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Abstract

Much of the work in the field of group fairness
addresses disparities between predefined groups
based on protected features such as gender, age,
and race, which need to be available at train, and
often also at test, time. These approaches are
static and retrospective, since algorithms designed
to protect groups identified a priori cannot antic-
ipate and protect the needs of different at-risk
groups in the future. In this work we analyze
the space of solutions for worst-case fairness be-
yond demographics, and propose Blind Pareto
Fairness (BPF), a method that leverages no-regret
dynamics to recover a fair minimax classifier that
reduces worst-case risk of any potential subgroup
of sufficient size, and guarantees that the remain-
ing population receives the best possible level of
service. BPF addresses fairness beyond demo-
graphics, that is, it does not rely on predefined
notions of at-risk groups, neither at train nor at
test time. Our experimental results show that the
proposed framework improves worst-case risk in
multiple standard datasets, while simultaneously
providing better levels of service for the remain-
ing population, in comparison to competing meth-
ods.

1. Introduction

A large body of literature has shown that machine learning
(ML) algorithms trained to maximize average performance
on existing datasets may present discriminatory behaviour
across pre-defined demographic groups (Barocas & Selbst,
2016; Hajian et al., 2016), meaning that segments of the
overall population are measurably under-served by the ML,
model. This has sparked interest in the study on why these
disparities arise, and on how they can be addressed (Mitchell
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et al., 2018; Chouldechova & Roth, 2018; Barocas et al.,
2019). One popular notion is group fairness, where the
algorithm has access to a set of predefined demographic
groups during training, and the goal is to learn a model
that satisfies a certain notion of fairness across these groups
(e.g., statistical parity, equality of opportunity) (Dwork et al.,
2012; Hardt et al., 2016); this is usually achieved by adding a
constraint to the standard optimization objective. It has been
shown that optimality may be in conflict with some notions
of fairness (e.g., the optimal risk is different across groups)
(Kaplow & Shavell, 1999; Chen et al., 2018), and perfect
fairness can, in general, only be achieved by degrading the
performance on the benefited groups without improving the
disadvantaged ones. This conflicts with notions of no-harm
fairness such as in (Ustun et al., 2019), which are appropriate
where quality of service is paramount. Notions such as
minimax fairness, commonly known as Rawlsian max-min
fairness from an utility maximization perspective (Rawls,
2001; 2009), combined with Pareto efficiency, naturally
address this no-harm concern (Martinez et al., 2020; Diana
et al., 2020).

Recent works study fairness in ML. when no information
about the protected demographics is available, for example,
due to privacy or legal regulations (Kallus et al., 2019). This
is an important research direction and has been identified as
a major industry concern (Veale & Binns, 2017; Holstein
et al., 2019), since many applications and datasets in ML
currently lack demographic records. We therefore study the
problem of building minimax Pareto fair algorithms beyond
demographics, meaning that not only we lack group mem-
bership records but also have no prior knowledge about the
demographics to be considered (e.g., any subset of the pop-
ulation can be a valid protected group, see computationally
identifiable groups (Hébert-Johnson et al., 2018)). This has
the advantage of making the model robust to any potential
demographic even if they are unknown at the time of de-
sign, or change through time; it is also efficient, since the
model offers the best level of service to all the remaining
(i.e., non-critical) population.

Main Contributions. We analyze subgroup robustness,
where a model is minimax fair w.r.t. any group of sufficient
size, regardless of any preconceived notion of protected
groups; we also adhere to the notion of no-harm fairness by
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requiring our minimax model to be Pareto efficient (Mas-
Colell et al., 1995) by providing the best level of service
to the remaining population. A model with these charac-
teristics has a performance guarantee even for unidentified
protected classes.

We show that being subgroup robust w.r.t. an unknown
number of groups, where no individual group is smaller
than a certain size, is mathematically equivalent in terms
of worst group performance to solving a simplified two-
group problem, where the population is divided into high
and low risk groups, thereby providing a clear means to
design “universal” minimax fair ML models. We further
show the critical role of the minimum group size by proving
that, for standard classification losses (cross-entropy and
Brier score), there is a limit to the smallest group size we
can consider before the solution degenerates to a trivial,
uniform classifier. We additionally study the cost of blind
subgroup robustness when compared to learning a model
that is minimax fair w.r.t. predefined demographics.

We then propose Blind Pareto Fairness (BPF), a simple
learning procedure that leverages recent methods in no-
regret dynamics (Chen et al., 2017) to solve subgroup ro-
bustness subject to a user-defined minimum subgroup size.
Our method is provably convergent and can be used on
classification and regression tasks. We experimentally eval-
uate our method on a variety of standard ML datasets and
show that it effectively reduces worst-case risk and com-
pares favourably with previous works in the area. Although
our work is motivated by fairness, subgroup robustness has
applications beyond this important problem, see for example
(Sohoni et al., 2020a; Duchi et al., 2020).

2. Related Work

A body of work has addressed fairness without explicit
demographics by using proxy variables to impute the pro-
tected population labels (Elliott et al., 2008; Gupta et al.,
2018; Zhang, 2018). These methods contrast with our as-
sumptions by relying on a preconceived notion on what
the protected demographics are (i.e., the protected demo-
graphics are known, but unobserved), since prior knowledge
is needed to design useful proxy variables. Moreover, it
has been reported that these approaches can exacerbate dis-
parities by introducing undesired bias (Chen et al., 2019;
Kallus et al., 2019); aiming to be fair by inferring protected
attributes may be in conflict with privacy or anonymity con-
cerns. These works might need re-training if new protected
classes are identified, since a model trained under these
conditions may be considerably harmful on an unknown
population. This phenomena further supports the value of
blind subgroup robustness.

Individual fairness (Dwork et al., 2012) provides guarantees

beyond protected attributes, but requires predefined simi-
larity functions which may be hard or infeasible to design
for real-world tasks. The works of (Hébert-Johnson et al.,
2017; Kearns et al., 2018) address fairness w.r.t. subgroups
based solely on input features, and while these works greatly
extend the scope of the protected demographics, they still
rely on labeled protected features for guidance. The work of
(Sohoni et al., 2020b) partitions the input space to address
robust accuracy. We note that partitions,! based only on
the input space of the model do not modify the solution of
risk-based Pareto optimal models, since the optimal clas-
sifier for any input value remains unchanged (i.e., there is
no conflict between objectives for any value of the input
space, see Theorem 4.1 in (Martinez et al., 2020)). In our
work we consider subgroups based on both outcome and
all input features, which broadens the scope to all conceiv-
able subgroups based on the information available to the
trainer. For many risk-based measures of utility, such as
crossentropy, Brier score, or /5 regression loss, the optimal
classifier can be expressed as a function of the conditional
output probability p(Y|X), X being the input (features) and
Y the output. In particular, if we only consider groups that
introduce covariate shift (i.e., p(X|A) varies across differ-
ent values of the group membership A) but do not change
the conditional target distribution (p(Y'|X, A) = p(Y|X)
for all A), then the set of Pareto classifiers only contain one
element and the Pareto curve degenerates to the utopia point.
By specifically taking outcomes into account in our partition
function, we allow for robustness to perturbations on the
conditional distribution p(Y'| X, A).

There are two recent approaches that are the closest to our
objective (protecting unknown and unobserved demograph-
ics). One is distributionally robust optimization (DRO)
(Hashimoto et al., 2018; Duchi et al., 2020), where the goal
is to achieve minimax fairness for unknown populations of
sufficient size. Similar to our work, they minimize the risk
of the worst-case group for the worst-case group partition,
they use results from distributional robustness that focus the
attention of the model exclusively on the high-risk samples
(i.e., their model reduces the tail of the risk distribution).
However, they do not explicitly account for Pareto efficiency,
meaning that their solution may be sub-optimal on the pop-
ulation segment that lies below their high-risk threshold, do-
ing unnecessary harm. The other recent method that tackles
the minimax objective is adversarially reweighted learning
(ARL) (Lahoti et al., 2020), where the model is trained to
reduce a positive linear combination of the sample errors,
these weighting coefficients are proposed by an adversary
(implemented as a neural network), with the goal of maxi-
mizing the weighted empirical error. This method focuses
on computationally identifiable subgroups, meaning that

'In this work we consider “partition” and “subgroup” inter-
changeable.
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they can be characterized by a function f : X x Y — [0, 1],
(Hébert-Johnson et al., 2018). However, they do not provide
an optimality guarantee on the adversary, nor do they pose
a constraint on the computationally identifiable subgroups.
Our theoretical results indicate that adding an easily inter-
pretable group size constraint on this subgroup is necessary
so that the worst-case partition does not yield a trival, uni-
form classifier for the optimal adversary; this observation is
validated in experimental results.

3. Problem Formulation
3.1. Minimax Fairness

We first consider the supervised group fairness classification
scenario (Barocas et al., 2019), where we have access to a
dataset D = {(x;,vi,a;) 1, ~ p(X,Y, A)®™ containing
n ii.d. triplets. Here X € X denotes the input features,
Y € Y the categorical target variable, and A € A group
membership. We consider a classifier h € H belonging to
an hypothesis class H whose goal is to predict Y from X,
h: X — AYI=1;: note that h(X) can take any value in the
simplex and is readily interpretable as a distribution over
labels Y. Given a loss function £ : AlYI=1 x AIYI=1 5 R+
fairness is considered in the context of a Multi-Objective
Optimization Problem (MOOP), where the objective is to
learn a classifier that minimizes the conditional group risks

r(h) = {ro(h)}taca,
min(ry (h), ..., 714 (),
Ta(h) = Ex yja=a[((h(X),Y)].

The solution to this MOOP may not be unique (e.g., the opti-
mal classifier of different groups differs), and therefore there
is a set of optimal (Pareto) solutions that can be achieved. It
is possible that none of these Pareto solutions satisfy some
group fairness criteria (e.g., equality of risk), meaning that
achieving perfect fairness comes at the cost of optimality
(Kaplow & Shavell, 1999; Bertsimas et al., 2011). In this
work we do not to compromise optimality, meaning that
we do not degrade the performance of a low-risk group if it
does not directly benefit another, and consider a minimax
fairness approach (Rawls, 2001; 2009), where the goal is to
find a properly Pareto optimal classifier that minimizes the
worst-case group risk,

(D

i a(h).
nhin, 2T @

‘H p,, represents the set of properly Pareto optimal classifiers
in H given a group set A as defined next.

Definition 3.1. (Geoffrion, 1968) An hypothesis h* € H is
properly Pareto optimal if h* is Pareto efficient, meanining
that Ah' € H : r(k') < r(h), ? and there exists a finite

r(h) < r(h) ifro(h) < ro(h)VaATa : re(R) < ror(h)

M >0:Vi,h € Ax Hsatisfying r;(h) < r;(h*)3j € A
such that r;(h*) < r;(h) and (r;(h*) — ri(h))/(r;(h) —
r;(h*)) < M. Given a partition set A we denote the set of
properly Pareto hypothesis in  as Hp, .

Note that Definition 3.1 establishes that there is no other
model in the hypothesis class with unbounded risk tradeoffs
between groups whose associated group risks are uniformly
better for all groups. If the loss function is convex w.r.t.
the model h, and the hypothesis class H is a convex set,3
a linear weighting problem on the conditional group risks
(mingep Y paTa(h); D e = 1, g > 0) characterizes all
of the properly Pareto solutions (Geoffrion, 1968). Solving
Problem 2 over the properly Pareto set is equivalent to find-
ing the weighting coefficients such that a classifier with the
minimum worst-case group risk is the solution (Geoffrion,
1968; Chen et al., 2017; Martinez et al., 2020).

3.2. Blind Pareto Fairness

In this work we consider a more challenging problem,
namely Blind Pareto Fairness (BPF), where the group vari-
able A and the conditional distribution p(A|X,Y") are com-
pletely unknown (not just unobserved), even at training
time. Here the goal is to learn a model that has the best
performance on the worst-group risk of the worst partition
density p(A|X,Y") (“sensitive” group assignment), subject
to a group size constraint (p(A=a) > p, Va). We formulate
the following new problem,

R* = min max max rq(h).
hEHpA p(A‘X, Y) acA (3)
s.t.p(4) = p*

Here R* is the minimum worst group error achieved for
the worst partition density with known number of partitions
|A|. The partition size constraint plays a key role on the
solution to Problem 3, as we will show below.” Problem
3 is undetermined in the sense that it admits several worst
partition densities and classifiers for |.4| > 2. Fortunately,
it is possible to show that the minimum worst group error
R* in Problem 3 is the same as the one achieved if we
were to consider an alternative formulation where a variable
A € {0,1} represents the worst-group risk membership,
this is shown in Lemma 3.1. This makes the study of the
binary problem attractive when we wish to minimize the
number of assumptions we make on the protected groups.
Here the objective becomes

*Meaning that for any b, h’ € H and X € [0, 1], exists hy €
H:ha(z) = Ah(z) + (1 — MR/ (x)Vz € X.

'p(A) = pifp(A=a)>pVae A

> Attempting to be minimax optimal w.r.t. p smaller than some
value will result in a random classifier, the minimax risk of the
partition is directly dependent on p.
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min max ra(h),
R* = heMra q€{0,1}
PAIX.Y) @
st.p(A) = p

with h*, p*(A|X,Y) achieving this solution. We overload
the notation H p, in the context of Problem 4 to refer to the
Pareto set for a binary group distribution. Figure 1 shows
an example of the risks for the worst and best partitions at
different sizes p achieved with a method that optimizes for
the worst case partition, like DRO or our proposed BPF (the
latter shows better performance on the remaining partition
owing to the Pareto constraint), versus deploying a baseline
model that minimizes the empirical risk. Lemma 3.1 shows
that the minimum worst risk R* is the same for problems 3
and 4, hence, we focus our analysis on the latter throughout
the text. There are two main advantages of working with the
binary problem, the first is that finding the worst partition
p(A | X,Y) for a given h is straightforward when |A| =
2. The second is that, in general, we may not know the
number of groups we wish to be fair to, and this equivalence
shows that it is sufficient to specify the minimum size a
group must have before it is considered for the purposes of
minimax fairness. Moreover, restricting the minimum size
of the partitions to be considered is an interpretable way of
constraining the adversary.

Lemma 3.1. Given an hypothesis class H and a finite al-
phabet, A : |A| > 2, problems 3 and 4 have the same
minimum worst-group risk solution R* if p < \TH'

A question that arises from Problem 4 is how the optimal
classifier and partition function depend on the partition size.
In Lemma 3.2, we show the existence of a critical size p* for
standard classification losses (cross-entropy and Brier score)
whereby solving Problem 4 for partitions smaller than p*
leads to a uniformly random classifier. This result shows
that attempting to be minimax fair w.r.t. arbitrarily small
group sizes yields a trivial classifier with limited practical
utility. Therefore, if one where to consider an adversary
without any capacity restriction this would be it’s optimal
solution, something that we corroborate empirically.

Lemma 3.2. Given Problem 4 with p(Y|X) > 0 VX,Y,°
and let the classification loss be cross-entropy or Brier score.
Let

1

AX) : hu(X) = 5

VX, Vi€ {0,...,|Y| — 1},

be the uniform classifier, and let h € H. There exists a
critical partition size

P = IJ/IEx[myinp(y | X)) <1

This restriction can be lifted and a similar result holds, see
Supplementary Material for details.
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Figure 1. Worst and best crossentropy risks achieved by DRO, BPF
and a baseline classifier for varying minimum size partitions (p)
on the UCI Adult dataset. The tradeoffs shown for DRO and BPF
correspond to model pairs that were optimized for a specific p value
(i.e., different points in the tradeoff curve correspond to different
BPF and DRO classifiers). Lower worst group risks correspond to
larger group sizes (p); results for the same p value are connected
with a dashed line. We observe that BPF is able to achieve the same
worst-case group performance that DRO achieves, but with better
results on the non-critical partition owing to its Pareto optimality
constraint, this is especially apparent on small group sizes. The
baseline classifier suffers significantly larger worst group errors
for small partition sizes.

such that solutions to Problem 4, ¥p < p*, are h* = h and
_ 1 il =/
re— =g it =ton
pr = tss

That is, any partitions smaller than p* yield the uniform
classifier with constant risk R.

It is straightforward to prove that R* is non-increasing with
p (see Supplementary Material A.1). A natural question
that arises is what is the additional cost in optimality we
pay if we apply subgroup robustness instead of optimizing
for a known partition. Lemma 3.3 provides an upper bound
for the cost of blind fairness, showing that it is at most the
difference between R* and the risk of the baseline model,
and can be zero (no cost) if the known group happens to
be the worst case partition for the dataset. Moreover, the
upper bound decreases with larger group size, and is in no
scenario larger than the difference between the risk of the
uniform classifier and the baseline classifier for BE and CE
losses.

Lemma 3.3. Given a distribution p(X,Y’) and any prede-
fined partition group p(A'|X,Y) with A’ € A" || A| finite.

Let h, R = {arg} min max r,/(h) be the minimax fair so-
) { g}hEHa/E.A' a( ) f
lution for this partition and its corresponding minimax risk.

Let h* and R* be the classifier and risks that solve Problem
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4 with p = min, p(a’). Then the price of minimax fairness
can be upper bounded by
o (") — R < R* —minr(h). 5

Fegrei) - R g ®
In the following section, we provide a practical algorithm
that asymptotically,® solves Problem 4 and yields a classifier
that both minimizes the worst-group risk and is also Pareto-
efficient w.r.t. the remaining population. (All proofs are
presented in the Supplementary Material A.1.)

4. Optimization

In order to develop our optimization approach, we begin
by showing that for group sizes p < %, we can drop the
innermost max operator in Problem 4, and we only need to
consider the risk for the a = 1 partition on a partition of size
exactly equal to p (i.e., p(A = 1) = p). This is presented in

the following lemma, proved in the Supplementary Material.

Lemma 4.1. Given Problem 4 with minimum group size
p < % the following problems are value equivalent:

R'= min max max 7, (h),
hetp, p(A|X, y) ac{0,1}
s.t.p(A) = p
R" = min max r1(h), (6)
heHp , p(A|X7Y)
st.p(A=1)=p
R'= R,

We note that the second problem in Eq. 6 is in itself a
valuable optimization problem for p > 1/2, since it equates
to efficiently minimizing the risk of the at-risk majority.
The Pareto optimality constraint in this scenario is easy to
enforce if the base loss function ¢(h(z), y) is both bounded
(e, L(h(z),y) < CVax,y,h € X x Y x H), and strictly
convex w.r.t. model h. The result is shown in the following
lemma.

Lemma 4.2. Given the problem on the right hand side of Eq.
6, a convex hypothesis class H, and a bounded loss function
0 </{(h(x),y) < CVx,y,h € X x Y x H that is strictly
convex w.r.t its first input h(x), the following problems are
equivalent:

H' = {arg} min max r1(h)
he€iry  p(A|X,Y)
st.p(A=1)=p
H" = {arg} min sup  ri(h),
R pAlXLY) @
st.p(A=1)=p

p(A=1|X,Y) >0, VX,V
HI — HH,

Tr(h) = Ex y [((h(X),Y)].
8The algorithm is iterative, we prove convergence to the opti-
mal solution with the number of iterations.

where we explicitly add {arg} to both sides of the equiva-
lence to indicate that these problems are also equivalent in
terms of the models & that achieve these minimax solutions.
The BS loss satisfies both conditions in Lemma 4.2, CE loss
also satisfies these conditions if we restrict the hypothesis set
suchthath € H C {h: h;(z) > ¢ > 0Vi € [V],z € X}
(i.e., the classifier assigns a minimum label probability for
all values). The /5 regression loss over a bounded set also
satisfies these conditions. To deal with the supremum con-
straint on the distribution in practice, we slightly limit adver-
sary capacity and ensure p(A = 1|X,Y) > e > 0VX,Y €
X x ).

We solve Problem 7 using no-regret dynamics (Freund &
Schapire, 1999), the solution is the Nash equilibrium of a
two-player zero-sum game, where one player, the adversary,
iteratively proposes partition distributions p(A|X,Y), the
modeler then responds near optimally with a model A, and
incurs loss 71 (k). Based on the history of losses, the adver-
sary iteratively refines its proposed partition function into
the worst-case partition.

To solve the above problem with parameter ¢ > 0, we
leverage the theoretical results presented in (Chen et al.,
2017) for improper robust optimization of infinite loss
sets with oracles. We first present the results in terms of
a finite dataset with n samples; assume that both play-
ers have access to {z;,y;}"; ~ P(X,Y)®", and let
t € {0,...,T} indicate the current round of the zero-sum
game. In each round ¢, the modeler produces a classifier
ht and the adversary proposes an empirical distribution of
p(A|X,Y), denoted as o' = {at}?; € U, such that
Uep ={a: o € [e,1], ), 5+ = p}, where p is the mini-
mum partition size. The empirical risk (cost) of round ¢ is
L' = L(ht, at), with

Liha) - Z= @ ENB)

In order to find the Nash equilibrium of this game, we
use projected gradient ascent on the adversary, while the
modeler uses approximate best response with a Bayesian
oracle ht = M (). In particular, we use a variant proposed
in (Chen et al., 2017) for robust non-convex optimization.
Algorithm 1 shows the proposed approach.

The proposed Algorithm 1 is an instantiation of Algorithm
3 in (Chen et al., 2017) for oracle efficient improper robust
optimization with infinite loss sets. To implement the pro-
jection operator [, (-), we observe that the set e, can
be described as the intersection of the [e, 1] hypercube and
the (¢, 1) = np plane, where both of these sets have known
and exact projection functions individually. Dykstra’s pro-
jection algorithm (Boyle & Dykstra, 1986) is a provably
convergent best approximation method that can implement
this operation. This projection update converges in linear



Blind Pareto Fairness and Subgroup Robustness

Algorithm 1 Blind Pareto Fairness

Require: Inputs: Dataset {(z;,y;)}7,, partition size p
Require: Hyper-parameters: rounds 7', parameter 7, ad-
versary boundary coefficient ¢ > 0, vy-approximate
Bayesian solver M(-) ~ argminyc, L(h, -)
Initialize @ = & = {p}7,
Initialize classifier and loss
h® =M(&), L’ = L(h°, &)
forroundt =1,...,7T do
Adversary updates partition function by projected
gradient ascent:
al « ot~ 4 Vo L(ht, &) = al~! + nﬂ(i;;,y)
&~ Hbgat),ue,p ={a:o;€lel],>, % =p}
€p
Solver approximately solves for the current partition:
ht +— M(&)
end for
Return: Classifier h”

time and only requires access to the last risk evaluation on
each sample during the training stage, making it a scalable
and lightweight addition to the standard supervised training
scenario. We can then immediately leverage the results in
Theorem 7 in (Chen et al., 2017) to show that the algorithm
converges (proof presented in the Supplementary Material).

Lemma 4.3. Consider the setting of Algorithm 1, with
= ledl2 [T i
parameter € > 0, and n = arggz:p T < 5 with

Uep ={a: a; € [e,1],), 54 = p}, and L a 1-Lipschitz
function w.r.t. «, let P be a uniform distribution over the set
of models {h', ... hT}, and let R* be the minimax solution

to the loss presented in Eq. 8. Then we have

2np

max EpopL(h,a) <yR*+ .
e T

acl,

As in (Chen et al., 2017), we use h! instead of the ensemble
{h',...,hT}. We use stochastic gradient descent (SGD)
as our y-approximate Bayesian oracle, in practice, we al-
ternate a single epoch of SGD with the adversary update
for simplicity. We note that the 1-Lipschitz constraint can
be relaxed to any G-Lipschitz function by working through
the no regrets guarantees for projected gradient descent of
G-Lipschitz functions in the proof provided in (Chen et al.,
2017).

Figure 2 shows how the performance of the recovered clas-
sifiers (trained for a given partition size p) is optimal for its
own partition size, but sub-optimal for other p values. These
curves give a better picture on how risks are being traded
off across samples.
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Figure 2. Crossentropy and error rates of BPF classifiers for vary-
ing (evaluation) partition sizes p evaluated on the UCI Adult
dataset. Each individual curve denotes the performance of a unique
BPF classifier, trained for a particular p, across a range of evalua-
tion partition sizes. The uniform classifier is shown for reference.
‘We observe how performance is traded oft between low and high
risk groups for varying partition sizes, in particular, smaller train-
ing partition sizes yield uniformly worse performance on the best
group, no matter the evaluation partition size. Conversely, optimal-
ity on the worst group is dependent on how matched the train and
test partition sizes are.

5. Experimental Results

We experimentally validate our methods and theoretical
results on a variety of standard datasets, we compare perfor-
mance against DRO (Hashimoto et al., 2018), ARL (Lahoti
et al., 2020), and a baseline classifier (empirical risk mini-
mization). We show the trade-offs of each method on their
worst group and the remaining population. As presented
below (see Figure 3), the baseline method performs best on
the low-risk population, but it suffers from large, fat tails
in terms of loss distribution. We also show how both DRO
and BPF empirically achieve the theoretical results laid in
Lemma 3.2, with BPF having better results on the low-risk
population than DRO, owing to the Pareto optimality con-
straint. Moreover, if the adversary’s network on the ARL
framework is given enough capacity, it degrades to the uni-
form (trivial) solution presented in Lemma 3.2 since it does
not control for other restrictions on the partitions learned
(e.g., group size). We also show that the performance of
ARL can vary with adversarial network capacity (e.g., depth
and width of the network). However, translating this to the
effective size of the worst case partition being optimized is
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not easy to interpret or evaluate beforehand.

Datasets. We used four standard fairness datasets for com-
parison. The UCI Adult dataset (Dua & Graff, 2017) which
contains 48, 000 records of individual’s annual income as
well as 13 other attributes, including race, gender, relation-
ship status, and education level. The target task is income
prediction (binary, indicating above or below 50K’). The
Law School dataset (Wightman, 1998) contains law school
admission data used to predict successful bar exam candi-
dates; in our examples we limit ourselves to UGPA and
LSAT scores as input covariates. The COMPAS dataset
(Barenstein, 2019) which contains the criminal history, serv-
ing time, and demographic information such as sex, age,
and race of convicted criminals. The goal is prediction of
recidivism per individual.” Lastly we used the MIMIC-III
dataset, which consists of clinical records collected from
adult ICU patients at the Beth Israel Deaconess Medical
Center (Johnson et al., 2016). The objective is predicting
patient mortality from clinical notes. We analyze clinical
notes acquired during the first 48 hours of ICU admission
following the pre-processing methodology in (Chen et al.,
2018), ICU stays under 48 hours and discharge notes are ex-
cluded from the analysis. Tf-idf statistics on the 1,000 most
frequent words in clinical notes are taken as input features.

Setup and Results. We train BPF for 16 minimum group
sizes p = {0.05,0.10,...,0.8}, we report cross-entropy
loss and error rate,'” on the worst partition of the dataset
(i.e., average over the worst 100 x p% samples based on
cross-entropy loss), the values for the remaining low risk
group is also reported to evaluate optimality. DRO models
were trained on 20 equispaced values of their threshold pa-
rameter (n € [0, 1]). For ARL, we tried four configurations
for their adversarial network (adversary with 1 or 2 hidden
layers with 256 or 512 units each), we additionally evalu-
ated the same setup when the ARL adversary has access
to the learned features of the classifier network, this setup
still falls within the computationally identifiable scenario
in their work, but offers a more challenging adversary, we
denote these latter experiments as (ARL HC). The classifier
architecture for BPF, ARL, and DRO was standardized to
a single-layer MLP with 512 hidden units. In all cases we
use cross-entropy loss and same input data. Results corre-
spond to the best hyper-parameter for each group size; mean
and standard deviations are computed using 5-fold cross-
validation. Further implementation details are provided in
Supplementary Material.

This dataset is the source of extensive and very legitimate
controversy in the fairness community, and is here used for bench-
marking only.

Error rate is computed on the randomized classifier Y ~
h(X).
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Figure 3. Cross-entropy (CE) and error rate (Error) metrics on best
and worst groups as a function of group size for BPF, DRO, ARL,
and baseline classifiers; results for very high capacity adversarial
networks for ARL (ARL HC) are also shown, random classifier
shown for reference. Results are provided for UCI adult, law
school, COMPAS, and MIMIC-III datasets. Cross-entropy of both
ARL and baseline classifiers for the worst group are very large for
small group size, DRO and BPF both approximate the theoretical
result shown in Lemma 3.2. The main experimental difference
between DRO and the proposed BPF is that BPF exhibits better
results on the best group partition than DRO for the same level of
worst group performance, owing to the Pareto restriction on the
BPF classifier resulting in no-unnecessary-harm for any group (see
also Figure 1). Error results largely mimic the observations on the
cross-entropy metric.

Figure 3 shows the performance of the best and worst groups
across partition sizes. Both DRO and BPF recover results
close to the random classifier for the smaller group sizes,
which aligns with the results shown in Lemma 3.2, that
is, below a certain partition size (e.g., p ~ 0.3 for adult
dataset) the average cross-entropy of the worst group is the
risk of the uniform classifier (log 2). We observe that the
performance of ARL seems to be dataset dependent, but is
generally able to reduce worst-case risks w.r.t. the baseline
classifier for small partition sizes. The high capacity ARL
(ARL HC) behaves as expected in most cases, producing
results much more closely aligned with the uniform clas-
sifier, this supports our theoretical results stating that an
unconstrained adversary should converge to the uniform
classifier. Altogether, BPF obtains better results for the low
risk group than DRO for the same worst group risk, owing
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to the former’s optimality constraint. The magnitude of this
improvement is dataset dependent.

Although none of the compared models address disparities
along predefined populations, we can nonetheless observe
how each classifier performs on these groups. Table 1 shows
accuracy conditioned on different demographics for each
competing method on the Adult dataset. We observe that
the different methods achieve results close to the uniform
classifier for small partition sizes as expected. In many
cases, the results for BPF are better than ARL and DRO for
each protected attribute (at same p value). We also observe
that on several minorities, the BPF model provides the best
utility values out of all the competing methods, BPF is also
the best model at preserving worst group performance.

Table 2 shows how target labels and predefined sensitive
groups are represented in the high risk group identified by
BPF. We observe that, for low partition sizes, outcomes
are balanced across groups (in concordance with Lemma
3.2). As the partition size increases, the composition of
the high risk group becomes more similar to the base dis-
tribution. Similar results to tables 1 and 2 are provided in
Supplementary Material A.2 for the remaining datasets.

Method/p  White  Black  Asian-Pacl  Other
Prop(%) 85.6%  9.6% 2.9% 1.8%
ARL.15 52.1% 51.9% 52.1% 53.1%
DRO .15 55.5% 57.0% 55.5% 57.1%
BPF .15 62.3% 67.5% 62.0% 65.5%
ARL.25 60.3% 65.9% 59.5% 63.8%
DRO .25 57.4% 59.4% 57.3% 59.5%
BPF .25 65.0% 69.7% 64.1% 68.5%
ARL 4 68.6% 77.5% 68.6% 74.3%
DRO .4 80.2%  88.0% 79.1% 86.9%
BPF 4 80.2% 88.0% 79.1% 86.9%

Table 1. Accuracy across demographic partitions (groups given no
special consideration by the algorithms) in the Adult dataset for
ARL, DRO and BPF models for varying partition sizes.

6. Discussion

In this work we formulate and analyze subgroup robustness,
particularly in the context of fairness without demographics
or labels. Our goal is to recover a model that minimizes
the risk of the worst-case partition of the input data subject
to a minimum size constraint, while we additionally con-
strain this model to be Pareto efficient w.r.t. the low-risk
population as well. This means that we are optimizing for
the worst unknown subgroup without causing unnecessary
harm on the rest of the data. We show that it is possible to
protect high risk groups without explicit knowledge of their
number or structure, only the size of the smallest one, and
that there is a minimum partition size under which the ran-

Group Prop(%) BPF.15 BPF.25 BPF.4
Proportion on Worst Partition, Ethnicity/Income

White/0 64.2 43.8 44.8 53.5
White/1 214 453 449 35.6
Black/0 8.5 2.7 3.0 4.6
Black/1 1.1 2.9 2.5 1.8
Asian-Pacl/0 2.1 1.8 1.7 1.9
Asian-Pacl/l 0.8 2.0 1.8 14
Other/0 1.5 04 0.4 0.8
Other/1 0.3 1.0 0.8 0.5

Table 2. Demographic composition of worst groups as a function
of minimum partition size on the Adult dataset. BPF homogenizes
outcomes across partitions and protected attributes. For larger
group sizes, the demographics of the partition approach that of the
baseline population.

dom classifier is the only minimax option for cross-entropy
and Brier score losses.

We propose BPF, an algorithm that provably converges to
a properly Pareto minimax solution, it requires minimal
modifications to the standard learning pipeline of a standard
model, and can scale easily to large datasets. Our results on a
variety of standard fairness datasets show that this approach
reduces worst-case risk as expected, and produces better
models than competing methods for the low-risk population,
thereby avoiding unnecessary harm. It (computationally)
identifies high risk samples and is easy to interpret since the
user can control the optimal adversary through the use of a
target worst partition size.

If a policymaker has a desired risk tradeoff instead of a
target group size, we can search for the smallest partition
size achieving this tradeoff using the proposed BPF; this
now guarantees that the recovered model can satisfy this
risk tradeoff for the worst possible partition up to size p, and
for any smaller partition size there exists a partition such
that this tradeoff is violated.

Future work includes incorporating additional domain-
specific constraints on the worst partition and developing an
algorithm that combines BPF with knowledge about some
subgroups that must be protected as well.
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A. Supplementary Material
A.1. Proofs
Lemma 3.1. Given an hypothesis class # and a finite alphabet A : |A| > 2, under mild conditions, problems 3 and 4

have the same minimum worst-group risk solution R* if p < \T%I'

Proof. Forany h € H,letl, = £(h ( ),Y") be the random variable associated with the loss distribution of % induced by the
randomness of X, Y. Let {, , = =F, 1(1 — p) be the 100 * (1 — p)% percentile of Ij,, where F Ya)=inf{l e R: P(I) <
1) > a} is the inverse cdf of Ij,. It i is easy to observe that any distribution p(A | X,Y"), A € A, that satisfies

1 if £(h(X),Y) > I p,
p(A=d | X,Y)={ a(X,Y) €[0,1] ifl(h(X),Y)="0h,,
0 if £(h(X),Y) < {hp, ©)

p(A=a)>p, Vae A,
p(A=d)=p, d € A

is a solution to

max max 7, (h),
p(A|X, Y) a€A
s.t. p(A) = p,

attaining the maximum risk at 7,/ (h). Here a(X,Y’) € [0, 1] is any tie-breaking assignment such that p(A = da’) = p
and p(A = a) > p. That is, the worst-case partition greedily assigns A = o’ to all high loss samples until the budget
p(A = a') = pis satisfied, the tie-breaker assignment «(X,Y") simply indicates that for loss values exactly equal to fh, Py
we can make any assignment we wish to as long as p(A = a’) = p.

Furthermore, by applying the same reasoning as above, we observe that the simplified distribution p(A | X,Y), A €
{0,1}, p(A=1| X,Y) =p(A=d"| X,Y) is also a solution to

max ra(h),
a € {0,1}
p(A[X,Y)
s.t. p(A) = p,

with both achieving the same maximum risk. At this point we have proved the following equivalence:

min max max7,(h) = min max ro(h).
heH p(A|X,Y) acA het 4 ¢ {0) 1}
s.t. p(4) = p, p(A[X,Y)
s.t. p(A) = p,

If we further assume that H does not contain models with unbounded risk trade-offs between groups, we want to prove
that, in terms of worst case risk, minimizing over i € H is equivalent to minimizing over its respective properly Pareto
classifiers sets, h € H p, for the left side of the equation and h € Hp,_,, ,, for the right side.

Looking at the left side equation, we note that for all h € H and p(A|X,Y) : p(A) = p, we have a corresponding risk
vector {r4(h)}aea. Let ' = argmax, r,(h) be the worst group; by the properties of Pareto optimality, we know that there

exists a model A such that R R - R -
h€Hp, :ra(h) =ra(h),re(h) <ry(h) Vae A\ {a'}.

That is, there_ exists a Paret(i efﬁgient model that achieves the same risk on o’ but less or equal risk in all other coordinates
(note that if h € Hp, then h = h). Applying this property we observe that

min max maxrq(h) = min max max 7, (h).
heHp, p(A|X, Y) acA heH p(A|X, y) acA
s.t. p(A) = p, s.t. p(A) = p,
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Using similar reasoning, we have that

min max rq(h) = min max ra(h),
h€MrPit01y a € {0, 1} her g € {0, 1}
p(AX,Y) p(AlX,Y)
s.t. p(A) = p, s.t. p(A) = p,
and thus,
min max maxr,(h) = min max ra(h),
herp, p(AlX,)Y) a€A heHr i 01y a € {0,1}
s:t.p(A) = p, p(A[X,Y)
s.t. p(A) = p,

We want to restate that the equalities are valid in terms of worst case risk, there may be minimax models h € H that do not
belong to the Pareto set h € Hp,

O

Lemma 3.2. Given Problem 4 with p(Y'|X) > 0 VX, Y, and let the classification loss be cross-entropy or Brier score.
Let h(X) : hi(X) = |y‘VX Vi € {0, ...,|Y| — 1} be the uniform classifier, and let h € H.
There exists a critical partition size

= IyIEx[m;np(y | X) <1
such that the solutions to Problem 4, Vp < p*, are

*

ifl=lop
ifl=lpg

Il I
’_/Hu:‘
=)
o
LG

That is, the solutions to all partitions with size smaller than p* yield the uniform classifier with constant risk R.

Proof. This proof is done in three steps, first we provide an upper bound of the solution of Problem 4, we then show that we
can design a (potentially nonexistent) partition density that achieves this upper bound, and finally, we derive conditions
under which the previously identified partition is guaranteed to exist.

We first prove that for any distributions p(X, Y, A), it follows that

min max r,(h) < R,
heH ac{0,1}

meaning that the solution to Problem 4 is upper bounded by the risk associated with the uniform classifier for cross-entropy
and Brier score losses.

This is done by considering that for any distribution p(X,Y, A), the conditional risk of the uniform classifier h(X) :

hi(X) = MVX Vi€ {0,....|Y] — 1} is

log || ifl=lep

EX,Y\A[Z(B(X% = {y| 1 lfezzBS ’ vp(X7Y7A)a

Since h € H, we have that min max r,(h) < RVp(X,Y, A).
heH ac{0,1}
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Then we show that if we can design p(A|X,Y) : p(Y|X,A=1) = Dl;|VX Y we have that, under this distribution,

h, R = {arg} n}elﬁ n%%x} r4(h), which is the upper bound identified above.
aec

For this assume that we have p(Y | X, A = 1) = 1.V XY, it then follows that min 7, (h) = r1(h) = Rsince h is, by design,

o D’ |
the optimal classifier for group a = 1 and R its best achievable risk. Then razl( ) > R Vh and since r,—1(h) = ro—o(h)
it follows that

h,R= h
; {arg}gg?r{laggg}m( )-

Finally, we derive a necessary and sufficient condition for the existence of p(A|X,Y) : p(Y|X,A=1) = % vX,Y. Since

we need
1 p(A=1[X)

Y] p(Y]X)
to be a well-defined distribution, the only degree of freedom available is p(A=1 | X). Note that

PA=1|X,Y) =

PO —p(A=11X) 1
— > 0VX,Y,
—p(A=1X) ]

p(Y[A=0,X) =
therefore p(A=1|X) < |Y|p(Y|X), VY, X — p(A=1|X) < |y|m€i§}1p(Y:y|X) and therefore
y

p(A=1) < Ex[]Y| gggp(le)] =

We also note that mm p(y|X) < | r» therefore p* <1

O

Note that the Lemma above can drop the hypothesis p(Y|X) > 0 VX,Y by defining a new semi-uniform classifier
R(X) : hi(X) = 25EEVX, Vi € {0, ..., [V] = 1}, where Y(X) indicates the subset of labels y such that p(y|X) > 0.

The proof proceeds similarly, with the resulting partition size Ex [|[V(X)| ml(I)l( : p(y| X)) = p*.

Lemma 3.3. Given a distribution p(X,Y") and any predefined partition group p(A’|X,Y") with A" € A’, | A’| finite. Let

h, R = {arg} inlﬁ max 7o/ (h) be the minimax fair solution for this partition and its corresponding minimax risk. Let h*
EHa €A

and R* be the classifier and risk that solve Problem 4 with p = min, p(a’). Then the price of minimax fairness can be

upper bounded by

hr) — » < R* — mij .
(ﬁnea%ra( )—R<R hmglqr{lr(h) (10)

Proof. Observe that V A, and for any distribution p(A | X,Y), A € Aand Vh' € H we have

. < !/
hmelf}r_tlr( Zp a)rq(h ?eaj”“(h ).
acA
We also have
h*,p*(AlX,Y), R* = {arg} min max ra(h).

h€Hes g€ {0,1}

p(A|X,Y)

st.p(A) = p

Which, together with Lemma 3.1, implies

max 7, (h*) < R < max rq-(h).

a’'€A’ a*€{0,1}
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We combine the two and show

max re(h*)—R <R*—R
< R* —minr(h).

Lemma 4.1. Given Problem 4 with minimum group size p < %, the following problems are value equivalent:

R'= min max max_7,(h),
heHp, p(A|X,Y) a€{0,1}
s.t.p(A) = p
R"= min max ri(h)

heHp , p(A|X,Y)
st.p(A=1)=p
R'= R

Proof. Following the arguments in the proof of Lemma 3.1 we observe that, for any & € H and A = {0, 1}, we can
consider the partition proposed in Equation 9 with o’ = 1, which is a risk maximizing distribution for that particular h. This
distribution satisfies max,c (0,1} 7« (h) = 71(h), and also satisfies p(A = 1) = p. Following the same reasoning as in the
proof of Lemma 3.1, we can translate this equivalence in terms of worst case risk from the set h € H totheseth € Hp,.

O

Lemma 4.2. Given the problem on the right hand side of Eq. 6, a convex hypothesis class 7, and a bounded loss function
0 < l(h(x),y) < C Vx,y,h € X x Y x H that is strictly convex w.r.t its first input h(z), under mild conditions the
following problems are equivalent:

H' = {arg} min max r1(h
{ }hGHPA p(A|X,Y) .
st.p(A=1)=p
H" = {arg} min sup  ri(h),
e p(AIX,Y)
st.p(A=1)=p
p(A=1|X,Y) > 0, VX,V
fHI — fHII’

Proof. We present this proof in two steps. First, we show that, under the hypothesis class Hp,, we can change the
maximum over the set of distributions P(A|X,Y) : P(A = 1) = p for the supremum over the set of distributions
PAIX,)Y): P(A=1)=p,P(A=1|X,Y) > 0VX,Y. That s,

{arg} min max ri(h) = {arg} min sup ri(h).
heMry  p(A|X,Y) heHr, p(AIX,)Y)
st.p(A=1)=p st.p(A=1)=p

p(A=1|X,Y)>0VX,Y
To prove this we start by defining the set of distributions complying with the restriction on the left hand side as

Qs = PAIX,Y) / A = 1z, y)p(e.y) = p.p(A = 1|X,Y) > 0YX,Y € X x Y},

and the distribution subset on the right hand side as

Qp> = (P(AIX.Y) / (A =1z, )p(e,y) = pp(A=1] X,Y) > 0VX,Y € X x J}.
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We can then observe that, for any model h, and distributions p(A|X,Y) € Q, > and p(A|X,Y) € Q, >, the distribution
PA(A|X)Y) = M(A|1X,Y) + (1 — N)p(A|X,Y) satisfies px (4| X,Y) € @, > YA € (0,1]. Furthermore, we have, by
linearity of expectation

r1(h;pa(AIX,Y)) = Are (b p(A|X,Y)) + (1 — A)ri(h; p(A]X,Y))
<ACH+ (1= N)ri(h; p(A]X,Y)),
r1(h; pa(AlX,Y)) > (1 = Mri(h; p(A|X,Y))

where we used explicit notation to indicate what distribution we are using to take expectation and the fact that the loss is
upper bounded by C' and lower bounded by 0. Therefore we conclude

I AIX,Y) = p(AIX,Y
Jim pa(A1X,Y) = HAIX,Y)

and
lim 71 (h;pa(A|X,Y)) = r1(h; p(A]X,Y)).
A—=0t

Similarily for g
lim 7o(h;pA(A|X,Y)) = ro(h; p(A|X,Y)).
A—0*+

Since this transformation preserves the entire risk vector ro(h), r1(h), and the results hold for any h € H and p(A|X,Y) €
Q,,>, we can conclude

{arg} min max ri(h) = {arg} min sup r1(h).
hetra p(AlIX,Y) € Qp> MEREA p(AIX,Y) € Qs

Secondly, we show that, under these conditions, and further assuming that  does not contain models with unbounded risk
trade-offs between groups, minimizing the supremum over h € Hp, is the same as minimizing over i € H. That is,

T I P
st.p(A=1)=p st.p(A=1)=p
p(A=1|X,Y) > 0VX,Y p(A=1]X,Y) > 0VX,Y

We observe that, if £ is a strictly convex function w.r.t h, and p(A|X,Y) € Q p,>> We can write the following statements.

Let h,h € argmingcy Ry (h; p(A]X,Y)) such that h(z) # h(z) if and only if = in some set X C X, and let hy =
A+ (1 — X)h € H VA € [0, 1]. By the strict convexity of ¢ we have

U(ha(X),Y) = M(W(X),Y) + (1 = N(h(X),Y)VX,Y € X\ X x ),
U(ha(X),Y) < M(W(X),Y) 4+ (1 = \MR(X),Y)VX,Y € X x ).

Since for any h € H we can write

- p(z,y)pla =1|X,Y) N
nin = | . / N ; UR(X), Y )dudy

+/ / p@ e = UXY) 3y Vydedy,
wEX\/? yey p

and we need 71 (hy) > Ry (k) = r1(h), using the inequalities from the strict convexity of £ we note that X' must satisfy



Blind Pareto Fairness and Subgroup Robustness

/ / p(z,y)pla = 1|X,Y)d$dy:0’
zeX Jyey P

or, equivalently, since {x,y : p(4 = 1|x,y) > 0)} = X x ) by hypothesis

/ / p(z,y)dzdy = 0.
zeX Jyey

From this we conclude that / and % can differ only in a zero-measure set, and thus ro(h) = ro(h), which implies that
h,h € arg ming, 71 (h; p(A|X,Y)) for any p(A[X,Y) € Q>

O

Lemma 4.3. Consider the setting of Algorithm 1, with parameter ¢ > 0, and = max HO‘”2 < Var withl , =
oacU €,p

{a:a; €6 1],> 7, 5t = p}, and L a 1-Lipschitz function w.r.t. v, let P be a uniform d1str1but10n over the set of models

{ht,... KT}, and 1et R* be the minimax solution to the loss presented in Eq. 8. Then we have
EpopL(h,a) < vR* + ] 2P
max [Ep yo) < —_.
acl. , hoe P 7 T

Proof. We observe that loss function L(h, cv) is concave (linear) w.r.t. o, and the set U, , is convex, with maximum norm

max [lall2 < /np. For each € > 0 we are therefore able to use Theorem 7 in (Chen et al., 2017) to state
acle

2
max EppL(h,a) <ymin max L(h,a)+ Iggx llall2n/ = T

aEcU. P heH ael., P €,p
2n
< ~min max L(h,a)+ Tp

heH acl. ,

A.2. Additional Results

Similar to Table 1, tables 3, 5 and 7 compare the performance of the competing methods (Baseline, ARL, DRO and BPF) on
a predefined demographic. For the law school dataset we considered gender and outcome; race and outcome was considered
for the Compas and MIMIC-III datasets. Table 6 show the demographic composition of worst groups based on the mentioned
populations. It is worth noting that for these particular predefined groups there is no major difference between DRO and
BPF, moreover, in the case of Compas they do not seem to be deviating from the uniform classifier despite increasing the

partition size, which could be due to a high level of noise.

Prop(%) ‘ ARL.15  DRO .15 BPF .15 ‘ ARL.25 DRO .25  BPF .25 ‘ ARL.4 DRO 4 BPF 4

Group

‘White,Male 48.2% 68.9% 85.3% 86.8% 68.9% 94.1% 94.1% 68.9% 94.1% 94.1%
‘White,Female 35.5% 70.5% 85.2% 87.0% 70.5% 94.4% 94.5% 70.5% 94.4% 94.4%
Nonwhite,Male 7.8% 59.5% 76.6% 77.5% 59.5% 81.9% 82.0% 59.5% 81.9% 81.9%
Nonwhite,Female 8.5% 58.8% 75.9% 76.7% 58.8% 80.9% 80.9% 58.8% 80.9% 80.9%
Worst-case group - | 48.0% 64.5% 64.5% | 49.6% 75.7% 75.7% | 52.2%  83.0%  83.0%

Table 3. Accuracy on law school dataset across gender and ethnicity partitions (groups given no special consideration by the algorithms),
worst-case group performance is shown for reference. Results shown for ARL, DRO and BPF models for varying partition sizes.
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Group Prop(%) ‘ ARL.15 DRO .15 BPF .15 ‘ ARL.25 DRO .25 BPF .25 ‘ ARL.4 DRO 4 BPF 4
Black 8.5% 50.0% 52.8% 51.3% 50.0% 62.6% 60.6% 50.0% 74.7% 73.2%
White 79.3% 50.0% 52.8% 51.2% 50.0% 62.6% 60.6% 50.0% 74.5% 73.1%
Asian 2.7% 50.0% 52.7% 51.2% 50.0% 62.2% 60.2% 50.0% 73.8% 72.4%
Hispanic 3.5% 50.0% 53.1% 51.4% 50.0% 63.9% 61.7% 50.0% 77.3% 75.6%
Other 6.0% 50.0% 52.8% 51.2% 50.0% 62.3% 60.4% 50.0% 74.1% 72.6%
Worst-case group - | 50.0% 48.5% 48.7% | 50.0% 55.9% 58.9% | 50.0% 68.2%  69.1%

Table 4. Accuracy across gender and ethnicity partitions (groups given no special consideration by the algorithms) in the MIMIC-III
dataset for ARL, DRO and BPF models for varying partition sizes. Worst-case group performance is shown for reference.

Group Prop(%) | ARL.15 DRO.I5 BPF.15 | ARL25 DRO.25 BPF.25 | ARL4 DRO4 BPF4
African-American ~ 51.8% | 55.9%  52.1% 53.0% | 55.9%  52.1% = 53.0% | 55.9%  52.1%  53.0%
Caucasian 34.3% | 57.0% = 52.4% 54.5% | 57.0%  52.4%  54.5% | 57.0% 52.4%  54.5%
Hispanic 8.3% | 55.7%  52.0% 53.8% | 55.7%  52.0%  53.8% | 55.7%  52.0%  53.8%
Other 5.6% | 57.3%  53.3% 55.2% | 57.3%  53.3%  55.2% | 57.3%  53.3%  55.2%
Worst-case group - | 36.7%  41.5% 41.0% | 40.2% 44.0% 43.4% | 43.7% 45.2%  44.7%

Table 5. Accuracy on Compas dataset across ethnicity partitions (groups given no special consideration by the algorithms), worst-case
group performance is shown for reference. Results are shown for ARL, DRO and BPF models for varying partition sizes.

A.3. Experimental Details

To train the BPF classifier with standard SGD, we use the minibatch version of Eq.8

9

1Y ail(h(zy), v
L(h’a):;bZzzla £ (x) y)

where ny, is the batch size, this loss is simply the minibatch equivalent of the importance-weighted loss

Eoipa=t (h@)y)] =€ on o [60h(@),)] = Byl A, )

Np”Nip]

The training parameters used for all methods presented in the main paper are summarized in the following table

All methods are implemented using the same codebase on PyTorch. Experiments are run on a single GeForce RTX 2080 Ti
and take less than 1 hour wall time each. The code implementation for BPF will be provided.
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Group/Outcome prop(%)  BPF.15 BPF .30  BPF 40
Law school
White,Male/0 1.5% 4.5% 2.6% 1.5%
White,Male/1 46.6% 36.9% 44.0% 46.6%
White,Female/0 1.2%  3.5% 2.0% 1.2%
White,Female/1 34.3% 27.6% 29.7% 34.3%
Nonwhite,Male/0 1.1% 3.2% 1.8% 1.1%
Nonwhite,Male/1 6.7%  9.2% 8.4% 6.7%
Nonwhite,Female/0 1.3% 3.8% 2.2% 1.3%
Nonwhite,Female/1 7.2% 11.4% 9.3% 7.2%
Compas

African-American/0 24.7%  24.7% 24.7% 24.7%
African-American/1 27.1%  27.1% 27.1% 27.1%

Caucasian/0 20.9%  20.9% 20.9% 20.9%
Caucasian/1 13.4% 13.4% 13.4% 13.4%
Hispanic/0 5.2%  5.2% 5.2% 5.2%
Hispanic/1 3.1% 3.1% 3.1% 3.1%
Other/0 3.6% 3.6% 3.6% 3.6%
Other/1 2.0% 2.0% 2.0% 2.0%
MIMIC-III
Black/0 7.6% 5.2% 5.2% 6.3%
Black/1 1.0%  3.4% 3.2% 2.2%
White/0 70.0% 48.4% 48.4% 58.7%
White/1 9.2% 31.0%  31.1%  20.7%
Asian/0 2.4% 1.7% 1.7% 2.0%
Asian/1 0.3% 1.1% 1.1% 0.8%
Hispanic/0 3.2%  2.2% 2.2% 2.7%
Hispanic/1 0.3%  0.9% 0.9% 0.6%
Other/0 5.3% 3.6% 3.6% 4.4%
Other/1 0.7% 2.4% 2.5% 1.6%

Table 6. Demographic composition of worst groups as a function of minimum partition size on the law school and Compas dataset. BPF
homogenizes outcomes across partitions and protected attributes.

Method DRO ARL ARL HC BPF
Learning rate dexp —H dexp —H Sexp —5 Sexp —H
Batch size 256 256 256 256

Training Loss Cross entropy Cross entropy cross entropy Ccross entropy
Network architecture (512,) (512, (512, (512,

(512,512,),(512,), (512,512,),(512,),
Custom parameter n=1{0,1/20,...,1} (256,256,), (256,) (256,256,),(256,) p = {0.05,...,0.8}

Table 7. Summary of training parameters per method for all presented experiments. Network architecture is the number and size of the
hidden layers of the classifer; for ARL and ARL HC, the adversarial network architecture is presented in the same format on the custom
parameter row.



