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Keywords: The Water Evaluation and Planning (WEAP) system, a modeling and simulation tool, offers
Computational modeling certain advantages for studying water systems. These systems are modeled as a collection of
System integration supply, demand, and transmission entities. Domain experts can construct whole water system
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models from template model parts (entities) with built-in constraints for combining them. The
parameterized entities are simulated with the aid of textual and visual experiment set-ups. A set
of scripts are provided for reading and writing data in entities. Lack of access to the source code
of these model entities makes using integrating them other kinds of models more difficult. This is
a crucial restriction since modeling water systems increasingly need to be used with the models,
for example, energy and food systems to improve understanding and predictions of water supply
and demand policies. Given the significance of combining water system models with other types
of models, this paper proposes developing a Componentized-WEAP (C-WEAP) by embedding the
WEAP system in a RESTful framework. The water system entities are mapped to meta-compo-
nents using the Ecore modeling methodology. Each meta-component is paired with its concrete
counterpart in the WEAP system. A complete set of meta-components for the entities is devel-
oped. An existing water system model is developed in the C-WEAP RESTful framework. The
simulation of this water system demonstrates the computational cost of the proposed framework
is negligible. The developed C-WEAP RESTful framework promotes integrating it with other
software systems.

1. Introduction

It is common practice for modelers to contemplate questions of interest by examining systems in terms of their parts and re-
lationships. This approach allows some parts of a system-of-systems to be modeled in detail while all other parts that affect or affected
by it to be simple or even excluded. This is attractive as system complexity and scale can be significantly constrained by replacing the
dynamics of a system as inputs and outputs. For example, in modeling a water system that uses solar energy, the amount of available
photovoltaic energy can be modeled as piecewise input regimes. A key consequence of this choice is that the input regime is non-
functional. In contrast, a reactive model produces outputs in part based on consuming inputs dynamically from other models. This
photovoltaic model supplies energy to the water system subject to water demand fluctuation can lead to a better understanding of a
water system that cannot be achieved through input data alone. From this vantage point, the need for component-based modeling and
simulation is evident for understanding the interactions (nexus) among different parts, for example, Food-Energy-Water (FEW)
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systems [1]. Simulations developed using component-based modeling approaches are important in detailing different kinds of be-
haviors belonging to different parts of a system-of-systems.

Some existing and popular modeling and simulation tools and frameworks appear to be component-based even though they are
not. An example is the Water Evaluation and Planning (WEAP) system for studying water supply and demand [2]. In this framework,
models of water systems can be defined via a set of node and link entities assigned to a geographic region. Mass-balanced equations
are defined using shared variables (inputs and outputs for the node and link models). The WEAP system supports some scripting
languages for manipulating and executing the entities and their data. Approaches that use shared variables amongst models lack
sufficient flexibility afforded by component-based modeling frameworks. Consequently, it would be challenging to use the WEAP
system with component-based modeling and simulation environments such as DEVS-Suite [3]. A desirable modeling framework
should aid combing models developed in different frameworks and their tools. In a component-based modeling framework, each
model is a standalone component having its inputs and outputs and functions encapsulated and thus promote modularity, which is a
key enabler for synthesizing hierarchical models [4]. In component-based modeling frameworks, models can act on one another.
Componentization of the tools such as WEAP and Long-range Energy and Planning (LEAP) system [5] can further their use for system-
of-systems modeling, including the class of FEW systems [6].

The overarching research question is on integrating the WEAP system (a legacy modeling and simulation system) with other
modeling and simulation tools/frameworks to model and simulate systems of systems. This need requires exposing the entities of
water models in the WEAP system to be represented as external logical components to be combined with models of other systems,
including energy and food systems. The preliminary work on this research described a preliminary design and implementation using
the idea of software components for the WEAP system [6]. The WEAP system was briefly described, along with its role in modeling
and simulating the Food-Energy-Water nexus. In this work, the basic design with a prototype of the WEAP RESTful framework was
briefly described. The performance efficiency of the RESTful framework compared with the JScript implementation was also pre-
sented.

This paper's contributions include new insight into the development of the Componentized-WEAP (C-WEAP) RESTful framework
through providing the underlying details and formulation of the WEAP entities as proxy component models using the Model Driven
Architecture (MDA) approach and the UML diagrams (moving between different levels of abstraction). These models are defined
using the Ecore meta-modeling approach, where every proxy model component corresponds to every WEAP entity. The Ecore is a
meta-level design abstraction that maps to concrete-level design abstraction following the MDA approach. The Ecore, in turn, is
mapped to the UML diagrams, and then employed to design the RESTful services for the proposed C-WEAP framework. An analytical
formulation is developed to show the relationship between the computational scalability of the C-WEAP framework relative to that of
the WEAP system. More related works are considered and discussed. Finally, detailed performance analysis shows the computational
cost of the RESTful framework to be negligible when compared with the benefits of WEAP componentization.

Section II of the paper describes in detail the WEAP system from the vantage point of component-based modeling. Section III
describes selected related works. Also, some approaches for water modeling are described briefly. Section IV describes the C-WEAP
RESTful framework architecture at different abstract levels (Ecore, UML diagram, and RESTful service). Section V presents the
performance efficiency and analysis of the C-WEAP RESTful framework. Finally, the paper ends up with a conclusion in section VI.

2. Background

The WEAP system capabilities are described with the focus on its use with other frameworks and tools. The RESTful framework, as
the underlying framework for the development of the C-WEAP, is briefly described. Together they are aimed at providing details for
the remaining sections.

2.1. Water evaluation and planning system

The WEAP system is a framework for modeling, simulating, and evaluating water systems [2]. Models are defined as a network of
water supply and demand entities that are connected via transportation entities. A WEAP model defines the allocation of water from
different sources through preferences and mass balance constraints. The WEAP system provides a set of entities and procedures to
study and find solutions to the problems faced by decision-makers. Using a scenario-based approach, each study area has natural
watersheds, reservoirs, streams, and canals that serve to supply demands by a variety of users, including households, industry, and
agriculture [7]. The WEAP tool is widely used in the world for water allocation and water management [8-12].

The development of a WEAP model includes several steps [13]. A study is defined to have a time frame, a spatial boundary (see
Fig. 1), system entities, and configuration. The Current Accounts, which can be used for calibration of a model, provides a snapshot of
actual water demand, pollution loads, resources and supplies for the system. Scenarios are defined using the Current Accounts and
allow one to explore the impact of alternative assumptions or policies on future water availability and use. Finally, the scenarios are
evaluated regarding water sufficiency, costs and benefits, compatibility with environmental targets, and sensitivity to uncertainty in
key variables.

As a tightly integrated modeling, simulation, and analysis tool, the WEAP tool consists of five views/parts to model different
aspects of a water system. The structure of the model must be defined in the Schematic view. A water model in the WEAP system is a
graph of node and link entities shown in the Schematic view (the solid red box in Fig. 2(a)). The predefined node and link entities can
be used to construct the nodes and links assigned to a geospatial map (the dotted blue box in Fig. 2(a)). The entity types are the river,
diversion, reservoir, groundwater, desalination plant, demand site, catchment, wastewater treatment plant, runoff, transmission link,
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Fig. 1. General configuration in the WEAP system.

return flow, run of river hydro, flow requirement, and streamflow gage. Some entities are presented as nodes (like demand site,
groundwater, etc.), and some are presented as links between two nodes (like transmission, return flow, etc.). The primary information
about a node, like name must be set in the Schematic view. Also, status (active or deactivate) and priority can be set for nodes and
links, as well. In Fig. 2(a), the number between parenthesis next to each entity type (River, Demand Site, etc.) shows its quantity. The
number between parenthesis for each entity in the geospatial map indicates its priority relative to other entities during simulation
executions.

The defined entities in a Schematic view have predefined inputs and outputs (called data and result variables in the WEAP
system). The next part in the WEAP system is Data view which serves to parameterize the inputs and equations for the entities in a
tree structure which has the Supply and Resources, Demand Sites and Catchments, Hydrology, Water Quality, and Key Assumptions
categories (the solid red box in Fig. 2(b)). The Data view allows a modeler to create variables and relationships, enter assumptions
and projections using mathematical expressions, the time-series wizard, and link to external files (e.g., CSV or Excel data file). The
input variables of an entity are separated in different categories according to their usage. For example, Fig. 2(b) (the dotted blue box)
shows the West City demand site has seven categories (Water Use, Loss and Reuse, Demand Management, Water Quality, Cost, Priority,
and Advanced), and Annual Activity Level, Annual Water Use Rate, Monthly Variation, and Consumption variables belong to the Water Use
category.

The Results view is for choosing the outputs of the simulation to be extracted and viewed in charts, tables, and on the Schematic
view (see Fig. 2(c)). Also, different entities, scenarios, years, and units can be used as plots displaying variable values for time-steps.
The data can be filtered for a detailed and flexible display of the model input and output data values for time-step trajectories. The
Scenario Explorer view can be used to select experiments to be observed and stored for post-processing. It provides the facility to
observe the changes in the selected outputs by changing inputs. The Notes view provides a place to add the documentation for each
entity.

From the modeling perspective, the structure of the model (entities and their connections) must be defined in the Schematic view.
Then, the data will be injected into the inputs of the model via the Data view. Finally, after the simulation execution, the output data
of the model is observable via the Result view. The experiments for a model in the WEAP system are designed via scenarios and
general configuration (see Fig. 1). The “Current Accounts” scenario is considered as the initialization for the model, and other sce-
narios can be defined to observe the effects of changing assumptions or policies. The Scenario Explorer and Notes views of the WEAP
system do not have any impact on the structure or behavior of a model.

From the simulation perspective, the WEAP system is based on Discrete-Time System Specification [14], and it has an unin-
terruptible execution. All input data must be ready before the start of every simulation. All output data will be accessible after a
whole simulation execution period is completed (from the start year to the end year, according to the general configuration). In-
terrupting the WEAP simulation midstream and resuming it is not allowed. In this respect, WEAP models are not reactive since they
cannot have input from any external simulation model while being executed.

The WEAP system has a set of predefined entities for common supply resources such as reservoirs, facilities such as transmission
links, and demand sites such as cities. New entities can be added by the WEAP development team due to the WEAP system being
proprietary. Even though entities with their input and output variables are known, their mass-balance equations cannot be discovered
from outside. The variables for the entities appear to be shared within the WEAP system. A water model's logical and schematic parts
are tightly interwoven to the scenarios, general configuration, and results.

Fig. 3(a) presents the data schema related to an entity from the outside perspective for a prototypical model and scenario. The
data schema in Fig. 3(a) has three axes — the y-axis is used for variable names, the z-axis is used for the years of a simulation, and the
x-axis is used for yearly time granularity. Each entity (e.g., a demand site) has several input and output variables. A variable can have
annual time granularity like variable v, shown in Fig. 3(a) which has one value per year, or finer time granularity (for example,
monthly, weekly, daily, etc.) like variables v; shown in Fig. 3(a). The time granularity for variables which do not have annual time-
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Fig. 3. WEAP's component data schema. (a) data schema for different variables of a component related to a scenario. (b) data schema for a specific
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steps must be defined in the General Configuration (Time Step per Year section in Fig. 1). Each cube in Fig. 3 has a float-type data
value according to its defined time granularity. Years and time-steps in each year have ascending order. For example, the green
(which has a circle sign) and orange (which has a cross sign) cubes in Fig. 3(a) present the first and last timestamp's values for the
variable v; in a simulation scenario. Considering Fig. 3(a), there are m X q timestamp's values (number of years X number of time-
steps per year) for variable v;. The variable v, for the same simulation experiment has m timestamp's values for years y,, y;, ..., Y
each having one time-step.

Fig. 3(b) shows the data schema for one variable related to multiple scenarios. Considering any variable in Fig. 3(a), the y-axis is
used for the years of a simulation, the z-axis is used for the number of simulation scenarios, and the x-axis is used for yearly time
granularity. For example, suppose variable v; is selected from Fig. 3(a) and expanded for multiple scenarios. The result will be
Fig. 3(b) presenting the data cube values for scenarios sy, ---, s for years y,, ..., J,, each divided to q equal time-steps. It is important to
note that the values in the lowest horizontal level (the yellow cubes) are the same for all scenarios because they represent the values
for Current Accounts scenario. Other scenarios affect the values of a variable after the start year (start year + 1) to the end year.

The WEAP system uses mixed-integer linear programming (MILP) to optimize the satisfaction of requirements for the demand
sites, reservoir filling, user-specified instream flows, and hydropower entities subject to demand priorities, supply preferences, mass
balance and other constraints [13]. The WEAP system supports LPSolve, XA, and Gurobi MILP solvers. The LPSolve is open source
and included in the WEAP system. XA and Gurobi are commercial products [15]. For very large models, the commercial solvers can
perform much faster. The simulation results can vary slightly depending on the selected solver.

The WEAP system Application Programming Interfaces (APIs) support the VB-Script, JavaScript, Perl, and Python languages using
the standard COM Automation Server. The APIs allow reading and writing external data values for the variables shown in Fig. 3. For
any framework to use the WEAP system, it must conform to the provided.

2.2. RESTful web services

Web Services refer to independent software-centric components communicating amongst each other [16,17]. There are two main
web-service protocols. One is the Simple Object Access Protocol (SOAP) [18] and the other is the REpresentational State Transfer
(REST) [19]. The former is an XML-based standard communication specification over a particular protocol such as HTTP and SMTP.
The latter is a web-based architectural style with flexible message formats such as XML and JSON. The REST supports specific client-
server communication, stateless operation, uniform interface, and resource caching. From the client perspective, the SOAP is based
on the operation/method, whereas the REST is based on the resource. The RESTful framework is an implementation of the REST
architecture based on the HTTP protocol [20]. Asynchronous requests, higher security and reliability, and error reduction are the
main reasons for choosing the SOAP standard. Greater scalability, compatibility, performance, and simplicity are the common
reasons for choosing the REST standard.

Web services such as the Extensible Modeling and Simulation Framework (XMSF) [21] are defined as an integrable set of
standards, profiles, and recommended practices for web-based modeling & simulation [22]. The XMSF supports the migration of
legacy components into web-enabled components for distributed heterogeneous simulation applications. It is based on SOAP and
XML [21], whereas the proposed WEAP web-service system benefits from the RESTful web services and the Ecore modeling fra-
mework.

3. Related work

There exist a wide variety of many tools for modeling and simulating water systems, serving purposes ranging from natural
hydrological processes to engineered distribution networks. Such software tools are developed by representing water systems as data
sets with functions, objects, and services. Legacy and object-oriented software systems can be encapsulated as services in Service
Oriented Architecture (SOA) paradigm. Various approaches have been proposed for transforming legacy software systems to be
integrable with other software systems [23]. One of these approaches is “wrapping” where any proprietary legacy software system
with input/output API (e.g., WEAP system) can be encapsulated inside other software systems [24,25]. Individual functions in the
legacy software are wrapped into web services. New components are designed according to the code segments that perform a service
or data modification. Each new component is given a Web Services Description Language (WSDL) interface and targeted for either
SOAP or RESTful framework. This research follows the rationale and the general approach of transforming a legacy system to flexible
service-oriented software frameworks in addition to component-based modeling and simulation [4].

Services and service compositions with resource management supporting load balancing and context storage are proposed for
legacy modeling and simulation tools [26]. This approach is applied to a legacy solid multibody simulation. This tool consists of five
Fortran programs which are wrapped individually in Java-based web-services. The Message Passing Interface (MPI) [27] concept is
used to define the communication between process (or communication) logic and domain logic with workflows/service compositions.
The result improves the existing legacy application and speeds up the overall simulation execution by automating manual tasks and
parallelizing web-services to control, orchestrate, and visualize simulation experiments. The C-WEAP RESTful framework shares the
wrapping legacy software applications; however, its primary goal is to support structured integration with other modeling and
simulation tools and generally scientific applications.

An objected-oriented modeling framework without using the SOA paradigm is proposed for simulating watershed flow and
sediment processes at the catchment scale based on fine-grained components [28]. This work is based on the systems-of-systems
concept to build new water-related models quickly and effectively by de/composing models in the manner of plug and play of user-
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defined components. The objects from decomposition are encapsulated into corresponding components using dependency injection, a
technique for achieving separation of concerns, to define the relationships and coupling of different components.

A web-based platform has been introduced to support efficient multivariate visualization of environmental data from sensor
observation networks [29]. Data are collected based on the SOAP framework and XML format from different locations/resources for
creating various visualizations and analysis using JSON. This platform uses a caching system (collected from distributed sensors via
web-services) to store data in databases (PostgreSQL for local storing and Hadoop-based OpenTSDB for distributed storing) to in-
crease data access efficiency. Also, a data cube model is established to reshape heterogeneous data and support unified data op-
erations.

Considering simulation studies of integrated food, energy, and water (FEW) systems, frameworks, and tools such as Precipitation
Runoff Modeling System (PRMS) [30] and Ground-water and Surface-water FLOW (GSFLOW) [31] and WEF-Nexus Tool 2.0 [32]
have been developed. These tools are not based on component-based modeling principles and service-oriented computing. The PRMS
is a deterministic, distributed-parameter, physical process-based modeling system developed to evaluate the impacts of various
combinations of climate and land use on surface-water runoff, sediment yields, and general basin hydrology. The GSFLOW is designed
to simulate coupled ground-water and surface-water systems. The WEF Nexus Tool 2.0 is a scenario-based tool for guiding resource
allocation at the country level for a given level of food self-sufficiency and a set of technologies, land uses, and resource availabilities.
These approaches and tools, unlike those briefly described above, can provide limited capabilities needed for integrating food,
energy, and water models developed in different simulation tools [33].

Agent-based modeling is also proposed and used for water resource management system. Agents have their own goals and
behaviors and can adapt and modify their behaviors [34]. In water resources systems modeling, agents can be individual ground and
surface water users, water polluters, various infrastructural elements, cities, or policymakers on different levels [35]. A framework to
model and simulate water supply and demand for urban households has been developed based on the Agent-Based Modeling and
System Dynamic modeling [36]. This is an approach to model water management at a micro (short-term) and macro (long-term)
abstraction levels. Another approach for simulating urban water resource management uses a multiagent Q-learning-based allocation
agent-based algorithm (with adaptive reward value function to improve the performance) [37]. This algorithm supports allocating
water resources efficiently among stakeholders. An agent-based framework has also been developed to simulate the behavioral
characteristics of urban water users while accounting for their social interactions [38]. A model has interactions between agents as
well as agents and environments. The focus of this framework is to help study and evaluate the impact of different climate and
government policies. Although agent-based frameworks are inherently grounded in the concepts of components, they are not as
flexible and scalable as service-oriented frameworks and thus can be challenging to be loosely integrated with other tools.

The WEAP system is used as the primary tool for modeling and simulating water management under different socioeconomic and
climate scenarios for regions including South Africa, China, Greece, Benin, and Pakistan [8-12]. This suggests that the WEAP system's
componentization can help combine these and other WEAP water simulations with separate simulations for agriculture, climate, and
energy systems. Given the related works highlighted above, the C-WEAP is a tool built using the RESTful SOA architecture, and the
data cube structure allows integrating it with tools for simulating energy and food systems [39].

4. A web service framework for the WEAP system

According to the constraint for using the JavaScript language (to invoke Automating the use of WEAP APIs [40]) and the dif-
ficulties of using XML-based protocols (extensive code development to create XML structure) [41], the RESTful framework is used to
implement the web-service framework for the WEAP system. This framework's lightweight, fast, and scalability traits are the basis for
its use for the development of the C-WEAP RESTful framework.

4.1. Components of the WEAP model

To componentize the WEAP system, the entities that are included in the WEAP system with their data are mapped to components
using the Ecore Modeling Framework (EMF) [42,43]. The Schematic, Data, and Result views of the WEAP system are designed
according to the Ecore meta-modeling [43]. The Ecore meta-model is used to model the WEAP entities at an abstract view without
specifying their functions. At this abstraction level, the data structure of different WEAP sections, entities, variables, and the re-
lationship among these parts are modeled. The specification in Fig. 4 is defined using the EClass, EAttribute, EDataType, and
EReference elements of the Ecore meta-model diagrams. A UML diagram is presented in Section V to describe the actual im-
plementation of the C-WEAP RESTful framework for the componentization of the WEAP system at the Data Access layer of the
RESTful framework architecture (see Section IV.C). It is important to note that the WEAP's APIs expose the scope and functionality of
the componentized entities defined for the WEAP framework [44]. For example, it is not possible to add new variables for any entity
via WEAP's AP, thus adding these variables must be achieved within the WEAP system (see Fig. 2(b)).

In Fig. 4, the WEAP class has an array of projects, each associated with a geographic area. Each project has its own configuration
(name, startYear, endYear, timeStepPerYear, etc.), which are mapped to the properties in Fig. 1. The Node and Link are two abstract
classes that are detailed in the following subsections. The WEAP, Project, Version, and Scenario are concrete classes. These corre-
spond to the entities in the WEAP system which instantiate a specific domain model in the WEAP RESTful framework. The remaining
abstract and concrete classes are useful for the design to be simple, yet flexible.

A simulation model in the WEAP system has a structure defined by a modeler. The behaviors for the specialized node and link
entities are predefined. The date specified in a scenario is needed to simulate some aspects of a water system. Every project has at
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least one scenario, the Current Accounts, which provides a snapshot of actual water demand, pollution loads, resources, and supplies
for the system [2]. It is used to define the initial data for the inputs at the start of a simulation. The hierarchical structure of scenario
data in the WEAP system does not have any functional role. Each data for a scenario is independent of any other scenario data (see
our perspective about the data in Fig. 3). Also, every project has at least one version (refer to the create time of the project). The name
property is the key attribute in the Project, Scenario, and Node classes (see Fig. 4). The key for the Version is the concatenation of its
properties (date and name). The C-WEAP RESTful framework has a complete set of model components that cover all the entities and
variables in the Schematic, Data, and Result views of the WEAP system (see Fig. 2). The derived model components do not add any
operations to those provided for the WEAP entities. The model components are categorized into the Node and Link types according to
their respective properties (see Fig. 4). Each Link has one source node and one target node.

All model components have some input and output variables (see Fig. 4). The WEAP system has some predefined entity variables
and equations. New variables and equations may be added by users to predefined entities as needed. For each Variable, one or more
Intervals are defined per scenario, and each Interval can have many Data values (a value represents a specific time-step of a year). The
Variable class has a unique name property as the key with unit, timeScale, isReadOnly, min, and max properties. A variable can have
just one value per year if the timeScale property sets to Yearly, or it can have multiple values (the number of values should be equal to
the timeStepPerYear property in Project class) if timeScale sets to TimeStep. The value of an input variable cannot change if the
isReadOnly property is set to True. The properties min and max place constraints on the acceptable values for a variable. From a
higher abstraction view shown in Fig. 4, the Node and Link classes with their input and output variables define the structure of a
model.

The C-WEAP RESTful framework has the same schema (a generic view) for all the WEAP entity types (e.g., Demand Site,
Catchment, and Transmission Link) and their variables. For example, a catchment can have different set of input variables based on
its selected simulation method (such as Rainfall Runoff, Irrigation Demand Only, and MABIA), and the C-WEAP framework presents a
set of input variables (see Fig. 4) for this entity at a high abstraction level. Thus, two catchments in a project can have different sets of
input variables. The Variable, ScenarioData, Scenario, Interval, and Data classes with their relations define the overall input data and
output result for a model in the C-WEAP RESTful framework that mirrors those defined in the WEAP system.

As shown in Fig. 5, different nodes (correspond to the entities in Fig. 2(a)) are inherited from Node, Flow, or ReachPoint abstract
classes. The River and Diversion nodes have some sub-nodes, which are an ordered collection of reach point nodes. Consequently, a
variable of a flow component can have different values in its reach points. The WEAP system has three link entities (Transmission
Link, Return Flow, and Runoff). Each link starts from a node and ends at another node with some constraint for the source and target
nodes based on the link type [2]. The allowable source and target nodes for the Transmission Link, Return Flow, and Runoff are
shown in Fig. 6. The Transmission, Return Flow, and Runoff links have their own input and output variables and data (see Fig. 4).

4.2. Mapping componentized-WEAP components to the RESTful framework

The model components of the WEAP system are the actual resources in the C-WEAP RESTful framework, so a well-defined
structure for the URL needs to be present to operate on the resources. The data needed for the RESTful framework is in JSON format.
The RESTful API categories are Project, Version, Node, Link, and Flow. The subset of the APIs listed in Appendix A is used in
developing the C-WEAP RESTful framework. In the pattern of the URLs, constants are written in PascalCase style; parameters start
with colons and written in camelCase style; query parameters (to apply to some filters on returned data) written after the question
mark by Key = Value (camelCase style for the Key part). The retrieve, insert, update, and delete operations for each URL are supported
with the HTTP GET, POST, PUT and DELETE methods, respectively.

The URL patterns for six API types are shown in Table 1(a). The pattern inside each open and close pair bracket is optional. The
appropriate types are presented in Table 1(b). There is a mapping between the URL patterns in Table 1 and the Ecore specifications in
Fig. 4, 5 and 6. All URLs start with constant /Water, which refers to the WEAP class shown in Fig. 4. For example, calling “/Water”
returns the name of all projects (an array of string) correspond to the composite relation from the WEAP class to the Project class in
Fig. 4. When a project is selected using the:projectName parameter, the project configuration information can be read or changed
depending on the URL's method. Finally, a model (e.g., demo) can be executed using the URL “/Water/demo/Run”. The Version saves
the project in different timestamps. The list of versions can be retrieved using the URL “/Water/demo/Version”. The project reverts to
a specific version (e.g., 20,200,820-test) using the URL “/Water/demo,/20,200,820-test/Revert”.

In the patterns for the Node, Link, or Flow categories in Table 1(a), the constant types (bold types in the URLs) must be replaced
by one of the values in its corresponding type in Table 1(b). The name of a Node or Flow, and the names of the source and target
nodes of a Link are used to select a component. For example, the URL “/Water/demo/DemandSite/phoenix” returns the phoenix
demand site's data of the demo project. The VariableType in the URL patterns must be replaced by the “Inputs” or “Outputs” (refer to
the Data or Result variable in the WEAP system). The data of a variable can be retrieved by mentioning the name of the variable and
the intended scenario. The expression of a variable can be retrieved by adding the Expression constant in the URL. Query parameters
can be used to filter the returned data (the years and time-steps). In the Flow URLs, the subNodeType must be replaced with the
corresponding value in Table 1(b) (the reference properties in Flow abstract class in Fig. 5) to access to a specific collection of sub-
nodes, and then use:subNodeName to select one.

The “Weaping River Basin” project is one of the default projects in the WEAP system, with 12 time-steps per year from 2010 to
2020 [7]. Fig. 1 shows the Schematic View of this project in the WEAP system. Fig. 7(a) shows the result of calling an API to get the
rivers in the Weaping River Basic model. The returned data is an array that contains three River objects. Fig. 7(b) shows the result of
calling an API to get the data for the Annual Activity Level variable of the West City demand site for the Reference scenario between
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Fig. 6. Ecore specifications for allowable source and target nodes for the (a) Transmission Link, (b) ReturnFlow link, and (c)Runoff.

Table 1
URL pattern for different types of APIs.

(@

Category URL PATTERN

Project /Water[/:projectName[/Run]]

Version /Water/:projectName/Versions[/:versionName/Revert]

Key /Water/:projectName/Keys[/:KeyName/:scenarioName[/Expression]]

Node /Water/:projectName/NodeType[/:nodeName[/VariableType[/:variableName/:scenarioName[/Expression]
[?startYear = N&endYear = N&startTimeStep = N&endTimeStep =N]1]]

Link /Water/:projectName/LinkType[/:sourceName/:targetName[/VariableType[/:variableName/:scenarioName[/Expression]
[?startYear = N&endYear = N&startTimeStep = N&endTimeStep=N]]]]

Flow /Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/VariableType[/:variableName/:scenarioName
[/Expression] [?&startYear = N&endYear = N&startTimeStep = N&endTimeStep = N]]]]

()

Type Values

NoteType Catchments, DemandSites, Groundwaters, Reservoirs, OtherSupplies, WastewaterTreatments

LinkType Transmissions, Runoffs, ReturnFlows

FlowType Rivers, Diversions

VariableType Inputs, Outputs

subNodeType Reaches, Reservoirs, RunOfRiverHydros, StreamflowGauges, FlowRequirements

2010 and 2012. The returned data is an array of Interval objects. The variable in this example has a Yearly time-scale (see TimeScales
enumeration type in Fig. 4), so the result has one instance of Data class (one pair of timeStep and value). Using a variable with the
TimeStep time scale will return 12 (due to the timeStepsPerYear value of the project) instances of Data class for each year. Tree
structures for the Node and Interval shown in Fig. 7 are generated by the C-WEAP RESTful framework.
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Interval [3]
70
year: 2010
7 Node [3] 7 data [1]
»0 uO _
—— name : "Weaping River" timeStep : 1
— id: 102 — value:2.0250
—— parentld : 7 il
—— order: 1 ’* year : 2011
»1 l data [1]
—— name : "Blue River" { »0
— 1d: 104 timeStep : 1
— parentld : 7 — value: 2.0756
order : 2 ir2
72 year: 2012
— name : "Grey River" ¢ data [1]
— 1d: 163 L >0
— parentld : 7 — timeStep : 1
— order:3 “—— value:2.1275
@ (b)

Fig. 7. (a) result of calling the URL= “/Water/Weaping%20River%20Basin /River”. (b) result of calling the URL= “/Water/Weaping%20River
%20Bas in/DemandSite/West%20City/Annual%20Activity%20Level /Reference?startYear = 2010&endYear =2012".

4.3. Design and implementation

The layered architecture of the C-WEAP RESTful framework is shown in Fig. 8. The dotted area indicates the server-side layers of
this framework. The WEAP system and the File System are placed at the framework's bottom layer. The externalized WEAP model
components and their configurations are stored in a CSV file format (see Section IV.B). The Data Access layer is responsible for
ensuring the consistency of the componentized models and their configurations at all times with its WEAP system counterpart. Only
this layer has direct access to the File System and to the WEAP system via its APIs [13]. It can communicate with any model that
exists in the bottom layer (i.e., for creating and/or executing WEAP models).

All communications between the Data Access and the Controller layers are managed by the layer consisting of the Data Transfer
Object (see Fig. 4, 5 and 6) and Service parts. The Service part is responsible for communicating and processing information about the
WEAP entities (contained in the bottom layer) via the componentized Data Access layer to the Controller layer. Every C-WEAP model
(which is identical to the WEAP system model) can be manipulated by a client application in an independent fashion. The Controller
layer contains the web-server and controller parts (not shown in Fig. 8) for handling various client API requests.

A class diagram for the Data Access layer is shown in Fig. 9. This is a realization of the Ecore specification defined in Fig. 4. The
WEAPDao class can retrieve a project with a given name, a list of all existing WEAP projects, or execute a project with a given name.
Considering the ProjectDao class, it has a WEAP object and the name of a project belonging to it. An Update operation can modify
some information about the project. The get operation returns a project with a given name. The ProjectDao class has the operations
needed to manipulate all the entities of a WEAP model. One operation is to find the list of all scenarios, and another operation is for
selecting a scenario. The generic getNodes and getLinks operations are defined to return a list of all the nodes and links of a project.
The getNode operation finds a node with a given name. The getLink operation finds a link with a given pair of source and target
nodes. The NodeDao and LinkDao classes are inherited from ComponentDao abstract class. The constructors for these generic classes
can find the entries shown in Table 1. An input or output of a component is an instance of the VariableDao class. Values for the input
and output ports for a given scenario are defined using the ValueDao class (see Fig. 4). Other details of the classes in the Da-
taAccessLayer package are omitted for brevity.

[ Client }

’ Controller ‘

’ Data Transfer Object H Service l
t (]

’ Data Access ’

Fig. 8. The componentized-WEAP RESTful framework layer architecture.
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DataAccessLayer
WEAPDao ProjectDao
-weap : WEAP -weap : WEAP
+ getProject(name : char) : ProjectDao - projectName : char
+ getProjects() : Project| | + update(entity : Project) : void
+ run(projName : char) : boolean + get() : Project
+ getScenarios() : Scenario] |
T + getScenario(name : char) : ScenarioDao

ComponentDao + getNodes<T extends Node>() : T[ ]
+ getLinks<T extends Link>() : T[ |

-weap: WEAP + getNode<T extends Node>(name : char) : NodeDao<T>
- componentType : int

" + getLink<T extends Link>(source : char, target : char) : LinkDao<T>
i - updateData() : void

Valu;:Dao |

VariableDao

Fig. 9. A class diagram for the Data Access layer of the Componentized-WEAP framework.

T

NodeDao

A sequence diagram scenario for a client fetching the rivers of the Weaping River Basin project is shown in Fig. 11. This speci-
fication is devised to show a normal (positive) sequence of messages among a select set of objects instantiated from the classes shown
in Fig. 9. At the end of this scenario, the three rivers in the Weaping River Basin project are identified. The incoming message 1
(RESTful API request) by the cl object is processed by the ctrl object. Subsequently, in steps 2-4, the svc, wDao, and weap objects are
created. In step 5, the ctrl object parses an incoming request to extract some parameter of interest (e.g., a project name). Then,
message 6 is invoked on the svc object to find all existing rivers.

The svc object invokes message 7 on the wDao object. A pDao object is created and then returned to the svc object. The svc object
invokes message 9 on the pDao object for identifying the rivers in the project. The pDao object invokes message 10 on the weap object
which in turn finds the data for the rivers [44]. In the loop section, the riv objects are created in step 11 using the returned array in
step 10 (see Fig. 5). The properties of the riv object for each branch is updated in step 12. Finally, the list of the created rivers is
returned to the svc, ctrl, and cl objects. This scenario depicts a complete cycle starting from a client application to the WEAP system
and ending at the client (see Fig. 8).

4.4. Componentized-WEAP file system

Time-series functions for the variables in the WEAP system do not allow specifying time-step values for all years of the simulation
(external CSV/Excel files must be used). Fig. 10 shows the file system structure used by the C-WEAP RESTful framework to store the
CSV files and use them with the entities in the WEAP system. The Workspace folder is located next to the executable C-WEAP file. Two
inputs.csv and outputs.csv files, under ProjectName folder, are used to configure the Min, Max, and TimeScale properties for the
variables of the WEAP's entities. The data for variables are stored in CSV files under the Data folder. The required folder names, such
as project name and component type, are retrieved from the invoked URLs. The ReadFromFile function (defined in the WEAP system)
is used to make reference to the CSV files [13]. The folder structure shown in Fig. 10 prevents any conflict of the data for different
projects, components, variables, and scenarios.

r- Workspace

- Project Name
E Data
E Scenario Name
E Component Type
E\ Component Name
@ Variable Name.csv

@ Inputs.csv
@ Outputs.csv

Fig. 10. The Componentized-WEAP Framework file system.
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5. Performance evaluation of the componentized-WEAP framework

Using a MILP Solver (LPSolve, XA, or Gurobi) for the WEAP system, or using any other calculation methods for the entities (e.g.,
Catchment and Demand Site) do not affect the execution of the entities (i.e., the C-WEAP framework does not affect the execution
time for any WEAP model). The execution time of the componentized WEAP is higher than the standalone execution of the WEAP
system due to the computation time of the RESTful framework. Changes to any project configuration and scenarios do not change the
WEAP entities and their structure (see Fig. 4).

As described before, the WEAP system is closed-source software. The Automating WEAP APIs [40] support the VB-Script, JScript,
and Python languages to manipulate and execute WEAP models. The C-WEAP system's time efficiency is evaluated against a JScript
algorithm (i.e., non-componentized) for the Weaping River Basin example (see Fig. 1). In both approaches, the simulated experiments
have identical set-up (i.e., properties and the values for the input variables are configured). The executions of these simulations are
not interrupted and carried out by the APIs. The C-WEAP RESTful framework requires additional steps for identifying WEAP ele-
ments, constructing WEAP components, and de/constructing data (see Section IV).

The elements of the Weaping River Basin model are 3 Rivers, 2 Reservoirs, 2 Groundwater, 6 Demand Sites, 8 Transmission Links, 2
Wastewater Treatment Plants, 12 Return Flows, 1 Run of River Hydro, and 3 Flow Requirements. The model is configured for daily
and monthly time-steps (12 and 365 steps per year). The efficiency of the C-WEAP RESTful framework relative to its proprietary
counterpart for each model configuration is compared for a 30-year period (e.g., 2000-2029) with 5-year intervals. Execution times
are measured in seconds and averaged over 10 replications. An isolated personal computer with 20 GB RAM and Core i5 Intel CPU on
Windows10 64 bits is used for running all the experiments. The execution times for different time intervals (from 2000 to 2030 with 5
years interval) in monthly and daily time-steps (12 and 365 steps per year) are collected for the two experimentation settings. All
execution times are in seconds and averaged over 10 replications.

5.1. Simulation experiments and comparison

Fig. 12 shows the performance evaluations for the above WEAP script and C-WEAP RESTful framework simulation experiments.
There are small differences between the componentized and no-componentized models. These differences are due to the available
system-resources and the creation of the WEAP instance using ActiveX and Winax. The execution times for the Script and C-WEAP
RESTful framework are shown in Fig. 12(a) and (b) for monthly and daily time-steps, respectively. Table 2 and 3 present the
minimum, average, maximum, difference, and average data execution times for monthly and daily scenarios. The Min, Max, and Dif
data show expected variations in the execution times of the Script and RESTful framework.

Fig. 12(c) shows the overhead of using the C-WEAP RESTful framework for daily scenarios for a 30-year simulation period with
data collected every 5 years. For each year, the times are the time belongs to the componentization. For example, just 10 s of 279.9 s
(see Table 3) for a 30-year simulation scenario belongs to the componentization, and the rest is the execution time of the WEAP
system. For this configuration, the computation times in Fig. 12(c) is the maximum overhead of the componentization for the Weaping
River Basin model. The execution times reduce as less data is retrieved (see Fig. 3). The execution overhead changes linearly from 0.1
to 10 s for one-year to 30-year simulation. This trend has a direct relation to the number of time-steps per each year of the simulation
period. For example, the extra computation time for the monthly time-step for the 30-year simulation (30 X 12 = 360 timestamps) is
almost the same for the daily time-step for a one-year simulation period 1 X 365 = 365 timestamps).

The impact of componentizing the WEAP on total time for simulation studies is negligible. Fig. 12(d) presents the overhead
percentage in using the C-WEAP RESTful framework for daily and monthly time-steps (the ratio of the Framework average execution
time to the Script average execution time in Table 2 and 3) for the Weaping River Basin model. The largest overhead at ~ 8% is for the
first simulation period with the daily time-step. This overhead can be attributed to the model and simulation initialization. For the
subsequent simulation periods, the maximum overhead monthly and daily time-steps ranges between 3% and 4%.

5.2. Performance analysis

The impact of the WEAP system componentization on the simulation execution time is observed to have a direct relation to the
number of timestamps while the scale of a model does not. The overhead of the C-WEAP RESTful framework (CW) function is defined
as

CW = CI+ CWE 4+ DS X TS 1)

where CI is for component identification time, CWE is for C-WEAP RESTful framework execution time, and TS is the number of
timestamps for the duration ((EndYear — StartYear) X #TimeStepPerYear) of simulation experiment and DS is for the data de/con-
struction time. The CI factor has a generic implementation (see Section IV.A), so it has a constant value for a model. The CWE and DS
factors have constant values for a given model (see Section IV.C). According to these factors, below a threshold value for the number
of timestamps (e.g., arround 400 timesteps for the Weaping River Basin simulation), the CI and CWE play the dominant role in total
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Fig. 12. The C-WEAP RESTful framework performance vs. WEAP script evaluation. (a) Total execution times (monthly timesteps). (b) Total ex-
ecution times (daily timesteps). (¢) C-WEAP RESTful framework overhead (daily timesteps). (d) C-WEAP RESTful framework overhead in com-
parison to WEAP script.

simulation execution time; otherwise, the TS is the main contributor to total simulation time. For the above simulation experiments,
the overhead for the C-WEAP RESTful framework executing on a monthly time-step was 0.1 s for all time intervals. However, it
increased for daily time-steps as shown in Fig. 12(c). The execution time ratio of the C-WEAP RESTful framework over the Script
WEAP system is defined as

Init + WE + CW

Ratio =
Init + WE (2)

where the Init is for the time period required for initializing the WEAP system, and the WE is for the time period needed to execute a
model in the WEAP system. The Init and WE factors belong to the WEAP system and are directly related to a model's scale. Thus, the
ratio of using the C-WEAP RESTful framework vs. WEAP script will decrease as the scale of the model increases. Table 4 presents the
execution times of a more complex Weaping River Basin model (the number of entities is 3-times of the previous experiment) for one-
year, 15-year, and 30-year simulation period (for Monthly and Daily timesteps). The table shows in these configurations that the
componentization's overhead decreases by increasing the scale of the model, having longer execution time for the WEAP system
(WE), and constant C-WEAP RESTful framework execution time overhead (CW).

Table 2

The minimum, maximum, and average execution times (monthly timesteps) using the C-WEAP RESTful framework and the WEAP system script.
End Year Script Framework

Min Max Dif Ave Min Max Dif Ave

2000 1.1 1.3 0.2 1.2 1.2 1.4 0.2 1.3
2004 3.1 3.5 0.4 3.3 3.3 3.6 0.3 3.4
2009 5.3 5.5 0.2 5.4 5.5 5.7 0.2 5.6
2014 7.2 7.3 0.1 7.3 7.4 7.6 0.2 7.5
2019 9.4 9.8 0.4 9.5 9.6 10 0.4 9.8
2024 11.3 11.5 0.2 11.4 11.7 11.9 0.2 11.8
2029 13.2 13.8 0.6 13.4 13.8 14 0.2 13.8

Table 3

The minimum, maximum, and average execution times (daily timesteps) using the C-WEAP RESTful framework and the WEAP system script.
End Year Script Framework

Min Max Dif Ave Min Max Dif Ave

2000 3 3.3 0.3 3.1 3.3 3.4 0.1 3.3
2004 39.1 40.1 1 39.5 39.1 40.2 1.1 39.9
2009 84.2 85 0.8 84.5 87 87.6 0.6 87.2
2014 128.3 130.2 1.9 128.8 133.3 134.1 0.8 133.8
2019 174.1 175.5 1.4 175.3 181.7 184.6 29 182.6
2024 222.4 223.5 1.1 222.9 229 230.9 1.9 230
2029 268.4 269.2 0.8 268.7 278 280.4 2.4 279.7

Table 4

The minimum, maximum, and average execution times of the complex Weaping River Basin model using the C-WEAP RESTful framework and the
WEAP system script.

End Year Script Framework Ratio(%)
Min Max Dif Ave Min Max Dif Ave

Monthly 2000 1.9 2.2 0.3 2 1.9 2.4 0.5 2.2 1.1
2014 12.7 14.4 1.7 13.3 13.3 14.7 1.4 13.8 1.04
2029 23.9 25.4 1.5 24.5 24.1 25.7 1.6 24.8 1.01

Daily 2000 5.8 6.6 0.8 6 6 7.1 1.1 6.3 1.05
2014 228.9 238.5 10.4 232.4 228.2 238.5 10.3 232.2 1
2029 455.5 460.3 4.8 458.2 463.4 472 8.6 468.6 1.02
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5.3. Componentized-WEAP framework software

The C-WEAP is a web-service framework that uses the NodeJS [45] and Typescript frameworks for implementing the server-side
application. Typescript is an open-source framework and the superset of JavaScript [46], which has some added and facilitated
features (strongly typed programming, module and namespace, generic, interface, and abstraction). The current C-WEAP im-
plementation requires using the version 2019.2 of the commercial WEAP system [13]. SEI can publish new versions for the WEAP
system, but thus far, the changes are Ul related. The WEAP system has numerous APIs, but the C-WEAP framework uses a portion of
them (see Appendix A). Changes to the C-WEAP RESTful framework are not anticipated, as the models have remained unchanged for
several years. Furthermore, making changes to the optimization solvers do not affect the C-WEAP RESTful framework. Thus, if there
are no changes in the APIs that can have side-effects on the Entities, Project, and Scenario, they do not cause making changes to the
RESTful framework. However, changes to the C-WEAP framework is expected as the RESTful framework, and its enabling APIs are
expected to evolve in the future.

Due to the use of the WEAP APIs listed in Appendix A, it is necessary to have a WEAP system license to use the C-WEAP
framework. The executable version of the C-WEAP framework and a User-Guide are available [47]. The main packages which have
been used to develop the C-WEAP framework are TS-Node 8.10.2 (Typescript-Node) to use Typescript in the NodeJS server-side
application; Express 4.17.1 to build a web application and APIs; Routing-Controller 0.8.1 to create structured, declarative and beau-
tifully organized class-based controllers; Body-Parser 1.19.0 to parse the body of the incoming request to web-server, and Winax
1.20.0 to define ActiveXObject in NodeJS (create WEAP instance in server-side application), and some additional packages like class-
transformer, class-validator, and reflect-metadata.

5.4. Applicability

The described design and implementation of the developed framework is applicable to those that have characteristics similar to
the WEAP system. For example, the C-WEAP framework can be reused in a straightforward fashion for the LEAP system. The LEAP
system, also developed by SEI, is a software tool for energy policy analysis and climate change mitigation assessment. It is an
integrated scenario-based modeling tool that can be used to track energy consumption, production, and resource extraction in all
sectors of an economy. The LEAP system shares the WEAP approach to model development, execution, and evaluation. The archi-
tecture of the C-WEAP framework can be reused for the LEAP system.

The RESTful APIs, Service, and Data Access parts of the Componentized-LEAP framework are the same as those developed for the
C-WEAP framework. A Data Transfer Object design is developed according to the LEAP model structure (i.e., entities and their
relationships). The execution time step is defined as an integer value and is subject to a different constraint as compared to the WEAP
system.

6. Conclusions

The WEAP system is appealing to domain experts from the standpoint of ease of use for rapid model development. This paper
provides detail for defining the WEAP components as proxies for WEAP entities using meta-modeling and Model Driven Architecture.
The WEAP entities, input and output variables, and their data are represented using the Ecore meta-modeling approach, where each
proxy model component corresponds to a WEAP entity. The Ecore presents a well-defined componentized specification for the WEAP
legacy modeling and simulation system. These components are used in a flexible service-oriented framework. The outcome is the
Componentized-WEAP (C-WEAP) RESTful framework. The C-WEAP framework helps to consider a set of component models instead
of thinking about a group of shared variables (belong to different entities) that are used in mass-balanced equations. Also, the REST
APIs ease the use of the WEAP system in modern computing platforms, including its integration with other tools to model and
simulate more complex systems, like the Food-Energy systems. Every model entity developed in the WEAP system is automatically
extracted and included as a componentized model in the C-WEAP RESTful framework.

The componentization of the WEAP system supports a higher degree of control for manipulating and simulating the water entity
models. For example, the C-WEAP framework can help simplify the design of simulation experiments and optimization studies that
can be difficult using the scripting languages supported in the WEAP system. The RESTful framework with the WEAP compo-
nentization can lend itself to better support the development of customized visualization tools. The realization of the C-WEAP
RESTful framework can be adopted for similar kinds of systems (e.g., LEAP system) and simplify integration with other web-services.
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Appendix A
Table Al
Table Al
The WEAP's APIs used in the Componentized-WEAP framework.
# API Return Object Category
1 WEAP.ActiveArea Area WEAP
2 WEAP.ActiveArea.Name String
3 WEAP.WaterYearStart Integer
4 WEAP.ActiveScenario Scenario
5 WEAP.BaseYear Integer
6 WEAP.EndYear Integer
7 WEAP.TimeStepName(Id) String
8 WEAP.NumTimeSteps Integer
9 WEAP.View String
10 WEAP.Calculate(LastYear, LastTimestep, AlwaysCalculate) -
11 WEAP.ResultValue(BranchName:VariableName, Year, TimeStep,ScenarioName) Double
12 WEAP.Areas(Id) Areal] Area
13 WEAP.Areas.Count Integer
14 WEAP.Versions.Count Integer Version
15 WEAP.Versions(Name/Id) Version
16 WEAP.Versions.Exist(VersionName) Boolean
17 WEAP.SaveVersion(VersionName) -
18 WEAP.Versions(VersionName).Revert() -
19 WEAP.Scenarios(Id) Scenario[] Scenario
20 WEAP.Scenarios.Exists(ScenarioName) Boolean
21 WEAP.Scenarios.Add(ScenarioName) -
22 WEAP.Scenarios(ScenarioName).Delete() -
23 WEAP.Branch(BranchName) Branch Branch
24 WEAP.BranchExists(BranchName) Boolean
25 WEAP.Branch(BranchName).Children Branch[]
26 WEAP.Branch(BranchName).Variables Variable[]
27 WEAP.Branch(BranchName).Variables.Exists(VariableName) Boolean
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