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We propose a new type of superradiant laser based on a hot atomic beam traversing an optical cavity.
We show that the theoretical minimum linewidth and maximum power are competitive with the best
ultracoherent clock lasers. Also, our system operates naturally in continuous wave mode, which has been
elusive for superradiant lasers so far. Unlike existing ultracoherent lasers, our design is simple and rugged.
This makes it a candidate for the first widely accessible ultracoherent laser, as well as the first to realize
sought-after applications of ultracoherent lasers in challenging environments.
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Ultracoherent light sources are the foundation of highly
accurate atomic clocks [1,2], measurements of the time
variation of fundamental constants [3,4], novel tests of
relativity [5,6], and dark matter searches [7]. Traditionally,
these sources have been generated with cavity stabilization,
which involves locking lasers to highly stable optical
cavities [8]. Despite their incredible performance [9], these
systems are complex, challenging to improve upon,
and perform poorly outside of controlled lab environ-
ments. However if cavity-stabilized lasers could be made
rugged, they could be used for improved global position-
ing, deep space navigation [10], and new geophysical
technology [11].
Superradiant lasers [12–21] are promising candidates for

next-generation ultracoherent lasers [22]. However, a
continuous wave superradiant laser has not yet been
demonstrated because of atomic heating in existing
designs, which rely on ultracold atoms [17]. Also, the
use of ultracold atoms makes these systems complicated
and ill suited to applications in the field.
Here we propose a new kind of superradiant laser built

from a hot atomic beam traversing an optical cavity. We
show that its theoretical minimum linewidth and maximum
output power are competitive with the best ultracoherent
lasers. Because of atomic phase synchronization, the phase
of the output light is robust against decoherence arising
from atomic motion, such as Doppler and transit time
broadening. Furthermore, our system is naturally continu-
ous wave, and it is inherently insensitive to effects that limit
the best cavity-stabilized lasers [8,9], such as environmen-
tal noise and drift. The simplicity and ruggedness of the
design make this system promising for applications in
challenging real-world environments [6,23] and for pack-
aging into commercial systems.
Our system consists of a dense atomic beam traveling

through an optical cavity. We consider the case of all atoms

having a uniform velocity in the x direction (Fig. 1). In this
work, we discuss the examples of 40Ca and 88Sr, but our
results apply equally well to many other alkaline-earth-like
species. The mean intracavity atom number is N ≡Φτ in
steady state, where Φ is the number of atoms transiting the
cavity mode per unit time, and τ is the transit time. The
atoms in the beam are described by dipoles that are pumped
into a metastable state (Fig. 1) before entering the cavity.

FIG. 1. The superradiant beam laser. The atomic beam is
generated from an effusive source, like a commercial effusion
cell. After emerging from the source (upper right), the atoms are
prepared by pumping lasers (blue arrows) in a metastable state
prior to entering the cavity (lower left). Inset: The minimal atomic
structure needed for the superradiant beam laser to operate. In this
three-level scheme, atoms are rapidly prepared in a metastable
state jei by pumping (blue) on a broad transition. Lasing (red)
occurs on the long-lived jgi ↔ jei transition. Real atomic
systems may require more complex pumping schemes.
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The dipole transition frequency ωa is taken to be
near resonant with the frequency ωc of a single cavity
mode, where coupling of the dipoles and cavity is
described by the Tavis-Cummings Hamiltonian ĤðtÞ ¼
ðℏg=2ÞPj η½xjðtÞ�ðσ̂þj âþ â†σ̂−j Þ. Here, the summation
runs over all atoms in the beam, η½xjðtÞ� is a cavity mode
function evaluated at position xjðtÞ of atom j at time t, and
g is the vacuum Rabi frequency at a cavity antinode.
Furthermore, the atomic dipole raising and lowering
operators are σ̂þj ¼ ðσ̂−j Þ† ¼ jeijhgjj, where jgi and jei
are the atomic ground and excited states, respectively, and
the photon annihilation and creation operators of the cavity
field mode are â and â†. Besides this Hamiltonian that
couples the atoms and cavity, our model includes photon
loss through a cavity mirror with rate κ.
We consider the bad cavity regime, which occurs when κ

is much larger than the transit time broadening 1=τ,
the collective coupling

ffiffiffiffi
N

p
g, and the Doppler width

δD ¼ kΔvz. Here k ¼ 2π=λ, λ is the optical wavelength,
and Δvz is the single-atom velocity width along the cavity
axis. In this regime, the light field is rigidly anchored to the
collective atomic dipole, so that the cavity degrees of
freedom can be adiabatically eliminated as â ≈ −igĴ−=κ.
The operator Ĵ− ¼ P

j ηðxjÞσ̂−j is the collective dipole,
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ing with the cavity mode. New atomic dipoles entering the
cavity synchronize with the existing collective dipole due to
the atom-cavity interaction [24]. Since there is a large
number of atoms in the cavity mode, the true operator
equations are well approximated by stochastic differential
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Here sxj , s
y
j , and szj are the c-number pseudospin variables

that correspond to σ̂xj ¼ σ̂−j þ σ̂þj , σ̂yj ¼ iðσ̂−j − σ̂þj Þ, and
σ̂zj ¼ σ̂þj σ̂

−
j − σ̂−j σ̂

þ
j . Similarly, J x and J y represent the

operators Ĵx ¼ Ĵ− þ Ĵþ and Ĵy ¼ iðĴ− − ĴþÞ. We have
defined Γc ¼ Cγ, where C ¼ g2=ðκγÞ is the cavity cooper-
ativity and γ is the free-space spontaneous emission rate.
We use the shorthand ηj ¼ η½xjðtÞ� and model the cavity
mode by ηðxÞ ¼ ½Θðxþ wÞ − Θðx − wÞ� cosðkzÞ, where
ΘðxÞ is the Heaviside step function and w is the
cavity beam waist. Spontaneous emission into free space
is neglected in Eqs. (1)–(3) because the collective

lifetime is much shorter than the spontaneous lifetime
[13,24,33,34]. Along the cavity axis, the atoms are ran-
domly assigned a velocity drawn from a Maxwell-
Boltzmann distribution at a given temperature. Cavity shot
noise is denoted by the stochastic noise variables ξq and ξp,
which have zero mean and are delta correlated as
hξaðtÞξbðt0Þi ¼ δabδðt − t0Þ, a; b ∈ fq; pg. Each atom
enters the cavity with szj ¼ 1, and projection noise is
included by choosing random (and independent) values
þ1 or −1 for sxj and syj [25,35].
Typically, resonance widths in hot gases of atoms are

dominated by Doppler and transit time broadening.
Although our system is based on a hot gas, these broad-
ening mechanisms vanish when the collective linewidth
NΓc is much greater than δD and 1=τ. The collective
linewidth NΓc is the rate for an atom to spontaneously emit
into the cavity in the presence of other atoms. The principal
features of this model can be obtained by dropping the
noise terms in Eqs. (1)–(3), corresponding to a mean-field
solution that is simple enough to be solved analytically and
allows us to classify different phases of emission. The form
of the solution for the laser linewidth Δω is determined by
two independent parameters, the first being δD and the
second being Φτ2Γc ¼ τ=ðNΓcÞ−1, which is the number of
collective lifetimes that elapse during τ. In general, we
observe a phase transition from broad linewidth emission to
superradiant emission with an ultranarrow linewidth
[Fig. 2(a)] [25]. Specifically, for large δDτ, the transition
threshold is governed by the Doppler width, whereas for
small δDτ, transit time broadening determines the regime of
superradiant emission. The latter is evident because there is
no superradiant emission for Φτ2Γc < 8 even in the
absence of Doppler broadening (δDτ ≪ 1). This is because
unsynchronized atoms are introduced to the cavity so
rapidly that the collective dipole does not establish.
The mean-field analysis predicts an unphysical zero

linewidth in the superradiant regime because it neglects
quantum noise. In reality, vacuum fluctuations entering the
cavity and quantum fluctuations in the atomic dipole
components cause phase diffusion, resulting in a nonvanish-
ing linewidth. To determine this linewidth we simulate
Eqs. (1)–(3) with noise terms included for Φτ2Γc ¼ 20.
The mean-field theory and c-number simulations agree
outside the superradiant regime, whereas inside the super-
radiant regime only the c-number simulations predict a
nonvanishing linewidth. Here the minimum achievable
linewidth is Γc [Fig. 2(b) inset], which is much smaller
than 1=τ, implying that our system is robust against single-
atom transit time broadening. In other words, the collective
atomic dipole stores the optical phase for much longer than
the time any individual atom spends in the cavity.
To see how the minimum linewidth in the superradiant

phase varies with δD, we run simulations with three
Doppler widths [Fig. 2(c)]. For δDτ ¼ π, the linewidth
can be brought down to several Γc, and for δDτ ¼ 0.2π, the
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linewidth is Γc. These numbers elucidate that narrow-
linewidth superradiant emission occurs when the atoms are
flying through the cavity so quickly that they move less
than λ=2 along the cavity axis during τ.
To understand the scale of these quantities, we evaluate

numerical values for the 3P1 → 1S0, γ ¼ 2π × 400 Hz
transition in 40Ca. We take the velocity in the x direction
to be that of Ca atoms from an effusion cell operating
at ∼800 °C. We also consider the case where Φ ∼
1014 atoms=s and the atomic beam is laser cooled in the
transverse direction to Δvz ≃ 0.41 m=s, corresponding to
the δDτ ¼ π curve in Fig. 2(c). Considering a simple cavity
with straightforward dimensions (a finesse of 20, a cavity
length of 3 cm, and beam waist w ¼ 300 μm), we
calculated a minimum linewidth of order 10 mHz [25],
competitive with the best stable lasers to date [36].
A similar analysis based on the 88Sr intercombination
transition yields a minimum linewidth of order 100 mHz
[25]. Therefore, ultracoherent light can be extracted from a
hot atomic beam with a significant Doppler width, which
implies that ultracold atoms may not be required to achieve
narrow linewidth superradiant laser emission.
We now turn our attention to the laser output power P.

While individual atoms would rarely emit into the cavity
mode during their passage, the emission rate is greatly
enhanced by collective effects. This enhanced rate leads to
a N2 power scaling [13,25,34], which is a principal feature
of superradiant emission. Determining P from both the
mean-field and c-number simulation approaches, we find
good agreement between the two when δDτ is comparable
to (or below) 0.2π (Fig. 3). For Doppler widths in this
regime and forΦτ2Γc ¼ 2π2 ≈ 20, P achieves its maximum
value of 0.7ℏωΦ, where ω is the center frequency of the
output field. Physically this corresponds to each atom
emitting an average of 0.7 photons into the cavity mode.

Furthermore, we find that the emitted light is second-order
coherent by calculating gð2Þð0Þ ≈ 1 (as shown in the
Supplemental Material [25]). Together, Fig. 2(c) and
Fig. 3 show that the maximum power and a linewidth of
order Γc can be simultaneously achieved when Φτ2Γc ≈ 20
and δDτ ≲ 0.2π.
For the 40Ca example mentioned above, we find

that P ≈ 0.1 mW at a linewidth of 40 mHz. For 88Sr,
P ¼ 2.5 μW at a linewidth of 150 mHz. Significantly, these
powers should be sufficient for use with standard laser
technology. In contrast, the previously considered cold
atom version of the superradiant laser has orders of
magnitude weaker power, restricting its use to specialized
equipment [13]. The power P is greater in the superradiant
beam laser because it has the potential for a much larger
intracavity atom number than cold atom systems, where
particle numbers have been limited by intrinsic inefficien-
cies in ultracold gas preparation techniques.
In addition to its relatively large output power and

insensitivity to Doppler and transit time broadening, this
design is robust against environmental noise. This noise
causes cavity length fluctuations, which manifest as cavity
resonance frequency noise that dominates the linewidths of
cavity-stabilized narrow-linewidth lasers [37]. For these
lasers, the frequency noise on the laser output field is equal
to the environmental noise in the cavity resonance
frequency. However, in a superradiant laser, phase infor-
mation is stored primarily in the atomic medium, which
makes the phase rigid against cavity resonance fluctuations;
therefore, these fluctuations are written onto the laser
output frequency with a strong suppression factor. This
factor is the cavity pulling coefficient [14], defined as
℘ ¼ ðω − ωaÞ=ðωc − ωaÞ, which is the fractional change in
the laser frequency when the cavity resonance fluctuates
with respect to the atomic transition. Using mean-field

(a) (b) (c)

FIG. 2. (a) Mean-field calculations of the linewidth in units of the transit time broadening 1=τ, as a function of the Doppler width δDτ
and Φτ2Γc. Here Φτ2Γc is the number of collective lifetimes that elapse during the transit time τ. The black dashed line is the phase
transition threshold for steady-state superradiance, above which mean-field calculations predict a zero linewidth. (b) The linewidth in
units of Γc as a function of the Doppler width for Φτ2Γc ¼ 20. The markers are simulation results using Eqs. (1)–(3) with Φ ¼ 1000=τ
and Γc ¼ 0.02=τ. For every data point, we calculated 100 trajectories each with a simulation time of T ¼ 2000τ. This numerical
simulation is compared with the mean-field theory, which is analytic. Inset: Below the phase transition, simulations show an ultranarrow
linewidth of order Γc, which is 50 times smaller than transit time broadening for these simulation parameters. (c) Simulation results of
the linewidth in units of Γc as a function of Φτ2Γc. For every data point, we calculated 100 trajectories each with a simulation time of
T ¼ 200τ and Φ ¼ 500=τ.
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theory, we analytically find that ℘ ∝ 1=ðκτÞ, which is the
ratio of the cavity photon lifetime to the atom transit time.
A value of κτ ¼ 1000 can be achieved with standard optics
[25], resulting in ℘ ≈ 0.004 for Φτ2Γc ¼ 20 (see Fig. 4).
This small ℘ makes our design robust against environ-

mental noise sources that limit linewidths of cavity-stabi-
lized lasers. The most common examples are vibration
noise [38], thermal Brownian noise [37], and slow drift in
the cavity length [25]. The response of cavity resonance
frequency to vibration noise is characterized by the accel-
eration sensitivity K. For the superradiant beam laser, the
laser output frequency has an effective acceleration sensi-
tivity ℘K. If our design uses a simple V-block cavity with
no regard for the vibration isolation found in cutting-edge
stable lasers, it would have an acceleration sensitivity of
℘K ∼ 10−13=ðm=s2Þ [25]. Meanwhile, the acceleration
sensitivity of the best cavity-stabilized laser to date is of
the same order, i.e., K ∼ 10−13=ðm=s2Þ [9].
Thermal Brownian noise causes cavity resonance fluc-

tuations that scale as 1=L, where L is the cavity length. To
suppress this effect, stabilization cavities have been made
as long as half a meter [39]. For the superradiant beam
laser, the amplitude of thermal noise behaves according to
the effective cavity length L=℘. This means that the output
frequency of a beam laser based on a compact L ¼ 3 cm
cavity has the thermal noise of a 7.5 m cavity. Furthermore,
slow thermal drift is a practical challenge for cavity-
stabilized lasers. The superradiant beam laser has an
effective coefficient of thermal expansion (CTE) of ℘α,
where α is the CTE of the bare cavity. This means that a
beam laser based on Invar (an inexpensive and easy-to-
machine material) with modest temperature control would
have a drift rate similar to that of an ultrastable cavity
based on highly temperature-stabilized ultralow expansion
glass [25].
Our model is intended to be a simple and clear treatment

that correctly reproduces the laser’s essential features. This
framework allows for an analytically tractable mean-field
theory. A more realistic approach would include atom

number fluctuations, a Gaussian cavity mode profile, and a
distribution of atomic velocities in the x direction. We have
numerically confirmed that these effects do not signifi-
cantly modify the minimum linewidth, maximum power,
and minimum pulling coefficient in the superradiant
regime.
To realize a superradiant beam laser, one must choose the

beam flux, effusive oven design, and cavity parameters to
ensure Φτ2Γc > 8 and δDτ < π. For very narrow line-
widths, it may be necessary to reduce δD by transverse laser
cooling the atomic beam. Furthermore, to realize a given
linewidth, cavity pulling must be kept small enough to
prevent excessive broadening from environmental noise. If
cavity pulling remains minuscule, the linewidth can be
narrowed by decreasing the cavity finesse and increasing
Φ; however, the trade-off is that in the limit of extremely
small cavity finesse, the laser power vanishes as atoms
radiate appreciably into other modes. We note that if the
atomic beam is aggressively cooled such that δD is
comparable to the recoil frequency, then optomechanical
effects are required to model the beam laser correctly [40].
Superradiant lasers based on cold atoms have achieved

impressive results, but parasitic heating from atomic
repumping has so far limited these systems to pulsed
operation [17]. The beam laser design avoids the heating
problem since pumping is performed outside the cavity
(Fig. 1). Therefore, the beam laser configuration may be a
more promising approach for realizing a CW superradiant
laser. Furthermore, our design could conceivably be made
simpler and less fragile than cold-atom or cavity-stabilized
systems. For this reason, the superradiant beam laser may
be well suited to operate in accelerating frames, making this
design potentially useful for space technology, inertial
sensors, geodesy, field-based magnetometry, and astro-
physical measurements. We hope that our design will make
ultracoherent lasers, which are currently limited to a
handful of specialized labs, ubiquitous in quantum science.

FIG. 3. The output power of the superradiant beam laser. The
markers are c-number simulation results. For every data point, we
calculated 100 trajectories each with a simulation time of
T ¼ 200τ and Φ ¼ 500=τ. For δDτ ¼ 0.2π, both the mean-field
and simulation results peak at Φτ2Γc ≈ 20 with P ¼ 0.7ℏωΦ.

FIG. 4. The cavity pulling coefficient ℘ at δDτ ¼ 0.2π. A small
cavity pulling makes the laser frequency insensitive to environ-
mental noise, such as vibrations. The markers are c-number
simulation results with κ ¼ 1000=τ and ωc − ωa ¼ 100=τ. For
every data point, we calculated 100 trajectories each with a
simulation time of T ¼ 100τ. As N increases, the simulation
results approach the mean-field calculation.
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Houlié, P. Jetzer, and M. Bondarescu, Ground-based optical
atomic clocks as a tool to monitor vertical surface motion,
Geophys. J. Int. 202, 1770 (2015).

[12] J. Chen, Active optical clock, Chin. Sci. Bull. 54, 348
(2009).

[13] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland,
Prospects for a Millihertz-Linewidth Laser, Phys. Rev. Lett.
102, 163601 (2009).

[14] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J.
Holland, and J. K. Thompson, A steady-state superradiant
laser with less than one intracavity photon, Nature (London)
484, 78 (2012).

[15] T. Maier, S. Kraemer, L. Ostermann, and H. Ritsch,
A superradiant clock laser on a magic wavelength optical
lattice, Opt. Express 22, 13269 (2014).

[16] A. Roth and K. Hammerer, Synchronization of active atomic
clocks via quantum and classical channels, Phys. Rev. A 94,
043841 (2016).

[17] M. A. Norcia and J. K. Thompson, Cold-Strontium Laser in
the Superradiant Crossover Regime, Phys. Rev. X 6, 011025
(2016).

[18] M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K.
Thompson, Superradiance on the millihertz linewidth stron-
tium clock transition, Sci. Adv. 2, e1601231 (2016).

[19] T. Laske, H. Winter, and A. Hemmerich, Pulse Delay Time
Statistics in a Superradiant Laser with Calcium Atoms,
Phys. Rev. Lett. 123, 103601 (2019).

[20] C. Hotter, D. Plankensteiner, L. Ostermann, and H. Ritsch,
Superradiant cooling, trapping, and lasing of dipole-inter-
acting clock atoms, Opt. Express 27, 31193 (2019).

[21] S. A. Schäffer, M. Tang, M. R. Henriksen, A. A. Jørgensen,
B. T. R. Christensen, and J. W. Thomsen, Lasing on a
narrow transition in a cold thermal strontium ensemble,
Phys. Rev. A 101, 013819 (2020).

[22] J. Olson, R. W. Fox, T. M. Fortier, T. F. Sheerin, R. C.
Brown, H. Leopardi, R. E. Stoner, C. W. Oates, and A. D.
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