
Multi-Path Routing in the Jellyfish Network

Zaid ALzaid Saptarshi Bhowmik Xin Yuan
Department of Computer Science

Florida State University
Tallahassee, Florida, USA

{alzaid, bhowmik, xyuan}@cs.fsu.edu

Abstract—The Jellyfish network has recently been proposed
as an alternative to the fat-tree network for data centers and
high-performance computing clusters. Jellyfish uses a random
regular graph as its switch-level topology and has shown to be
more cost-effective than fat-trees. Effective routing on Jellyfish
is challenging. It is known that shortest path routing and equal-
cost multi-path routing (ECMP) do not work well on Jellyfish.
Existing schemes use variations of k-shortest path routing
(KSP). In this work, we study two routing components for
Jellyfish: path selection that decides the paths to route traffic,
and routing mechanisms that decide which path to be used for
each packet. We show that the performance of the existing KSP
can be significantly improved by incorporating two heuristics,
randomization and edge-disjointness. We evaluate a range of
routing mechanisms, including traffic oblivious and traffic
adaptive schemes, and identify an adaptive routing scheme with
noticeably higher performance than others.

Keywords-Interconnection network, Jellyfish, KSP routing,
rKSP routing, EDKSP routing, rEDKSP routing

I. INTRODUCTION

The Jellyfish interconnect has recently been proposed for
data centers and high performance computing (HPC) clusters
[1]–[3]. It adopts the random regular graph (RRG) as its
switch-level topology and has good topological properties
such as high bisection bandwidth and low average path
length. Jellyfish has shown to be more cost-efficient than
the widely used fat-trees [1].
Due to the random connectivity in Jellyfish, the tradi-

tional shortest path routing and equal-cost multi-path routing
(ECMP) do not perform well [1]. Singla et al. proposed
k-shortest path routing (KSP) to select paths and explore
path diversity in the network. A variation of KSP, called
LLSKR, was later developed [2]. Both KSP and LLSKR
suffer from two issues that can degrade their performance
on Jellyfish. First, both routing schemes try to use “shortest”
paths without considering the potential link usage. When a
link is in a short path, it tends to be in other short paths as
well. Hence, routing traffic with such paths can introduce
load imbalance in the network and lower the performance.
Second, vanilla KSP algorithms such as the ones that use
node id to break the tie between two paths of the same
length have biases in selecting paths. This can cause severe
load imbalance problems in Jellyfish because Jellyfish tends
to have many paths of the same length between a pair of

nodes.
Beside path selection that decides the set of paths to be

used to route traffic, another vital component in routing is
determining a particular path for each packet. We will call
this component the routing mechanism. While some conven-
tional routing mechanisms can directly apply to multi-path
routing on Jellyfish, this component has not been thoroughly
investigated for Jellyfish; and it is unclear which routing
mechanism is effective on Jellyfish.
In this work, we study both path selection and routing

mechanisms for multi-path routing in Jellyfish. For path
selection, we find that two heuristics, randomization, and
edge-disjointness, can significantly improve the quality of
the paths selected when they are incorporated in KSP.
We investigate a range of routing mechanisms, including
traffic oblivious and traffic adaptive schemes. We perform an
extensive evaluation to compare the path selection methods
and the routing mechanisms using performance modeling,
flit-level simulation, and application simulation. The con-
clusions of this study include the following:

• For path selection, we find that the paths computed us-
ing the KSP with randomization and edge-disjointness
heuristics achieve higher performance than the vanilla
KSP across all routing mechanisms and all traffic
patterns in the study. The improvement is significant,
especially when the best performing adaptive routing
scheme is used.

• For routing mechanism, we find a new adaptive routing
scheme, which we call KSP-adaptive, is most effec-
tive for multi-path routing on Jellyfish. KSP-adaptive
selects a path for each packet by randomly obtaining
two candidate paths from the k paths for the source-
destination pair and choosing the one with a smaller
estimated latency to route the packet. Our evaluation in-
dicates that KSP-adaptive achieves higher performance
than various forms of universal globally adaptive load
balance routing (UGAL) [4] on Jellyfish.

The rest of the paper is structured as follows. Section II
presents the background. Section III describes our new pro-
posed routing schemes. Section IV reports the performance
study. The related work is discussed in Section V. Finally,
Section VI concludes the paper.

II. JELLYFISH

Singla et al. [1] proposed the Jellyfish topology as a
flexible and cost-efficient topology for large scale intercon-
nection networks. The switch-level topology of Jellyfish is
a random regular graph (RRG), where all switches have the
same degree but are randomly connected. We consider the
case when all switches are connected with the same number
of processing nodes and have the same number of ports.
Jellyfish can be specified with three parameters [1]: the

number of switches (N), the number of ports in each
switch (x), and the number of ports in each switch that
connect to other switches (y): each switch connects to x−y
processing nodes. We will use RRG(N,x,y) to denote a
Jellyfish topology with N switches, x switch ports, and y
ports in each switch connecting to other switches. Figure 1
illustrates RRG(N = 15,x= 4,y= 3). Each switch connects
to 4−3= 1 processing node. Note that each instance of an
RRG is different from other instance RRG. However, when
N and y are sufficiently large, different instances will have
very similar network characteristics, and performance [2].

8
13

3

11 90

10

7
1

2

14
6

4

12
5

15

16

17

18
19

20

21
22

2324

25

26

27

28
29

Figure 1: An example RRG(N = 15,x= 4,y= 3)

Even though RRG provides high network capacity, it is
known that single path routing and equal-cost multi-path
routing performs poorly on Jellyfish [1]. As a remedy, Singla
et al. [1] proposed the K-shortest path routing (KSP) scheme
to explore the topology’s path diversity. Due to the random
nature of Jellyfish, the lengths of the K paths between
different pairs of switches may vary. Yuan et al. [2] observe
that using the plain KSP in Jellyfish has some limitations,
including (1) not using all “short” paths when the number
of short paths between two switches is large, and (2) using
long paths when the number of short paths between two
switches is small. Based on the observations, they proposed
Limited Length Spread k-shortest Path Routing (LLSKR),
which attempts to overcome the aforementioned limitations.
LLSKR allows a variable number of paths between two
switches, which allows more short paths to be used in
comparison to KSP and can control the number of long paths
to be used.

Both KSP and LLSKR rely on a k-shortest routing al-
gorithm to compute the paths. Finding loopless k shortest
paths in a given topology is a generalization of the shortest
path problem. This problem has been studied extensively
[5]–[7]. The baseline algorithm used in this work is the
Yen’s algorithm [6], which is shown in Figure 2. Since our
heuristics are added over this algorithm, we describe the
algorithm for completeness.

Input: Graph, Source and Destination
Output: K-shortest paths between Source and Destination

1 Function searching K-Shortest paths
2 A = [] a set to store the K- shortest path
3 B = [] a set to store the potential kth shortest path
4 A[0] = the shortest path from the Source to the

Destination.
5 for i= 1 to i= k−1 do
6 foreach node j in A[i−1] without the Destination

do
7 spurNode = j
8 rootPath = A[i−1] from Source to spurNode
9 foreach path P in A do

10 if rootPath = P[Source : spurNode] then
11 remove edge

P[spurNode : spurNode+1] from the
Graph.

12 endif
13 end
14 foreach node ∈ rootPath except spurNode do
15 remove node from the Graph.
16 end
17 spurPath = Dijkstra(Graph, spurNode,

Destination)
18 totalPath = rootPath + spurPath
19 if totalPath /∈ B then
20 add totalPath to B
21 endif
22 restore the original Graph.
23 end
24 if B is not empty then
25 A[i] = Shortest path in B
26 B= []
27 else
28 end the loop.
29 endif
30 end
31 end

Figure 2: Yen’s algorithm [6]

Yen’s algorithm uses two containers A and B: Container
A stores the k-shortest paths found, and container B stores
potential shortest paths. The algorithm first finds the shortest
path between the source and destination using Dijkstra’s
shortest path algorithm (or any other algorithm that finds the
shortest path). The algorithm then loops for k−1 iterations,
finding one shortest path in each iteration (Lines 5 to 30).
The algorithm iterates over all nodes on the last shortest
path in each iteration, except the destination node. For each
node, the algorithm finds the shortest path to the destination

from that node (spurPath in Figure 2). To explorer a new
shortest path spurPath, the Yen algorithm removes all nodes
from the source up to the current node on the shortest path
and the edge from the current node and the node after it on
the shortest path. The algorithm then forms the totalPath
by concatenating the rootPath (the shortest path from the
source node up to the current node) and the spurPath as a
candidate shortest path. After visiting all intermediate node
along the shortest path, the algorithm selects the shortest
path in B as the next shortest path and move it to A. The
process is repeated until all k shortest paths are found.
Besides path selection, the routing mechanism, which

decides the path for each packet, is also an important compo-
nent in multi-path routing on Jellyfish. This component has
not been sufficiently investigated for the Jellyfish topology.
Existing work has assumed some mechanisms that can take
advantage of the multiple paths such as multi-path TCP
(MPTCP) [8]. There are, however, other adaptive routing
mechanisms, such as the Universal Globally Adaptive Load-
balancing routing (UGAL) [4], that have not been thoroughly
studied in this context.

III. PROPOSED MULTI-PATH ROUTING SCHEMES FOR
JELLYFISH

A. Path selection

Both KSP and LLSKR select “shortest” k-paths. Addition-
ally, the vanilla version of KSP relies on Dijkstra’s algorithm
and is by default deterministic: when there is more than one
path that can be selected, the tie is broken deterministically
using some means such as preferring nodes whose ranks
are higher or lower. This can easily result in low-quality
paths for KSP in Jellyfish as illustrated in the example in
Figure 3. In this example, we consider KSP that finds 3
shortest paths from S1 to D1. From S1 to D1, there is
one 3-hop path P0 = S1 → A → G → D1, and six 4-hop
paths, P1 = S1 → A → E → G → D1, P2 = S1 → A →
E → H → D1, P3 = S1 → B → E → G → D1, P4 = S1 →
B → E → H → D1, P5 = S1 → C → F → H → D1, and
P6= S1→C→ F → I → D1.
Let us assume that the textbook Dijkstra’s algorithm is

used in KSP, where nodes with smaller ranks are explored
first to find the shortest path. We will call this version of KSP
the vanilla KSP. The vanilla KSP will first find the three-hop
path (P0). After that, it will find a 4-hop path with a bias
toward nodes with smaller ranks (in Figure 3, such a path is
the leftmost feasible path). As a result, the second path that
will be found by KSP is P1= S1→ A→ E →G→D1; and
the third path to be found is P2= S1→ A→ E →H →D1.
These three paths are showed in Figure 3(a). As can be
seen in the figure, all three paths share the link S1 → A.
Although there are three paths to carry traffic from S1 to
D1, the effective bandwidth from S1 to D1 is equivalent to
only having a single path. Note that there typically exist
many paths of the same length from a source switch to a

S1

A B C

E F

G H I

D1

(a) 3-shortest paths computed by vanilla KSP
S1

A B C

E F

G H I

D1

(b) 3-shortest paths computed by KSP with randomiza-
tion

S1

A B C

E F

G H I

D1

(c) 3-shortest paths computed by KSP with edge-
disjointness

Figure 3: Paths computed by KSP with different heuristics

destination switch in an RRG [2]. The biases in the deter-
ministic vanilla KSP algorithm can have serious problems
for the Jellyfish topology.
This problem can be alleviated by incorporating random-

ness in KSP. The randomized KSP can be achieved by
using a randomized Dijkstra’s shortest path algorithm: when
exploring the next node, the randomized Dijkstra algorithm
does not use a deterministic mechanism, such as the node
rank, to break the tie. Rather, it randomly selects the next
node when there are multiple options. In the Yen’s algorithm
in Figure 2, this is done by replacing the Dijkstra() routing
in Lines 17 and 4 by a randomized_Dijkstra() routine. Using

this heuristic, in the example in Figure 3, after the KSP finds
the 3-hop path, it will randomly select two 4-hop paths out of
the 6 candidate paths. For example, it may select: P2= S1→
A→ E →H →D1 and P4= S1→ B→ E →H →D1. This
is shown in Figure 3(b). As can be seen from the figure, each
link is at most shared by 2 paths, and the effective bandwidth
from S1 to D1 is equivalent to having 2 independent paths,
which is better than the paths computed by the vanilla KSP.
Sharing links among the selected paths reduces the total

achievable bandwidth from the source to the destination.
Randomization does not eliminate link-sharing among the
selected paths. The edge-disjoint heuristic completely elim-
inates link sharing. In our implementation, the edge-disjoint
heuristic follows the Remove-Find (RF) method [9]. The
RF method consists of two steps: (1) finding the shortest
path from the source to the destination, and (2) removing
all edges associated with the shortest path. The algorithm
repeats these two steps k times or until the source and
destination node are disconnected. Using this heuristic, the 3
paths found for the example in Figure 3 are P0, P4, and P6,
as shown in Figure 3(c). As can be seen from this figure, all
of the three paths are now link disjointed. Using the three
paths, the total bandwidth from S1 to D1 is equivalent to
using three independent paths.
There are two potential problems with the edge-disjoint

heuristic. First, there may not exist a sufficient number of
edge-disjoint paths between two nodes. Second, the lengths
of edge-disjoint paths can be much larger than the paths
computed by the vanilla KSP, which increases the network
resources to carry a packet and can decrease the performance
when the network is under high load. However, as will be
shown in our evaluation, in practical Jellyfish networks, y
is much larger than k. In our experiments, with k = 8 and
k = 16, edge-disjoint paths between all pairs of switches
exist in all of the topologies. Moreover, the average path
length computed by KSP with the edge-disjoint heuristic is
similar to that computed by the vanilla KSP on practical
Jellyfish networks.
In the rest of the paper, we will use KSP to denote the

vanilla KSP, rKSP for randomized KSP, EDKSP for edge-
disjoint KSP, and rEDKSP for KSP with both randomization
and edge-disjoint heuristics. Note that rEDKSP will not
improve the total throughput for each source-destination
pair. However, randomizing path selection when there are
more possibilities results in better load balancing for traffic
patterns where multiple sources communicate with multiple
destinations.

B. Routing mechanism

Given the multiple paths that can be used to carry a
packet, the routing mechanism decides the path for the
packet. We investigate a range of routing mechanisms for
the multi-path routing in Jellyfish. In particular, we consider
schemes to incorporate the Universal Globally Adaptive

Load-balanced routing (UGAL) [4], which has demonstrated
effectiveness on other topologies such as mesh and Dragon-
fly [4], [10]–[14].
UGAL distinguishes between two types of paths, minimal

paths and non-minimal paths. The minimal path is the
shortest path from the source to the destination in Jellyfish. A
non-minimal path is formed by two minimal paths, one from
the source to a (randomly selected) intermediate node and
the other one from the intermediate node to the destination.
To route a packet from a source to a destination, UGAL
considers two paths, one minimal path and one random non-
minimal path (with a random intermediate node), compares
the estimated packet latency of the two paths sing queue
length and chooses the path with the smaller latency for the
packet. This scheme, which will be called vanilla-UGAL,
can be directly applied to Jellyfish. Note that vanilla-UGAL
does not need to use KSP to compute paths. The vanilla-
UGAL uses more paths than the paths found by the KSP
algorithm. One can restrict the non-minimal paths to only
the ones computed by the KSP algorithm. In this case,
the shortest path from the source to the destination will
be the minimal path, and the rest of the k shortest paths
are candidates for the random non-minimal paths. We will
call this algorithm KSP-UGAL. Note that depending on
the traffic and network condition, restricting non-minimal
paths to the k shortest path can have advantages over the
vanilla UGAL that may use longer non-minimal paths. In the
situation when k paths can provide sufficient path diversity,
using short paths reduce the link usage, which improves the
performance. In the Jellyfish topology, most of k shortest
paths are of similar length. Thus, when only the k paths are
used, minimal and non-minimal paths are similar and may
not need to be differentiated. Based on this observation, we
propose a new UGAL-like adaptive routing scheme, which
we call KSP-adaptive. KSP-adaptive randomly selects any
two paths among the k shortest paths and chooses the one
with a smaller estimated latency for the packet.
We compare the performance of these traffic adaptive

routing schemes among one another and against other traffic
oblivious schemes, including random routing (random) that
randomly selects a path out of the k paths to route each
packet, and round-robin that uses the k paths for each source-
destination pair in a round-robin fashion to route packets.

IV. EVALUATION

We perform comprehensive modeling and simulation stud-
ies to evaluate the proposed path selection and routing
mechanisms on a number of Jellyfish topologies. In the
following, we first describe our experimental methodology
and then report the evaluation results.

A. Methodology

Topology: We report results on three Jellyfish topologies,
a small topology RRG(36,24,18) with 36 switches and 216

compute nodes, a medium-sized topology RRG(720,24,19)
with 720 switches and 3600 compute nodes, and a large-
sized topology RRG(2880,48,38) with 2880 switches and
28800 compute nodes. Table I summarizes important param-
eters of the topologies. As shown in [2], although random
instances of RRG are different, when N and y are sufficiently
large, any of the RRG topology with the same parameters
will yield very similar performance and topological metrics.
As such, we report the results for one random instance in
our simulation studies.

Topology Switch No. of No. of Average
size switches compute shortest

nodes path len.

RRG(36,24,16) 24 36 288 1.54
RRG(720,24,19) 24 720 3600 2.57
RRG(2880,48,38) 48 2880 28800 2.59

Table I: Jellyfish topologies used in the experiments

Path selection and routing mechanisms: We compare
four different path selection schemes for computing mul-
tiple paths for each pair of source and destination: KSP,
rKSP (randomized KSP), EDKSP (edge-disjoint KSP), and
rEDKSP (randomized edge-disjoint KSP). We will use the
notations KSP(k), rKSP(k), EDKSP(k), and rEDKSP(k) to
denote KSP, rKSP, EDKSP, and rEDKSP with k paths,
respectively. The routing mechanisms considered are the
following, which are described in Section III-B: single path
routing (SP), random, round-robin, vanilla-UGAL, KSP-
UGAL, and KSP-adaptive.
Performance metrics: We evaluate the proposed schemes

in three different ways. First, we use a throughput model [2]
that approximates the throughput for a given traffic pattern
and a topology. Second, we use Booksim 2.0 [15], a cycle-
accurate interconnection network simulator, to evaluate the
aggregate throughput and packet latency for different traffic
conditions. Finally, we use the CODES 1.0.0 [16] to mea-
sure the communication times for common communication
patterns in HPC applications.
Throughput model: The throughput model [2] estimates

the throughput for multipath routing schemes with multipath
TCP (MPTCP [8]) like protocol where each flow is realized
by multiple (k) sub-flows. Given a communication pattern,
the model first computes the number of times each link
is used by all sub-flows in the pattern. It then finds the
link loads. For any link l with capacity C that is used X
times; the link load defined as loadl = X

C . The model sets
the rate for each sub-flow in the pattern to be equal to the
reciprocal of the maximum load in the links along the path,

1
maxl∈pathn(s,d)loadl

. Finally, the model adds the rates for the k
sub-flows to obtain the total rate for the flow.

T (s,d) =
k

∑
n=1

1
maxl∈pathn(s,d)loadl

. (1)

Simulator modification and settings: Both Booksim and
CODES do not have native support for the Jellyfish topology.
We extended the software of both simulators to include Jel-
lyfish. Four path calculation methods (KSP, rKSP, EDKSP,
and rEDKSP) are added for both Booksim and CODES.
For Booksim, five routing mechanisms are added: random,
round-robin, vanilla-UGAL, KSP-UGAL, and KSP-adaptive.
For CODES, two routing mechanisms are added: random
and KSP-adaptive.
Booksim parameters are similar to those used in [14], [17]

for simulating HPC systems. The UGAL routing techniques
are set to have no bias towards MIN or VLB paths. We
assume single-flit packets and a factor 2.0 router speedup,
because our main focus is on evaluating routing perfor-
mance, rather than on flow control and router delays. The
latency of the channels are set to 10 cycles. To avoid
deadlocks, we increase the virtual channel number every
time a packet takes a new hop, so the total number of
virtual channels is equal to the diameter of the network.
The buffer size is 32 for each virtual channel. For each
data point, Booksim warms up for 500 cycles and then
collects the results over a window of 5000 cycles divided
into 10 samples, each sample of a window of 500 cycles.
Booksim considers the network to be saturated when the
average packet latency of a sample exceeds 500 cycles. We
record the last injection rate before the network reaches the
saturation point as the network throughput.
CODES has more control parameters than Booksim. We

set the router delay, soft delay, copy per byte and nic delay
as 0, and other key parameters to be the same as those in
Booksim to make sure that the evaluation with CODES has
no extra latency than that in Booksim. The link bandwidth
is set to 20GBps in the simulation. The packet size is 1500
Bytes and the buffer size is 64 packets.
Traffic patterns: For the throughput model, four different

traffic patterns are used in the evaluation: random permu-
tation, random shift-N, Random(X), and All to All. With
the permutation pattern, each processing node communi-
cates with at most one other processing node. In a shift-N
pattern, a processing node i communicate with processing
node (i+N) mod number_o f_processing_node. A random
permutation is a randomly generated permutation traffic
pattern while a random shift-N is a randomly generated
shift pattern. With Random(X) pattern, each processing node
sends traffic to X randomly picked destinations. In the All
to All pattern, each processing node communicates with all
other processing nodes in the system.
For Booksim, three traffic patterns are used in the eval-

uation: random permutation, random shift-N, and uniform-
random. With uniform-random, the probability of sending a
packet to each destination is equal.
For CODES, the communication times of four Sten-

cil communication patterns are evaluated: : 2D Nearest
Neighbor (2DNN), 2D Nearest Neighbor with diagonal

(2DNNdiag), 3D Nearest Neighbor (3DNN), 3D Nearest
Neighbor with diagonal (3DNNdiag). These nearest neigh-
bor communications are widely used in HPC applications.
We collect DUMPI traces [18] for these applications, making
sure that the trace size is same as the network size. For
example, for RRG(720,24,19), the network has 3600 com-
pute nodes in total. So we collect the traces for 3600 ranks
and keep the dimension size of 2DNN and 2DNNDiag as
60×60. Similarly, for 3DNN and 3DNNDiag, we keep the
dimension size as 16×15×15. For all of the applications,
each process sends a total of 15MB data, which is divided
among the flows from the process. The main motivation
behind sending this amount of data is to make the network
significantly utilized. For example, in 2DNN, each process
sends to 4 neighbors. Thus, each neighbor will receive
15
4 = 3.75MB of data. Physical communication patterns are
also affected by the process-to-node mapping. In our study,
two mappings for these applications are simulated, linear
mapping where processes are mapped to the nodes in the
network sequentially and random mapping where processes
are randomly mapped to the nodes in the network.

B. Properties of the multiple paths selected

Before we present our evaluation results, let us first
discuss relevant properties of the paths computed with
different path selection schemes. These properties will help
us understand the performance results since the paths se-
lected to carry traffic will have a profound impact on the
communication performance.
Table II shows the average path length for

RRG(36,24,16), RRG(720,24,19) and RRG(2880,48,38)
with KSP(8), rKSP(8), EDKSP(8), and rEDKSP(8).
Intuitively, randomization should not statistically increase
the average path length while edge-disjointness will result
in longer paths although the exact impact of the heuristics
on the path length depends on the topology. The table
shows that both randomization and edge-disjointness do
not increase the average path length on RRG(36,24,16)
and RRG(2880,48,38), while there is about 4.6% average
path length increase with EDKSP(8) and rEDKSP(8) on
RRG(720,24,16), which is small. Overall, the impact on
the path length by the two heuristics is small, indicating
that these heuristics will result in better paths without
significantly increasing the path length.

Topology KSP(8) rKSP(8) EDKSP(8) rEDKSP(8)

RRG(36,24,16) 2.06 2.06 2.06 2.06
RRG(720,24,19) 3.02 3.02 3.16 3.16
RRG(2880,48,38) 2.94 2.94 2.94 2.94

Table II: Average path length (k = 8)

Tables III and IV give the load-balance properties of the
k-paths computed with different schemes. Tables III shows
the percentage of switch pairs whose k paths do not share

any link. As can be seen in the table, with KSP and rKSP,
the percentage is very low for all topologies, while EDKSP
and rEDKSP guarantee that the paths are link disjoint. With
a fixed k, link-disjoint paths offer higher throughput between
a pair of switches than non-link-disjoint paths for the pair.
Hence, the quality of the paths computed by EDKSP and
rEDKSP is higher than that by KSP and rKSP. Table IV
shows the maximum number of paths for a pair of switches
sharing one link. With KSP, the value is 6 for the small
topology and 7 for the two larger topologies. For the large
topologies, this means that there exists at least one pair of
switches whose 7 out of 8 paths share one link. Hence, for
this pair, the bandwidth capacity is equivalent to 2 paths
instead of 8. This demonstrates the impact that the biases in
KSP can have on the path selection. The table also shows
that randomization does not solve this problem, but the
edge-disjoint heuristic solves the issue. Overall, the results
indicate that KSP with the randomization and edge-disjoint
heuristics yields higher quality paths than the vanilla KSP.

Topology KSP(8) rKSP(8) EDKSP(8) rEDKSP(8)

RRG(36,24,16) 56% 59% 100% 100%
RRG(720,24,19) 2% 3% 100% 100%
RRG(2880,48,38) 9% 22% 100% 100%

Table III: Percentage of switch pairs whose k paths do not
share any link (k = 8)

Topology KSP(8) rKSP(8) EDKSP(8) rEDKSP(8)

RRG(36,24,16) 6 3 1 1
RRG(720,24,19) 7 7 1 1
RRG(2880,48,38) 7 6 1 1

Table IV: Maximum number of times one link is shared by
the k paths for one single switch pair (k = 8)

C. Throughput modeling Results

Figures 4, 5, and 6 show the average modeling through-
put per flow for RRG(36,24,16), RRG(720,24,19) and,
RRG(2880,48,38) respectively, on four different traffic pat-
terns.
In this experiment, we create 10 random samples for each

RRG topology. For shift traffic, random-permutations traffic,
and random(X=50) traffic, 50 different random instances
have been used for each topology sample. The average of
the random samples for four routing schemes KSP(k=8),
rKSP(k=8), EDKSP(k=8), and rEDKSP(k=8) are reported.
The throughput value in the figure is the per node normalized
throughput. A value of 1 means the flows from a node can
communicate at the full link speed; a value of 0.8 means
that the flow can communicate at 80% of the link speed
(because of the communication bottleneck in other links).
There are several interesting observations in these figures.

First, randomization has significant impacts on both KSP and
EDKSP, and noticeably improve the modeled throughput.
For example, for Random(50)) traffic on RRG(36,24,16)
(Figure 4), the average throughput for KSP(8) is 0.80 while
for rKSP(8) is .89, 11.1% higher. For RRG(2880,24,16) in
Figure 6, the average model throughput for random permuta-
tion traffic with EDKSP(8) is 0.76 while that with rEDKSP
is 0.88, 15.8% higher. The results indicate that systematic
biases in path selection can cause serious performance issues
on Jellyfish and randomization is an effective method to
alleviate the problem.
Second, rEDKSP consistently achieves the highest per-

formance, out-performing all other path selection schemes.
For example, for random permutation on RRG(36,24,16)
in Figure 4, the average throughput is 0.82 for rKSP(8)
and 0.86 for rEDKSP(8), 4.9% higher. For shift traffic on
RRG(2880,24,16) in Figure 6, the average throughput is
0.51 for rKSP(8) and 0.55 for rEDKSP(8), 7.8% higher. In
our more detailed simulation, rEDKSP out-performs rKSP
even more, which indicates that using edge-disjoint paths is
effective in achieving load balancing and rEDKSP is the best
performing path calculation method for multi-path routing
on Jellyfish.
Finally, multi-path routing schemes consistently out-

perform single-path routing to a large degree, which is inline
with earlier results [1], [2].

0.0

0.2

0.4

0.6

0.8

1.0

Per
m

uta
tio

n

Shift
-N

R
an

dom
(5

0)

A
ll-

to
-A

ll
0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
g

h
p

u
t

sp
KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 4: The average model throughput on RRG(36,16,8)

D. Results from Booksim

With the cycle-level simulation, Booksim results are more
accurate than the model. Using Booksim, we investigate
the performance of KSP, rKSP, EDKSP, and rEDKSP with
different routing mechanisms.
Figures 7 and 8 show the average saturation throughput

for the random permutation pattern with different path calcu-
lation and different routing mechanisms on RRG(36,24,19)
and RRG(720,24,19), respectively. The results are the av-
erage of ten random patterns on each topology. We ob-
serve the following. First, across different routing mech-
anisms, rEDKSP consistently achieves the highest perfor-

0.0

0.2

0.4

0.6

0.8

1.0

Per
m

uta
tio

n

Shift
-N

R
an

dom
(5

0)

A
ll-

to
-A

ll
0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
g

h
p

u
t

SP
KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 5: The average model throughput on
RRG(720,24,19)

0.0

0.2

0.4

0.6

0.8

1.0

Per
m

uta
tio

n

Shift
-N

R
an

dom
(5

0)

A
ll-

to
-A

ll
0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
g

h
p

u
t

SP
KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 6: The average model throughput on
RRG(2880,48,38)

mance among the path selection schemes. The throughput
is very significantly better than that for KSP. For example,
using KSP-adaptive, on RRG(720,24,19), rEDKSP achieves
a throughput of 0.98, 11.3% higher than the throughput
of 0.88 for KSP. This demonstrates the effectiveness of
randomization and edge-disjointness. Second, the routing
mechanism has a significant impact on the performance;
adaptive routing (UGAL, KSP-UGAL, and KSP-adaptive)
performs better than traffic oblivious routing (Round-Robin
and Random). Between the adaptive routing scheme, KSP-
adaptive is significantly better than KSP-UGAL for all
path selection schemes. For example, with rEDKSP, KSP-
adaptive achieves a throughput of 0.98, 10.0% higher than
the throughput of 0.89 for KSP-UGAL. Moreover, KSP-
adaptive and KSP-UGAL both have higher performance than
the vanilla UGAL. Although vanilla UGAL is more flexible
in selecting non-minimal paths, restricting the paths to be
"short” paths results in higher performance on Jellyfish.
Figures 9 and 10 show the average saturation throughput

for running the previous experiment with random shift traffic
patterns. The results are similar to that for permutation,
except that the performance difference is larger. This is

0.0

0.2

0.4

0.6

0.8

1.0

SP

va
nill

a-
U

G
A

L

R
ou

nd-R
ob

in

R
an

dom

K
SP-A

dap
tiv

e

K
SP-U

G
A

L
0.0

0.2

0.4

0.6

0.8

1.0
T

h
ro

g
h

p
u

t

SP
vanilla-UGAL(8)

KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 7: The average throughput of random permutations
on RRG(36,24,16)

0.0

0.2

0.4

0.6

0.8

1.0

SP

va
nill

a-
U

G
A

L

R
ou

nd-R
ob

in

R
an

dom

K
SP-A

dap
tiv

e

K
SP-U

G
A

L
0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
g

h
p

u
t

SP
vanilla-UGAL(8)

KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 8: The average throughput of random permutations
on RRG(720,24,19)

because an average shift traffic pattern is more demanding
than an average permutation. The results indicate that KSP-
adaptive is the best performing routing mechanism. With
rEDKSP(8), KSP-adaptive achieves a throughput of 0.72,
20.0% higher than the 0.6 throughputs for KSP-UGAL. With
KSP-adaptive, rEDKSP(8) achieves a throughput of 0.72,
20.0% higher than the 0.6 throughputs with KSP(8).

0.0

0.2

0.4

0.6

0.8

SP

va
nill

a-
U

G
A

L

R
ou

nd-R
ob

in

R
an

dom

K
SP-A

dap
tiv

e

K
SP-U

G
A

L
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h

ro
g
h

p
u

t

SP
vanilla-UGAL(8)

KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 9: The average throughput of random shift on
RRG(36,24,16)

0.0

0.2

0.4

0.6

0.8

SP

va
nill

a-
U

G
A

L

R
ou

nd-R
ob

in

R
an

dom

K
SP-A

dap
tiv

e

K
SP-U

G
A

L
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h

ro
g
h

p
u

t

SP
vanilla-UGAL(8)

KSP(8)

rKSP(8)
EDKSP(8)

rEDKSP(8)

Figure 10: The average throughput of random shift on
RRG(720,24,19)

Figures 11, 12 and 13 show the average packet latency
as the offered load increases for RRG(720,19,5) with three
traffic conditions, the random-uniform traffic, a random
permutation traffic, and a random shift traffic, respectively.
The routing mechanism is KSP-adaptive. The results are
consistent with all three traffic patterns. At low loads,
all path selection schemes have similar latency. At high
loads, rEDKSP achieves higher throughput and lower la-
tency near saturation. This is because randomization and
edge-disjointedness heuristics provide a better load-balance
compared to KSP. The results demonstrate the effectiveness
of rEDKSP, especially in comparison to the vanilla KSP.

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

A
v
g
.
P

a
ck

et
 L

a
te

n
cy

Injection Rate

EDKSP(8)

rEDKSP(8)

KSP(8)

rKSP(8)

Figure 11: The average packet latency of random uniform
on RRG(720,19,5) on random routing scheme

E. Results from CODES

The communication times for Stencil communication pat-
terns, which are very common in HPC application, are
studied using CODES. Such results give a good indication
about how the network performs in a more realistic setting.
Table V shows the average communication times for each of
the four applications with linear process-to-node mapping;
The experiments are on RRG(720,24,19), the link band-
width is set to 20GBps. For each application, each process
sends a total of 15MB data. The second column is the
communication time with rEDKSP(8). The third column is

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

A
v
g
.
P

a
ck

et
 L

a
te

n
cy

Injection Rate

EDKSP(8)

rEDKSP(8)

KSP(8)

rKSP(8)

Figure 12: The average packet latency of a random permuta-
tion pattern on RRG(720,24,19) on adaptive routing scheme

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6
 0

 50

 100

 150

 200

A
v
g
.
P

a
ck

et
 L

a
te

n
cy

Injection Rate

EDKSP(8)

rEDKSP(8)

KSP(8)

rKSP(8)

Figure 13: The average packet latency of a random shift-N
pattern on RRG(720,24,19) on adaptive routing scheme

the communication with KSP(8). The fourth column is the
improvement percentage of rEDKSP(8) over KSP(8). The
fifth column is the communication with rKSP(8). The sixth
column is the improvement percentage of rEDKSP(8) over
rKSP(8). With linear mapping, rEDKSP out-performs KSP
and rKSP for all four Stencil patterns. On average, rED-
KSP(8) improves over KSP(8) by 7.6% and over rKSP(8)
by 4.5%. This is consistent with our results from the model
and Booksim.

Applications rEDKSP(8) KSP(8) rKSP(8)

time time imp. time imp.

2DNN 0.83 0.91 9.6% 0.88 6.0%
2DNNdiag 1.07 1.20 12.1% 1.15 7.5%

3DNN 0.90 0.95 5.6% 0.93 3.3%
3DNNdiag 1.01 1.04 3.0% 1.02 1.0%

Average 7.6% 4.5%

Table V: Communication time in milliseconds for different
routing schemes with linear mapping of processes to nodes
on RRG(720,24,19)

Table VI shows the results with random process-to-node
mapping. The trend is similar to that with the linear map-
ping. On average rEDKSP(8) out-performs KSP(8) by 9.0%,
and rKSP(8) by 0.8%. For 2DNNdiag, rEDKSP(8) performs

slightly worse than rKSP(8). For the random mapping,
rEDKSP performs very similar to rKSP. We attribute this
to the random traffic pattern resulted from the random
mapping. Overall, rEDKSP is still slightly better rKSP in
this condition. In summary, for the Stencil patterns, rEDKSP
consistently achieves higher performance than other path
selection methods.

Applications rEDKSP(8) KSP(8) rKSP(8)

time time imp. time imp.

2DNN 0.92 0.99 7.6% 0.94 2.2%
2DNNdiag 0.86 0.92 7.0% 0.84 -1.5%

3DNN 0.88 0.95 8.0% 0.88 0.0%
3DNNdiag 0.76 0.86 13.2% 0.78 2.6%

Average 9.0% 0.8%

Table VI: Communication time in milliseconds for different
routing schemes in random mapping of processes to nodes
one RRG(720,24,19)

V. RELATED WORK

Singla et al. [1], [19] propose Jellyfish for data centers to
compete with the fat-tree topology [20]. Follow-up studies
conclude that Jellyfish is more scalable than fat-tree for large
HPC systems [2]. Variations of KSP have been suggested
for Jellyfish [1], [2]. KSP allows randomization and link-
disjointness heuristics to be incorporated. However, the
effectiveness of the heurstics is topology dependent and it
has not been thoroughly examined on Jellyfish. Our study in-
dicates that, for the Jellyfish topology, the randomization and
link-disjoint heuristics yield better paths, and significantly
improve the routing performance. Routing mechanisms for
multi-path routing on Jellyfish have not been systematically
investigated. An ad hoc study was carried out where Jellyfish
is compared with other topologies [21]. Like the Dragonfly
topology where UGAL has many forms [10]–[14], multi-
path routing on Jellyfish also allows for UGAL variations.
We evaluate their performance and identify an effective
routing mechanism for Jellyfish.

VI. CONCLUSION

We study two components of multi-path routing on Jel-
lyfish, path selection and routing mechanism. We show that
the current KSP routing for Jellyfish suffers from the load
imbalance problem. We introduce two heuristics, random-
ization and edge-disjointness, to overcome this issue, and
demonstrate that these two heuristics yield significantly bet-
ter performance than the vanilla KSP scheme. We investigate
various routing mechanisms for multi-path routing on Jelly-
fish. Our results indicate that using paths computed by KSP
with the randomization and edge-disjointness heuristics and
the KSP-adaptive scheme significantly improves Jellyfish’s
communication performance compared to existing schemes.

ACKNOWLEDGEMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grants CICI-1738912, CRI-
1822737, and SHF-2007827. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. This work used
the Extreme Science and Engineering Discovery Environ-
ment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562. This work used
the XSEDE Bridges resource at the Pittsburgh Supercom-
puting Center (PSC) through allocations ECS190004 and
CCR200042.

REFERENCES

[1] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in Presented as part of
the 9th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), 2012, pp. 225–238.

[2] X. Yuan, S. Mahapatra, W. Nienaber, S. Pakin, and M. Lang,
“A new routing scheme for jellyfish and its performance
with hpc workloads,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, 2013, pp. 1–11.

[3] A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data
center topology design,” in Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementa-
tion, ser. NSDI’14. USA: USENIX Association, 2014, p.
29Ű41.

[4] A. Singh, “Load-balanced routing in interconnection net-
works,” Ph.D. dissertation, Stanford University, 2005.

[5] W. Hoffman and R. Pavley, “A method for the solution of the
n th best path problem,” Journal of the ACM (JACM), vol. 6,
no. 4, pp. 506–514, 1959.

[6] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[7] E. Q. Martins and M. M. Pascoal, “A new implementation
of yens ranking loopless paths algorithm,” Quarterly Journal
of the Belgian, French and Italian Operations Research
Societies, vol. 1, no. 2, pp. 121–133, 2003.

[8] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and
D. Towsley, “Multi-path tcp: A joint congestion control and
routing scheme to exploit path diversity in the internet,”
IEEE/ACM Transactions on Networking, vol. 14, no. 6, pp.
1260–1271, 2006.

[9] Y. Guo, F. Kuipers, and P. Van Mieghem, “Link-disjoint paths
for reliable qos routing,” International Journal of Communi-
cation Systems, vol. 16, no. 9, pp. 779–798, 2003.

[10] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-
driven, highly-scalable dragonfly topology,” in Proceedings
of the 35th Annual International Symposium on Computer
Architecture, ser. ISCA ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 77–88. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2008.19

[11] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing
on large scale interconnection networks,” in Proceedings
of the 36th Annual International Symposium on Computer
Architecture, ser. ISCA ’09. New York, NY, USA:
ACM, 2009, pp. 220–231. [Online]. Available: http:
//doi.acm.org/10.1145/1555754.1555783

[12] P. Faizian, J. F. Alfaro, M. S. Rahman, M. A. Mollah,
X. Yuan, S. Pakin, and M. Lang, “TPR: traffic pattern-based
adaptive routing for dragonfly networks,” IEEE Trans. Multi-
Scale Computing Systems, vol. 4, no. 4, pp. 931–943, 2018.

[13] M. A. Mollah, W. Wang, P. Faizian, M. S. Rahman,
X. Yuan, S. Pakin, and M. Lang, “Modeling universal
globally adaptive load-balanced routing,” ACM Trans.
Parallel Comput., vol. 6, no. 2, Aug. 2019. [Online].
Available: https://doi.org/10.1145/3349620

[14] M. S. Rahman, S. Bhowmik, Y. Ryasnianskiy, X. Yuan,
and M. Lang, “Topology-custom ugal routing on dragonfly,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’19. New York, NY, USA: ACM, 2019, pp.
17:1–17:15. [Online]. Available: http://doi.acm.org/10.1145/
3295500.3356208

[15] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour,
B. Towles, D. E. Shaw, J. Kim, and W. J. Dally, “A detailed
and flexible cycle-accurate network-on-chip simulator,” in
2013 IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), April 2013, pp. 86–96.

[16] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross,
“Codes: Enabling co-design of multilayer exascale storage
architectures,” in the Workshop on Emerging Supercomputing
Technologies, 2012.

[17] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott,
“Overcoming far-end congestion in large-scale networks,”
in High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, Feb 2015, pp. 415–
427.

[18] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny,
A. Pinar, D. A. Evensky, and J. Mayo, “A simulator for large-
scale parallel computer architectures,” International Journal
of Distributed Systems and Technologies (IJDST), vol. 1,
no. 2, pp. 57–73, 2010.

[19] S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla, “Measur-
ing and understanding throughput of network topologies,” in
SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE, 2016, pp. 761–772.

[20] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious
routing in fat-tree based system area networks with uncertain
traffic demands,” IEEE/ACM Transactions on Networking,
vol. 17, no. 5, pp. 1439–1452, 2009.

[21] M. A. Mollah, P. Faizian, M. S. Rahman, X. Yuan, S. Pakin,
and M. Lang, “A comparative study of topology design
approaches for hpc interconnects,” in 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID). IEEE, 2018, pp. 392–401.

