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Noise-Driven Oscillations in Coupled Excitable Systems*
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Abstract. In this paper, we investigate a family of coupled excitable cells, using a Kuramoto-type model with
either fixed excitability and Gaussian (dynamic) noise or a random distribution of the excitability. In
both cases, we reduce the coupled system to a low-dimensional system using mean field approaches
such as the Ott—Antonsen ansatz. In the case of a Cauchy distribution of excitability, we prove that
with pure sinusoidal coupling, there can be no oscillations. However, if the excitability distribution
has faster decay or the noise is Gaussian, then we show that there are oscillations and that they
occur in a very specific manner organized around a Takens—Bogdanov bifurcation and a degenerate
homoclinic bifurcation. We show that if the coupling is slightly more general, then even a Cauchy
distribution is able to generate oscillations. Finally, we rescale the reduced equations in the small
heterogeneity limit and show the common dynamics in these different models.
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1. Introduction. Synchronization of coupled cells can lead to oscillations which are used
to transfer and modulate signals throughout most living systems. Noise and heterogeneity are
major characteristics of most physical and biological systems; thus, there has been a long time
interest in how noise affects oscillatory dynamics ([1, 2, 3, 4]). Many biological systems (such
as cardiac cells [5], neurons [6], and other cells [7]) are not intrinsically oscillatory, rather,
they are excitable. That is, they have a globally stable rest state and a “threshold.” If the
threshold is exceeded, there is an amplification of voltage, calcium, or some other quantity,
before returning to rest. However, when coupled and driven with noise or heterogeneity,
they can often produce synchronized oscillations and other behavior [8, 9, 10, 11, 12, 13, 14].
Sakaguchi [8] was among the first to observe that noise plus coupling can induce oscillations
in excitable systems where they performed a bifurcation analysis of a Fourier mode expansion
of the associated Fokker—Planck equation. Neiman and collaborators have further analyzed
the underlying dynamics of this behavior [9, 11, 15, 16]. Separation of time scales has also
been a fruitful approach to this phenomena [12, 14, 17, 18]. In this paper, we will use a
mean-field theory (MFT) approach to study the effects of heterogeneity in the excitability as
well as Gaussian noise on the emergence of macroscopic oscillations. This approach analyzes
the average response over a globally coupled system rather than each individual oscillator
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and greatly reduces the dimensionality, making it attractive for analysis. MFT has seen a
wide variety of applications to the dynamics of large globally coupled biological and physical
systems (see [8, 16, 18, 19, 20]). We use the technique developed by Ott and Antonsen
[21] which further simplifies the mean-field continuity equations. Their approach has been
dubbed the “Ott—Antonsen (OA) ansatz,” and it is a very important tool for studying phase
oscillations (see [22, 23, 24, 25]).

The excitable cells are all-to-all coupled phase models with a sinusoidal interaction function
of the phase differences (Kuramoto model). We start by considering external Gaussian noise,
also called dynamic noise, where the noise depends on time (see [20, 26, 27, 28]). We initially
apply MFT and simply study the probability density dynamics to find regions in parameter
space where there are oscillations. We also investigate other ways to reduce the dimension
of this model by truncating it further based on cumulants (see [29]). After this, we employ
heterogeneous noise, noise that is independent of time and also labeled “quenched” noise in
the physics community, which has been studied in other places in math biology (see [30, 31, 32,
33]). We show that the commonly used Cauchy distribution will never give rise to macroscopic
oscillations for our coupled excitable system. For other distributions which we describe later,
we do find parameters for our system that generate macroscopic oscillations. We remark on
the similarities and differences between these distributions as well. Further on, we change the
coupling of our model by adding a cosine term, and doing this creates oscillations into the once
nonoscillatory Cauchy distribution model. Lastly, in all of the cases that we investigate, the
transition to oscillations and their subsequent loss appear to occur via the same mechanism.
Thus we perform a rescaling, letting the heterogeneity /noise go to zero, which then simplifies
the dynamics and shows the universality of these transitions.

2. Results. We will focus our analysis on the following simple model for a coupled

excitable medium:

N
(2.1) U = p— cos(uj) + Cﬁ ZH(Uk —uj)+n + &), wu;(t) € St =0,2n).

k=1
Here c.e > 0 and H(u) is the coupling function which has the form H(u) = sin(u) + b(1 —
cos(u)). The additive term 7); is constant, heterogeneous zero-mean noise, and &;(t) is indepen-
dent zero mean Gaussian noise with (;(¢)&x(s)) = 2020,,6(t—s). Typically, 0 < u < 1 so that
in absence of coupling, there is a stable rest state with u; = — arccos(u) and an unstable fixed
point at u™ = arccos(u). If initial data are slightly past u~, then u(t) grows until it reaches
2w —u~. In the coupled system, noise can cause one or more of the u; to cross this threshold.
The coupling can induce other cells to cross threshold and thus induce a chain reaction that
could lead to a synchronous explosion of activity. In the case of heterogeneous noise, for some
of the cells, p 4+ n; > 1, so that in absence of coupling, they will spontaneously oscillate and
then the coupling could induce the others to oscillate. There is a balance in the coupling
strength, noise, and excitability. If the coupling is too weak, the cells that escape from rest
are unable to pull the other cells along, while if it is too strong, the cells will be pinned to the
mean state which is at rest. Our goal is to analyze the conditions under which the coupling

and noise/heterogeneity balance out enough to generate macroscopic synchronous oscillations
in the limit as N — oo.
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2.1. Gaussian noise. We begin with Gaussian noise, 7; = 0 and use the approach of [8]:

(2.2) 0 = p— cos(uy) Zsm w —uj) +&(t),

where &;(t) represents time dependent Gaussian noise with mean 0 and variance 202 as ex-
plained above. By taking the limit as N — oo,

Esm =I(t,u) = Cee /7r sin(v — u)F(t,v) dv,

N—>oo -

where F(t,u) is the probability density for the phase u at time ¢, and satisfies the nonlinear
Fokker—Planck equation (FPE):

2
%F(t, ") = —% (F(tu) (4 — cos(u) + I(t,u))) + UQ%F(L )

as shown in [8, 27, 29]. We further add the conditions that F'(¢,u) is 2m-periodic in u and is
normalized on [—7, 7]. Because F'(t,u) is periodic, we may assume

_ 1 —inu
F(t,u) =5 (Zan cos(nu +Zb smnu>—27Tan(t)e

n=0 neL

(2.3)

with pp =1 and p_,, = p}. By plugging the Fourier expansion into (2.3) and equating terms,
we find

. 1 c N
il (zupn = 5 (Pn1 + put1) = = (Pipns1 = prpn-1) - n02pn) :

Letting p, = rpe’", we have equations for the amplitude and phase:

(2.4) iy = g (Pt SI(Ong1 — On) + Tro1 Sin(Bp_q — 0,)
+ Ceer1(rn—1c08(0p—1+ 61— 6p) — rpp1cos(Opp1 — 01 —6y))) — n2o?r,,

0, = np — % (rnt1cos(Ony1 — 0n) + 1p—1 cos(Op—1 — 0y)

n

— Ceer1(Tn—18in(0,—1 + 01 — 0y,) — rpg18in(@p41 — 01 — 6)))

with 7o = 1 and 09 = 0. By setting p, = 0, for all n > 20, we can numerically analyze the
resulting truncated system to investigate if oscillations occur when p < 1. We later remark
that we have explored truncations at larger values of n and find no qualitative differences.
Figure 1 summarizes the behavior when o2 is fixed (in this case to 0.15) while ce. and
u are varied. The oscillatory behavior is organized around 2 codimension-two bifurcations.
First, there is a Takens—Bogdanov (TB) bifurcation (labeled (i)) where the curve of Hopf
bifurcations (HBs, in blue) meets with the left-hand fold (red). Emerging from the TB is a
curve of homoclinic bifurcations (green curve) that terminates on the right fold (red/purple)
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1.6

Figure 1. Two-parameter diagram for system (2.4) with 0% = 0.15. In region A, there is a single stable
fized point. As cee increases into region B, a stable and an unstable fized point are formed. The blue line is a
HB and limit cycles emerge in region C. As cee continues to increase, the limit cycle undergoes a homoclinic
bifurcation. In E, there are also limit cycles; however, opposed to C, these are globally stable. From E to D,
there is a SNIC bifurcation and region D contains three fixed points, similar to B. Lastly, region F also contains
oscillations; see Figure 3 for more information. The four black dots correspond to the points taken for Figure 4.

5 | /

— SNIC

Figure 2. Schematic of the dynamics and transitions of the noisy excitable system overlayed on a zoomed-in
stmplified version of Figure 1, excluding region F. Filled circles (resp., triangles, squares) are fixed points with
no unstable modes (resp., 1, 2). Boxes indicate bifurcations: F, fold; HC, homoclinic; HB, Hopf bifurcation;
SNIC, saddle-node infinite cycle.
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at point labeled (ii). This is called a noncentral saddle-node homoclinic [34] or a saddle-node
loop [35]. We will abbreviate it DH (degenerate homoclinic) for simplicity. In the upper part
of the right-hand fold, above the DH there is a transition to periodic orbits via a saddle-node
infinite cycle (SNIC) bifurcation and below the DH, oscillations continue from the branch
that emanates from the HB. There is a cusp (labeled (iii)), but this plays no role in the
oscillations. Oscillations are found in regions C, E, and F. The number of fixed points and
their stability is shown in the schematic Figure 2. In region A, there is a single globally stable
fixed point; in B, there are two stable fixed points that are separated by a saddle-point; in
C, there is bistability between a stable fixed point and a small amplitude limit cycle which
arises from an HB from region B. In region D, there is a single stable fixed point and two
unstable fixed points. Region E contains macroscopic oscillations and is reached from D via a
SNIC bifurcation, from C, via a fold, and from A via a HB. Above region E is region F, where
there are still oscillations, although these oscillations are slightly different and pertain to the
winding number (see Figure 3). If one were to look at the system in Cartesian coordinates
instead of polar coordinates, there would be no bifurcation between region E and region F.
Figure 4 shows the behavior of (2.2) for N = 4,000 cells, u = 0.94 and o2 = 0.15 for
different values of c... We will denote the Kuramoto order parameter by OP, given as

1 N
OP = N z:l e N
]:

which is known to be a good measure of synchronization in systems [24]. In Figure 4, we also
plot order parameter (OP) for different values of cee, shown by the dots in Figure 1. Taking
Cee = 0.90, we are in region A, far from the HB, and the OP shows noisy deviations around
a stable fixed point; cee = 1.04 is above the HB curve in region E and shows high frequency
noisy oscillations; cee = 1.35 is in region F, and we can see the cells are traversing all angles
0 to 27, and this point is close to the SNIC curve and shows clear low frequency oscillations;
Cee = 1.5 is in region D and again shows nearly constant behavior (stable fixed point) where
most cells are pinned near a fixed point. The raster plots show the associated behavior of all
4,000 cells for each of these four values of ¢... We note that in the fixed point cases with the
lowest and highest coupling are qualitatively different as can be seen in the rasters. In the
case of weaker coupling (c.e = 0.9), the dynamics are dominated by the noise and each cell
fires nearly independently; the result is very asynchronous behavior and a low order parameter
(near 0.8). With strong coupling (cee = 1.5), the cells are mainly pinned to the mean phase, 0
satisfying § = 2w —cos~!(j1). In this case, the order parameter is high (roughly 0.95) but there
are no oscillations; the cells are “synchronized” at the rest state. The OP is nothing more
than the amplitude of the first Fourier component of the density, F'(t,u) so that oscillations
in the OP imply oscillations in the density. As can be seen from the rasters, oscillations in F
correspond to synchronous firing of the excitable cells (shown in the rasters as times in which
the units pass through 7). To better illustrate the dynamics of individual cells in the different
regimes, we compute the probability that a cell is at u =7

F(t,m)=1+2 i(—l)"rn
n=1
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Figure 3. The top left figure is a schematic diagram with parameters in region E, shown in the complex
plane. The red dot represents the value of (a1,b1), and this point rotates around the circle as time increases.
The black arrow is the vector from the origin to this red point. As the red dot rotates around this limit cycle, the
arrow mowves as well, changing its magnitude and its direction. The bottom left figure shows the magnitude and
direction of the arrow as the red dot rotates around the limit cycle. As ce. increases, we enter region F, whose
schematic is shown in the top right picture. Now the limit cycle contains the origin, and because of this, the
black arrow rotates around the entire complex plane, as can be seen in the bottom right figure. We can see from
the top figures that no bifurcation appears to occur; the limit cycle is simply getting larger as the unstable fized
point (shown in orange) moves. However, from the bottom two figures, one might say that there is a bifurcation
occurring between region E and region F. In reality, there is merely a difference in the winding number. Region
E has limit cycles with winding number 0 and region F has limit cycles with winding number 1.

and plot it in Figure 5 for the four regimes shown in Figure 4. This allows us to distinguish
whether the macroscopic oscillations correspond to synchronous groups of cells firing (going
through a complete cycle in phase space) rather than groups of cells making small oscillations
around their fixed points. We see from the figure that at low coupling values, ce. = 0.90, there
is a nonzero probability that any given cell crosses m but these crossings are asynchronous
with no macroscopic rhythm. For the two intermediate coupling strengths, c.e = 1.04,1.35,
the probability of crossing 7 varies in time and is periodic with high peaks in F'. We note
that at the stronger coupling value, the probability of a cell being at 7 is close to zero for
a long stretch of time with brief bouts where the cells fire. This is evident from the raster
plots in Figure 4 for c.e = 1.35. Finally, at the large coupling strength, c.. = 1.5, there are
no synchronous firings, and the cells are pinned near rest; the probability of any cell being at
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Figure 4. Dynamics of the finite system (N = 4,000) of coupled excitable cells ((2.1)) for u = 0.94, o° =
0.15, and different values of coupling strength, ccc. The Kuramoto order parameter, OP = (1/N)|>_; exp(iu;)|
is plotted. Raster plot of each of the 4,000 cells are also plotted at the different values of cee.

m is very close to zero. In the remainder of the paper, we will use the order parameter as a
surrogate for macroscopic oscillations rather than F'(t,7), mainly because it will turn out to
be a key variable in the reduction of the network to a low dimensional system.

Figure 1 remains qualitatively the same as we change the amount of noise. Figure 6 shows
a series of two-parameter plots for differing levels of 2. As the noise decreases, the cusp point
(intersection of the two red curves) appears to limit to u = 1 as the noise gets smaller.

2.1.1. FPE truncation. We have approximated the solutions to (2.3) by a finite number
of mode equations by setting all modes to zero above n = 20. This is a very simple form
of moment closure as one can interpret p, as the expected value of e~ (the nth circular
moment). A few natural questions arise: (1) Did we use enough modes? (2) If so, how few
are enough to capture the primary dynamics (e.g., the cusp and the TB point)? (3) Are there
better ways to truncate the equations?

To answer the first question, we consider a different way to approximate (2.3); we dis-
cretize the PDE and compute the bifurcation equations for the resulting system of ODEs.
Figure 7A shows a comparison between the 20 mode truncation (used in this section) and
the discretization of the PDE, wherein we discretized the PDE into 100 bins. The two plots
overlap almost perfectly. This shows that our truncation to 20 modes is not too little at least
at the level of noise used in this example (o2 = 0.15).
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Figure 5. The probability that an oscillator is at w = 7 as a function of time for the same paramelers as
in Figure 4. One can see qualitatively how the fized points differ for cce small and cee large as well as how
F(t,m) changes when there are oscillations.

3 ‘ ‘ ‘ ‘
0.90 092 094 096 0.98  1.00
J

Figure 6. Two-parameter diagram for (2.4) with different noise levels. From top to bottom, the lines
touching the ce.-axis correspond to o = {0.15,0.12,0.09,0.06,0.03}. As the noise goes to zero, region C
shrinks and the cusp tends to p = 1. We find this to be a common trend for the other systems later in the
paper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/27/21 to 74.98.209.94. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

834 DEREK ORR AND G. BARD ERMENTROUT

1.1

0.7
0.8 0.5
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v v

Figure 7. Two parameter diagram for two approzimations of (2.3) with o® = 0.15 (A) Comparison between
the 20 mode truncation ((2.4)) and the discretization of the FPE ((2.3)) into 100 bins, which are given square
markers and are lighter colored. There is no discernible difference. (B) Comparison of the 20-mode truncation
and the 2-mode truncation with cumulant closure.

Let us consider questions 2 and 3. Sakaguchi [8] needed 4 modes to obtain the TB
bifurcation using the simple moment closure that p, = 0 for £ > M. This leads to 8 real
ODEs. Suppose that we consider just modes 1 and 2. The equation for ps involves ps so
we need to express p3 in terms of pj, pa. The simplest is to just set ps = 0. We have found
that this approximation does not work very well and often leads to unbounded behavior,
so this is not discussed further. The approximation p3 = p} motivated by the so-called
OA ansatz (see section 2.2) gives the cusp bifurcation and the TB bifurcation but also has
period doubling regimes, other fold bifurcations, other HBs and unbounded areas as well
(computations not shown). Recently [29] have suggested that using cumulants rather than
moments gives better results. Thus, we suppose that ps is chosen so that the third order
cumulant, x3 = p3 —3p2p1 +2p3, vanishes. That is, we set p3 = 3p2p1 —2p%. This simplification
results in a system of 4 real ODEs. Figure 7B shows the two-parameter bifurcation structure
for the cumulant approximation along with that of the 20-mode truncation for ¢? = 0.15.
The two plots are qualitatively similar with the same cusp, TB, and homoclinic structures.
The differences are seen mostly in the shape of the curves of HB as the noise decreases; they
tend to curve quite a bit to the left before terminating at their TB points. Figure 8 goes on
to show this and it should be compared to Figure 6; qualitatively the pictures are the same
with a TB, cusp, and DH all occurring at each noise level.

In this section, we have shown that there is a particular dynamical structure to systems
of coupled excitable cells driven by Gaussian noise. In the next several sections, we show that
this is a universal phenomenon and does not depend on the nature of the noise.

2.2. Ott—Antonsen ansatz. We obtained Figure 1 by approximating the solutions to the
FPE (2.3) and then analyzing the dynamics of a finite number of Fourier modes. We also
looked at a low-dimensional truncation and found qualitatively similar behavior. However,
if instead of Gaussian noise, we consider frozen or heterogeneous noise (that is, the noise is
taken from some distribution but is constant in time), then it is possible to write down an
equation for the Fourier modes which is low dimensional for certain choices of distributions
by utilizing the OA ansatz. We now describe this procedure.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Figure 8. Two parameter diagram for the cumulant closure with different noise levels, o® = {0.15,0.12,
0.09,0.06,0.03}. Compare this to Figure 6. One strange difference is when the noise goes to zero, the HB curve
becomes more eccentric and begins at the TB by going back in p then dipping to a minimum before leaving at
w=1.

Similarly, we consider a globally coupled population of excitable cells u;, given by

(2.5) Uj = wj — cos(uy) N Zsm u = uj),

where wj is taken from a distribution with density function g(w). Our goal is to study the
behavior of these cells as N — oco. An approach is to use MFT and define the complex order
parameter

N
- 1 il
Z( NEEIOONZ

With this, we can look at the asymptotic behavior of z(t) to study the asymptotic behavior of
our original system as they will coincide with each other (note that in section 2.1, OP = |z]).
Developing a differential equation for z(¢) will greatly reduce the dimension of our system
as well. As in (2.3), we can write down an equation for the probability density function,
F(u,w,t), which gives the density at time ¢ of phase u that has fixed frequency w:

oF 0
2.6 oF 9 p ) = 0
20 ot T gu (F(ww,t)i) =0,
where
u:w—lei“ e_lu+cﬁz —tu _ Z€e iu
2 2 2i 2i
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and

(2.7) 2(t) = /027r /_O; F(u, €&, t)e™ d¢ du.

To get the 1 equation, we have used the fact that

N

' 1 . 2 0o )
lim ~ Zsm(u —uj) = /o /_OO sin(u — v)F(v,w,t) dw dv,

N—o0 -
Jj=1

written sin(u) in terms of complex exponentials, and used (2.7). As before, since F' is periodic
in u and the density of the uncoupled frequencies is known, we write

(2.8) F(u,w,t) = (1 + Zan w, e 4 @, (w, t) m“) :

Because 1 contains only terms in e*™, there is an attracting manifold [21] on which ay, (w,t) =
a1 (w, )™ = a(w,t)™. This assumption on the Fourier coefficients is called the OA ansatz, and
we will be exploiting it now through most of this paper. One sees immediately that

(2.9) z(t) = /00 a(w,t)g(w) dw,

— 00

so we only need a differential equation for a(w,t). Using (2.6) and (2.8) and grouping coeffi-

cients of e™*, we arrive at

(2.10) g—?—zwa+2+2a +— 2 27—%,2—0

Note that we have reduced the continuity PDE to an infinite set of ODEs for a(w,t) that are
coupled via the term (2.9). Thus, we still have an infinite number of ODEs to solve. However,
if the density g(w) has poles in the complex plane, then we can often compute the integral
(2.9) using residue theory (this was the crucial observation of [21]). We first consider the
Cauchy distribution as that results in the simplest mean-field model, and then we consider
several other densities which lead to richer dynamics that are similar to those in section 2.1.

Now, suppose
1 A
9w) = gow) = T T AT

with A > 0 measuring the spread of gg and p is the center of go. With this, we can evaluate
the integral formula for z(¢) using contour integrals and the residue theorem. To stay away
from the origin, we must integrate around the upper half of the complex plane. Doing this
gives z(t) = a(p +iA, t), and plugging this into (2.10) gives

(2.11) 2:(—A+iu)z—522—%—c2£ 2*—1-72'
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Let z(t) = r(t)e?®, and so

1— 2
F=—rA— ! (sin(f) — ceer) ,
2.12
= 0=p— Lo cos(6)
—H 2r

Notice if we integrated around the lower half of the complex plane, then the —rA would
be replaced by +rA and the magnitude of the order parameter would be larger than 1,
which cannot happen by the definition of z(t). Recall that we are interested in whether
the combination of noise and coupling is sufficient to drive an excitable network into coherent
oscillations. Thus, we are interested in whether or not (2.12) has any kind of periodic behavior
for 0 < p < 1, which is the excitable regime. For this planar system there are two ways that
oscillations can emerge: (1) HB or (2) drift oscillations via a saddle-node, meaning 8 > 0 for
all time. In what follows, we show that neither of these can occur and more, proving that a
Cauchy density cannot produce macroscopic oscillations when the mean p is in the excitable
range.

2.2.1. Analysis of (2.12). We begin by showing there is a positively invariant region.
Lemma 2.1. Ifrg € (0,1), then r(t) € (0,1) for all time.

Proof. If 79 = 1, 7 < 0 so r(t) decreases. Now let rg = ¢. Then up to lowest order, we
have

;= 7% sin(0) + O(e),

0= _2i5 cos(f) + O(1).

If g € (—m/2,7/2), cos(6p) > 0 and 0 will begin to decrease to —m/2. As 6 decreases to
—m /2, sin(f) will become negative and so r will increase. If 6y € (7/2,37/2), cos(fy) < 0 and
6 will increase to 37/2. As it does, sin(f) will become negative, and r will again increase. So
r stays in (0, 1). u

Now we will prove there are no oscillations for this system. There are three ways for
oscillations to exist in this system: One could emerge via a HB, there could be a drift oscillation
or there could be some ambient oscillation surrounding a fixed point that never goes away; that
is, it exists for any choice of parameters. The outline of the proof will be as follows: We will
first prove there are no HBs for any choice of parameters and then show there can be no drift
oscillation for 0 < p < 1. The only option is an ambient oscillation. So, for contradiction, we
will suppose there is already an oscillation in our system that never vanishes; this oscillation
must exist for any parameters we choose. We will show for one set of parameters, there is
only one fixed point in (r,0) € (0,1) x (0,27), and it is stable. Thus, no oscillation exists for
this set of parameters which would imply no oscillations exist for any set of parameters.

Theorem 2.2. For all cee, A >0, and 0 < p < 1, there is no HB.
Proof. Letting 7 = 6 = 0, we have
2ur 2Ar

cos(f) = el sin(f) = ceer — T2
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And so,

2ur \? 2Ar \2
(213) (1+r2) +<C€er_1—r2) =1

must be satisfied. The Jacobian matrix is given by

A r(ceer —sin(8)) + (1) —%(1 — 12) cos(6)

J(T‘, 9) = ) 9 ) 5 5
—r +r?

52 cos(6) 5 sin(6)

and if we evaluate this at the fixed point,

2Ar% ¢ pr(l —7r?)
B\ T ) [ B i S A
et 1+ 12
J =
1—r? ce Al +r?
p“( T) 67(14—72)— (+T)
r(1+r?) 2 1—1r2

Define the trace of J as T'(r) and the determinant as D(r). We see

2A(1 +72)
T(r) = cee — 12

and

Cee 72 Cee 72 Tl — T2 — T2
o= (-2 (e - 2 < (1) ()
1 p2(1 —r?)?

= Z(T(r) — ceer2> (T(T') + Cee7“2> + 1+r2)2

We will show that if T'(r) = 0; then D(r) < 0. Setting T'(r) = 0, the determinant equation
and (2.13) become

1oy 4 M2(1_""2)2

Do) =~ B et = ()

respectively. Solving for cger4 /4 in the second equation and plugging it into the determinant
equation, we have

D(r) = _M T p(1 —r?)2 B 22(1+ 1Y) (1412)2

4r2 (1+7r2)2 — (1422 442
s (D) <8r2(1 Frh) (1 —p?) + (1 - 7«2)4) 0

4r2(1 + r2)2 4r2(1 + r2)2

since 0 < < 1. Thus, there are no Hopf bifurcations. |
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Theorem 2.3. For all A, cee > 0, there are no oscillations provided 0 < p < 1.

Proof. First, notice § = 0 will always have a solution because = arccos(fz‘jfl) is well-

defined since 0 < p < 1. So # cannot travel around the circle completely without hitting

a nullcline. And because there is no HB, the only way for an oscillation to occur is if one

has been surrounding a fixed point for all A,c.. > 0 and 0 < p < 1. In particular, we can

choose cee, A, 11, and if there are no oscillations for this particular choice, then there will be no

oscillations for any choice. We will begin by showing this system has at least one fixed point.
Motivated by (2.13), define

4p2r? 9 2A 2
M(r) =g o 7 (Cee 1o 7‘2> -b

and notice that the number of solutions to M(r) = 0 for r € (0,1) corresponds to the number
of fixed points in this system. We can see lim,_,;+ M(r) = oo and M(0) = —1. Since it is
clear M(r) is continuous on (0, 1), by the intermediate value theorem, there will always be at
least one fixed point in our system. If we can find a set of parameters where this is the only
fixed point in the system and we can prove this fixed point is stable, then we have found one
instance where there are no oscillations in our system. Thus, this would prove there are no
oscillations for any choice of paramters. We choose = 0.5, cee = 1, and A = 0.5. Then a
fixed point must satisfy My (r) = 0, where

?”2 7"6

My(r) = (1+72)2 + (1—172)2 -1

Computing the derivative, one finds

M(r) = 2r (r3(1 — r*) 4+ 6r% + 4r% + 571 + (1 — 2r2)?) iy
0 (1—r4)3

since r € (0,1). Thus, there is only one fixed point. Now we must prove it is stable. For these
parameters, the trace and determinant are

1+ 72 —or2
T = ]_ —_ =
o(r) 1—72 1—172
and ( 2)2
1 1—r
D :7<T _ 2)<T 2) L
o(r) 1 o(r) —r o(r) +77) + 41+ r2)2
respectively. Obviously Ty(r) < 0 and
2 2
o —r(14+77)
To(r) +r° = 12 <0,

which means Dy(r) > 0; hence this fixed point is stable. So we have found one case where
this system has a stable fixed point and so it cannot have oscillations. So, this concludes the
entire proof and shows that there are no oscillations in this system for c.. > 0,A > 0, and
0<pu<l. [ ]
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Summary. In this section we have shown that there are no macroscopic oscillations when
(2.5) is in the excitable regime, coupling is purely sinusoidal, and the frequencies follow the
Cauchy distribution. From here, there are two ways that we might vary the model equations.
First, we could consider a different class of densities, say, with a faster decay than 1/w?, since
it may be that the “fat tails” in the density create too much noise. Another possibility is to
change the coupling from sin(u) to sin(u) + b(1 — cos(u)) which adds some even terms and
does not violate the assumptions needed to make the OA reduction. In the next two sections,
we show that either of these assumptions is sufficient to enable macroscopic oscillations when
0<pu<l.

We add the remark that in the first model (2.4), if we truncated the model even further
to pa = p?, we arrive at the system (2.12) with A = o2, Because of this, it is more sensible to
compare A to o2 instead of o when looking at future parameter diagrams in the paper.

2.3. Changing g(w). We consider two functionally related densities to that of the Cauchy
density, both of which decay like 1/w* and thus have thinner tails. In both cases, the dimen-
sionality of the system is doubled, and the analysis is somewhat limited. Nevertheless, we will
be able to show that, with these new densities, the behavior is very similar to that of section
2.1. First, consider

V2 A3

gw) = g1(w) := WL AT

Using the residue theorem (see Appendix A), we evaluate (2.9) as

A1) = 2 5 Lr)e®® 4 L (et
where
V2 1—7r?/ Cee Cee Cee .
7= —TTA - (sm(@) — TS cos(¢p — 0) + - 5 sin(¢ — 0))
2
0=p+ @A _ L (cos(&) g ey @scos(qb —0)— @ssin(gé - 9))
2 1—s . Cee Cee Cee .
§= —TSA - (sm(qS) ST cos(f — ¢) — -7 sin(f — (;5))
y \/5 14 2 Cee Cee Cee
=p——A-— - —s+ — —¢) — —rsin(d — ¢) ).
B 55 <cos(¢) 5 s+ 5 rcos(6 — ¢) 5 rsin(60 qb))

Like the Gaussian case in section 2.1, for a given level of noise and excitability, the coupling
strength has to be in a range that is neither too small (cannot overcome noise) or too large
(pinned to the rest state).

Figure 9A shows the two-parameter diagram with p along the z-axis and the coupling, cee
along the y-axis. As with Figure 1, there are 2 codimension-two bifurcations that separate the
dynamics. The behavior in each of these regions is the same as the beginning model, shown
in Figure 2.

In Figure 9B, we decrease the noise and again, as with Figure 6, the structure of the
bifurcation diagram remains. One key feature is as A tends to 0, the TB and cusp bifurca-
tion appear to join and form a degenerate codimension-three bifurcation. When we perform
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Figure 9. Behavior of (2.14) for different values of excitability, u, and coupling, cce when A = 0.27.
Regions and colors as in Figure 1. In the second figure, from top to bottom, the lines that intersect the cCee-axis
correspond to A = {0.27,0.21,0.15,0.09,0.03}. Again, as the noise decreases the region between the homoclinic
and Hopf lines also decreases. Further, the cusp bifurcation appears to limit to p =1 as A goes to 0.

U

-
~-a.

Figure 10. The three densities considered in the paper for heterogeneous noise. In these plots, u = 0 and
A = 1. The bottom dashed curve is the original Cauchy density go(w). The middle dotted graph is gi(w), and
the top solid graph is gz2(w). As one can see, gi1(w) is more flat at 0 but its tails have the same behavior as

g2(w).

a rescaling analysis of this system below, we will see that, in fact, the two points remain

separated.

Figure 10 shows the densities, go(w) where there are no oscillations and ¢; (w) where there
are oscillations. The function g (w) both decays more quickly and has a more uniform density
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near w = 0, thus it is not clear which property of the density allows for synchronization. Thus,
we introduce another tractable density (also shown in Figure 10):

A3
T ((w—p)?+A2)%

)

which has the same decay as g1 (w) but also has a more peaked density near w = 0 like go(w).
As with the other two densities, we can evaluate the integral (2.9) using the residue theorem
albeit with a double pole this time. We obtain a modified set of polar equations (see Appendix
B for details):

(sin(f) — ceescos(¢p — 0)),

o (cos(0) — ceessin(¢p — 0)),
2

5= s(rsin(f) — A) + 7(A — cees®) cos(0 — ¢) — T sin(26 — ¢)
(2.15) 2

+ %3(1 + 1% cos(20 — 2¢)) — %sin(qﬁ),
2

¢=p+ g(A — Cees?) sin(f — ¢) — 1 cos(0) + % cos(20 — ¢)

Coe 2 G109 — 9¢) — L
+ 5 " sin(260 — 2¢) 5% cos().

We point out that r(¢) plays a similar role here as in (2.12); it is magnitude of a(w, t) evaluated
at the double pole. Once again, we are also able to find oscillatory solutions for p < 1 that are
robust in ¢ee and A. They exhibit very similar dynamics to the previous situation. The key
difference is region F begins at lower values of c.. in this scenario. Similar to Figures 6 and 9, as
the noise decreases, the cusp bifurcation tends towards g = 1. The main difference between
Figures 9 and 11 is that, although these figures show the same noise, the cusp bifurcation
occurs for larger p in the latter.

We conclude this section with a summary of the coupling induced transitions of (2.14)
and (2.15) as this has been the emphasis in several papers such as [11, 12, 14]. Consider a
point with u close to 1 (slightly to the right of the cusps in Figures 9 and 11) and ¢, near 0.
In this case, there is a single stable fixed point that represents asynchronous behavior (such
as seen in Figure 4, ¢.e = 0.90) where r is small and the oscillators behave independently. As
Cee increases, we cross the HB and small amplitude macroscopic oscillations emerge. As cee
increases further, the right fold curves are approached and the oscillation frequency decreases
but the amplitude increases. Finally, the fold is crossed (a reverse SNIC bifurcation), and
there is a single stable fixed point representing the pinned state (c.f. Figure 4, cee = 1.5).
Thus, as with the Gaussian noise case, variation in the excitability that decays sufficiently
fast leads to the ability of an on average excitable system to generate coherent oscillations
when the coupling is neither too weak nor too strong.
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Figure 11. Two-parameter diagram for (2.15) at fized values of A. (Left) A = 0.27; the lines and
regions are exactly comparable to Figures 1 and 9A. One can see the cusp bifurcation occurs for smaller cee
and larger p than in Figure 9A. (Right) From top to bottom, the lines touching the cec-axis correspond to
A = {0.27,0.21,0.15,0.09,0.03}, the same noise values as Figure 9B. We also remark that this plot has the

same ranges for p and cee as in Figure 9B for easy comparison.

2.4. Rescaling analysis. We want to investigate what happens as A goes to 0, since it
appears the cusp bifurcation and the TB bifurcation meet. We show that this is in fact not
the case. One can see that as A approaches 0 in each model above, r and s approach 1 and
f and ¢ approach 0. Further, from the previous cascading diagrams, c.. approaches 0 and
1 approaches 1. Numerical continuation allows us to guess the proper scaling of the phases,
amplitudes, and parameters as A — 0. Thus, we take A = £? and

r=1+er +O(?)
0 = et + O(?)
Cee = €1 + O(£?)

s=1+es +O(?)
¢ =ehr+O(e?)
p=1+¢eu + s+ O(?)

as the perturbations for our other parameters. In both models, we found gy = 0. Plugging

these into (2.14) and grouping orders of &, we find

V2

T = 5 ri(c1 —61)

. 2 1 1 1
(2.16) 0 = po + £ + 507 — sei(r 4601 — 51— ¢1) — 577
2 2 2 2
L V2
S1 = —7 - 51(01 - qbl)
. V2 o1 1 1
o1 =pz = 5+ iqb% - 501(7“1 — b —s1+¢1) - 55%-
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Figure 12. Two-parameter diagram with the rescaled equations, (2.16) on the left and (2.17) on the right.
The lines and regions are exactly comparable to Figure 1. One can see pa < 0 which makes sense because p is
approaching 1 from below. In the right-hand system, the equations turn out nicely that one can actually prove
the TB point occurs at (p2,c1) = (—2/9,4/3) and at the TB, one has (r1,61,s1,¢1) = (—1/2,5/6,—-1,1/3).

Similarly, for (2.15), the rescaled equations are

= —ri(c1 — ¢1) — s1(p1 — 1)

. 1 1

01 = po — ifﬁ + ¢101 — 151+ 5
(2.17) .

s1=—1—s1(c1 — ¢1)

. 1 1
1= p2 + iflﬁ —ci1(¢p1 —61) — 55%-

51

Figure 12 (left and right) shows the numerical analysis of the rescaled equations, respectively.
We can now clearly see that the cusp and the TB points remain well separated as A — 0 and
there is no codimension-three bifurcation.

2.5. Changing the coupling. In the previous section, we considered purely sinusoidal
coupling between the excitable units; that is, calling H(¢) the coupling function, we took
H(¢) = sin(¢). The coupling function should, in general, satisfy H(¢ + 27) = H(¢) as the
phase space is the circle. Secondly, we assume H(0) = 0 since if H(0) is nonzero, we can
incorporate this into the parameter p. Finally, we want H'(0) > 0 since we want to encourage
synchronization. A single odd Fourier mode (e.g., sin(¢)) can accomplish this. However, in
many other studies, the appearance of an even term in the coupling function can have strong
qualitative effects on the dynamics ([36, 37, 38]). So, we add a simple even term to the
coupling function such that the above constraints hold and further, one for which the OA
ansatz can still apply. Hence, we now consider the case where H(¢) = sin ¢ + b(1 — cos ¢) :

N
C ee
N

J=1

U; = w; — cos(u;) sm —u;) + b(l — cos(uj — ul))) ,
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Figure 13. On the left is the bifurcation diagram for system (2.18) with b = 0.5 and A = 0.27. We see the
same regions as in Figure 9A. On the right is the cascade diagram for system (2.18) with b= 0.5. From top to
bottom, the lines touching the cee-azis correspond to A = {0.27,0.21,0.15,0.09,0.03}, just as the other figures.
Again, as the noise decreases, the homoclinic and HB line get closer to each other. One difference is for fixed
A, cee 18 larger and u is smaller than the previous cascades.

where b is an extra parameter. We remark that this is equivalent to taking H(¢) = sin(¢ +
) — sin(7y). Letting N — oo and applying the OA reduction, we arrive at

1— 2
7r=—-rA— Tr(sin(e) — ceer)
(2.18) )
Cee

2

1+ 172
2r

0=+ (1—1r% cos(#).
For b > 0, there are oscillations in this system as can be seen in Figure 13 where we have
set b = 0.5. The two parameter diagram is essentially identical to the ones that we have
previously encountered with oscillations between the blue and green curves and to the right
of the purple curve and above the blue curve.

As in the previous cases, we can do a rescaling analysis in the limit as A — 0 for nonzero
b to see if the TB point and cusp point meet. Again, we have A = ¢? and

r=1+er +0(?)  0=cb +0O(?)
Cee = £C1 + O(£?) p=1+¢e%us + O(e?)

and the rescaled equations become

7"1 =-1- 7‘1(61 — (91)

(2.19) 1

. 1
(91 = U2 + 59% — bCl’I”l — 57“%

We now a have a simple planar quadratic system whose behavior is much easier to analyze
than (2.18). Indeed, we can find both the TB, (urp, crp) and the cusp, (Lcusp, Ceusp) Point for
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this system. For notational simplicity, we drop the subscripts in (2.19). The Jacobian matrix
at an equilibrium is

0—c r
J(r,0) =

—r —bc 0
For an HB, it is necessary that the trace vanish and the determinant be positive. The trace
vanishes when @ = ¢/2 which implies r = —2/¢ from 7 = 0. Setting § = 0 and solving for p

we have
16— ¢* — 16bc?
HH = 32 .

Furthermore, the determinant,
16 — c* — 8bc?
4c?
must be positive. Since, we want to be in the excitable range where, puy < 0, we require
that b > 0. One would have to compute the normal form coefficients to determine if this was

a generic HB; we will not do that calculation. Numerically, the bifurcation appears to be
supercritical. To find the TB point, we set Dy = 0 and thus obtain

/LTB(b) = —b, CTB(b) =2V/-b+ b2 +1
ern(e) = 2/n+ VIE 1.

Since pupp(b) = —b, the TB point occurs in the excitable range when b > 0 and so there will
always be oscillations for b > 0. Unfortunately, we were not able to find the fold and HBs for
fixed b; however, with some algebra, we can find the curve of cusp bifurcations given below:

Ccusp(ﬂ) = |2| D+ \/(2M — D)((g i N)2 il 9) )

Dy =

or

where

D = D() = sgn(u)\/ 12 — 3+ 3(1 4 u2)2/5.

The proof of this cusp curve as well as some algebraic facts are given in Appendix C. Notice
Ceusp 15 in terms of p; we weren’t able to solve for ficysp and ceysp in terms of b specifically. The
cusp curve and the curve of TB bifurcations are plotted in Figure 14 as the stippled curves
that follow the numerically computed values. As a final remark, we note that we derived
equations similar to (2.14) and (2.15) for the case where the coupling has the additional even
terms. We have found no qualitative differences from the b = 0 case and suspect oscillation
regimes remain robust for any b € R, even for b large and negative. In conclusion, we have
shown that by either changing the form of the coupling or the decay of the heterogeneity, we
are able to obtain oscillatory behavior in globally coupled excitable cells when the coupling
and noise lie within a certain range.
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Figure 14. The figure shows the bifurcation diagram for different values of b for the rescaled equations
(2.19). From top to bottom, the clusters of graphs correspond to b = {0.1,0.3,0.5,1.0,2.0}. As long as the TB
point is on the left side of the c1—axis, there will be oscillations in the original system. Analytically one can
calculate and show that urp(b) = —b, meaning there are always oscillations as long as b > 0. We also have
plotted the curve of TB curves and cusp curves for b > 0. When b =0, the TB curve begins at (u2,c1) = (0, 2)
and the cusp curve begins at (p2,c1) = (37%/2,4(37%/4)). As b increases, the TB and cusp points move to the
left and down, with the TB point continuing off to (—o0,0) and the cusp point getting infinitesimally close to

3. Conclusion/Discussion. In this paper, we described a number of paths to synchronous
oscillations in a globally coupled network of excitable elements that were driven either by
Gaussian noise or by heterogeneity of parameters. There were essentially three parameters of
interest: the mean degree of excitability u, the coupling strength c.., and the strength of the
noise A or o2. When the average cell was in the excitable regime, then noise is required to
drive it to fire and coupling is necessary to drive others to fire. If the noise and coupling are
in the correct regime, then macroscopic oscillations emerged as seen in Figure 4. In order to
better understand this phenomenon, we let the number of cells grow to infinity and described a
series of mean-field models. For Gaussian noise, we derived a FPE and from this arose a finite
set of equations for the Fourier modes. We showed that macroscopic oscillations existed and
were organized around 2 codimension-two bifurcations: the TB and the noncentral saddle-
node homoclinic (DH). We also considered a highly reduced version of this that considered
only the first two Fourier modes and used a recently devised moment-closure assumption. This
system also had the same dynamics and transitions as the coupling and excitability varied.
We remark that this moment-closure result [29] could also have heterogeneous noise and this
could be explored more but we don’t expect the qualitative behavior to change.

In the case of heterogeneous noise, where parameters are taken from a distribution, there is
an exact mean-field reduction, and we explored the behavior, first of the Cauchy distribution
(section 2.2) and then of some different distributions whose tails decayed faster. In the former
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case, we obtained a planar dynamical system and showed that there are no macroscopic
oscillations possible. However, in the other two distributions, we again had essentially the
same dynamics as in the Gaussian noise case with the results that there were synchronized
oscillations. With the Cauchy distribution, we used a more general coupling function that was
still amenable to the OA reduction and from this, we were able to recover the same bifurcation
structure as in the other models. Finally, in the case of the heterogeneous noise models, we
were able to perform a rescaling analysis in the limit of narrow spread of heterogeneity, and
this analysis again showed the underlying organizing dynamics.

There are several ways one could extend the present work. Here we have considered a
single population of cells that are on average excitable. Many biological systems contain
mixtures of cells that are spontaneously active (pacemakers) so one could use similar methods
to consider systems with, say, two populations of cells whose means are such that they are
oscillatory on average. We could then look at various types of interactions such as n:m-locking
between the oscillatory and excitable populations [39]. In the simplest such scenario, we could
just periodically force all the cells in (2.1) and explore how the heterogeneity in the excitable
cells disrupts the different locking regimes. Another more ambitious extension of the present
work is to assume that the network is not globally connected but rather distributed in space.
Coombes and Byrne [40] as well as others [41] have described methods for extending the OA
approach to spatially distributed networks. Then, we might expect to see the spontaneous
generation of waves in addition to synchrony.

Appendix A. Residue theory for g;(w). To arrive at (2.14), we use the residue theorem
and take the contour around the upper half of the complex plane to get

o 3 w — _eiTr/4 alw
)= [ alw.gw dw—zmm( N R i 1)

_ —im/4
N lim (w—p+e - A)Zz(w, t))
w—rp—e~IT/AA (w — i+ A
A%V/2 : 1
_omiAV2 <a (u + e”r/4A,t) lim
T w—}u-‘,—eiﬂ'/‘lA 4(UJ - ,u)
- 1
+« ( — e TI/AA, t) lim )
: w—rp—e /AN 4((,0 — /1,)3

= z\f (e_3i7r/4a (u + e™/AA, t) — /g (u — e /AN, t) )

And so we find z(t) = y21 + J22 where 21 = a(u + e L), 20 = a(p — e /A t) and
v =iVv2/2e737/* =1 — /2. Plugging these into (2.10), we see

) Cee
_7_|_7

. . i l & _ _
21 =1 (u + € /4A) 21 — fz% — ﬁz%(’yzl +vz2) (vz1 + 722)
(A.1) 2 2 22
) _ 1 1 i c
d=i (=AY 2 - 28 - B(E +97) — 5 + e va + 7).

Writing 21 (t) = r(t)e"?®) and z;(t) = s(t)e'*®), we separate real and complex parts and arrive
at (2.14).
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Appendix B. Residue theory for gs(w). The main difference in deriving (2.15) is that
there is a pole of order 2 instead of order 1. Again taking the contour around the upper half
of the complex plane, we see

2(t) = /_ O; (w0, D)g(w) dw = 21122 ( lim 2 [(w ol iA)Qa(mt)D

T\ wontis dw [ ((w—p)? 4+ A2)2

0 aw,t) ) 4A3i O 8A3%ia(w,t)
=4A% i = 1 el S ta (A W el Sk A
Y wompibia B [(w —u+ iA)Q} o jibia ((w — 4+ iA)2 Qw (1) (w—p+iA)3 )’

and so

O
(B.1) 2(t) :—zAa (4 1A t) + a(p+ 1A L),
where 22 (1 +iA,t) = 9%(w,t)|y—yria. Taking the derivative with respect to time on both
sides and then using (2.10), we get

2(t) = —z’Aai (?;Wt)) —(u+iAt)

8
81&

w=p+iA

- _ZAE <ia(w7t)w - % — S’ (w,t) — %a2(w,t)2+ Ceez)

w=p+iA
. . . v 1 9 . Cee 9 . — . Cee
+i(p+iA)a(p + 1A t) — 5~ 3¢ (n+iAt) — 5 (n+iA0)z + 5 &
Let y = y(t) = a(p + iA, t) Then we have
. O O
Z=—iA u—i—zA M—i—zA t) + iy — zya (n+iAt) — ceeyza (u+iAt)

i 9 Cee 27 Cee
_ Ceeyrzy Ce

Ay — - — ~
tn=Ay -5 -5y —5¥ 5
Sa .
= —zAa (u+ A, t)(w A —iy— ceeyz) +ipy — % — %yQ — %gﬂf—l— %z
. /) /) c _c
= (2= y)in = A iy = ceetZ) +ipy — 5 — 5¥" = SYF+ 2

where we used (B.1). The equation for ¢ uses (2.10) and so, putting them together,

. { I Cee 9 C
yzwy—Ay—QyQ—i—?yzer?z

(B.2) )
t=ipz— Az + Ay —iyz + oy —ceeyzz+§yzf—§+§

As before, letting y(t) = r(t)e?® and z(t) = s(t)e®), we arrive at (2.15).

Appendix C. Cusp curve for rescaling analysis. We begin the proof of ceusp(p) by elim-
inating the subscripts as before in (2.19). Since the cusp occurs at a fixed point, 7 = 6 = 0
and so § = ¢+ 1/r. Thus, § = —r/r2. Solving for 7 and using (2.19), we have

1
(1"4 + 2ber® — (2 + 2u)r? — 2er — 1) =: if(r).

1 1 1
;= —r? (2(6—!— 1/7“)2—27"2—507"+M> =3
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Now that # has been eliminated from the system of equations, we can work with f(r) alone.
At the cusp bifurcation specifically, we know that f(r) = f'(r) = f”(r) = 0. So we have three
equations:

(C.1) 4 20er3 — (¢ 4 2u)r? —2cr —1 =10
(C.2) 2r3 + 3ber? — (4 2u)r —c =0
(C.3) 672 + 6ber — (2 + 2u) = 0.

Our task is to eliminate r and b. Begin by multiplying (C.2) by 27 and subtracting it from
(C.1). Also, multiply (C.2) by r and subtract off (C.1). Respectively, we arrive at

(C4) —3rt —dberd + (P +2u)rP —1=0
C.5) r +berd + er +1=0.

Next, multiply (C.3) by 2r?, and add it to three times (C.4), and multiply (C.3) by 2, and
subtract it from six times (C.5). This results in our two main equations with b removed:

C.6) 3t 4 (P +2u)rP —3=0
C.7) (¢® +2u)r? + 6cr +6 =0

Now we solve for 72 in (C.6), and we set it equal to the square of the solution for = in (C.7).
Keeping in mind that r is negative, we find

2
—(2+2u) + /(> +2u)2 + 36 (—30—1— V32 — 12M>

6 2 +2u

Distributing the right-hand side and putting the radicals on one side, one has

(® +21)%V/(c2 4+ 2)% + 36 + 36¢/3c2 — 12 = 72(c% — p) + (2 + 2p)°.

Squaring both sides and simplifying yet again by putting the radicals on one side, we see

2¢y/ (2 + 21)2 + 36/3c2 — 121 = 3¢t +12(3 — 1i2).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/27/21 to 74.98.209.94. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

OSCILLATIONS FROM NOISY EXCITABLE CELLS 851
We square both sides one last time and notice this is a fourth order polynomial in ¢?, and
we can use the quartic formula to obtain ceusp(pt). It is important to note the coefficient of
8 is zero once you square both sides, which will greatly simplify the curve equation. Lastly,
even though we cannot find picysp and ceysp in terms of a general b, we list some properties for
(Heusp(b), Cousp(D)) :

L (teusp(L), Ceuspl(1)) = (=1/2,1);

2. (Meusp(0), Ceusp(0)) = (3—3/2 4(373/4)) = (0.19245,1.75477);
3. Meusp(d*) = 0 when b* = 14/2v/3 — 3 & 0.227083 and ceusp(b*) = /12(2V/3 — 3) =~
1.5362;

4. limb%oo(ﬂcusp(b)a Ccusp(b)) = (—\/§, 0)»
D. Ccusp ™~ 1/b and Heusp + \/g ~ 1/b for b large.
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