NRP ≈ ζ0, (41)

which means that the LRI scheme generates fewer scattered
photons when � sin β � �.

VI. SLOWING EXAMPLES

By repeatedly driving the transition |g, p̄〉 → |e, p̄− h̄k〉
followed by |e, p̄− h̄k〉 → |g, p̄− 2h̄k〉 according to our
shortcut solution, we now show that we are able to slow a sig-
nificant number of particles when the full composite Hilbert
space is taken into account. After each pair of transitions, we
update the momentum p̄ to p̄− 2h̄k in the laser frequencies
[see Eq. (9)], as we assume that the initial population in |g, p̄〉
has moved to |g, p̄− 2h̄k〉. Note that this procedure results in
the slowing of a pulse, as opposed to a steady-state ensemble,
of particles. We assume that the jump in laser frequency at
the end of each ramp is perfectly diabatic. Since there is very
little population transfer when δ(t ) � �, we do not track
the detuning profile’s asymptotic behavior, as this can cause
numerical errors. We thus take δ(t ) to be equal to a constant
±δcut in these regions, defined by

δ(t < t0 + tcut ) = −δ(t > t f − tcut ) = δcut (42)

for some cutoff time tcut, as shown in Fig. 2(d). We evolve
the master equation [Eq. (16)] using the method of quantum
Monte Carlo wave functions [48]. This involves unraveling
the master equation into trajectories based on stochastic sim-
ulation of spontaneously emitted photons.

Figure 4 presents the momentum distribution of an ensem-
ble of particles before (blue) and after (orange) application of
our slowing scheme over 100 sweeps in the case of purely co-
herent (left column) and dissipative (right column) dynamics.
In the dissipative case, we chose � = ωr as an order-of-
magnitude estimate for a narrow-linewidth transition. We
chose to initialize the momentum distribution as either a
momentum eigenstate at 100h̄k (top row) or a Gaussian pro-
file with an average momentum 〈p̂〉 = 100h̄k and a standard
deviation of σp,0 = 10h̄k (bottom row), which typically cor-
responds to an initial average particle speed on the order of
1 m/s. While actual physical systems may have much higher
initial particle beam speeds, this choice sufficiently demon-
strates the slowing effects of our protocol. We have chosen
to use the average momentum of the Gaussian as the initial

FIG. 4. Initial (blue) and final (orange) momentum distributions
P(p) of a system subject to the slowing protocol. The system is
initialized in the internal ground state |g〉 and with a momentum dis-
tribution of either the 100h̄k eigenstate (top row) or a Gaussian state
with average momentum 〈 p̂〉 = 100h̄k and width σp = 10h̄k (bottom
row). The excited-state linewidth is � = 0 in (a) and (c), and � = ωr

in (b) and (d). Further details are discussed in the text. Other parame-
ters are � = 100ωr, T = 0.032/ωr, ttot = 1.6/ωr , and δcut = 244ωr,

β = 0.85π/2, and p̄0 = 100h̄k. Subplots (b) and (d) are averaged
over 1000 trajectories.

momentum used in the laser frequencies ( p̄0 = 〈p̂〉) because
it results in the largest fraction of slowed particles. For exper-
imental accessibility and robustness, we chose β = 0.85π/2
and � = 100�, which results in a shortcut time T = 0.032/�
[see Eq. (28)] typically on the order of microseconds, much
shorter than the associated timescale of radiation pressure
slowing on the transition. This choice of � also sets the
expected number of scattered photons N to be on the order
of unity [see Eq. (41)].

As seen in Fig. 4, a substantial fraction of the distribution
is slowed to near zero momentum. We first discuss the results
in the case of purely coherent dynamics (left column). If the
system begins in the eigenstate |g, 100h̄k〉 [Fig. 4(a)], about
99.3% of the population ends in the zero-momentum eigen-
state. (We attribute the lack of 100% transfer to our use of
a cutoff frequency δcut = 244ωr .) If the system begins in a
Gaussian state [Fig. 4(c)], about 35% of the population ends
with momentum |p| � 10h̄k, which corresponds to about half
of the population within one standard deviation of the average
momentum in the initial distribution.

In the case of dissipative dynamics, 29% of the population
ends with momentum |p| � h̄k if the system is initialized in
the eigenstate |g, 100h̄k〉 [Fig. 4(b)], and 13% of the pop-
ulation ends with momentum |p| � 10h̄k if the system is
initialized in the Gaussian state [Fig. 4(d)]. In both cases, there
was an average of 1.6 scattered photons per particle, which
agrees with the predicted scattering rate given in Table I.
These results demonstrate that our protocol can potentially
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TABLE II. Fundamental properties for various atomic and molecular candidates for shortcut slowing on a narrow transition.

Species Transition Wavelength (nm) Linewidth (kHz) Recoil frequency (kHz) Saturation intensity (W/cm2)

40Ca 1S0 → 3P1 657 0.4 11.5 1.8×10−7

88Sr 1S0 → 3P1 689 7.5 4.8 3.0×10−6

YO X 2�+ → A′2�3/2 690 5.9 4.0 2.3×10−6

174Yb 1S0 → 3P1 556 180 3.7 1.4×10−4

BaH X 2�+ → A2� 1061 1200 1.3 1.3×10−4

slow a significant fraction of particles to zero momentum in a
very short distance and with few spontaneous emission events.
An appealing feature of our protocol is its ability to apply
high slowing forces with a virtually negligible reliance on
spontaneous emission.

As a more realistic demonstration, we present several
atomic and molecular species that are reasonable candidates
for our slowing protocol in Table II. We simulated the slowing
of each species with an initial momentum of 200h̄k using a
0.1-W/cm2 laser intensity, and provide the expected slowing
times �t , slowing distances �x, and capture fractions C in
Table III. The saturation intensity Isat, laser intensity I , and
Rabi frequency � can be calculated according to [4]

2

(
�

�

)2

= I

Isat
; Isat ≡ πhc�

3λ3
, (43)

where h is Planck’s constant and c is the speed of light. The
calculated slowing times and distances become smaller as the
transition dipole matrix element increases, as can be seen
for the species with larger linewidths. However, the required
temporal control of the Rabi frequency and detuning profiles
in these cases may be an experimental challenge. One solution
is to simply reduce the laser power, but this can quickly move
the parameters away from the regime� � �, which increases
the chance of spontaneous emission and hence reduces the
capture fraction C.

Due to our method’s sensitivity to spontaneous emission,
a rough estimate for the capture fraction C is given by the
fraction of particles that do not emit a single spontaneous
photon throughout the slowing process. Using Eq. (41), this
is approximately

C ≈ exp (−NLRI) = exp

(
− �

�

π

2 sin β
ζ0

)
. (44)

This formula is on the same order as the simulated capture
fractions given in Table III for Ca, Sr, and YO, but it underes-
timates the results for Yb and BaH, suggesting that particles
can still be slowed after emitting spontaneous photons.
Equation (44) is not a fundamental limit, as it can be improved
with a more sophisticated implementation of the shortcut pro-
cess, such as introducing occasional waiting periods so that
the particles return to the internal ground state (as is done
in other methods [33]), allowing the laser pulses to overlap
in time (see Fig. 6), or repeating the slowing protocol over
a range of momentum states. For example, we were able to
increase the simulated 174Yb capture fraction by over an order
of magnitude to C = 1.7×10−4 by introducing a laser pulse
overlap fraction f = 0.2 as discussed in Sec. VII.

VII. ROBUSTNESS

We now study the robustness of the shortcut slowing
scheme to various systematic errors that may arise in an exper-
imental setting. Specifically, we modify the Rabi frequency
amplitude, then separately consider the result of slowing a
particle with a momentum p that is not equal to the momentum
accounted for in the laser frequencies p̄ (Fig. 5). We also
consider the scheme’s robustness to the temporal overlap f
of the square pulses (Fig. 6), which may minimize scattering
events since it potentially reduces the amount of time the par-
ticle remains in the internal excited state. For simplicity, we
focus on a single |g〉 → |e〉 → |g〉 process and calculate the
resulting impulse �p experienced by the particle. Moreover,
we employ a phase relation between the laser pulses such that
the Rabi frequency of each pulse is purely real. The correct
detuning profiles are employed throughout this section. We set
the Rabi frequency to � = 10ωr across all slowing methods,
but necessarily allow for different slowing times.

Using the auxiliary variable β = 0.5π/2, we compare the
robustness of our scheme to both π -pulse and SWAP slowing.

TABLE III. Slowing results for various atomic and molecular candidates using a 0.1-W/cm2 laser intensity and starting from a momentum
of 200h̄k. The Rabi frequency, slowing time, and slowing distance follow from Eqs. (43), (34), and (38), respectively, with β = 0.85π/2. The
simulated capture fraction, defined as the fraction of particles with momentum |p| � 3h̄k after the slowing process, was calculated over 1000
trajectories for Ca, Sr, and YO, and 10 000 trajectories for Yb and BaH.

Species Rabi frequency (MHz) Initial speed at 200h̄k (m/s) Slowing time (μs) Slowing distance (μm) Capture fraction

40Ca 0.2 3.0 494 746 5.6×10−1

88Sr 1.0 1.3 106 70 1.5×10−1

YO 0.9 1.1 119 66 2.1×10−1

174Yb 3.4 0.82 30 12 6.8×10−6

BaH 23.6 0.54 4 1 1.6×10−5
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FIG. 5. Robustness comparison of π -pulse slowing (purple,
plus), SWAP slowing (green, cross), and the shortcut scheme (blue,
circle with cross) over a p̄ → p̄− 2h̄k transfer process. Ideally,
the resulting impulse �p satisfies �p/2h̄k = −1. The evolution is
purely coherent (� = 0), the momentum of the particle (which is
addressed by the laser frequencies) is p̄ = 2h̄k, and the Rabi fre-
quency is � = 10ωr for all processes. (a) Impulse �p experienced
by the particle, in units of the ideal impulse magnitude 2h̄k, as a
function of the error in the Rabi frequency amplitude ε [see Eq. (47)].
The shortcut scheme is the most robust protocol when ε > 0.
(b) �p/2h̄k as a function of the relative momentum of the particle δp
with respect to the momentum p̄ = 2h̄k used in the laser frequencies
[see Eqs. (9) and (48)]. For this set of parameters, the shortcut
and π -pulse scheme are generally more robust than SWAP slowing.
π -pulse parameters are T = 0.314/ωr and β = π/2. SWAP slowing
parameters are T = 1/ωr and � = 50ωr . Shortcut parameters are
T = 0.44/ωr, δcut = 230ωr , and β = 0.5π/2.

As discussed in Sec. IVD, the π -pulse solution is a special
case of our slowing method with the choice β = π/2, which
results in a fixed detuning [see Eq. (29)]. SWAP slowing is
simulated by using a sawtooth-wave detuning profile with
full range � and period T for each single-photon transfer.
Unlike SWAP cooling, the lasers are sequentially pulsed as
in Figs. 2(a) and 2(b), and the laser detunings are centered on
the momentum p̄.

FIG. 6. Impulse �p experienced by the particle, in units of the
ideal impulse magnitude 2h̄k, as a function of the laser pulse overlap
fraction f . The impulse is calculated under both coherent (� = 0)
and dissipative (� = ωr) dynamics. Other parameters are T =
0.44/ωr, δcut = 230ωr, � = 10ωr, p̄ = 2h̄k, and β = 0.5π/2. All
points are averaged over 1000 trajectories.

While there is not a unique way to choose the SWAP slow-
ing parameters, we used the following method. Landau and
Zener showed [43] that the population of the second (initially
unoccupied) state P2 if the laser is linearly chirped from a
detuning of minus infinity to positive infinity, is

P2 = 1 − exp

(
−π

2

�2

α

)
, (45)

where α is the frequency chirping rate in rad/s2. Therefore, to
obtain a transfer probability of at least 95%, we chose to set
�2/α = 2. Next, we increased the chance of population trans-
fer by setting the shortcut period to be several times larger
than the approximate time τ j required to transfer population
between quantum states in the adiabatic regime [46]:

τ j = 2�

α
= 0.4

ωr
⇒ T = 1

ωr
> τ j . (46)

These choices constrained the sweep range to be � = 50ωr .
Note that the resulting SWAP slowing period T = 1/ωr is sig-
nificantly longer than the π pulse (T ≈ 0.3/ωr) and shortcut
slowing (T ≈ 0.4/ωr) periods [see Eq. (28)].

Figure 5(a) presents the resulting particle impulse �p as a
function of the error in the Rabi frequency amplitude, which
is characterized by the small parameter ε:

� → �(1 + ε). (47)

While the shortcut scheme applies a similar impulse �p com-
pared to the π -pulse method for ε < 0, it is the most robust
method for ε > 0. The SWAP slowing result, while being the
most robust method for ε < 0, can change significantly with
small changes to the parameters. This instability is as a re-
sult of high-frequency population oscillations [46]. Moreover,
when dissipation is included, the much longer SWAP slowing
period increases the chance of spontaneous emission, which
can disrupt the slowing process. These results demonstrate the
utility of the shortcut scheme, as it is robust to small errors ε

and takes much less time than SWAP slowing. Note that inten-
sity modulators typically have errors less than approximately
5%.

Figure 5(b) presents the effects of applying each slowing
method to a particle with a momentum p which is not equal
to the momentum p̄ accounted for in the laser frequencies
[see Eq. (9)]. Such an error occurs when slowing a cloud of
particles with a distribution of momenta. We parametrize this
difference in momentum with the variable δp as

p = p̄+ δp. (48)

In this case, we find that the shortcut scheme is most robust
for small δp, but SWAP slowing becomes more robust for
|δp| > 3h̄k. This change in the trend for SWAP slowing near
the particular values δp = ±3h̄k is due to population oscilla-
tions, and the results can again change significantly with small
changes in the parameters. In the limit of adiabatic dynamics
and time-resolved transfers (which necessarily takes a long
time), SWAP slowing is generally most robust to this error
since the rate of change of the detuning profile in SWAP
slowing is constant, thereby removing the need to align the
center of the laser detuning profile with the Doppler shift
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of the particle. It should be noted that it is not necessarily
a problem that the shortcut scheme is less robust to large
deviations of δp from zero because we scan through values
of p/h̄k in integer steps by design. What is more important is
that the shortcut scheme is more robust when |δp| < h̄k than
SWAP slowing, as particles will not necessarily have integer
momentum.

Figure 6 presents the effects of allowing the laser pulses to
overlap in time. We define the overlap fraction of the square
pulses f such that f = 0 when the pulses are completely time
resolved but occur sequentially with no delay, and f = 1 when
the pulses occur at the same time for the entire pulse duration.
We find, in the case of purely coherent dynamics (� = 0),
that a pulse overlap fraction as large as f = 0.2 does not
change the impulse experienced by the particle. In the case
of dissipative dynamics, we find that there is an optimal f that
maximizes the impulse �p. This optimal f , which depends
on system specifics, must be small enough to allow transfer
to |e〉 before the transfer back to |g〉, but large enough to
minimize the time the particle spends in the excited state,
thereby minimizing the chance of spontaneous emission. It
should be noted that a pulse overlap introduces the possibility
of multiphoton, or Doppleron, resonances [49] which may
interfere with the single-photon slowing dynamics.

When slowing a particle with a large initial momentum
p � h̄k to rest, we emphasize that the slowing efficiency is
significantly affected by even a small deviation from the ideal
impulse�p = −2h̄k since the error compounds exponentially
with the number of transfer processes, and the particle is
generally not transferred back to |g〉 for the next pulse se-
quence. It may be possible to further enhance the robustness of
the slowing protocol to the rapidly changing detuning profile
at the beginning and end of the transfers by using a Rabi
frequency profile that satisfies �(t0) = �(t f ) → 0, such as a
Gaussian or a sinusoidal function [33,34,47]. However, in or-
der to satisfy the auxiliary equations and boundary conditions
[see Eqs. (24)–(26)], the peak Rabi frequency may need to be
larger than what we consider here.

VIII. CONCLUSION AND OUTLOOK

In this work, we proposed a purely coherent particle
slowing scheme. By utilizing the method of inverse en-
gineering based on Lewis-Riesenfeld invariant theory, we
demonstrated that these slowing designs are able to achieve
effective adiabatic dynamics but with a short slowing time.
We illustrated how to design Rabi frequency and detuning
profiles that achieve the desired dynamics and demonstrated
that our slowing blueprint is a promising alternative to con-
ventional slowing schemes that rely on radiation pressure
for narrow-linewidth systems or systems that lack a closed
cycling transition. We theoretically examined the effective
classical forces exerted on the particles during the slowing
processes and demonstrated that, when the Rabi frequency is
large compared to the excited-state decay rate, our scheme is
able to exert significantly higher forces than radiation pressure
while maintaining a very low number of scattered photons.
We also showed that our proposed slowing scheme is robust
to various systematic errors.

A possible practical implementation of our scheme is to
directly apply it to a particle beam exiting a supersonic nozzle
or buffer gas cell. Our scheme may also be utilized as a
second slowing stage after particles exiting an effusive oven
have been slowed in a precursor stage to the order of 10 m/s
and the initial spread in velocity has been greatly reduced.
Additionally, it may be possible to implement our protocol
as a steady-state slowing procedure by compensating for the
changing particle velocity with a magnetic field gradient in-
stead of the time-dependent laser frequencies, in a similar
approach to a Stark or Zeeman decelerator.

A natural next step would be to optimize our shortcut
solutions with respect to different criteria. Time optimization
of different adiabatic shortcuts has been studied previously
for two-level systems [51,52], STIRAP [53], and frictionless
cooling in harmonic traps [50]. Another optimization criterion
comes from the fact that adiabatic shortcuts cannot be imple-
mented without an energetic cost, an intrinsic relationship that
has been rigorously studied for Berry’s transitionless quantum
driving algorithm [54], various other shortcuts [55], and in
its applications to quantum computing [56]. Thus, minimizing
the energetic cost for a fixed sweep period is, in effect, finding
the most efficient shortcut. Additionally, quantum optical con-
trol based protocols could be implemented to derive further
solutions [57].

Another appealing scheme is a similar shortcut protocol
applied to a system with an internal state structure comprised
of two stable ground states coupled to an excited state, such
as found in a J = 1 → J ′ = 1 transition, where J is the total
electronic angular momentum quantum number. Speeding up
a Raman transition between the ground states could remove
twice as much momentum per transition. This model, while
generally requiring more laser power, has the additional ben-
efit of an engineered excited-state linewidth, which can be
made arbitrarily small if the lasers are sufficiently detuned
from the excited state. Moreover, applying antisymmetric de-
tuning sweeps could allow for control of the slowed velocity
range, potentially resulting in a slowed distribution with a low
temperature.

There are similarities between our results and others
[33,34,47,58] in the sense that two-level inversion is achieved
in the diabatic limit. A more thorough investigation could
further our understanding of the connection between these
solutions and adiabatic shortcuts.

Furthermore, it is impossible to implement the LRI scheme
to the entire momentum Hilbert space by hand. An intriguing
possible solution to this problem is to employ advanced op-
timization techniques, such as quantum optimal control and
reinforcement learning, to find a solution that maximizes the
slowing scheme’s capture range or minimizes the energetic
cost of implementing the shortcut for a given sweep period.
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APPENDIX: CONSTRUCTION OF THE AUXILIARY
ANGLES AND THEIR BOUNDARY CONDITIONS

FROM THE INVARIANT OPERATOR

The construction of the invariant operator and its associated
eigenvalue equation can be a difficult process, and various
methods have been introduced to overcome this [37,59–61].
However, since we have the form of the Hamiltonian and its
eigenvectors, we need only to parametrize Î (t ) and |φn(t )〉 in
the same functional forms. Thus, in an identical manner to
[38], we use the inverse engineering approach to parametrize
δ(t ) and �(t ) as to begin and end the sweep with the de-
sired populations. [Note that this derivation holds for time
dependent �(t ) unless noted otherwise.] From Eqs. (23), it
follows that the invariant can be written in the basis of the
Hamiltonian as

Î (t ) = h̄�′

2

(
cos γ sin γ eiβ

sin γ e−iβ − cos γ

)
(A1)

with eigenvalues λ± = h̄�′/2, where �′ is an arbitrary con-
stant frequency in order to keep Î (t ) with units of energy.
Substituting Eqs. (20) and (23) into Eq. (3), we calculate the
Lewis-Riesenfeld phases for transfer 1 as

α±(t ) = ∓1

2

∫ t

0
(δ cos γ + �1 sin γ cosβ )dt ′. (A2)

Substituting these phases into Eq. (8), we find that the Hamil-
tonian is parametrized by

Ĥ (W )
1 (t ) = h̄

2

(
A Beiβ

B∗e−iβ −A

)
, (A3)

where

A = δ(t ) cos2 γ + �1(t ) cos γ sin γ cosβ, (A4)

B = δ(t ) cos γ sin γ + �1(t ) sin
2 γ cosβ − iγ̇ . (A5)

Equating the two forms of the Hamiltonian [Eqs. (20) and
(A3)], we arrive at the auxiliary equations

γ̇ = �1(t ) sin β, (A6)

δ = �1(t ) cot γ cosβ. (A7)

The solutions to Eqs. (A6) and (A7) for �1(t ) = � = const
are provided in the main text.

Next, we determine the boundary conditions on the auxil-
iary variables γ and β required for state transfer from state
|G〉 to |E〉. As seen from Eq. (23), γ must satisfy

γ (t0) = πn; γ (t f ) = γ (t0) + π (2m + 1), (A8)

where n and m are integers. For simplicity and without loss of
generality, we choose n = m = 0 so that γ evolves from 0 to
π and causes the state to align with |φ−(t )〉 at t = t0, t f . Since
the commutator between Ĥ (W )

1 (t ) and Î (t ) is

[
Ĥ (W )
1 (t ), Î (t )

] = h̄2�′

2

(−i� sin γ sin βσ̂ z
W

+ (δ sin γ eiβ − � cos γ )σ̂ †
W

+ (� cos γ − δ sin γ e−iβ )σ̂W
)
, (A9)

where σ̂W ≡ |G〉〈E |, we should also impose

�(t∗) sin γ (t∗) sin β = 0, (A10)

β = qπ (A11)

for t∗ = t0 and t∗ = t f and integer q to align the eigenbases
of Ĥ (W )

1 (t ) and Î (t ) at the beginning and end of the shortcut
process [see Eq. (7)]. The condition (A10) is automatically
satisfied by (A8), whereas the condition (A11) is not neces-
sary to enforce in the case of complete state transfer because
it only affects nonphysical, global phases.

We have now parametrized the Hamiltonian in terms of
the auxiliary angles and found boundary conditions for these
angles for the interaction with laser 1. The corresponding
quantities for the subsequent interaction with laser 2 are de-
rived in a similar manner.
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