Direct Loss Minimization for Sparse Gaussian Processes

Yadi Wei
Indiana University

Abstract

The paper provides a thorough investigation
of Direct Loss Minimization (DLM), which
optimizes the posterior to minimize predictive
loss, in sparse Gaussian processes. For the
conjugate case, we consider DLM for log-loss
and DLM for square loss showing a significant
performance improvement in both cases. The
application of DLM in non-conjugate cases is
more complex because the logarithm of expec-
tation in the log-loss DLM objective is often
intractable and simple sampling leads to bi-
ased estimates of gradients. The paper makes
two technical contributions to address this.
First, a new method using product sampling
is proposed, which gives unbiased estimates
of gradients (uPS) for the objective function.
Second, a theoretical analysis of biased Monte
Carlo estimates (bMC) shows that stochastic
gradient descent converges despite the biased
gradients. Experiments demonstrate empir-
ical success of DLM. A comparison of the
sampling methods shows that, while uPS is
potentially more sample-efficient, bMC pro-
vides a better tradeoff in terms of convergence
time and computational efficiency.

1 Introduction

Bayesian models provide an attractive approach for
learning from data. Assuming that model assumptions
are correct, given the data and prior one can calculate
a posterior distribution that compactly captures all our
knowledge about the problem. Then, given a predic-
tion task with an associated loss for wrong predictions,
we can pick the best action according to our posterior.
This is less clear, however, when exact inference is not
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possible or when the model is misspecified. Variational
inference, which is widely used, chooses the approxi-
mate posterior that minimizes the KL-divergence to
the true Bayesian posterior, and equivalently maxi-
mizes a lower bound on the marginal likelihood. While
these properties provide some intuitive justification,
they do not immediately guarantee that the resulting
approximation has good performance.

To address this, prior work, which is discussed in more
details below, showed that (under some technical con-
ditions) variational inference or some variants converge
to the “best parameter setting” in the class considered,
or has loss comparable to that parameter. These are
strong guarantees but they do not show performance
competitive with the “prediction resulting from the best
posterior over parameters” in the class considered. The
latter might use a broad posterior whose predictions
are much better in some cases, so there is room for
improvement either in better analysis of variational
inference or in alternative algorithms.

As argued by several authors (e.g., Lacoste-Julien et al.
(2011); Stoyanov et al. (2011)), when exact inference is
not possible, it makes sense to optimize the choice of
approximate posterior so as to minimize the expected
loss of the learner in the future. This requires using
the loss function directly during training of the model.
We call this approach direct loss minimization (DLM).
Exploring this idea, Sheth and Khardon (2019) have
shown theoretically that (under some technical con-
ditions) DLM does provide performance competitive
with the “prediction resulting from the best posterior
over parameters” in the class considered.

1.1 DLM and Our Contributions

Motivated by these observations, in this paper we ex-
plore the potential of DLM to improve performance
in practice, in the context of sparse Gaussian Pro-
cesses (sGP), and in the process make technical con-
tributions to the problem of gradient estimation for
log-expectation terms.

To ground the discussion consider a model with latent
variables z and observations y, generating examples via
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p(2) [1p(yilz:). When calculating the posterior p(z|y)
is hard, variational inference finds an approximation
q(z) by maximizing the evidence lower bound (ELBO)
or minimizing its negation:

—logp(y)
< - /q(Z) log (58 Hp(yilzi)> dz
= 37 Ey - lomplunlz) + 8 dicsa(2)p(2)

where dg is the Kullback-Leibler divergence, and
B =1 (but we discuss other values of 8 below). From
this perspective variational inference is seen to perform
regularized loss minimization, with dx as the regular-
izer. But viewed in this manner the loss on example 7 is
assumed to be Eq(.,)[—log p(yi|2;)] which is not the in-
tended process for a Bayesian predictor. Instead, given
a posterior, ¢(z), the Bayesian algorithm first calcu-
lates its predictive distribution q(y;) = Ey(.,)[p(yil2:)],
potentially calculates a prediction g;, and then suffers
a loss that depends on the context in which the algo-
rithm is used. For the case of log-loss, where g; is not
used, the loss term is —log ¢(y;). This suggests a new
regularized direct-loss objectve:

LoglLoss DLM objective

Comparing LogLoss DLM to the ELBO we see that
the main difference is the log term which is applied
before the expectation. On the other hand, if we care
about square loss in the case of regression, the training
criterion becomes

squareLoss DLM objective
=D (@i — ) + B drrla(2), p(2)).

Other losses will similarly lead to different objectives,
and hence different posteriors even when trained on
the same dataset. This distinction is important. It is
not required when performing exact Bayesian inference
in correct models but it has practical implications with
approximate inference. One of the contributions of this
paper is to investigate this issue empirically and our
experimental evaluation shows that this distinction is
important in practice.

Applying log-loss DLM raises the difficulty of opti-
mizing objectives including log E (., [p(y:]2:)] terms in
cases when the expectation is not analytically tractable.
The standard Monte Carlo estimate of the objective,
log 7 >, p(yi\zi(k)), where zi(k) ~ q(z) (or its reparam-
eterized version) is biased leading to biased gradients

— we call this approach bMC. We make two technical
contributions in this context. The first is a new method,
uPS, for unbiased estimates of gradients for objectives
with log-expectation terms through Product Sampling.
The method is general and we develop a practical ver-
sion for the case when ¢(z;) is Gaussian. Our second
contribution is a theoretical analysis of bMC, showing
that (under some technical conditions) stochastic gra-
dient descent using bMC gradients converges despite
the bias. bMC has been used in some prior work either
explicitly or implicitly and therefore the result may be
of independent interest.

An empirical evaluation in sGP for regression, classifi-
cation and count prediction compares log-loss DLM, to
ELBO, as well as S-ELBO (which explicitly optimizes
the regularization parameter for ELBO). The evalua-
tion shows that DLM is an effective approach which
in some cases matches and in some cases significantly
improves over the performance of variational inference
and S-ELBO. Results comparing the sampling methods
show that uPS is potentially more sample-efficient but
bMC provides a better tradeoff in terms of convergence
time and computational efficiency.

To summarize, the paper develops new analysis for sam-
pling methods and optimization with log-expectation
terms, shows how this can be incorporated in DLM for
sGP, and shows empirically that DLM has the potential
for significant performance improvements over ELBO.

2 ELBO and DLM for Sparse GP

In this section we review sGP and the development of
ELBO and DLM for this model. The GP (Rasmussen
and Williams, 2006) is a flexible Bayesian model captur-
ing functions over arbitrary spaces but the complexity
of inference in GP is cubic in the number of examples n.
Sparse GP solutions reduce this complexity to O(M?n)
where M is the number of pseudo inputs which serve as
an approximate sufficient statistic for prediction. The
two approaches most widely used are FITC (Snelson
and Ghahramani, 2006) and the variational solution
of Titsias (2009). The variational solution has been
extended for large datasets and general likelihoods and
is known as SVGP (Hensman et al., 2013, 2015; Sheth
et al., 2015).

In sGP, the GP prior jointly generates the pseudo val-
ues u and the latent variables f which we write as
p(u)p(flu) and the observations y = {y;} are gener-
ated from the likelihood model p(y;|f;). Most pre-
vious works use a restricted form for the posterior
q(u, f) = q(u)p(flu) where g(u) = N(m,V) is Gaus-
sian and where the conditional p(f|u) remains fixed
from the prior. Although sGP is slightly more general
than the model discussed in the introduction a simi-
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lar derivation yields the same forms for ELBO and
DLM as above, where the loss term in the ELBO
is Equyp(s:ju[—logp(wil fi)] = Ey(p)[—log p(yil fi)]-
B-SVGP optimizes the objective with regularizer
Bdkr(q(u),p(u)) where sampling through reparam-
eterization is used when exact computation of the
objective is not tractable. The collapsed form (Tit-
sias, 2009) for the regression case uses the fact
that Ey(y,)[—logp(y:|fi)] has an analytic solution and
through it derives an analytic solution for m, V' so that
only hyperparameters need to be optimized explicitly.
FITC (Snelson and Ghahramani, 2006) is not specified
using the same family of objective functions but has a
related collapsed form which is used in our experiments.

The log-loss term for DLM is —log Ey(w)p(f,|u) [P(Yil fi)]
= —log Eq(s,)[p(yil fi)] = —logq(y:). Since both ()
and p(f;|u) are Gaussian distributions, the marginal
q(f;) is also Gaussian with mean pu; = K;, K,,}m and
variance v; = K;; + K K1 (V — Ky ) KL K. where
Ky = K(u,u), Ky = K(z;,u) etc.

In the following we consider log loss for regression, bi-
nary prediction through Probit regression and count
prediction through Poisson regression. For regression
we have p(yi|f;) = N(fi,02) and the loss term is
—logq(y;) = —log N (yi|pi,vi + 02). For probit re-
gression p(y; = 1|f;) = ®(f;) where ®(f) is the CDF
of the standard normal distribution. Here we_have
for y; € {0,1}, —logq(y;) = —log® (2%%)1“ . In
both cases we can calculate derivatives directly through
—log q(y;). For Poisson regression (with log link func-
tion) we have p(y;|f;) = e=e” e¥ifi [y;! and we do not
have a closed form for ¢(y;). In this case we must resort
to sampling when optimizing the DLM objective.

For square loss, ¢(y;) is the same as in the regres-
sion case, but calculating the loss requires optimal
prediction ¢;. In this case, the optimal prediction
is the mean of the predictive distribution, that is
9 = KK 'm. Therefore the loss term in square
loss DLM is % (K; K, ,lm — y;)?%. It is easy to show
that the the optimization criterion simplifies into an
objective that depends only on m, and the regu-
larized square loss DLM objective for sparse GP is
3 i (KK pim — yi)? + ngKJulm-

To summarize, both ELBO and DLM include a loss
term and KL regularization term. When the loss
term is analytically tractable optimization can be per-
formed as usual. When it is not, solutions use sampling
where ELBO can use unbiased estimates of derivatives
through reparameterization, but log-loss DLM has to
compute derivatives for log-expectation terms which
are more difficult.

3 Unbiased Gradient Estimates

In this section we develop a new approach for gradients
of log-expectation terms. In particular, we describe an
extension of a standard technique from the Reinforce al-
gorithm (Williams, 1992) that yields unbiased gradient
estimates, by sampling from a product of distributions.
The following proposition describes the technique.

Proposition 1. The estimate

G(0) = Valogq(f"]6), (1)
where fO ~ G(fD10) and G(f|0) = %, is an

unbiased estimate of Vg log Eq(si9) p(ylf)-

Proof. The true derivative G(6) = Vg log Eq(f0) 2(ylf)
is given by
VoEqri0)pWlf) _ Gn(9) 2
EqrioypWlf)  Eqcp10) Pl f)
We next observe using (Williams, 1992) that G,,(6) can
be written as

Gn(0)

= B [pwinVolosar)].

The expectation of (1) with respect to the sample f®)
is given by

E  Vglogq(f©9)

(s lo)
) )
0 c
_ 1 ) W] = Gnl0) _
= G o POV loga(f V0] = T2 = G0,

where C' = Eg(fj9) p(y|f), and the second-to-last equal-
ity follows from the identity (3). O

The derivation in the lemma is general and does not
depend on the form of f. However, the estimate can
have high variance and in addition the process of sam-
pling can be expensive. In this paper we develop an
effective rejection sampler for the case where f is 1-
dimensional and ¢(f) = N (i, 0?). We provide a sketch
here and full details are given in the supplement. Let
£(f) = p(y|f). To avoid a high rejection rate we sample
from ha(f) = N (i, no?) with the same mean as g() but
larger variance. We optimize the width multiplier n to
balance rejection rate in the region between intersection
points of ¢() and ho() (where ¢() is larger) and outside
this region (g() is smaller). It is easy to show that this
gives a valid rejection sampler with K = max¢(f),
that is, ho(f)K > q(f)4(f). This construction requires
separate sampling for each example in the dataset (or
a minibatch) and significant speedup can be obtained
by partly vectorizing the individual samples.
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4 Convergence with Biased Gradients

This section shows that biased Monte Carlo esti-
mates can be used to optimize the DLM objective.
For presentation clarity, in this section we scale
the objective by the number of examples n to get
— 5 i log Eggpy [p(yil fi)] + By drr(a(),p().!  Let
r := (m, V) and consider the univariate distribution
q(filr) == N(fl-|a;1m +b;1, aI2Vai_,2 +b; 2) for known
vector a; 1, a; 2 and scalar constants b; 1, b; . This form
includes many models including sGP. In the follow-
ing, references to the parameter V' and gradients w.r.t.
it should be understood as appropriately vectorized.
We consider the reparameterized objective h;(r) =

—log Enr(ejo,1) P(yil fi = 9i(7,€)) and its gradient

Ve Enepo,n) Pilfi = gi(r,€))
Enr(ejo,n) P(yil fi = gi(r,€))

_EN(E\O,l) {% [p(ilfi = gi(r,€))| Vrgi(r, 6)]

Vrhi (T‘) =

En(ejo,)) P(wil fi = gi(r,€))
(4)

where g;(r,€) ,/aZQVam + b;0€e + a;-':lm + bi1.

Letting ¢;(r,e) := p(y:lfi = gi(r,e)) 32¢{£(T7€) =
ol = (), and ¢(r,€) = Lxp(uilfi =
gi(r,€)), the components of the gradient in (4) are

_Enegon) [6i(r )]
En(ejo,1y [¢i(r,€)]

Vinhi(r) = i, (5)

En(ejo,1) [¢5(r, €)e] i 20 o

Exelo [9:(r )] 2, faT,Va; 5 + by

— _ EN(E‘O,l) [¢;’ (r7 6)] aiyzal—‘I:Q (6)
Exion [ei(ro] 2
where the final equality holds under various conditions

(Opper and Archambeau, 2009; Rezende et al., 2014;
Sheth et al., 2015).

Vvhi(r) =

We consider the bMC procedure that replaces the
fraction in the true gradients of the loss term with

(s Ven (il )/ (i puil £17)) where £ ~
q(fi]r),1 < £ < L. The corresponding bMC estimates
of the gradients are

_ X i)
- ZeLzl ¢i(r, €®)
_ ZeLzl @7 (r,e®) ainay
T dilne®) 2

Thesparse GP case, the KL term is over the inducing

inputs, whereas for the simpler model in the introduction,
the KL term is over f.

dim (T) a1 (7)

di’v(T') . (8)

where {¢)}l_| are drawn i.i.d. from N ([0, 1).

The main result of this section, given in Corollary 5,
shows that it is safe to use (7), (8) instead of (5), (6),
with a gradient descent procedure.

Our proof uses the following result from Bertsekas and
Tsitsiklis (1996) establishing conditions under which
deterministic gradient descent with errors converges:

Proposition 2 (Proposition 3.7 of Bertsekas and Tsit-
siklis (1996)). Let r; be a sequence generated by a gra-
dient method ri11 = ri + Yidy, where dy = (8¢ + wy)
and s; and wy satisfy (i) c1||Vh(re)||> < =Vh(ry) sy,
(ii) sl < callVh(ro)ll, and (i) lhwell < les +
ca||Vh(re)|]) for some positive constants ci1,ca, 3, ca. If
V() is Lipschitz and Yo g v < 00 and Yoy vt = 00,
then either h(ry) — —oo or else h(ry) converges to a
finite value and lim;—,oo VA(rs) = 0.

Intuitively, condition (i) guarantees that the step is in
roughly opposite direction of the true gradients and
thus the objective is decreasing; condition (ii) bounds
the relative magnitude of the step with respect to true
gradients; condition (iii) bounds the norm of the error
and thus bounds the negative impact of the errors so
that the objective can converge to a stationary point.

The next condition is needed for the proof, and as
shown by the following proposition it is easy to satisfy.

Assumption 3. There exist finite constants
B,V,Bv',B" such that B > ¢i(r,e) > 0,
B’ > ¢i(r,e) >V and B" > ¢}/ (r,e) > b". Further,
denote B* = max{B,|B’|,|B"|, V|, |b"|}.
Proposition 4. Assumption 3 holds for the likelihood
models shown in Table 1.

The proof of the proposition is given in the supplement.
We can now state the main result of this section:

Corollary 5. Suppose Assumption 8 holds. If for
every t and i, Eqp, ) p(yilfi) > (>0 and

L> MM where (9)

297

u a B2 (B/ _ b/)2 (B// _ b//)Q

= X ) )
|Enejony @i(r,e)|2” P2 Q?

(10)

p o~ JExEo @i(r el i Enon di(r,€) # 0

1, otherwise ’

Q = |En(ejo,) @7 (r€)ls if Enejo,n) #7'(r,€) #0

1, otherwise ’

and Y, 0 = &, then with probability at least 1 — ¢,
bMC satisfies the conditions of the Proposition 2 and
hence converges.
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Table 1: Derivative bou

nds for different models

Likelihood B b’ B’ b’ B
Logistic, o(yf) s 1 -1 I -1 I
Gaussian, = 117" e = ¢ ~ 7> s s o
Probit, ®(yf), ® is cdf of Gaussian 1 —1/V2m 1/V27 —1/V2me 1/ 2me

Yeg(f
Poisson, Miiq(),g(f) = log(ef +1) 1 -1 1 —2.25 2.25

e9(F
Poisson, g(f)yyi,g),g(f) =ef 1 —y—1 Yy —y—1/4 292 + 3y +2
v+l Tl v Tl o
) (w—p2 - T ) o v Vu+f2 o v vtz vt1 c vl 42y (v+5)/2
Student’s t, C(1+T) ,c= W c T EE, w182 (VE3 (v T3)/2 -2z 257 (Z%)
v+2 v+2

The first condition for convergence requires a uniform
lower bound ¢ on the overall “agreement” between
q(fi|r) and p(y;|f;). Intuitively this is reasonable be-
cause we expect the agreement to improve with the
training process (albeit not simultaneously for all exam-
ples). The second condition requires that the number
of samples L is sufficiently large. We first introduce
the following lemma.

Lemma 6 (Two-sided relative Hoeffding bound).
Consider i.i.d. draws {x'} from a random variable
with mean p # 0 and support [a,b]. For §,a €

(0,1), if L > 7((5701 a)) log 2, then, w.p. at least 1 — 6,

(1/L) 3, 29 and p have the same sign and 0 < 1—a <
7 LN

Proof. First, assume p > 0. From Hoeffding’s inequal-
ity, we know that if the condition on L is met, then
w.p. > 1—6, we have p—ap < (1/L) 3,29 < p+ap
from which the result follows. If u < 0, apply the same
argument to the negation of the random variable. [

The main ideas of the proof are as follows. Let s;
be the true gradient, then conditions (i),(ii) hold triv-
ially with ¢y = ¢ = 1. Then we aim to bound the
error w;. According to Lemma 6, for suﬁiciently large
sample size L, with high probability, + >, ¢/(r, €®)
and 1 T bi(r,€®)) are close to En(ejo,1) #;(r, €) and
Enr(ejo,1) @5(7,€), up to a factor of . Looking back at
(7) and (8) and using Assumption 3, we show that the
error term can be bounded linearly in «. Finally we
set the value of « at iteration t to be ; to guarantee
that the error decreases with iterations.

Proof of Corollary 5. We first show that h has Lip-
shitz gradients. This follows from a generalization
of the mean-value theorem applied to continuous and
differentiable vector-valued functions (see e.g., Theo-
rem 5.19 of Rudin (1976)). The Lipschitz constant
will be equal to the maximum norm of the gradient
over the domain and, in our case, will be finite when

Eq(s.m P(wil fi) > ¢ > 0. Note that it is always the
case that the expectation is > 0 but we must assume a
uniform bound for all ¢, 4.

Let d; = s;+w; where s; = —Vh(r;) so that conditions
(i),(il) hold trivially with ¢; = co = 1. We next develop
the expression for w; to show that condition (iii) holds.

Now w; = ), w; ; where m’s portion of wy ; is
w o G ((l/L) > ¢i(r ) Enepon) ¢, 6))
t,i,m — -
n \(1/L) Zz éi(r, 6(@) Enr(ejo,1) Bi(r,€)

(11)
and a similar expression holds for V’s portion.

Our claim follows from three conditions that hold
with high probability. When E¢’ # 0 and E¢” # 0
the conditions require the averages (1/L) 3", ¢i(r, €9),
(1/L) 5, 64(r,€®), (1/L) 3, 6 (r,®) to be close to
their expectations, i.e. within 1 + « relative error, w.p.
>1-6/(3n). Using Lemma 6 these are accomplished

by assuming that L > log(6”/6)M

From (11) we have

[[we,i,m I
En(eo,1) ¢5(r,€) |
N (e0,1) Pi(T; €)
(12)

Considering the portion with absolute value, if
Enr(ejo,1) #5(7,€) # 0 then both fractions have the same

sign. Then since i<
>2

) >0 9i(r,e?)

) 3¢ ¢ilr,e®)

‘la
(1

_ laiall
n2

/L
/L

—

1
1>1- 4

11—«

(

we have
[e3

)
9

(1+a)
(1—a)

En(ejo,1) #5(r,

2 o llaiall
En(ejo,1) @i(r,

n2

l|we,i,

mll

||ai71||2 2« 2 B* 2 (13)
n2 1-a ¢ )’
. o llaiall\2
and using o < 0.5 we get ||we; m|* < (%w) )

When Epr(¢jo,1) ¢;(7, €) = 0, we use the standard Hoeffd-
. (B’ —b")%log(6n/5)

ing bound and L > 502 to guarantee that
|(1/L) >, #i(r, e < @ wp. > 1—6/(3n). We also
have (1/L)3, (bi(r,e(e)) > Enejo) ¢i(r,e)(1 —a) >
¢(1 — @), and therefore, for m’s portion we have

il
n

@il 2

c

Q
<

RErE 14)

”wt,mn” < n
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Therefore we can bound m’s portion by the sum of
bounds from the two cases:

lail 200
lwimll < T?@B +1). (15)

Similar expressions for both cases hold simultaneously
for V, replacing a;; with ai’ga;{—Q, and, therefore, com-
bining bounds for m, V' we have

la| 2?0‘(23* 1) (16)

[[we,ql| <
where a; is the concatenation of a;; and the vectoriza-
. T
tion of a; 2a; .

Summing over all examples, we see that

horll = 1S weal) < \/ZZ s

< A%(QB* +1) (17)

[l

where A = max; ||a;||. Using the union bound we see
that this holds w.p. > 1 — 4.

To complete the analysis we need to make sure that the
above holds for all iterations simultaneously. For this
let ; be such that )", §; = 6. For example, 6, = %t%.

Use d; in the definition of L above to obtain the result.

This satisfies condition (iii) if we set « for step t to be
a; =y and set c3 = A%(QB* +1)and ¢y =0. O

The implication of the choices of oy and §; is that the
number of samples L increases with ¢. Specifically, for
v = 1/t this implies L o t?log(nt). While this is a
strong condition, we are not aware of any other analysis
for a procedure like bMC. In practice, we use a fixed
sample size L in our experiments, and as shown there,
the procedure is very effective.

Notice that Corollary 5 only guarantees convergence
with high probability. By adding a smoothing factor
to the denominator of (7) and (8), we can strengthen
the result and prove convergence w.p. 1. However,
smoothing did not lead to a significant difference in
results of our experiments. Details of the proof and
experimental results are provided in the supplement.

5 Related Work

DLM is not a new idea and it can be seen as regular-
ized empirical risk minimization (ERM), a standard ap-
proach in the frequentist setting. An intriguing line of
work in the frequentist setting follows McAllester et al.
(2010) to develop DLM algorithms for non-differentiable
losses. Extending the ideas in this paper to develop

Bayesian DLM for non-differentiable losses is an im-
portant challenge for future work. In the following we
disucss related work along several dimensions.

Approximating the Bayesian objective function:
In the Bayesian context, DLM can be seen as part of
a larger theme which modifies the standard ELBO
objective to change the loss term, change the regular-
ization term, and allow for a regularization parameter,
as captured by the GVI framework (Knoblauch et al.,
2019; Knoblauch, 2019) which is a view strongly con-
nected to regularized loss minimization. For example,
the robustness literature, e.g., Knoblauch et al. (2019);
Chérief-Abdellatif and Alquier (2019); Bissiri et al.
(2016); Futami et al. (2018); Knoblauch (2019), aims to
optimize log loss but changes the training loss function
in order to be robust to outliers or misspecification
and the safe-Bayesian approach of Griinwald (2012);
Griinwald and van Ommen (2017) selects § in order to
handle misspecification. However, in all these papers
the loss term is the Gibbs loss, E,)[¢()], where £() is
the training loss. In contrast, DLM uses the loss of the
Bayesian predictor with the motivation that this makes
sense as an empirical risk minimization algorithm.

Another interesting connection arises w.r.t. power-EP
and a-divergence minimization and their approxima-
tions in the BB-ao and AEPEP objectives (Hernandez-
Lobato et al., 2016; Li and Gal, 2017; Villacampa-

Calvo and Hernandez-Lobato, 2020) where the latter

optimizes = 3. —log By, [p(yil2i)*]+dk L (q(2), p(2)).

The two objectives are identical when oo = 5 = 1. How-
ever, for other values of 3, LogLoss DLM cannot be
replaced by this objective because AEPEP uses « also
as a power of the likelihood. In practice, Logloss DLM
tends to pick small 3 values but the a-divergence crite-
rion tends to pick a closer to 1 showing the difference
is important. On the other hand the DLM perspective
can be seen to provide a theoretical motivation for
BB-a and AEPEP.

Convergence analysis for Bayesian approxima-
tions: A range of approaches have also been used
from a theoretical perspective. Some prior analysis of
Bayesian algorithms aims to show that the approxima-
tions recover exact inference under some conditions.
This includes, for example, consistency results for vari-
ational inference (Wang and Blei, 2019a,b) and the
Laplace approximation (Dehaene, 2017). For sparse
GP, Burt et al. (2019) shows that this holds when
using the RBF kernel, and when the number and lo-
cation of pseudo inputs are carefully selected. The
work of Alquier et al. (2016) uses PAC Bayes theory
and formulates conditions under which the variational
approximation is close to the true posterior. In con-
trast to these, Alquier et al. (2016) and Sheth and
Khardon (2017, 2019) analyze variational and DLM al-
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gorithms bounding their prediction loss relative to the
“best approximate pseudo posterior”. Our paper further
elaborates algorithmic details of DLM and provides an
empirical evaluation.

Sparse GPs: sGP have received significant attention
in the last few years. Bauer et al. (2016) investigates
the performance of the variational and FITC approxi-
mations and provide many insights. Their observations
on difficulties in the optimization of hyperparameters in
FITC might have parallels in DLM. Our experimental
setup explicitly evaluates joint optimization of hyper-
parameters with DLM as well as a hybrid algorithm to
address these difficulties. Reeb et al. (2018) develops a
new sGP algorithm by optimizing a PAC-Bayes bound.
The output of their algorithm is chosen in a manner
that provides better upper bound guarantees on its
true error, but the actual test error is not improved
over SVGP. The work of Salimbeni et al. (2018) devel-
ops a novel variant of SVGP that uses different pseudo
locations for m and V. In contrast with these works
our paper emphasizes the DLM objective and evaluates
its potential to improve performance.

DLM: Several works have explored the idea of DLM
for Bayesian algorithms. Sheth and Khardon (2017)
demonstrated the success of DLM in topic models.
The work of Sheth and Khardon (2016); Jankowiak
et al. (2020b,a) applied log loss DLM and variants
for regression showing competitive performance with
ELBO. Our work significantly improves over this work
by exhibiting the differences between square-loss DLM
and log-loss DLM for regression, and by developing
extensions, sampling methods and analysis for the non-
conjugate case of log-loss DLM, which are stated as
open questions by Jankowiak et al. (2020a). Finally,
Masegosa (2020) motivates DLM as the right procedure,
but then identifies a novel alternative objective which
is sandwiched between ELBO and DLM. This offers
an interesting alternative to DLM with the potential
advantage that its loss term is the Gibbs loss (i.e., does
not have log-expectation issues), but the disadvantage
that it is an approximation to true DLM.

Overall, the space of loss terms, regularizers, and the
balance between them offer a range of choices and
identifying the best choice in any application is a com-
plex problem. We believe that DLM is an important
contribution in this space.

6 Experimental Evaluation

Our experiments? have two goals, the first is to evaluate
whether DLM provides advantages over variational

2The code used in our experiments is available at https:
//github.com/weiyadi/d1lm_sgp.

inference in practice, and the second is to explore the
properties of the sampling methods, including efficiency,
accuracy and stability. Due to space constraints, we
summarize the main results here, and full details are
provided in the supplement.

6.1 Details of Algorithms and Experiments

Preliminary experiments with joint optimization of
variational parameters and hyperparameters in DLM
showed that it is successful in many problems but that
in some specific cases the optimization is not stable.
We suspect that this is due to interaction between op-
timization of variational parameters and hyperparam-
eters which complicates an experimental comparison.
We therefore run two variants of DLM. The first per-
forms joint optimization of variational parameters and
hyperparameters. The second uses fixed hyperparame-
ters, fixing them to the values learned by SVGP. This
also allows us to compare the variational posterior of
SVGP and DLM on the same hyperparameters.

Prior theoretical results do not have a clear recommen-
dation for setting the regularization parameter 8 where
some analysis uses 8 = 0 (no regularization), 8 = 1 (the
standard setting), and 5 = ©(y/n). Here we use grid
search with a validation set on an exponentially-spaced
grid, i.e., 8 = [n,n/2,n/4,n/8,...,0.01]. In some exper-
iments below we diverge from this and present results
for specific values of 8. To facilitate a fair comparison,
we include ELBO with 8 = 1 and a variant of ELBO
that selects 8 in exactly the same manner as DLM.

We selected 4 moderate size datasets for each of the
likelihoods, giving 16 test cases including regression,
square error, classification, and count prediction. In
addition, we selected one large classification dataset
that has been used before for evaluating sparse GP.

All algorithms are trained with the Adam optimizer.
Isotropic RBF kernels are used except for the airline
dataset where an ARD RBF kernel was used. Eval-
uations are performed on held-out test data and 5
repetitions are used to generate error bars. Full details
of the experiments are given in the supplement.

6.2 Results

Our first set of experiments aims to evaluate the merit
of the DLM objective as compared to ELBO. To achieve
this, we fix the number of pseudo points and then
each point in Figure 1 (a-e), shows the final test set
loss score when the algorithm has converged on the
corresponding sample size. That is, we compare the
quality that results from optimizing the objective, and
not the optimization algorithm or convergence speed.
This allows a cleaner separation of the objectives.
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Figure 1: Selected results. Description of individual plots is given in the text.

Log-loss and sq-loss in sGP Regression: Fig-
ure 1(a) shows the result for log-loss regression on
the sarcos dataset where log-loss DLM has a significant
advantage. Figure 1(b) shows the result for square-loss
on the same dataset. Here we see that square-loss DLM
has a significant advantage over other algorithms (in-
cluding log-loss DLM). This illustrates the point made
in the introduction, that optimizing DLM for a specific
loss can have an advantage over methods that aim for
a generic posterior. We can also observe that S-ELBO
shows a clear improvement over ELBO, which suggests
that selection of 8 should be adopted more generally in
variational inference. The supplement includes results
for 3 additional datasets with similar trends.

f-values: It is interesting to consider the g values
selected by the algorithms. For most datasets and
most training set sizes a small value of 8 < 1 is often
a good choice. However, this is not always the case.
Figure 1(c) shows a plot of log-loss as a function of 3

for a small (691) training set size on the cadata dataset.
We observe that the optimal /3 is larger than 1 for all
methods. For larger size data (see supplement) joint
DLM selects # < 1 but other methods do not.

These values can be seen in the context of the safe-
Bayes algorithm Griinwald (2012); Griinwald and van
Ommen (2017) that selects n = 1/3, but does so using
Gibbs loss in a sequential Bayesian prediction. The
theoretical analysis leading to safe-Bayes suggests using
7 =1/8 < 1 and similarly PAC-Bayes analysis yields
the choice 8 = y/n > 1 both leading to more regular-
ization. However, the best choice might depend on the
relation between dataset size and the difficulty of the
problem and in practice might mean less regularization.

Log-loss DLM in non-conjugate sGP: Figure 1
(d-e) show log-loss results for classification on the ring-
norm dataset and for count regression on the pedsl
dataset, where DLM for count regression uses bMC
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sampling with 10 samples. We observe that log-loss
DLM is comparable to or better than ELBO and -
ELBO. The supplement includes results for 3 additional
datasets for each likelihood with similar trends. In some
cases hyperparameter optimization in joint-DLM is sen-
sitive, but taken together the two DLM variants are
either comparable to or significantly better than ELBO
and B-ELBO. In addition, results from the same exper-
iments which are included in the supplement show that
DLM achieves better calibration in the non-conjugate
cases without sacrificing classification error or count
mean relative error.

Non-conjugate DLM on a large dataset: We next
consider whether DLM is applicable on large datasets
and whether it still shows an advantage over ELBO.
For this we use the airline dataset (Hensman et al.,
2015) which has been used before to evaluate sGP for
classification. Due to the size of the dataset we do
not perform S selection and instead present results
for values 0.1, 1, and 10. In contrast with previous
plots, Figure 1(f) is a learning curve, showing log-loss
as a function of training epochs.®> We observe that
for all values of B in the experiment both variants of
B-DLM significantly improve over S-ELBO and they
significantly improve over ELBO (8 = 1).

Evaluation of the sampling algorithms: We first
explore the quality of samples regardless of their effect
on learning. Figure 1 portions (g,h) show estimates of
bias for bMC and uPS on the abalone count prediction
dataset (where the true gradient is estimated from
10000 bMC samples). The statistics for the gradients
are collected immediately after the initialization of the
algorithm. Additional plots in the supplement show
estimates for the direction of the update step d; and its
norm relative to the true gradient (similar to conditions
(i) and (ii) of Proposition 2 but for d; and similar to
conditions in Proposition 4.1 in Bertsekas and Tsitsiklis
(1996)). The plots show that uPS indeed has lower bias
as expected (note the scale in z-axis in the plots).

We next compare the quality of predictions when learn-
ing using the sampling methods, to each other and
to the results of exact computations. Learning curves
for airline for 8 = 0.1 are shown in Figure 1(i) and
plots for 8 = 1,10 are given in the supplement. We
observe that with enough samples both algorithms can
recover the performance of the exact algorithm. We
also observe in plot 1(i) that to achieve this uPS can
use 10 samples and bMC needs 100 samples. Similarly,
uPS with 1 sample is better than bMC with 10 samples.
This suggests that uPS makes better use of samples

3The plot shows the result of one run but the result
is robust. We repeated the experiment 5 times and the
learning curves look similar. We chose to show one run to
avoid clutter in the plot with error bars.

and has a potential advantage. The supplement shows
learning curves comparing uPS and bMC for count pre-
diction on two datasets. In this case even one sample
of bMC yields good results and there are no significant
differences between bMC and uPS in terms of log-loss.
Finally, learning curves for log-loss in regression given
in the supplement show that bMC can recover the re-
sults of exact gradients with > 10 samples. Overall,
uPS is unbiased and might make more eflicient use of
samples. However, despite the speedup developed for
uPS, it is significantly slower in practice due to the
cost of generating the samples, and bMC provides a
better tradeoff in practice.

7 Conclusion

The paper explores the applicability and utility of DLM
in sparse GP. We make two technical contributions for
sample based estimates of gradients of log-expectation
terms: uPS provides unbiased samples and bMC is
biased but is proved to lead to convergence nonetheless.
An extensive experimental evaluation shows that DLM
for sparse GP is competitive and in some cases signifi-
cantly better than the variational approach and that
bMC provides a better time-accuracy tradeoff than uPS
in practice. While we have focused on sGP, DLM is at
least in principle generally applicable. As mentioned
above, this has already been demonstrated for the cor-
related topic model, where the hidden variable is not
1-dimensional, but where equations simplify and gradi-
ents can be efficiently estimated through sampling. We
believe that variants of the methods in this paper will
enable applicability in probabilistic matrix factoriza-
tion, GPLVM (through its reparameterized objective),
and the variational auto-encoder and we leave these for
future work. Extending the analysis of bMC to provide
finite time bounds is another important direction for
future work.
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1 Efficient Implementation of Product Sampling

q(f19)p(ylf)
Eq(r10) P(YIf)
izing constant Eqfg) p(y[f) is not known. Naive rejection sampling will have a high rejection rate and more

advanced sampling techniques, such as adaptive rejection sampling, will be too slow because we need to sample the
gradient for each example in each minibatch of optimization. We next show how to take advantage of the structure
of ¢(f) to construct an efficient sampler. Recall the standard setting for rejection sampling. To sample from an
unnormalized distribution hq(f) we introduce ha(f) which is easy to sample from and such that Kha(f) > hi(f).
Then we sample f* ~ ho(f), and accept f* with probability hy (f*)/Kha(f*).

Efficient Rejection Sampling: Recall that we want to sample from ¢(f|0) = where the normal-

In our case hy is a product of a normal distribution ¢(f) = N(u,0?) and a likelihood function ¢(f) = p(y|f).
In the following we assume that ¢(f) < ;4. is bounded, which is true for discrete y and can be enforced by
lower bounding the variance when y is continuous. The main issue for sampling is the overlap between the “high
value regions” of ¢() and £(). If they are well aligned, for example, argmax;c,,,¢(f) > 0.5, then we can use
ha(f) = q(f) with K =1 and the rejection rate will not be high. However, if they are not aligned then sampling
from ¢() will have a high rejection rate. To address this, we fix a small integer n and sample from a broader
distribution with the same mean ha(f) = N(u, no?).

Let a,b be the intersection points of the PDFs of ¢() and ho() (u £ 7 for r = o+/logn/(1 —1/n)) and let

my = maXse[q,p){(f) and my = minfe[mb]}?(—(ff)) = ﬁ Note that % increases with n. To balance the sampling
ratios within and outside [a, b], we pick the largest n < 10 s.t. m1 < malyq, and use K = £p,4,. Then in the
interval [a,b] we have ho(f)lmas > ho(f)t > q(f)E(f) and outside the interval we have ha(f) > q(f) and

therefore ha(f)lmaz > q(f)€(f) as required.

The only likelihood specific step in the computation is the value of m,. For the binary case with sigmoid or
probit likelihood the maximum is obtained at one of the endpoints p(a), p(b). For count regression with Poisson
likelihood with link function A = e/, if the observation logy € [a,b] then we also need to evaluate p(y|A = y). The
crucial point is that because of the structure of ¢() and hy() the values of my,ms can be calculated analytically in
constant time and the cost of determining n is not prohibitive.

Vectorized sampling: The process above yields efficient sampling, where after an initial set of learning
iterations the average number of rejected samples is low (approximately 2 in our evaluation). However, in practice
the process is still slow. One of the reasons is the fact that we calculate n which defines the sampling distribution
separately for each example 7 and then perform rejection sampling separately for each . Modern implementations
gain significant speedup by vectorizing operations, but this is at odds with individual rejection sampling. We
partly alleviate this cost by a hybrid procedure as follows. Note that for each i we have ha(f;) = N (i, n;0?) and
that the samples for different i’s are independent. We can therefore collect these and sample from a multivariate
normal with diagonal covariance. However, each such vector of samples will have some rejected entries. Our
hybrid procedure repeats the vectorized sampling twice, uses the first successful sample for each 7, and for entries
which had no successful sample, resorts to individual sampling. We have found that this reduces overall run time
by at least 50%.
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2 Convergence of smooth-bMC with Probability 1
This section develops an analysis of smoothed bMC estimates. It is shown that by adding a small factor to the
denominator of the gradient estimate we can bound the step direction and guarantee convergence w.p. 1.

Consider gradient based minimization of a function f() with step direction g; = s; + w; and step size ;.

Assumption 7. The function f: R™ — R, and s¢, wy, v satisfy the following conditions:

(a) f(r)>0 forallr € R™.
(b) The function f is continuously differentiable and there exists some constant L such that

IVf(r) = V@) < Lljr — 7, vr, 7 € R™.

(c) There exists positive constant c1,ce such that Vt,

alVf(ra)l? < =V f(re)" Else| Fel,
Efllse]|*] < e2l|V f ()%

(d) There exists positive constant p,q such that

Efl|we|*] < (ve(a + plIV £ (o) D).

Notice that condition (d) in Assumption 7 implies E[||w¢|]] < v (g+p||Vf(r)]]). This can be derived from Jensen’s
inequality where the quadratic function is convex.

Proposition 8. Consider the algorithm
Ter1 = T+ V(8¢ +wy),

where the stepsizes v; are nonnegative and satisfy

o0 oo
Z’yt = oo,Z’yf < oQ.
t=0 t=0

Under Assumption 7, the following hold with probability 1:

(a) The sequence f(r) converges.
(b) We have lim;_, o V f(r) = 0.

(¢) Every limit point of ¢ is a stationary point of f.

The proposition and its proof are a slight modification of Proposition 4.1 by Bertsekas and Tsitsiklis (1996).
Compared to that result, Assumption 7 splits the conditions on the step direction g; = s; + w; from Bertsekas
and Tsitsiklis (1996) into portion ¢ on s; and portion d on wy. This slight weakening of the condition enables our
application in Corollary 9. We include the proof here for completeness.

Proof. This proof slightly modifies the proof of Proposition 4.1 in Bertsekas and Tsitsiklis (1996). As shown
there (in Eq 3.39), if Vf() is L-Lipschitz then, for two vectors r,z, f(r + 2) — f(r) < 2TV f(r) + £||z||*. Then
replacing z with v;(s; + w;) and taking expectation, we have

2
L
1) + VS ()" Els 4+ wi] + 252 Elllse 4w

f(
Fre) + %V F(re) T Else] + %V £ (r) " Elws] + 27 LE[[|s¢]1%] + 77 LE[[|we]|?]
Fre) + (= [V F )P + IV F )| Elllwell]) + 47 LSV f(ro) |12

+704% + 29 gV f (o)l + P2 IV f(ro)l|?)

< f(re) = mler —vp — 3L — R DIV (r) 1?4+ 47 (g + 277 pa D) |V £ (r) | + 77 ¢ L.

E[f(ri41)] <
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The second inequality uses ||a + b||* < 2||a]|? + 2||b||* for any two vector a,b. The third inequality uses the
conditions in Assumption 7. Let ¢; = ¢1 — yp — Yec5L — vp*L, dy = q + 272 pgL. Then,

S
o

Y (cr — %dt)||vf(7"t)||2a if ¢y > yedy,

where X; = . and
0, otherwise,
7 — Yidy + i P L, if ¢y > ydy,
t = .
Yidi + 7P L — vi(cr — 1de) [V f(r1)]]?,  otherwise.

Notice that ¢; — y¢d; is monotonically decreasing in ~; and lim; o ¢ = 0, so there exists some finite time after
which v,d; < ¢;. It follows that after some finite time, we have Z; = v2d; + v/¢*>L and therefore Efi 04t < 0.
Applying Proposition 4.2 (Supermartingale Convergence Theorem) in Bertsekas and Tsitsiklis (1996), we can
conclude that f(ry) converges which establishes part (a) of the proposition, and in addition that }, X < oco.

Similarly after some time, we have ¢; —~y¢d; > 5 and

C
Xy = ye(ce — ndy) [V f(re)|* > %%HVf(?“t)HQ-

Hence,

D Al VEr)|? < oo

t=0
Below we prove that |V f(r)|| converges to 0. Let g; = s; + wy,

Ellgel®] = Elllse + we|*)

(25| + 2l|w ]

2[VF(r)l? + 297 (g + pI V£ (ro) )

2[VF(re)I” + 297 (% + 2pa |V (ro) | + [V (o) )

(c2 + P77 + 2pg)) |V £ (ro) I + 297 ¢® + 4par; .

IA A

2c
2c
2

IN

Suppose maxy; < 7, let K1 = 2(co+p*72+2pgy?) and Ky = 2v2¢* +4pgy?, we have E[||g;[|?] < K1||V.f(re)|*+ Ko.
Then all the remaining steps in the proof in (Bertsekas and Tsitsiklis, 1996) for claims (b),(c) can be followed by
replacing s; in Bertsekas and Tsitsiklis (1996) with our g;. O

In order to establish convergence w.p. 1 we need to bound the norm of the step direction. To achieve this we add
a smoothing parameter v to the denominator of the estimate. This yields the smooth-bMC' algorithm, whose step
directions are

dim () := %:5:1 & (r, )
| SE L di(r,e®) +v
div(r) = %35:1 & (r,e®) ai2al,
| SL i e +v 2

ai 1

and thus

Wt i,m =

am( (/L)Y dj(ri,e)  Enqepon ¢§(Tt,6))
n (1/L)Ze¢i(7't,€(e))+1/t E/\/(e|071)¢i(rt7€)

and a similar expression holds for V’s portion. We now have:
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Corollary 9. If for every t and i, Eqy, ) p(yi| fi) > ¢ > 0, smooth-bMC uses vy = ¢, and

log(6n/6:) B?
L > ————"max ,
2v? | En(elo,1) @i(r, €)|?
(B/ _ b/)2
P2 ’
B —p" 2
w}; (18)

7

where P = | E./\/(e|0,1) d);(rv E)'v Zf EN(§|O,1) Q%(T, 6) 7& 07 Q _ | E./\/(e|0,1) d);/(r, 6)|, Zf EN(€'|071) (;5;/(?"7 c) 75 0
1, otherwise 1, otherwise
and &; = v}, then smooth-bMC satisfies the conditions of Proposition 8 and hence converges w.p. 1.

Proof. Conditions (a,b,c) of Assumption 7 are handled exactly as in the main paper. Thus we only need to show
that (d) holds.
First consider the case when E[¢'] # 0 and E[¢”] # 0. With

L> log(6n/6;) max{ B2 (B'=b)? (B"—1")? }
= 202 Eli(r, e)]*" [E[¢](r, )]|*” [E[g! (r, )]

we have that Vi, t,

¢i (T7 e(l) )

M=

(1 —a)|E[gi]| < |(1/L) < (14 )| Egd]],

1

¢i(r, )] < (1+a)|E[g]],

M=

(1 - ) E[¢]] <|(1/L)

1

(1 —a)|E[¢f]] < |(1/L) ) ¢ (r, )| < (1 + @) | E[¢]|-

M=

l

Il
-

hold simultaneously w.p. > 1 — %

Since ¢; > 0, we have (1/L) Elel ¢i(r,eD) +v > (1 —a)E[g:i] + v > (1 — a) E[¢;]. In addition

(UQE:@mJ%+ugu+aHWA+uga+a+?Ew4
=1

Then

2
1|2 1+a - E[¢)(re, €]\
o llasl g (G
Pl = g max{ 7= =0 5552 |\ Blutrn )
N
el (20 204 E N (Bl
n? l—a’l+a+7? Elgi(re,e)] )
Let v = a(, then % = . Thus
20 2a+ 7 2 3a 3
max , = max , < .
1—a 1—|—a—|—% l—a 14 2a 11—«

* . 2
Using a < 0.5 we get ||wy,;m|? < (%M) )
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Next consider the case when E[¢/] = 0. In this case we can select L > w such that

|(1/L)Y, ¢/ (r,eV)] < @ w.p.> 1 —6,/(3n). At the same time, (1/L)>"; ¢i(r,eV)) + v > (1 — ) E[¢i(r,€)].
Thus,
2 2
2 2 a 2a [laiq ||
bt < (Mt ) = (1)

2a
il < (2 2t]

Combined two cases, we have

2
(3B* + 1)) .
wy,;,v can be bounded similarly. Thus, |lw;;||* can be upper bounded with high probability. Overall, w.p. at

least 1 — &y,
2
hol? < 33 bl < ( 20 3p° ¢ 1)) ,

where A = max; ||a;]|.

However, w.p. at most d;, the above inequality does not hold. In order to bound the expectation we use the
following upper bound which always holds:

(1/L) Zl d);(r’e(l)) _ E[(?b;(T?E)]
v+ (/L) 3 ¢i(re)  Eldi(r,e)]

)2 (/L) S, ¢i(r, ) \*  (Blg(r, ]\

n? <2 ( +(1/D)y, ¢>i<r,e<l>>> 2 (Em(r, e>1>
;1 2 / '

<2l g 11y (5 + )

<’2
Hai,1||2 . 1 1
<2——(B )? el + =

2
laiq?

||wt,imz||2 =

n2

<

n ¢
laiall®, quve (1 1
=2 B () &
laial® e 1
<4 N2 ( )a2<2'

In the third step, we used the fact that ¢} is bounded between b’ and B’. In the last step, we use the fact that
2
1< % Similar arguments can be derived for w; ; v. Thus |Jwy;||* < 4”%”(3*) 2(2 Further,

D
lwe* = ||Zwm\|2 < ZZme”Hwtﬂ” < 4A%(B*)? W -

2
where D = (A%B*) is a constant.

Thus, E[||w||?] can be bounded,

BllurlP] < (1= 6)(AZ (3B + 1) + 6D < (A (BB + 1)+ 3,

Here let o = 7; (hence v; = () and § = 7, then condition (d) of Assumption 7 holds with p = 0 and
2
¢ = (A2(3B" +1))? + (A%B*) . O

Suppose vy = %, then the sample size L o t?log(nt), which matches the sample size in the main paper. As in the
discussion there, in practice we use a fixed sample size L and we use a fixed smoothing factor v.



Direct Loss Minimization for Sparse Gaussian Processes: Supplementary Materials

3 Proof of Proposition 4 from Main Paper: Bounds on ¢, ¢, ¢”

In this section we show that bounds of the form ¢ < B, V' < ® < B’, and b < ®” < B” holds in each cases as
listed in the following table:

Likelihood B b’ B’ b’ B
Logistic, o(yf) 1 -1 B -1 I
—(y—HZ%/202 _ _ c c c 2¢

Gaussian, e~ W —H7/20% o = 217w c v oo ~ o2 22372

Probit, ®(yf), ® is cdf of Gaussian 1 —1/V27 1/V2w —1/v2me 1/V2me

Poisson, g(f)illifg(f),g(f) =log(ef +1) 1 -1 1 —2.25 2.25

Poisson, g(f)yyifgm,g(f):ef 1 —y—1 y —y—1/4 292 4+ 3y + 2

v c vl U c v+l
’ ( *f)z —xfl — F(ﬁ) c(:'l/u v+2 o v u+2 - 41 - +1 +2\(v+5)/2

Student’s t, o(1 + 22372)" ¢ = rgyims | © TS eI (50T oF S 2msReE Y
logistic: For convenlence let the label y; be in {—1,1}. Then ¢ = o(y:fi) < 1, ¢' = yio(yifi)(1 —o(yifi)) €
[-0.25,0.25], and ¢ — 420 (ys fi) (1 — o(ys fi))[1 — 20(yi f:)] € [—0.25,0.25].

Gaussian: The Gaussian likelihood is ¢ = p(y|f, 0?) = cexp(—(y — f)?/20?),c = \/2170. In the following, let
z = (y — f)/o to reduce clutter. The first derivative of ¢ w.r.t. f is given by ¢ = cexp(—z?/2)zL whose
root at f = y (z = 0) corresponds to the maximum of the likelihood ¢. The second derivative is given
by ¢" = %5 exp(—2?/2)(xz* — 1). The first derivative evaluations at the second derivative roots defined by
f=y+o (x==%1) are £<y/e. The third derivative is given by ¢"" = -5 exp(—2?/2)z(2? — 3). The second
derivative evaluations at the third derivative roots defined by f =y (z = 0) and f = y & 0V/3 (2? = 3) are -
and % exp(—3/2), respectively. Finally, the first and second derivatives clearly approach 0 as f approaches oo
since exp(f?/2) dominates the growth of any polynomial in f.

probit: For convenience let the label y; be in {—1,1}. Then ¢ = ®(y; f;), where ® is the CDF of the standard
normal and clearly ¢ € [0, 1]. Let k() be the PDF of the standard normal. Then ¢’ = y; (y fi) and ¢’ = y2h (yi f:)-
Bounds for these are given by bounds above for the normal distribution with x = 0 and 02 = 1, where we have to
account for the sign flip in ¢’ = y;h().

Poisson: Here we also need to consider the link function. Two standard options are A = g(f;) = e/ or
A= g(fi) = In(eh + 1),
For the first option we have A\ = g(f;) = efi. As above it is obvious that ¢ < 1. ¢ = (y A)=yo—(y+
yH1 - efx
DAL Thus, ¢f > b = —y—land ¢/ < B' = y. ¢ = X2 (32— (2y+1)A+)?) = yT((A—(erg)) —y—7) =
AYtHLle— AV T2e

—y — 1. On the other hand, ¢ = (24— )y? — 2%, (2y F)(Y+1)+ 2ty + 1)y +2) < 2%+ 3y +2.

'U

For the second option we have A = g(f;) = In(efi + 1). Below we use ¢;(\;) to denote p(t|f;) = Aﬁzki . First
o i X

note that ¢'(fi) = 775 = o(fi) € [0,1] and ¢g"(f;) € [0,0.25] . We have ¢ = )‘116, - < =g (f)d'\) =
9'(fi)(d(Ai) = ¢y, —1(Ai)) implying —1 < ¢’ <1, and

¢" = g"(f)(S(Ne) = by, -1 (X)) + (' (£:))* (8, -1 (Ne) — 6(N:)')

(i) (@A) = dy—1(N)) + (g (£:))*(Dyi—2(Ni) = Byi—1(N) = by, —1(Ne) + by (N))

g
g

which is bounded because all its components are bounded. Plugging in 0 < ¢’ <1, 0 < g” < 0.25, we get that
¢" > —2.25 and ¢" < 2.25.

—(v+1)/2 vl

Student T: The student’s t likelihood is p(y|f, v, 0?) = c(l + %) ,c = 1{3()72\/%0, v € RT. In the
2

following, let 2 = (y — f)/o to reduce clutter. The first derivative is given by fc%ﬂm(f%) The only

first derivative root at f =y (x = 0) corresponds to the maximum of the likelihood ¢. The second derivative is
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given by
v+ 1[ 1 a2 vE3 ] 1
—c _ il
VoL Z)ed)/2 (14 22)(45)/2 o2
2 2
_ _Cy—i— 1(1+ g)_(u+5)/2[1+ x” _IQV—I—S]L2
v v v v o
vl 11—
B v (14 Z)w+9)/20%
The first derivative evaluations at the second derivative roots defined by f =y + o,/ %5 (r == #_2) are

iﬁ"T“ #“/(Z—r;’)(”"’?’)/? Also, since v > 0, the denominator of the first derivative is a polynomial of degree

at least 3 implying that as f approaches oo, the first derivative approaches 0. Hence, the first derivative is
bounded over its domain. The third derivative is given by

v+1. v+5 T 24 v 1 24v. ,—1
S -t ()T ()
(14 Z)w+7)/ v (1+ )45/ v o
v+1 :c27y+7 9 922+v x? -1
=c—(1+) D20 [(v + 5)[1 — [+ 1+ )22+ v))(—)
1 2 2 5 2 -1
— C%(l + i)*(v+7)/2x[y +5— 1@% + 2(2 + V) + £2(2 + V)](T)
v v v v o

@B 5

s 33+ )](Cp)

=cC

(v+1)(v+3) 2 rmyjen 2TV o -1

The second derivative evaluations at the third derivative roots f =y (z =0) and f =y £+ 0,/ 2‘1—”1/ (2% = 2‘1’”) are
_U%VTH and 20%%1(%)(”"‘5)/ 2. respectively. Also, the denominator of the second derivative is a polynomial
of degree at least 5 whereas the numerator is a polynomial of degree 2 implying that as f approaches oo, the

second derivative approaches 0. Hence, the second derivative is bounded over its domain.

4 Complete Experimental Details

Training: For regression, the algorithms are implemented in PyTorch. DLM is implemented as described in the
main paper. Where simplified objectives are available, specifically regression ELBO for SVGP and regression
objective for FITC, we implement the collapsed forms. For classification and count prediction, we extend the
implementation from GPyTorch (Gardner et al., 2018). Isotropic RBF kernels are used unless otherwise specified.
(We also repeated all experiments with Matern kernels and there is no big difference.) We use a zero mean
function for experiments in regression and count prediction and a constant mean function for binary prediction
(because some of the datasets require this to obtain reasonable performance with GP).

All algorithms are trained with the Adam optimizer where we use a learning rate of 10~! for batch data training
and 1073 for stochastic training. The same stopping criteria consisting of either convergence or max iterations is
used in all cases. Almost all runs across algorithms and datasets resulted in convergence. Convergence is defined
when the difference between the minimum and maximum of the loss in the last I iterations does not exceed 1074,
for I = 50 iterations in regression, and I = 20 iterations in classification and count prediction. For square loss
DLM the optimization for m has a closed form, i.e., it is optimized in one step. If the log loss does not converge,
we stop when the number of iterations exceeds 5000 for regression, and 3000 for classification and count regression.
Evaluations are performed on held-out test data and 5 repetitions are used to generate error bars.

Datasets: Table 1 shows the datasets used and their characteristics. In the table, “dim” refers to the number
of features and M is the number of inducing points used in our experiments. Notice that in some datasets,
categorical features are converted to dummy coding, i.e., we use L — 1 binary features to represent a feature with
L categories. One category is assigned the all zero code while the other I — 1 categories are assigned to the unit
vector with the corresponding entry set to 1.
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dataset type size dim | M
pol! regression 15000 26 | 100
cadata? regression 20640 8 | 206
sarcos® regression 48933 21 | 100
song? regression 515345 90 | 100
banana® classification 5300 2 53
thyroid* classification | 3772 6 | 37
twonorm® classifcation 7400 20 74
ringnorm” classification 7400 20 74
airline® classification | 2055733 8 200
abalone® count 4177 9 41
Pedsl _dir0? count 4000 30 | 40
Peds1 dir1? count 4000 30 | 40
Peds1_dir2? count 4000 30 40

Table 1: Details of datasets

Evaluation: Each regression dataset is split into portions with relative sizes 67/8/25 for training, validation
and testing. For classification and count regression, we select a number of training sizes (up to 2000) and pick
10% of all data to be the validation set. From the remaining examples we randomly choose up to 1000 samples
for testing (to reduce test time for the experiments). For the larger song dataset (= 0.5M samples in total), we
randomly choose a subset of 10000 examples for test data in order to reduce the test time in experiments. To
reduce run time for DLM on large datasets we use mini-batch training with batches of 6000 samples.

For the ~ 2M-size airline dataset of Hensman et al. (2015), we split a 100000 test set from the full dataset,
and trained on the remaining data for 20 epochs with Adam and learning rate 10~3. The number of inducing
points was set to 200 and the mini-batch size was 1000. Here, we used the RBF-ARD kernel. For fixed-DLM the
train/evaluation protocol is as follows: SVGP was trained with all hyperparameters and variational parameters
being learned; then, DLM was initialized with the learned SVGP hyperparameters which were then fixed; the
DLM variational parameters were learned from scratch.

In all cases, mean negative log likelihood (NLL) —log Eq(sp(y|f) is calculated on the test set. NLL is computed
exactly for regression and classification. For count regression it is calculated using quadrature. Additionally, we

compute test set mean squared error (MSE) in regression, mean error in classification, and mean relative error

[9—y]
max(1,y)’

(MRE) in count regression; the latter is defined as U= Byl = Eq(p)qwply]l- 9 can be calculated

analytically as E,y(5)[y] = A = e/ and E,s)[e/] is the MGF of the normal distribution.

All datasets are normalized with respect to training data and the same normalization is performed on validation
and test data.

Results: Here, we include the complete experimental results stated in the main paper.

Log-loss and sqg-loss in sGP Regression and S values: Figure 1 shows results for log loss in regression. In
3 of the datasets joint-DLM is significantly better than other algorithms and in cadata, where hyperparameter
selection is sensitive, fixed-DLM is significantly better than other algorithms. Figure 1 also shows values selected
for 5 on small and large train sizes for the cadata dataset. As discussed in the main paper this illustrates that
values of 3 larger than 1 are needed in some cases.

Figure 2 shows results for square loss on the same datasets. Note that in addition to the previous algorithms here

"https://github. com/trungngv/fgp/tree/master/data/pol
’https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/cadata
3(Rasmussen and Williams, 2006)

‘http://archive.ics.uci.edu/ml/index.php
Shttps://www.kaggle.com/saranchandar/standard-classification-banana-dataset
Shttps://www.cs.toronto.edu/~delve/data/twonorm/desc.html
"https://www.cs.toronto.edu/~delve/data/ringnorm/desc.html

8(Hensman et al., 2015)

Shttp://visal.cs.cityu.edu.hk/downloads/


https://github.com/trungngv/fgp/tree/master/data/pol
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/cadata
http://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/saranchandar/standard-classification-banana-dataset
https://www.cs.toronto.edu/~delve/data/twonorm/desc.html
https://www.cs.toronto.edu/~delve/data/ringnorm/desc.html
http://visal.cs.cityu.edu.hk/downloads/
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Figure 1: sGP Regression: Left and middle columns show a comparison of SVGP, FITC and DLM on mean test
NLL in 4 datasets. The right column shows NLL as a function of g for cadata for a small training size and a
large training size. In all plots, lower values imply better performance.

we show results for DLM that optimizes for square loss. The same pattern is repeated here where joint-sq-DLM
dominates in 3 of the datasets and fixed-sq-DLM dominates in cadata. Note that sq-DLM algorithms improve
over log-DLM algorithms for square loss.

Log-loss DLM in non-conjugate sGP: Figure 3 shows log loss in classification, and Figure 4 shows the
corresponding classification error in the same experiments. In this case except for ringnorm the differences are
small and DLM variants are comparable to SVGP variants.

Figure 5 shows log loss in count regression, and Figure 6 shows relative error in the same experiments. For log
loss joint-DLM dominates in 3 of the datasets and fixed-DLM is equal or better in the 4th dataset. Figure 6
shows that the better calibrated prediction in terms of log loss is achieved while maintaining competitive MRE.

Non-conjugate DLM on a large dataset: Figure 7 shows a comparison between SVGP and the two DLM
variants on the airline dataset for three values of 3. As observed in the main paper, for this dataset, both DLM
variants perform better than SVGP for all values of 8 tested.

Evaluation of the sampling algorithms (bias statistics): Figure 8 shows statistics of the gradients for the
mean variables using uPS, bMC and smooth-bMC. The statistics for the gradients are collected immediately after
the initialization of the algorithm. We show statistics for conditions similar to (i,ii) in Proposition 2 of the main
paper as an estimate of the bias as compared to exact gradients. uPS is well behaved for all 3 measures. We
observe that bMC with 1 sample is significantly more noisy. For the other cases the constant for condition (i) is
roughly 1 (as would be with the true gradient) and the norm in condition (ii) is closer to the true gradient. The
bias for bMC is significantly larger than uPS. smooth-bMC reduces the bias of bMC without negative effect on
conditions (i,ii). However, as discussed below this does not lead to improvements in log loss.

Evaluation of the sampling algorithms (learning comparison):

Figures 9, 10, and 11 compare learning with exact gradients to learning with bMC and uPC for g = 0.1,1, 10
respectively on the airline dataset. We observe that with enough samples both uPS and bMC recover the result
of exact gradients, but uPS can do so with less samples. Figure 12 compares learning with exact gradients to
learning with bMC and smooth-bMC when g = 0.1. Smooth-bMC is very close to bMC when the number of
samples are the same and thus, they overlap with each other. Hence in this case the potential improvement in
bias resulting from smoothing does not lead to performance improvement in terms of log loss.
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Figure 2: Square loss in sGP Regression: Comparison of SVGP, FITC, DLM and SQ DLM in MSE. In all plots,
lower values imply better performance.

Figure 13 shows learning curves for count prediction on two datasets, comparing bMC and uPS sampling.
Figure 14 compares bMC and smooth-bMC. In these experiments we have found uPS to be more sensitive and
have reduced the learning rate for Adam from 0.1 to 0.01. Here there are no significant differences between uPS,
bMC and smooth bMC in terms of log loss.

Finally, Figure 15 compares learning with exact gradients to learning with bMC on the 4 regression datasets. For
all datasets, bMC-1 is the worst and there is almost no difference between exact and bMC-100.

In summary all the experiments suggest that with enough samples bMC results in competitive performance. uPS
makes better use of samples in some cases. However, this comes with a significant cost in terms or run time.
Hence bMC appears to be a better choice in practice.
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Figure 3: sGP Classification: Comparison of SVGP and DLM in mean NLL. In all plots, lower values imply

better performance.
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Figure 4: sGP Classification: Comparison of SVGP and DLM in term of mean error. In all plots, lower values

imply better performance.
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Figure 5: sGP Count Prediction: Comparison of SVGP and DLM with 10 MC samples in terms of mean NLL. In
all plots, lower values imply better performance.
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Figure 8: Statistics for calculation of biased gradients for the mean parameter for Count prediction in the Abalone
dataset. First row uPS, second row bMC, and third row smooth-bMC(v = 10~%). Left: condition (i). Middle:
condition (ii). Right: estimate of bias. Exact gradients estimated from 10000 bMC samples.
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Figure 9: Comparison of DLM with exact gradients, bMC gradients and uPS gradients with 5 = 0.1 on the binary

classification airline dataset. On the left is mean NLL and on the right is mean error. In both plots, lower values
imply better performance.
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Figure 10: Comparison of DLM with exact gradients, bMC gradients and uPS gradients with 5 = 1 on the binary
classification airline dataset. On the left is mean NLL and on the right is mean error. In both plots, lower values
imply better performance.
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Figure 11: Comparison of DLM with exact gradients, bMC gradients and uPS gradients with § = 10 on the
binary classification airline dataset. On the left is mean NLL and on the right is mean error. In both plots, lower
values imply better performance.
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Figure 12: Learning curve of bMC and smooth-bMC, g = 1.
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Figure 13: Comparison of uPS and bMC on two datasets for Count Prediction.
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