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Non-classical energy squeezing of a macroscopic

mechanical oscillator

X. Ma®'2™ ] J, Viennot®'23, S, Kotler

Optomechanics and electromechanics have made it possible to
prepare macroscopic mechanical oscillators in their quantum
ground states’, in quadrature-squeezed states? and in entan-
gled states of motion®. However, the effectively linear interac-
tion between motion and light or electricity precludes access
to the broader class of quantum states of motion, such as cat
states or energy-squeezed states. Strong quadratic coupling
of motion to light could allow a way around this restriction*-°.
Although there have been experimental demonstrations of
quadratically coupled optomechanical systems>’¢, these have
not yet accessed non-classical states of motion. Here we cre-
ate non-classical states by quadratically coupling motion
to the energy levels of a Cooper-pair box qubit. Through
microwave-frequency drives that change the state of both the
oscillator and qubit, we then dissipatively stabilize the oscil-
lator in a state with a large mean phonon number of 43 and
sub-Poissonian number fluctuations of approximately 3. In
this energy-squeezed state, we observe a striking feature of
the quadratic coupling: the recoil of the mechanical oscillator
caused by qubit transitions, closely analogous to the vibronic
transitions in molecules®'°.

The ability to access a broad range of quantum states with
mechanical oscillators has many applications and is an enduring
ambition in the fields of opto- and electromechanics. As mechani-
cal oscillators are linear at the quantum scale, arbitrary quantum
control over them requires an extrinsic nonlinearity such as a non-
linear source'’ or detector'>". Alternatively, a mechanical oscillator
can be coupled to an ancillary system in a nonlinear manner. For
example, opto- and electromechanical systems routinely use the
inherently nonlinear radiation-pressure interaction between the
motion of a mechanical oscillator and the energy of an ancillary
optical or electrical cavity.

However, the radiation-pressure interaction is intrinsically weak;
thus, most experiments operate with a large-cavity drive, increas-
ing the coupling strength but yielding a linear interaction between
oscillator motion and cavity field. In refs. * and ¢, the authors pro-
pose a solution: by coupling the square of the oscillator motion to
the cavity energy, the drive-enhanced coupling remains nonlinear.
Despite new theoretical insights'*-"” and rapid experimental prog-
ress”*'®1%, quadratic coupling schemes for opto- and electromechan-
ics* have not yielded non-classical states in mechanical oscillators.

To overcome the weak coupling of electromechanics, in which
the zero-point motion of the mechanical oscillator alters the tiny
zero-point electrical energy stored in the capacitor of a resonant
circuit, we arrange for motion to alter the large electrostatic energy
stored in the capacitor of a Cooper-pair box (CPB) qubit by an
applied d.c. voltage®®* (Fig. la,b). At a point of charge degeneracy
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in the qubit, this arrangement creates a quadratic coupling between
the oscillator position and qubit energy (Fig. 1c). We use this qua-
dratic coupling to adiabatically stabilize a mechanical oscillator into
an energy-squeezed state with average phonon number of 43 and
variance less than 11, yielding a Fano factor of F = 0.2571000+ far
below the classical limit of F>1 (ref. *°). As a consequence of creat-
ing this high-energy number-squeezed state, we also observe side-
bands in the qubit spectrum that reveal qubit excitation processes
that create or annihilate phonons in pairs.

To achieve strong quadratic interaction between the mechani-
cal oscillator and a superconducting qubit, we embed a mechani-
cally compliant elliptical disc into the microwave circuit shown in
Fig. 1d,e. The mechanical oscillator is the antisymmetric, sec-
ond mode of the suspended disc with a resonant frequency
@, ~21X25MHz. Underneath the disc, two aluminium elec-
trodes are placed at the antinodes of motion to form two mechani-
cally compliant capacitors. The electrodes are connected through
two Josephson junctions in parallel, creating a flux-tunable CPB
qubit*™. A static voltage V. applied to the disc couples motion to
the qubit energy as illustrated by an approximate electromechani-
cal schematic in Fig. 1a (Supplementary Section IB). The symmetry
of the capacitor network is broken by the antisymmetric motion of
the oscillatory mode, yielding a CPB qubit with a gate voltage V,(x)
proportional to the oscillator’s coordinate (Fig. 1b). By applying
V=6V, we achieve a coupling rate of g, ~2nx 22 MHz, orders of
magnitude larger than the values achieved using radiation-pressure
electromechanical coupling®. Operating at the charge degeneracy
point, the qubit energy is first order insensitive to the oscillator’s
motion, but the second-order quadratic coupling" 2y, ~(2g,)*/
(Ej/h)~21x0.52MHz, where E; is the Josephson energy, is large
enough to profoundly affect the qubit and oscillator dynamics.

Although it is expedient® to approximate a strong quadratic
coupling of motion to a qubit using the dispersive limit of the
Jaynes-Cummings Hamiltonian, familiar from circuit quantum
electrodynamics (cQED), this approximation fails to fully capture
phenomena associated with the large separation in energy scales
(&m> 0, K @, the qubit frequency). Instead, the oscillator’s position
behaves as a slow coordinate’* moving in a potential modified by the
state of the qubit”* (see also Supplementary Section IIA),
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where x and p are the position and momentum operators of the
mechanical oscillator respectively, m and k are the mass and
the spring constant, 6, is the qubit Pauli operator and y, =g,/
(w,— o,)+g,’/(®,+0,) includes the Bloch-Siegert shift”’ . The
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Fig. 1| Quadratically coupled electromechanics. a, The capacitances of two mechanically compliant capacitors, C,*(x), are modulated with opposite
phase by the antisymmetric motion of the mechanical oscillator (blue). An applied voltage V. converts this modulation of capacitance to a voltage

V,(x) across the open terminals A and B. b,c, The Thévenin equivalent representation of the circuit seen by the junctions is a CPB qubit (b), with a gate
capacitance C, and a mechanical-position-dependent gate charge n(x) = V,(x)C,/2e that tunes the qubit energy Ecp; (€). The qubit ground (|g)) and
excited (|e)) states are superpositions of two charge states (dashed lines) of the circuit differing by one Cooper pair, with the average value of the ground-
and excited-state energy defined to be zero. These energies are linearly dependent on x with slope +2hg,/x,,, defining g,, as the qubit-mechanics coupling
rate. The degeneracy between the charge states at n,=1/2 (charge degeneracy point) is lifted by the tunnelling of Cooper pairs across the junctions at the
rate E,/h. At charge degeneracy, the qubit transition frequency senses the square of mechanical displacement with quadratic coupling strength (2g,,)%/
(E,/h). d, False-coloured scanning electron micrograph (at an angle) of the micromechanical oscillator (blue) suspended above two electrodes (green

and yellow) to form mechanically compliant capacitors. The d.c. bias line imposes a voltage on the oscillator plate. e, Top view of the device. The two
bottom electrodes are shunted by two Josephson junctions (JJ) in parallel to form a superconducting qubit. f, A qubit excitation causes a sudden change
of the mechanical potential (parabolas) and a non-zero overlap between spatial wavefunctions (lines) of different mechanical states of opposite qubit
excitations. Because of symmetry, this process only connects an initial state |g,n) (shaded green) with states of the same mechanical parity |e, n+ 2/)
(shaded red), creating or annihilating phonons in pairs.
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Fig. 2 | Determining the phonon distribution from a qubit spectrum. a, The qubit spectrum is measured when the mechanical oscillator is in a thermal
state or a displaced thermal state. Although individual sideband peaks are not resolvable because of the broad phonon distribution, we can still observe
features associated with them at the positions highlighted by the vertical arrows. We perform a least-squares fit on the thermal-state qubit spectrum
(solid orange line) using equation (2), assuming a thermal distribution (dashed orange line) with only two free parameters: n,,=17.7 and the bare qubit
frequency (Supplementary Section I1ID). Holding these parameters fixed and assuming a displaced-thermal-state distribution, we also fit the purple
data to find the only free parameter ny,, = 43.3. b, Alternatively, we can extract the phonon distributions without assuming a particular form using a
deconvolution procedure (solid lines) and find their 90% confidence intervals (shaded areas) using non-parametric bootstrapping. For comparison,

we also plot the associated qubit spectra (solid lines) in a, and the fitted phonon distributions (dashed lines) in b. The presented data are representative
of other displaced thermal states we measure, where we confirm that the extracted ny, scales linearly with the power of the displacement drive
(Supplementary Section V).

slow mechanical oscillator thus experiences a sudden compression
of its effective spring constant k(&) = k(1 + 2y,,6./®m) when the
qubit changes state, which simultaneously alters the mechanical
frequency ®m(6.) = \/k(6:)/m and the mechanical impedance
Zm(6;) = \/k(6,)m. Because the impedance determines the spa-
tial scale of the qubit-state-dependent mechanical wavefunctions,
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wavefunctions that differ by even phonon numbers and with oppo-
site qubit excitation are not orthogonal (Fig. 1f). Consequently, the
qubit spectrum will exhibit sideband features associated with the
pair-wise creation and destruction of phonons. Although they are
analogous to the sideband transitions in cQED systems®’! where
the oscillator and qubit frequencies are comparable, the small w,,
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Fig. 3 | Dissipative energy squeezing. a, When the blue sideband transition |g,n—1) <> |e, n) is driven continuously at rate I"‘;f1> and the qubit decay
rate is the dominant relaxation process (y,, < I'}), the combination of the two results in the addition of one phonon in the mechanical oscillator at rate

I"IB"“). (I"1>I"|B”_1> for this work.) Similarly, a red sideband drive removes one phonon at rate I"‘,f*”. b,c, The sideband drives are phonon-number sensitive,
addressing a section of the phonon population centred at ng or ny with £~ 7.1 phonons. A blue (b) or red (¢) sideband drive applied on an initial thermal
state (dashed orange line) creates a distortion in the phonon population (solid green line) at timescale nB/I"‘”B or nR/I"‘”R) d, Alternatively, adiabatically
increasing the blue sideband drive frequency (chirping) should empty all phonon population below the final value of ng. Inset: the resulting state’'s Wigner
function W(X,, X,) is a narrow ring around the (X, X,) quadrature space origin with inner radius approximately given by ,/ns. e, Chirping the sideband drive

to a final position of ny(z) (bottom axis) by stopping the chirp at time z (top axis), we measure the qubit spectrum (Supplementary Fig. 11) and extract
the phonon distribution (colour scale versus y axis) using deconvolution. At any time, the population is empty below the line n=ny(z) (dashed blue).

f, Using a master equation calculation, we find the expected phonon distribution for the chirping protocol used in e (Supplementary Section VII). g, When
the blue sideband drive is chirped toward a static red sideband drive centred at ng, the phonon population should be trapped in between, and squeezed

in number space. Inset: the Wigner function of the resulting energy-squeezed state is non-Gaussian and radially symmetric about the quadrature space
origin, quite distinct from a quadrature-squeezed state. h,i, As in e and f, we compare the measured (h) and the expected (i) phonon distribution for this

energy-squeezing protocol with ny=44 (dashed red line).

(<w,) means that these electromechanical sidebands not only
appear close to the qubit frequency, but also are likely to be excited
by a change in the qubit state. Indeed, a qubit transition is likely to
alter the phonon number n when the qubit-induced change in mean
mechanical energy 8k(x*)/2 = 2hy,,n is larger than the energy of
two phonons 2#Aw,,. Thus, the condition y,n/w,>1 signifies the
entry into a new regime where phonon-altering qubit transitions
become dominant over phonon-preserving transitions.
Nevertheless, similarly to cQED experiments”, the
qubit-state-dependent mechanical frequency wn(6;) leads to a
phonon-number-dependent Stark shift on the qubit resonance.
We use this shift in qubit frequency to determine the phonon

324

distribution of the mechanical oscillator with a precision given by
the phonon-number sensitivity”> £=1,*/2y,,~7.1 phonons, where
I')* is the qubit decoherence rate. The probability of exciting the
qubit as a function of the frequency of a weak qubit-drive tone
(qubit spectroscopy) is given by

ZP

—a convolution between the phonon distribution P(n) and the
qubit spectrum with exactly n phonons in the mechanical oscillator,
P (w). In contrast to ref. 2, where PI") (@) are treated simply as

)3 P (o) @)
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Fig. 4 | Dissipatively stabilized sub-Poissonian state. a, The qubit
spectrum (circles) is measured after an optimized energy-squeezing
protocol. The s.e.m. is extracted individually for each frequency point
(Supplementary Section IX), and plotted as error bars for every fourth
point. b, The phonon distribution (solid green line) with its 90% confidence
interval (shaded green area) is extracted from a deconvolution procedure,
and is found to be sub-Poissonian and characterized by F=0.257 < 1. For
reference, the phonon distribution and the expected qubit spectrum are
plotted for a coherent state (Poissonian, dashed black line). In the qubit
spectrum (a), the sub-Poissonian nature of the mechanical state is evident
in the narrower lineshape. The peaks visible are separated by ., and
correspond to transitions |g,n) — e, n+1).

Stark-shifted Lorentzians, we employ a deconvolution™ procedure
that accounts for the sideband transitions in these qubit spectra.
This more accurate procedure is necessary because we endeavour
to create states with large average phonon number and small dis-
tributions. However, its implementation requires that we accurately
determine P\"(w). As explained in Supplementary Section III,
this determination is experimentally achieved by setting V,.=0V
and simulating the effect of motion with a classical a.c. voltage that
modulates the gate charge at @,

To validate the deconvolution procedure, we demonstrate it on
thermal and displaced thermal states in the mechanical oscillator
as shown in Fig. 2. We measure the qubit spectrum and compare
the phonon distribution extracted from the deconvolution proce-
dure with that expected for a thermal or displaced thermal state.
The good agreement between the phonon distributions as well as
the associated qubit spectra substantiates the deconvolution pro-
cedure. In the dressed qubit spectra (Fig. 2a), individual sideband
peaks cannot be resolved because these features are smeared by the
large phonon-number variance. Nevertheless, features associated
with those sidebands can be observed at the positions highlighted
by the arrows.

With the ability to extract the phonon distribution, we now use
sideband transitions (Fig. 3a) to reduce the variance in phonon
number. We squeeze the phonon population in Fock space (energy
squeezing) by trapping it in between phonon-creating (blue) and
phonon-annihilating (red) sideband transitions. Continuously driv-
ing these sideband transitions alters the dissipative environment
of the mechanical oscillator and changes the steady-state phonon
distribution, as evident from the simplified* system dynamics of
Fig. 3a (see also Supplementary Section VIIA). Because I',* is much
faster than all of the transition rates in these experiments, the final
mechanical state contains no quantum coherence, and is fully
described by the diagonal elements of its density matrix. Similarly
to ref. 2, we adopt the technique™ of driving a.c.-dither sidebands to
access single-phonon sideband transitions (Supplementary Section
VI). In contrast to that in conventional linear optomechanics’, these
transitions are crucially different in their phonon-number sen-
sitivity””. Leveraging this feature, we address only a section of the
phonon population with a characteristic width ¢ and displace it in
number space (Fig. 3b,c). By slowly increasing the blue sideband
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drive frequency wj (chirping), we adiabatically move the centre of
the addressed transitions n; up in phonon space (Fig. 3d). In Fig. 3e,
we show the effect of the chirp. Extracting the phonon population
through reconstruction, we observe that the phonon population is
emptied below n;; and pushed to a higher occupation. In Fig. 3g-i,
we squeeze the phonon population by turning on a red sideband
drive centred on the transition |g, ng) < |e,ny— 1), with ng close to
but greater than the maximum value of n;. A Fock state |n) will be
cooled to a lower occupancy when the blue sideband transition rate
is slower than the red sideband transition rate ") < 1", and vice

versa. Thus, under conditions r‘;B) >r‘1{m> and rgw <FK’R>, a state
that starts with ny > n> n; cannot escape the bounds of the two side-
band drives. Additionally, states with n> n, are eventually trapped
between n, and sy by a combination of thermal equilibration and
the action of the red sideband drive”. Requiring neither number
resolution nor coherent manipulation, this energy-squeezing tech-
nique can be easily implemented in other cQED experiments.

In Fig. 4, we use energy squeezing to prepare the mechani-
cal oscillator in a non-classical state. After optimizing the relative
power and position of the two sideband drives, we squeeze the pho-
non population at mean phonon number (n) =43 and prepare it in
a sub-Poissonian state. We characterize the non-classical nature of
this state with F=var(n)/(n). For a Poisson-distributed state F=1,
and for a Fock state F=0. When F< 1, the phonon distribution is
non-classical”, energy squeezed and Fock-like. Extracting the pho-
non distribution through reconstruction, we find F = 0.25713:002,
where the bound is determined by the uncertainty in the bare qubit
frequency. To quantify the confidence in the extracted Fano factor
F, raco We perform repeated reconstruction procedures on simulated
experiments that have specified phonon distributions with (n) =43
and Fano factors F,,,, as described in Supplementary Section IX.
For a given range of F,,,,,., we can bound F,.. Specifically, for F. ..
within the interval [0.255, 0.265] we find F,,,. <0.28 with 95% confi-
dence, and F,,. <0.30 with 99% confidence. This Fano factor can be
related to a negativity in the Wigner function under the assumption
of a Gaussian number distribution™ (Supplementary Section X).
We have thus demonstrated our ability to prepare a type of highly
non-classical mechanical state with high average energy but small
fluctuations, quite distinct from quadrature-squeezed states. We
choose to squeeze around (n)=43, where the spurious cooling
effect (Supplementary Section VIII) is small and the phonon popu-
lation dynamics are more intuitive. However, because this method
of energy squeezing creates states with a minimum width of éx7.1
phonons independent of (1), it is conceivable to achieve a smaller F
by squeezing at higher (n).

In creating this energy-squeezed state, we can now resolve the
sideband transitions that were obscured by the broad phonon dis-
tribution associated with the large thermal occupation in Fig. 2a.
The centre peak in the qubit spectroscopy (I=0 peak in Fig. 4a)
corresponds to the qubit transition that conserves phonon number,
whereas the satellite peaks at +2w,, (I==+2) are mostly associated
with qubit transitions that create and annihilate pairs of phonons
when the mechanical spring suddenly stiffens. Because charge noise
creates a small random bias away from degeneracy, we also observe
peaks at +@,, associated with single-phonon sideband transitions
(Supplementary Section IIC). In contrast to the sidebands observed
in ref. *' at (n) ~ 10* phonons, these peaks are easily resolved at the
relatively small phonon number (n)=43 because y,/w,, is much
larger. Consequently, they can substantially alter the oscillator’s
phonon distribution.

The prominence of these sideband peaks also signifies the entry
into a regime where the qubit’s spontaneous decay can detectably
alter the phonon distribution® (Supplementary Section VIIA). In
Fig. 4a, we measure the probability of exciting the qubit when driv-
ing at a particular frequency, but each peak must also correspond

325


http://www.nature.com/naturephysics

LETTERS

to a qubit decay process, driven by the quantum noise in the envi-
ronment. From the ratio of the area underneath the /=0 peak to
the total area under all the peaks, we estimate that a qubit decaying
from an initial state of |e,43) will only preserve the phonon number
with 63% probability. This probability will further diminish if y,, is
increased to better resolve individual phonon numbers.
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