
Letters
https://doi.org/10.1038/s41567-020-01102-1

1JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA. 2Department of Physics, University of Colorado, Boulder, 
CO, USA. 3Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France. 4National Institute of Standards and Technology (NIST), Boulder, CO, USA. 
✉e-mail: xizheng.ma@colorado.edu

Optomechanics and electromechanics have made it possible to 
prepare macroscopic mechanical oscillators in their quantum 
ground states1, in quadrature-squeezed states2 and in entan-
gled states of motion3. However, the effectively linear interac-
tion between motion and light or electricity precludes access 
to the broader class of quantum states of motion, such as cat 
states or energy-squeezed states. Strong quadratic coupling 
of motion to light could allow a way around this restriction4–6. 
Although there have been experimental demonstrations of 
quadratically coupled optomechanical systems5,7,8, these have 
not yet accessed non-classical states of motion. Here we cre-
ate non-classical states by quadratically coupling motion 
to the energy levels of a Cooper-pair box qubit. Through 
microwave-frequency drives that change the state of both the 
oscillator and qubit, we then dissipatively stabilize the oscil-
lator in a state with a large mean phonon number of 43 and 
sub-Poissonian number fluctuations of approximately 3. In 
this energy-squeezed state, we observe a striking feature of 
the quadratic coupling: the recoil of the mechanical oscillator 
caused by qubit transitions, closely analogous to the vibronic 
transitions in molecules9,10.

The ability to access a broad range of quantum states with 
mechanical oscillators has many applications and is an enduring 
ambition in the fields of opto- and electromechanics. As mechani-
cal oscillators are linear at the quantum scale, arbitrary quantum 
control over them requires an extrinsic nonlinearity such as a non-
linear source11 or detector12,13. Alternatively, a mechanical oscillator 
can be coupled to an ancillary system in a nonlinear manner. For 
example, opto- and electromechanical systems routinely use the 
inherently nonlinear radiation-pressure interaction between the 
motion of a mechanical oscillator and the energy of an ancillary 
optical or electrical cavity.

However, the radiation-pressure interaction is intrinsically weak; 
thus, most experiments operate with a large-cavity drive, increas-
ing the coupling strength but yielding a linear interaction between 
oscillator motion and cavity field. In refs. 5 and 6, the authors pro-
pose a solution: by coupling the square of the oscillator motion to 
the cavity energy, the drive-enhanced coupling remains nonlinear. 
Despite new theoretical insights14–17 and rapid experimental prog-
ress7,8,18,19, quadratic coupling schemes for opto- and electromechan-
ics4 have not yielded non-classical states in mechanical oscillators.

To overcome the weak coupling of electromechanics, in which 
the zero-point motion of the mechanical oscillator alters the tiny 
zero-point electrical energy stored in the capacitor of a resonant 
circuit, we arrange for motion to alter the large electrostatic energy 
stored in the capacitor of a Cooper-pair box (CPB) qubit by an 
applied d.c. voltage20–22 (Fig. 1a,b). At a point of charge degeneracy 

in the qubit, this arrangement creates a quadratic coupling between 
the oscillator position and qubit energy (Fig. 1c). We use this qua-
dratic coupling to adiabatically stabilize a mechanical oscillator into 
an energy-squeezed state with average phonon number of 43 and 
variance less than 11, yielding a Fano factor of F ¼ 0:257þ0:002

�0:001
I

 far 
below the classical limit of F ≥ 1 (ref. 23). As a consequence of creat-
ing this high-energy number-squeezed state, we also observe side-
bands in the qubit spectrum that reveal qubit excitation processes 
that create or annihilate phonons in pairs.

To achieve strong quadratic interaction between the mechani-
cal oscillator and a superconducting qubit, we embed a mechani-
cally compliant elliptical disc into the microwave circuit shown in  
Fig. 1d,e. The mechanical oscillator is the antisymmetric, sec-
ond mode of the suspended disc with a resonant frequency 
ωm ≈ 2π × 25 MHz. Underneath the disc, two aluminium elec-
trodes are placed at the antinodes of motion to form two mechani-
cally compliant capacitors. The electrodes are connected through 
two Josephson junctions in parallel, creating a flux-tunable CPB 
qubit24. A static voltage Vdc applied to the disc couples motion to 
the qubit energy as illustrated by an approximate electromechani-
cal schematic in Fig. 1a (Supplementary Section IB). The symmetry 
of the capacitor network is broken by the antisymmetric motion of 
the oscillatory mode, yielding a CPB qubit with a gate voltage Vg(x) 
proportional to the oscillator’s coordinate (Fig. 1b). By applying 
Vdc = 6 V, we achieve a coupling rate of gm ≈ 2π × 22 MHz, orders of 
magnitude larger than the values achieved using radiation-pressure 
electromechanical coupling25. Operating at the charge degeneracy 
point, the qubit energy is first order insensitive to the oscillator’s 
motion, but the second-order quadratic coupling14 2χm ≈ (2gm)2/
(EJ/ħ) ≈ 2π × 0.52 MHz, where EJ is the Josephson energy, is large 
enough to profoundly affect the qubit and oscillator dynamics.

Although it is expedient22 to approximate a strong quadratic 
coupling of motion to a qubit using the dispersive limit of the 
Jaynes–Cummings Hamiltonian, familiar from circuit quantum 
electrodynamics (cQED), this approximation fails to fully capture 
phenomena associated with the large separation in energy scales 
(gm, ωm ≪ ωq, the qubit frequency). Instead, the oscillator’s position 
behaves as a slow coordinate26 moving in a potential modified by the 
state of the qubit27,28 (see also Supplementary Section IIA),

H ¼ 1
2
_ωqσ̂z þ

p̂2

2m
þ 1
2
kð1þ 2χm

ωm
σ̂zÞx̂2 ð1Þ

where x̂ and p̂ are the position and momentum operators of the 
mechanical oscillator respectively, m and k are the mass and 
the spring constant, σ̂z

I
 is the qubit Pauli operator and χm = gm

2/
(ωq − ωm) + gm

2/(ωq + ωm) includes the Bloch–Siegert shift27–29. The 
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slow mechanical oscillator thus experiences a sudden compression 
of its effective spring constant kðσ̂zÞ ¼ kð1þ 2χmσ̂z=ωmÞ

I
 when the 

qubit changes state, which simultaneously alters the mechanical 
frequency ωmðσ̂zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðσ̂zÞ=m

p

I
 and the mechanical impedance 

Zmðσ̂zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðσ̂zÞm

p

I
. Because the impedance determines the spa-

tial scale of the qubit-state-dependent mechanical wavefunctions, 

wavefunctions that differ by even phonon numbers and with oppo-
site qubit excitation are not orthogonal (Fig. 1f). Consequently, the 
qubit spectrum will exhibit sideband features associated with the 
pair-wise creation and destruction of phonons. Although they are 
analogous to the sideband transitions in cQED systems30,31 where 
the oscillator and qubit frequencies are comparable, the small ωm 
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Fig. 1 | Quadratically coupled electromechanics. a, The capacitances of two mechanically compliant capacitors, Cm
±(x), are modulated with opposite 

phase by the antisymmetric motion of the mechanical oscillator (blue). An applied voltage Vdc converts this modulation of capacitance to a voltage 
Vg(x) across the open terminals A and B. b,c, The Thévenin equivalent representation of the circuit seen by the junctions is a CPB qubit (b), with a gate 
capacitance Cg and a mechanical-position-dependent gate charge ng(x) = Vg(x)Cg/2e that tunes the qubit energy ECPB (c). The qubit ground (|g〉) and 
excited (|e〉) states are superpositions of two charge states (dashed lines) of the circuit differing by one Cooper pair, with the average value of the ground- 
and excited-state energy defined to be zero. These energies are linearly dependent on x with slope ±2ℏgm/xzp, defining gm as the qubit–mechanics coupling 
rate. The degeneracy between the charge states at ng = 1/2 (charge degeneracy point) is lifted by the tunnelling of Cooper pairs across the junctions at the 
rate EJ/ℏ. At charge degeneracy, the qubit transition frequency senses the square of mechanical displacement with quadratic coupling strength (2gm)2/
(EJ/ħ). d, False-coloured scanning electron micrograph (at an angle) of the micromechanical oscillator (blue) suspended above two electrodes (green 
and yellow) to form mechanically compliant capacitors. The d.c. bias line imposes a voltage on the oscillator plate. e, Top view of the device. The two 
bottom electrodes are shunted by two Josephson junctions (JJ) in parallel to form a superconducting qubit. f, A qubit excitation causes a sudden change 
of the mechanical potential (parabolas) and a non-zero overlap between spatial wavefunctions (lines) of different mechanical states of opposite qubit 
excitations. Because of symmetry, this process only connects an initial state |g, n〉 (shaded green) with states of the same mechanical parity |e, n ± 2l〉 
(shaded red), creating or annihilating phonons in pairs.
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Fig. 2 | Determining the phonon distribution from a qubit spectrum. a, The qubit spectrum is measured when the mechanical oscillator is in a thermal 
state or a displaced thermal state. Although individual sideband peaks are not resolvable because of the broad phonon distribution, we can still observe 
features associated with them at the positions highlighted by the vertical arrows. We perform a least-squares fit on the thermal-state qubit spectrum 
(solid orange line) using equation (2), assuming a thermal distribution (dashed orange line) with only two free parameters: nth = 17.7 and the bare qubit 
frequency (Supplementary Section IIID). Holding these parameters fixed and assuming a displaced-thermal-state distribution, we also fit the purple 
data to find the only free parameter ndisp = 43.3. b, Alternatively, we can extract the phonon distributions without assuming a particular form using a 
deconvolution procedure (solid lines) and find their 90% confidence intervals (shaded areas) using non-parametric bootstrapping. For comparison,  
we also plot the associated qubit spectra (solid lines) in a, and the fitted phonon distributions (dashed lines) in b. The presented data are representative 
of other displaced thermal states we measure, where we confirm that the extracted ndisp scales linearly with the power of the displacement drive 
(Supplementary Section V).
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(≪ωq) means that these electromechanical sidebands not only 
appear close to the qubit frequency, but also are likely to be excited 
by a change in the qubit state. Indeed, a qubit transition is likely to 
alter the phonon number n when the qubit-induced change in mean 
mechanical energy δkhx̂2i=2 ¼ 2_χmn

I
 is larger than the energy of 

two phonons 2ℏωm. Thus, the condition χmn/ωm ≳ 1 signifies the 
entry into a new regime where phonon-altering qubit transitions 
become dominant over phonon-preserving transitions.

Nevertheless, similarly to cQED experiments32, the 
qubit-state-dependent mechanical frequency ωmðσ̂zÞ

I
 leads to a 

phonon-number-dependent Stark shift on the qubit resonance.  
We use this shift in qubit frequency to determine the phonon  

distribution of the mechanical oscillator with a precision given by 
the phonon-number sensitivity22 ξ = Γ2*/2χm ≈ 7.1 phonons, where 
Γ2* is the qubit decoherence rate. The probability of exciting the 
qubit as a function of the frequency of a weak qubit-drive tone 
(qubit spectroscopy) is given by

PeðωÞ ¼
X

n

PðnÞ ´ P nj i
e ðωÞ ð2Þ

—a convolution between the phonon distribution P(n) and the 
qubit spectrum with exactly n phonons in the mechanical oscillator, 
P nj i
e ðωÞ
I

. In contrast to ref. 22, where P nj i
e ðωÞ
I

 are treated simply as 
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 and the qubit decay 
rate is the dominant relaxation process (γm ≪ Γ1), the combination of the two results in the addition of one phonon in the mechanical oscillator at rate 
Γ nþ1j i
B
I

. (Γ1>Γ
n�1j i
B

I
 for this work.) Similarly, a red sideband drive removes one phonon at rate Γ nþ1j i

R
I

. b,c, The sideband drives are phonon-number sensitive, 
addressing a section of the phonon population centred at nB or nR with ξ ≈ 7.1 phonons. A blue (b) or red (c) sideband drive applied on an initial thermal 
state (dashed orange line) creates a distortion in the phonon population (solid green line) at timescale nB=Γ

nBj i
B

I
 or nR=Γ

nRj i
R

I
. d, Alternatively, adiabatically 

increasing the blue sideband drive frequency (chirping) should empty all phonon population below the final value of nB. Inset: the resulting state’s Wigner 
function W(X1, X2) is a narrow ring around the (X1, X2) quadrature space origin with inner radius approximately given by 

ffiffiffiffiffi
nB

p
I

. e, Chirping the sideband drive 
to a final position of nB(τ) (bottom axis) by stopping the chirp at time τ (top axis), we measure the qubit spectrum (Supplementary Fig. 11) and extract  
the phonon distribution (colour scale versus y axis) using deconvolution. At any time, the population is empty below the line n = nB(τ) (dashed blue).  
f, Using a master equation calculation, we find the expected phonon distribution for the chirping protocol used in e (Supplementary Section VII). g, When 
the blue sideband drive is chirped toward a static red sideband drive centred at nR, the phonon population should be trapped in between, and squeezed 
in number space. Inset: the Wigner function of the resulting energy-squeezed state is non-Gaussian and radially symmetric about the quadrature space 
origin, quite distinct from a quadrature-squeezed state. h,i, As in e and f, we compare the measured (h) and the expected (i) phonon distribution for this 
energy-squeezing protocol with nR = 44 (dashed red line).
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Stark-shifted Lorentzians, we employ a deconvolution33 procedure 
that accounts for the sideband transitions in these qubit spectra. 
This more accurate procedure is necessary because we endeavour 
to create states with large average phonon number and small dis-
tributions. However, its implementation requires that we accurately 
determine P nj i

e ðωÞ
I

. As explained in Supplementary Section III, 
this determination is experimentally achieved by setting Vdc = 0 V  
and simulating the effect of motion with a classical a.c. voltage that 
modulates the gate charge at ωm.

To validate the deconvolution procedure, we demonstrate it on 
thermal and displaced thermal states in the mechanical oscillator 
as shown in Fig. 2. We measure the qubit spectrum and compare 
the phonon distribution extracted from the deconvolution proce-
dure with that expected for a thermal or displaced thermal state. 
The good agreement between the phonon distributions as well as 
the associated qubit spectra substantiates the deconvolution pro-
cedure. In the dressed qubit spectra (Fig. 2a), individual sideband 
peaks cannot be resolved because these features are smeared by the 
large phonon-number variance. Nevertheless, features associated 
with those sidebands can be observed at the positions highlighted 
by the arrows.

With the ability to extract the phonon distribution, we now use 
sideband transitions (Fig. 3a) to reduce the variance in phonon 
number. We squeeze the phonon population in Fock space (energy 
squeezing) by trapping it in between phonon-creating (blue) and 
phonon-annihilating (red) sideband transitions. Continuously driv-
ing these sideband transitions alters the dissipative environment 
of the mechanical oscillator and changes the steady-state phonon 
distribution, as evident from the simplified28 system dynamics of 
Fig. 3a (see also Supplementary Section VIIA). Because Γ2* is much 
faster than all of the transition rates in these experiments, the final 
mechanical state contains no quantum coherence, and is fully 
described by the diagonal elements of its density matrix. Similarly 
to ref. 22, we adopt the technique30 of driving a.c.-dither sidebands to 
access single-phonon sideband transitions (Supplementary Section 
VI). In contrast to that in conventional linear optomechanics1, these 
transitions are crucially different in their phonon-number sen-
sitivity22. Leveraging this feature, we address only a section of the 
phonon population with a characteristic width ξ and displace it in 
number space (Fig. 3b,c). By slowly increasing the blue sideband 

drive frequency ωB (chirping), we adiabatically move the centre of 
the addressed transitions nB up in phonon space (Fig. 3d). In Fig. 3e, 
we show the effect of the chirp. Extracting the phonon population 
through reconstruction, we observe that the phonon population is 
emptied below nB and pushed to a higher occupation. In Fig. 3g–i, 
we squeeze the phonon population by turning on a red sideband 
drive centred on the transition |g, nR〉 ↔ |e, nR − 1〉, with nR close to 
but greater than the maximum value of nB. A Fock state |n〉 will be 
cooled to a lower occupancy when the blue sideband transition rate 
is slower than the red sideband transition rate Γ nj i

B <Γ nj i
R

I
, and vice 

versa. Thus, under conditions Γ
nBj i
B >Γ nBj i

R
I

 and Γ
nRj i
B <Γ nRj i

R
I

, a state 
that starts with nR > n > nB cannot escape the bounds of the two side-
band drives. Additionally, states with n > nR are eventually trapped 
between nR and nB by a combination of thermal equilibration and 
the action of the red sideband drive22. Requiring neither number 
resolution nor coherent manipulation, this energy-squeezing tech-
nique can be easily implemented in other cQED experiments.

In Fig. 4, we use energy squeezing to prepare the mechani-
cal oscillator in a non-classical state. After optimizing the relative 
power and position of the two sideband drives, we squeeze the pho-
non population at mean phonon number 〈n〉 = 43 and prepare it in 
a sub-Poissonian state. We characterize the non-classical nature of 
this state with F = var(n)/〈n〉. For a Poisson-distributed state F = 1, 
and for a Fock state F = 0. When F < 1, the phonon distribution is 
non-classical23, energy squeezed and Fock-like. Extracting the pho-
non distribution through reconstruction, we find F ¼ 0:257þ0:002

�0:001
I

, 
where the bound is determined by the uncertainty in the bare qubit 
frequency. To quantify the confidence in the extracted Fano factor 
Fextract, we perform repeated reconstruction procedures on simulated 
experiments that have specified phonon distributions with 〈n〉 = 43 
and Fano factors Ftrue, as described in Supplementary Section IX. 
For a given range of Fextract, we can bound Ftrue. Specifically, for Fextract 
within the interval [0.255, 0.265] we find Ftrue ≤ 0.28 with 95% confi-
dence, and Ftrue ≤ 0.30 with 99% confidence. This Fano factor can be 
related to a negativity in the Wigner function under the assumption 
of a Gaussian number distribution34 (Supplementary Section X).  
We have thus demonstrated our ability to prepare a type of highly 
non-classical mechanical state with high average energy but small 
fluctuations, quite distinct from quadrature-squeezed states. We 
choose to squeeze around 〈n〉 = 43, where the spurious cooling 
effect (Supplementary Section VIII) is small and the phonon popu-
lation dynamics are more intuitive. However, because this method 
of energy squeezing creates states with a minimum width of ξ ≈ 7.1 
phonons independent of 〈n〉, it is conceivable to achieve a smaller F 
by squeezing at higher 〈n〉.

In creating this energy-squeezed state, we can now resolve the 
sideband transitions that were obscured by the broad phonon dis-
tribution associated with the large thermal occupation in Fig. 2a. 
The centre peak in the qubit spectroscopy (l = 0 peak in Fig. 4a) 
corresponds to the qubit transition that conserves phonon number, 
whereas the satellite peaks at ±2ωm (l = ±2) are mostly associated 
with qubit transitions that create and annihilate pairs of phonons 
when the mechanical spring suddenly stiffens. Because charge noise 
creates a small random bias away from degeneracy, we also observe 
peaks at ±ωm associated with single-phonon sideband transitions 
(Supplementary Section IIC). In contrast to the sidebands observed 
in ref. 21 at 〈n〉 ~ 104 phonons, these peaks are easily resolved at the 
relatively small phonon number 〈n〉 = 43 because χm/ωm is much 
larger. Consequently, they can substantially alter the oscillator’s 
phonon distribution.

The prominence of these sideband peaks also signifies the entry 
into a regime where the qubit’s spontaneous decay can detectably 
alter the phonon distribution28 (Supplementary Section VIIA). In 
Fig. 4a, we measure the probability of exciting the qubit when driv-
ing at a particular frequency, but each peak must also correspond 
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to a qubit decay process, driven by the quantum noise in the envi-
ronment. From the ratio of the area underneath the l = 0 peak to 
the total area under all the peaks, we estimate that a qubit decaying 
from an initial state of |e, 43〉 will only preserve the phonon number 
with 63% probability. This probability will further diminish if χm is 
increased to better resolve individual phonon numbers.
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