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‘We present a novel interpretable machine learning model to predict accurately the complex rip-
pling deformations of Multi-Walled Carbon Nanotubes (MWCNTSs) made of millions of atoms.
Atomistic—physics—based models are accurate but computationally prohibitive for such large sys-
tems. To overcome this bottleneck, we have developed a machine learning model that comprises a
novel dimensionality reduction technique and a deep neural network—based learning in the reduced
dimension. The proposed nonlinear dimensionality reduction technique extends the functional prin-
cipal component analysis to satisfy the constraint of deformation. Its novelty lies in designing a
function space that satisfies the constraint exactly, which is crucial for efficient dimensionality re-
duction. Owing to the dimensionality reduction and several other strategies adopted in the present
work, learning through deep neural networks is remarkably accurate. The proposed model accu-
rately matches an atomistic—physics—based model while being orders of magnitude faster. It extracts
universally dominant patterns of deformation in an unsupervised manner. These patterns are com-
prehensible and explain how the model predicts, yielding interpretability. The proposed model can
form a basis for an exploration of machine learning toward the mechanics of one and two—dimensional
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materials.

I. INTRODUCTION

Carbon nanotubes have shown remarkable physical,
chemical and electronic properties. Moreover, their de-
formation can be used to control their chemical, and
electronic properties, leading to a large number of appli-
cations including nanoelectromechanical systems [IH3].
In experiments, multi-walled carbon nanotubes (MWC-
NTs) show periodic wavelike deformation patterns called
rippling [2 4]. Walls of MWCNTs are crystalline mem-
branes having very low bending modulus and very high
in—plane modulus. Besides, the inter—wall van der Waals
interactions keep them separated and guide the deforma-
tion [B]. Under loading, the walls bend to minimize their
in—plane strain following a near isometric deformation,
leading to rippling patterns.

Accurate and efficient simulation tools to predict
the complex deformations of large MWCNTSs are needed
but still elusive. Quantum-—mechanical and molecular
simulations are accurate but they are computationally
prohibitive for large MWCNTSs containing millions of
atoms. Towards this, Atomistic-Continuum (AC) mod-
els have been developed [5H7] by integrating atomistic
and continuum frameworks. State—of-the—art AC mod-
els are efficient but still require a significant amount of
high—performance computing efforts for large MWCNTs,
which is the bottleneck for exploration of the physics of
these materials.

Machine Learning (ML) methods such as Deep Neu-
ral Networks (DNNs) |8, [9] are intensely investigated for
accelerating mechanics, physics, and materials research
[10H12], however, so far most of the applications are lim-
ited to the prediction of low—dimensional properties, such
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as material moduli. On the contrary, discretized material
deformation requires prediction in a high—dimensional
space. Though the continuum deformation is in the
ambient space, the discretized data lies in a very high—
dimensional space. For instance, large thick MWCNTs
require several millions of degrees of freedom to describe
its deformation [5] [13].

Deep Learning models can predict low dimensional
(e.g. CNN, Autoencoder[14, [15]) or high dimensional
outputs (e.g. Encoder-Decoder [16] [17]). However, these
Deep Learning models require high dimensional inputs.
State—of-the—art DNNs cannot accurately predict high—
dimensional targets from a few input features. The ob-
jective of the present study is to create an ML model to
accurately and efficiently predict high—dimensional dis-
cretized deformations of MWCNTSs as output from low—
dimensional inputs. This necessitates the reduction of
dimension of the output.

An additional challenge for the MWCNTs is that the
deformed configuration is a non-linear manifold. Thus
the reduced—dimension (called latent space) of the de-
formation is non—linear. Commonly used dimensional-
ity reduction techniques [18] such as Principal Compo-
nent Analysis (PCA) and classical Metric Multidimen-
sional Scaling are inapplicable for the present problem
since they are based on linear models. Nonlinear Di-
mensionality Reduction techniques (also called Manifold
Learning) such as Isomap, Locally-Linear Embedding,
and Umap are designed to identify the low—dimensional
non-linear manifold structure of the data [19, 20]. In
these techniques, an approximate low—dimensional neigh-
borhood graph embedded in the high—dimension is ob-
tained following the manifold structure of the data. How-
ever, to accurately predict the deformation of MWCNTs
we need an accurate, smooth, and functional representa-
tion of the mapping from the high—dimensional to a low—
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dimensional manifold such that it respects the constraints
of the deformation. Just visualization or approximate
discrete representations of the low—dimensional mani-
fold are not sufficient for the present purpose. Func-
tional Principal Component Analysis (FPCA) [21 [22]
provides a smooth functional representation of the data,
which is analogous to Kosambi-Karhunen-Loéve Expan-
sion [23, 24]. FPCA represents a stochastic process
through a linear combination of an infinite number of
orthogonal functions. These orthogonal functions are
the functional counterparts of principal components in
the standard Principal Component Analysis. However,
we found that the FPCA cannot respect any geometric
constraint of the system since these orthogonal functions
need not satisfy any constraint. MWCNTs has period-
icity constraint along the circumference due to its cylin-
drical structure. As a consequence FPCA yields discon-
tinuous and erroneous predictions for MWCNTSs, which
is demonstrated in the present work (see Sec. .

In the present work, we propose to extend FPCA by
designing a basis set of functions to satisfy this constraint
exactly. We call the proposed technique constrained—
FPCA (c—FPCA). The proposed ¢-FPCA technique al-
leviates the curse of dimensionality by providing low—
dimensional functional representations for the deforma-
tions of MWCNTs. The proposed semi-supervised ML
model includes two steps (i) unsupervised dimensionality
reduction (via proposed c-FPCA) of the deformed man-
ifold and (ii) supervised learning (via DNN) of deforma-
tion in the reduced dimension. Henceforth, the proposed
ML model is referred to as the Deformation Manifold
Learning (DML) model, shown in Fig. It takes the
details of the MWCNT system and its boundary con-
ditions as inputs and predicts its high—dimensional dis-
cretized deformation. The proposed model and the data
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FIG. 1. Schematic of the present framework involving the
data generation via AC simulation and the proposed Defor-
mation Manifold Learning(DML) model. The DML model
includes: ¢c-FPCA and DNN. Firm arrows show data genera-
tion and training, and dashed arrows show prediction via the
proposed model.

preparation are described in Sec.

Despite their applicability and accuracy, ML
models are often criticized as “black-box” or non-—
comprehensible. Recently there is a surge in efforts
to produce intelligible knowledge about the problem
through ML models, this ability is referred to as in-
terpretability [25]. The proposed model is interpretable
since the latent space of deformation is comprehensible
through the functions spanning it. The interpretabil-
ity and accuracy of the model are described in Sec. [[IL.
See Supplemental Material (SM) at [URL] for a list of
acronyms and details of the present method.

II. DEFORMATION MANIFOLD LEARNING
MODEL

In this section, we describe the deformation data
preparation (Sec. [[I A) and the elements of the proposed
DML model (Sec. [IB] and [[IC), whose schematics is
given in Fig. We focus on complex distributed pe-
riodic buckling patterns (rippling) of MWCNTs under
torsion and bending [26]. An atomistic—continuum model
(namely Foliation model [5]) is used to generate the train-
ing data for the proposed DML model. See Sec. B of
SM at [URL] for more details on the Foliation Model. To
represent thick MWCNTSs commonly found in the experi-
ments, we are simulating (5,5), (10,10),-- - , (5 Ny, 5 Ny)
MWCNTs walls, with N,, = 10 to N,, = 40 in the in-
crement of 5, where N,, is the number of walls. These 7

simulations (N, = 10, 15,--- ,40) are used in training.
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FIG. 2. Illustration of the kinematics showing the configura-
tion spaces, deformation maps, and coordinate axes.

A. Kinematics of MWCNTSs and Data Preparation

A configuration map (pg) is an injective mapping
from parametric space to the local reference configura-
tion. Another map () is from parametric space to Eu-
clidean space, R? as shown in Fig. The deformation
map is then defined as ® = p o ! The energy density
of the deformed MWCNT can be computed in terms of
the right Cauchy—Green strain field, the curvature tensor
field, and the transverse-to—the-wall stretch field of the
deformation map (®) following the atomistic—continuum
model. See Sec. B of SM at [URL] for more details on
the atomistic—continuum model.

To learn the deformation pattern of entire MWCNT,
multiple sets of simulations would be required. To re-
duce the number of simulations we decomposed the do-



main into several cross—sections (N.s) at regular inter-
vals along its length. Due to the periodicity of the rip-
pling deformation, this decomposition strategy increases
the size of the data set. Let’s assume that the £3 co—
ordinate of the m—th tube in the parametric domain is
given by £5* and each tube is discretized along the & di-
rection as {€5}es. Where N denotes the number of
cross—sections taken along the tube length. Thus, dis-
cretizing the deformed configuration (®) along & (cir-
cumference) and & (length) yields a collection of de-
formed cross—sections, which are parametric curves of &1,

as (I) — {q’l(fl,gﬁl»fg’,ﬂ)vqb(ﬁl»f?vfén)?(1’3(5175375:?)}7

m=1,--- ,Ny;n = 1,--- | N.s. These curves can be
further reparametrized in the cylindrical coordinate as
{9(51)7 Dy (0(51)7 g;v gé’n)’ 7‘(9(51), gga gn)} FOHOWiIlg the
decomposition technique, the total deformation of each
point (&1, &2,&3) for m—th wall at n—th cross—section of a
MWCNT can be represented through two parts, (i) an
in—plane radial deformation r(0(&1),£5,£5") in the unde-
formed cross—sectional plane, and (ii) axial deformation

B. Dimensionality Reduction through Proposed
Constrained—-FPCA

1. FPCA
The cross—sections of the MWCNTSs are given by the

mapped (£1,&3) planes for different & in the deformed

configuration, which constitutes the data set {ri(G)}f\Ll

of length N. Let us assume the radial deformations of
each tube are sampled from a stochastic process R(f),
6 € T = (0,27), such that its second derivative is square—
integrable. This smoothness of the deformation map is
a necessary condition since the energy of a MWCNT is
a function of curvature of its walls. We suppose that
R(0) can take any of the values 7;(8) € H#*(T),i =

-+, N. Where #2(T) is Hilbert space. We denote
the L?(T) inner product of functions ¢;, ¢; € H*(T)
with (di, ¢;) : [+ ¢i(0) ¢;(0) db.

Let the mean and the covariance functions of R(6)
are denoted by p(6) and v(,9) = Cov(R(6), R(¢)). In-
voking the Kosambi-Karhunen—Loeve Expansion theo-
rem [23] 24], the centered process can be expressed as

oo

R(6) — u(6) = 3 & vu(6)

k=1

Here, ¢, = ((R(0) — p(0)),¥(0)). Where ¢y(0), k =
1,2,---, are the orthonormal eigenfunctions of the fol-
lowing eigenvalue problem [ v(6,1)1(0)dd = X(6).

These eigenfunctions, 1, (), are henceforth referred
to as functional principal components (functional-PCs).
Assuming a finite set of eigenfunctions is sufficient to
approximate the centered stochastic process, R(6)— u(6),
its i—th sample can be written as

K
Ti(o)_ﬂ(e)%zéikwk(e)v i=1---,N (1)

Interpretation of eigenfunctions: The first eigenfunction
1)1 represents the principal mode of variation of the data
set. The k-th eigenfunction vy is the k-th most domi-
nant mode of variation orthogonal to {1/}1}1 ;- To solve
the aforementioned eigenvalue problem in J#2(T) we
choose a convenient finite—dimensional basis and look for
solutions in terms of that predefined basis. However,
choosing any arbitrary basis for FPCA will not work,
since the deformed configurations of MWCNTs have ge-
ometric constraints that need to be satisfied by the eigen-
functions and hence also needs to be satisfied by the ba-
sis. Erroneous predictions via FPCA is demonstrated in
Sec. [T A] To solve the eigenvalue problem while satisfy-
ing a constraint can be a difficult task, in the following we
reformulate the FPCA in a function space whose every
element satisfies the constraint exactly.
2. Proposed Constrained—FPCA

In order to alleviate the above mentioned problem,
a basis B = {¢p € #XT), g(¢x) =0, k=1,--- K} is
chosen. This basis B, encodes the geometric constraint
(periodic constraint) of the deformation of MWCNT's via
the function g(¢x) = 0, which is crucially important and
specializes the FPCA for the systems with any geomet-
ric constraint. We call this novel technique constrained—
FPCA (c-FPCA). We rewrite the data set, {ri(ﬂ)}g\il,
the eigenfunction (¥), and the covariance function
v(19,0) in terms of the basis B and solve the aforemen-
tioned eigenvalue problem to obtain the functional-PCs,
P (9). Subsequently, the function r;(6) is represented in
terms of functional-PCs using the Eq. || and their corre-
sponding coeflicients (¢;;) are referred here as coefficients
of functional-PCs (CoFPCs). The i-th sample can be
written in terms of the basis, B, as

K

Ti(o)*ﬂ(e)zgcik%(g)v t=1,---,N @)

Ci € R

In this work, we have chosen the Fourier Basis for ¢.
The eigenfunction’s representation in the basis B as

K

0) = brdr(0), by € R (3a)
k=1

P(0) = p(6)'b, b e RE (3b)

The covariance function can be written in the basis B as

v(9,0) =

the principal component weight functions t(s)
given as

1 t it
() T Ch(0) @

o= arg o Var / (R() - (@) w(E)3) (5

I1=1, (4 05)=0

for j=1,
should satisfy the eigenvalue problem mentioned in the
main manuscript. Hence, the eigenvalue problem can be



rewritten as

/ (0, 0)y(0)dt = % / d(0)" C* Co(0)9(0)"b dt
T T
= ¢(¥)'NIC'CWb = p(¥)'b

Where the K x K symmetric matrix W such that W; ; =
(¢i,¢j). Defining u = W/2b, the above equation can
be expressed as a symmetric eigenvalue problem

NTIWY2CtCW?/?u = Au (6)

Which can be solved for the eigenvector u. The compo-
nents of each eigenfunction can be found as b = W—1/2u,
The principal basis can be computed as (1) = ¢(9)! b.
The dimension of the problem is significantly re-
duced by obtaining a K (number of functional-PCs)
much smaller than the size of the discretized r;(6).

C. Learning in the Reduced Dimension through
Deep Neural Networks

We have used Deep Neural Networks (DNNs) to map
the MWCNT system parameters to its deformation in
the reduced dimension. The DNN architecture takes
the Geometry parameters and Boundary conditions as
input and outputs CoFPCs. The 4 Inputs for the pro-
posed DNN are: Geometry parameters (i) total num-
ber of walls in the MWCNT (NN,), (ii) the wall num-
ber (m,m = 1,--- ,N,), and (iii) the length coordinate
(®2(£5),n=1,---, Ng); (iv) Boundary Conditions: An-
gle of twist (©) or Curvature (k), per unit length. The
dimension of the output layer is the number of CoFPCs,
which is decided based on the accuracy required (in c—
FPCA), details of which are provided in Sec. B. In
supervised learning [8] DNNs are trained using some set
of known inputs and outputs before we use them to pre-
dict for unknown inputs. DNN (N) is a composite func-
tion of weights w and biases 3 that maps inputs x; to y;.
The objective is to update these weights w and biases
B to minimize the difference between true output y and
predicted output ¢, defined by a cost function J(y, 3):

min 7 (y, Nz, ) (7)

This is done iteratively by using Stochastic Gradient De-
scent (SGD) and Backpropagation algorithm [27]. Fur-
ther, this set of trained weights and biases w = (w, 3) is
used to predict unknown output y; = N (z;, w) for given
input z;.

DNNSs are prone to overfitting and often fail to work
accurately for test data. To alleviate the overfitting of the
DNN multiple regularization [28] [29] and normalization
[30] strategies are adopted in the present work.

The DNN architectures used in our work consist of
approximately 40 thousand learning parameters and uses
mean squared error of CoFPCs as the loss function (see
Sec. C of SM at [URL] for more details on the DNN ar-
chitecture). Three DNNs are trained for predicting the

4

following deformations of MWCNTs: (i) In—plane defor-
mation under torsion, (ii) in—plane, and (ii) out—of-plane
(axial) deformation under bending. Unlike torsion, in
bending the axial deformation is not negligible, hence we
have used two DNNs for in—plane and axial deformations.

III. Results
A. Limitations of FPCA

In this subsection, we show that the failure of FPCA
to satisfy the constraint exactly leads to inaccurate di-
mension reduction and hence inaccurate prediction of the
deformation via the DML model. To show this limitation
of FPCA two approaches are taken here:

(i) FPCA coupled with DNNs
(ii) FPCA coupled with constrained-DNNs.

These approaches were used to predict the deformation of
twisted MWCNTs. In the first approach, we use DNN on
the reduced dimension, which is obtained via FPCA. We
found that it yields discontinuity in the deformation due
to the violation of constraints by the FPCA as shown in
Fig. [3h,b. To overcome the discontinuity, in the second
approach we have enforced the constraint through the
DNN by modifying its objective function:

Ty, N (i, w)) = T (y, N (i, W) + Ap (8)

where £p is the error due to the violation of the con-
straint. The unknown parameter A decides the degree of
enforcement of the constraint. The penalty parameter,
A, provides a balance between the two errors. The op-
timum A is obtained here by using the L-curve method
[31]. See Sec. D of SM at [URL] for further details on
the L-curve. Even for the optimum A, the constraint—
DNNs can satisfy the constraint only approximately (not
exactly). While the constraint-DNN could reduce the
discontinuity, it significantly compromises accuracy ev-
erywhere else as shown in Fig. Bk, d. For the rest of this
paper, we focus on the proposed ¢c—FPCA method to
predict the deformation, which is designed to satisfy the
constraint exactly.

d

FIG. 3. Cross—sections of MWCNT obtained using two
approaches of DML model (===) that uses FPCA: (a)
FPCA coupled with DNN and (¢) FPCA coupled with
the constrained—-DNN. These two approaches are compared
against the AC model (==). (b) and (d) are the close—up
views of the blue boxes corresponding to (a) and (c). (b)
Shows a discontinuity in the DML model and (d) shows in-
creases error in prediction everywhere.



B. Dimensionality Reduction via the Proposed
Constrained FPCA

The proposed c-FPCA dimensionality reduction
could capture 99% variability of the deformation data
set through only 14 and 4 functional-PCs for torsion
and bending respectively, as shown in Fig. |4l To capture
99.9% variability, the corresponding numbers are 16 and
6 respectively. The associated (16 and 6) CoFPCs are
used as the outputs of DNNs. To obtain the functional—-
PCs we started with 64 basis functions to represent data
vectors of size up to several hundred. This demonstrates
up to two orders of magnitude dimensionality reduction
via the present approach. Owing to the high accuracy
of c-FPCA, DNNSs need to learn in significantly reduced
dimensions, yielding higher accuracy. Further, c-FPCA
returns only a few dominant modes having a perspicuous
pattern, which makes it easier for DNN to learn (see Fig.
5 and 6 of SM at [URL)).

100 fr=rrrre e i

FIG. 4. Cumulative % variance captured by principal compo-
nents for MWCNTs under torsion (left) and bending (right).
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FIG. 5. Correlation plots for test set CoFPCS of (a) in—plane
deformation in torsion, (b) in—plane and (c) out—of-plane de-
formation in bending. R = 0.9943(a), 0.9931(b), 0.9991(c).

C. Accuracy

While predicting through the DML model, for a
given MWCNT system and loading, at first, the DNN
predicts the CoFPCs, which lie in the low—dimensional
latent space. Subsequently, the high—dimensional de-
formed cross-sections containing all the walls (Fig. |§|
(bottom) and Figs. me, f, g) is obtained through inverse
¢ FPCA.Further, these deformed cross—sections are con-
catenated through the length coordinate to generate the
3D deformed shape. Since the functional-PCs are non—
zero almost everywhere, it is imperative that we predict
CoFPCs very accurately. To achieve very high accuracy
for DNNs we have adopted the following strategies: (i)
regularization techniques, (ii) hyper—parameter tuning,
and (iii) featuresnormalization, (see Sec.[[LC).

() (b)

FIG. 6. (a) Twisted 40 walled CNT obtained via AC (top)
and DML (bottom) model. (b) Radial deformation colormap
(Red: high, Blue: low). Alternate walls of cross—sections
obtained via AC (==) and DML (===-) models, for 10, 20,
30, and 40 walled CNTs.

FIG. 7. Bent 35-walled CNT obtained via AC (a,c) and DML
(b,d) model.(c) and (d) show colormap of radial deformations
corresponding to (a) and (b). (e—g) Alternate walls of cross—
sections obtained via AC (=) and DML (= = =) model.

The high accuracy of the DNNs is demonstrated
through very low relative-mean squared error (order of
10~%) for the validation data and excellent correlations
(R > 0.993) for the test data as shown in Fig.

Predictions by the proposed DML model is com-
pared against the AC model for two types of systems:
(i) known systems but unknown loading, (ii) unknown
systems and unknown loading, Deformation morpholo-
gies under torsion and bending obtained through AC and
DML models are provided for the known and unknown



FIG. 8. Comparison of AC (top) and DML (bottom) models
for a 32 walled CNT (system which is not a part of training
data) under torsion (a) and bending (b).

systems in Fig. (6]f7) and in Fig. [8| respectively. The
proposed DML model matches remarkably well with the
AC model for unknown loading as evident from the de-
formed surfaces and cross—sections. Their match is quite
accurate even when both the system and the loading are
unknown (as long as the unknown system is within the
range of the training data). This obviates the need for
AC simulations for such systems, yielding huge computa-
tional savings. However, if an MWCNT lies way outside
the range of the training data its accuracy might go down
since it might exhibit a deformation pattern that doesn’t
occur in the training.
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FIG. 9. Energy comparison for (15, 25, 32, 40 —walled) MWC-
NTs under torsion (a) and bending (b) via AC (o) and DML
model (+). 32 walled CNT (+) is an unknown system. The
lines (—) and (—) are drawn to highlight pre— and post—
buckling regimes.

To quantify the accuracy, we compute the relative
error in the predicted deformed configurations. The max-
imum relative error is found to be ~ 1% for the 32-walled
CNT, which is an unknown system under unknown load-
ing. See Sec. F of SM at [URL] for the details on the
quantification of accuracy.

We attribute the high accuracy of the proposed
model to the accuracy in both the dimensionality reduc-
tion and learning through DNNs. The deformation ob-
tained from CoFPCs (output of the DML model) is used
to compute the energy via a discretization. See Sec. F of
SM at [URL] for the details of energy calculation. The
energy computed through the DML and the AC model
matches very well for both known and unknown systems,
as shown in Fig. [9}

The proposed model is significantly more efficient
than the AC model. The AC model requires tens or
hundreds of total CPU hours in parallel processing to
simulate each of the MWCNTs. Whereas, inference via
the proposed model (upon training), requires only about
ten seconds for an unknown MWCNT.

FIG. 10. Functional principal components of MWCNTSs under
torsion (a,b) and bending (c,d).

D. Interpretability of the model

Recently several efforts have been made to overcome
the “black box” nature of ML models and to make them
more comprehensible to humans, through formulating
interpretation techniques [25]. Herein, we explore the
model-based—interpretability (as defined in [25]) of the
proposed model. The proposed model can extract dom-
inant (principal) modes of deformed configurations and
their relative contribution in an unsupervised manner. A
few principal components of the deformation of MWC-
NTs under torsion and bending are shown in Fig.
See Sec. E of SM at [URL] for additional principal com-
ponents. The rippling deformation of MWCNTs under
torsion follows a sequence of ridge and furrows, whereas,
in case of bending it resembles the diamond buckling pat-
tern [13]. These key patterns of deformation are captured
through the functional principal components (Fig. .
So far these key deformed patterns were approximately—
identified manually for individual MWCNTs. The prin-
cipal components of deformation automatically identi-
fied in the present model show qualitative similarity with
those identified manually in [7],[26,[32]. These functional-
PCs are universal since they are obtained from the entire
data set. This fact enhances the model’s predictive capa-
bility on unseen systems and hence explains the general-
izability (performance for unseen systems) of the model.
The DNNs learn the reduced dimension spanned by the
functional-PCs. The principal modes of deformations
are easy to comprehend thus enhance the understand-
ing of how the proposed model works, which makes it an
interpretable model.

IV. Conclusion and Discussions

In this study, a novel interpretable machine learn-
ing model is proposed, which predicts high—dimensional
deformed configurations of MWCNTSs accurately and effi-
ciently using only 4 inputs. It combines an unsupervised
dimensionality reduction of the deformed configuration
space and a supervised learning in the reduced space.

To conclude this study, we summarize its main fea-



tures. Firstly, a novel dimensionality reduction technique
is proposed that extends FPCA to respect the constraints
of deformation exactly. This improves accuracy in low—
dimensional representation of deformation and enables
accurate prediction of high—dimensional deformation of
MWCNTs. Secondly, the proposed model is remarkably
accurate for unknown systems and unknown loading .
This capability eliminates expensive AC simulations for
systems beyond what is used in the training, yielding a
massive gain in computational efficiency. Thirdly, the
principal components are comprehensible and thus help
to elucidate how the model predicts high—dimensional de-
formation through learning the space of functional-PCs,

leading to model-interpretability.

The proposed model will serve as a basis for the
exploration of machine learning for nanotubes and 2D
materials.
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