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Abstract

The majority of neurons in primary visual cortex respond selectively to bars of light that have

a specific orientation and move in a specific direction. The spatial and temporal responses

of such neurons are non-separable. How neurons accomplish that computational feat with-

out resort to explicit time delays is unknown. We propose a novel neural mechanism

whereby visual cortex computes non-separable responses by generating endogenous trav-

eling waves of neural activity that resonate with the space-time signature of the visual stimu-

lus. The spatiotemporal characteristics of the response are defined by the local topology of

excitatory and inhibitory lateral connections in the cortex. We simulated the interaction

between endogenous traveling waves and the visual stimulus using spatially distributed

populations of excitatory and inhibitory neurons with Wilson-Cowan dynamics and inhibi-

tory-surround coupling. Our model reliably detected visual gratings that moved with a given

speed and direction provided that we incorporated neural competition to suppress false

motion signals in the opposite direction. The findings suggest that endogenous traveling

waves in visual cortex can impart direction-selectivity on neural responses without resort to

explicit time delays. They also suggest a functional role for motion opponency in eliminating

false motion signals.

Author summary

It is well established that the so-called ‘simple cells’ of the primary visual cortex respond

preferentially to oriented bars of light that move across the visual field with a particular

speed and direction. The spatiotemporal responses of such neurons are said to be non-

separable because they cannot be constructed from independent spatial and temporal

neural mechanisms. Contemporary theories of how neurons compute non-separable

responses typically rely on finely tuned transmission delays between signals from dispa-

rate regions of the visual field. However the existence of such delays is controversial. We

propose an alternative neural mechanism for computing non-separable responses that

does not require transmission delays. It instead relies on the predisposition of the cortical

tissue to spontaneously generate spatiotemporal waves of neural activity that travel with a

particular speed and direction. We propose that the endogenous wave activity resonates
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with the visual stimulus to elicit direction-selective neural responses to visual motion.

We demonstrate the principle in computer models and show that competition between

opposing neurons robustly enhances their ability to discriminate between visual gratings

that move in opposite directions.

Introduction

Hubel and Wiesel [1–3] laid the theoretical groundwork for the visual system with their dis-

covery that many neurons in the primary visual cortex respond selectively to bars of light that

move with a specific direction and speed. Such neurons are said to have non-separable space-

time receptive fields (Fig 1A) because their responses to changing patterns of light and dark in

the visual field cannot be explained in terms of independent spatial and temporal neural pro-

cesses [4, 5]. The neural mechanism for computing non-separable responses is still an open

question. Most theoretical accounts follow the approach of Reichardt [6] where light receptors

exploit transmission delays to act as coincidence detectors of temporally delayed signals from

disparate regions of the visual field (Fig 1B). The temporal delay essentially transforms the spa-

tiotemporal computation into a spatial computation that can be feasibly accommodated by the

dendritic arbors of a neuron. The concept was originally applied to direction-selective cells in

the retina [7] and has since been extended to the visual cortex where transmission delays have

been posited in the feed-forward projections [8–13] and in the lateral connections [14–16].

The motion-energy model [17] is a notable exception in that it uses the phase difference

between time-varying signals in place of transmission delays. It accurately represents the

Fig 1. Spatiotemporal receptive fields. A: Schematic of a non-separable receptive field for a direction-selective

neuron. The background grating represents a moving stimulus. The ellipses indicate the regions of light and dark that

trigger a response in the neuron. B: Simplified schematic of the Reichardt [6] motion detector where Δx is the spatial

separation between light receptors and Δt is a transmission delay. C: Gabor spatiotemporal filter constructed from a

difference of Gaussians. Phase shifts are obtained by rotating the Gabor function in the space-time coordinate frame.

https://doi.org/10.1371/journal.pcbi.1008164.g001
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responses of direction-selective neurons by applying a Gabor function (Fig 1C) to the features

in the visual field [18, 19]. The Gabor function is constructed from a difference of Gaussians

[20] that reasonably approximate the synaptic footprints of excitatory and inhibitory neurons.

Yet the phase difference is imposed by rotating the Gabor function in the space-time coordi-

nate frame without biophysical justification. Furthermore, the neural computation is expressed

in terms of the visual coordinate frame rather than inputs at the neuronal level. Hence the

motion-energy model is a descriptive model rather than an explanatory one [21].

Here we propose a neural mechanism for computing non-separable receptive fields without

resort to explicit transmission delays. Our proposal relies on the retinotopic mapping of the

visual system onto cortical coordinates and the propensity of cortical tissue to generate propa-

gating waves of neural activity endogenously. We argue that those endogenous waves resonate

with the spatiotemporal signature of stimulus to amplify the neural response for visual motion

in a given speed and direction. It is those amplified responses that correspond to visual percep-

tion. The endogenous waves thus influence the responses of individual neurons and imbue

them with their directional-selectivity. Furthermore, their preferred spatial and temporal fre-

quencies are dictated by the geometry of the lateral inhibitory-surround coupling between

excitatory and inhibitory neurons in the cortical tissue. This type of coupling features in the

standard model of orientation selectivity that was originally proposed by Hubel and Wiesel [2]

to explain the responses of ‘simple’ cells in primary visual cortex. Inhibitory-surround cou-

pling also has conceptual links to the difference of Gaussians in the motion-energy model [17]

and is crucial for the formation of standing wave patterns in neural field models [22–26].

Propagating waves have been observed in many regions of the brain [27–29] including

the visual cortex. Stimulus-evoked and endogenously generated traveling waves have been

observed in the visual cortex of monkey [30–34], cat [30, 35–37], rabbit [38], rat [39] and turtle

[40]. The endogenous waves follow reproducible patterns that are related to the underlying

anatomical connectivity [33, 41]. In cat visual cortex, those patterns are closely aligned with

the functional orientation maps [37]. In human visual cortex, endogenous waves are thought

to be the basis of geometric visual hallucinations for similar reasons [42, 43]. Stimulus-induced

waves likewise follow reproducible patterns. Those waves travel beyond the footprint of the

feed-forward projections [31] and are sensitive to the properties of the stimulus [30, 32, 44,

45]. More recently, Townsend and colleagues [34] found that the direction of waves elicited in

primate visual cortex by drifting visual gratings and dot-fields are sensitive to the direction of

the stimulus on a trial by trial basis. That particular study established a functional link between

visual motion processing and traveling waves. It also demonstrated that sensory information

can be encoded in cortical traveling waves at appropriate time scales. However the authors did

not propose a neural mechanism to explain how that might be achieved.

In the present study, we used neural field models of the visual cortex to investigate how

endogenous traveling waves interact with visual stimuli. Neural fields represent the large-scale

activity of neural tissue as a spatial continuum where thousands of co-located neurons are

lumped into localized populations called neural masses [46]. They are typically formulated in

terms of the average membrane voltage or the average firing rate activity of the neurons [47].

Crucially for this study, neural fields produce spontaneous spatiotemporal patterns—called

Turing patterns—under appropriate coupling conditions [22–24, 26, 48, 49]. In particular,

Wilson and Cowan [48, 49] demonstrated standing wave patterns in a neural field with short-

range excitatory connections and long-range inhibitory connections. Amari [22] later proved

that result analytically for neural masses with a step-function firing-rate response and ‘Mexi-

can hat’ coupling with distance. Such coupling topologies can be constructed from excitatory

and inhibitory connection densities with Gaussian spatial profiles [50] and have direct analogy

with the inhibitory-surround receptive fields described by Hubel and Wiesel [2].
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We therefore modeled the visual cortex as a spatial continuum of excitatory and inhibitory

neural populations with Gaussian coupling profiles where the spread of the inhibitory coupling

exceeded that of the excitatory coupling by a factor of 3:1. We restricted our model to one spa-

tial dimension for simplicity. The model produced endogenous standing wave patterns consis-

tent with neural fields having ‘Mexican hat’ coupling [51, 52]. We then applied a small spatial

shift to the profile of the excitatory connections to cause those standing waves to propagate

with a given direction and speed. That asymmetric coupling was key to imbuing the medium

with non-separable spatiotemporal response properties. We then explored how those endoge-

nous waves resonated with drifting grating stimuli to elicit robust direction-selective responses

to visual motion.

Results

We defined the generalized equations for the Wilson-Cowan model (Fig 2A) as,

te
dUe

dt
¼ �Ue þ FðweeUe � weiUi � be þ JÞ ð1Þ

ti
dUi

dt
¼ �Ui þ FðwieUe � wiiUi � biÞ ð2Þ

where Ue(t) and Ui(t) are the normalized firing rates of the excitatory and inhibitory neural

populations. Both populations are reciprocally coupled where wei denotes the weight of the

connection from the inhibitory population to the excitatory population. The sigmoidal firing-

rate function (Fig 2B) defines the response of each neural population to its input. Parameters

be and bi are the population firing thresholds. J(t) is an external stimulus which is applied to

the excitatory population only.

We began by configuring the parameters so that both cell populations were nominally at

rest in the absence of stimulation (J = 0). This was done by choosing the connection weights

(wee = 12, wei = 10, wie = 10, wii = 1) and firing thresholds (be = 1.75 and bi = 2.6) so that the

nullclines crossed near the left knee of the cubic nullcline (Fig 2D). The stable resting point for

this configuration was Ue = 0.12 and Ui = 0.17. We then applied a constant stimulus (J = 1)

which induced a stable oscillation in Ue and Ui (Fig 2C). The limit cycle (black) is shown in Fig

2D. The time scales of excitation and inhibition (τe = 10, τi = 5) were adjusted so that the fre-

quency of the oscillation was approximately 20 Hz, that being an appropriate time scale for

neurons in visual cortex. Numerical continuation revealed that the limit cycle emerges via a

supercritical Hopf bifurcation when the injection current exceeds the critical value J = 0.41

(Fig 2E). In this case, the limit cycle grows relatively smoothly with stimulus strength which we

reasoned was an appropriate characteristic for obtaining a graded neural response to visual

motion.

We then investigated the effects of inhibitory-surround coupling on the formation of

endogenous waves in the spatially extended model (Fig 3A). In this case, the excitatory and

inhibitory lateral projections both had Gaussian spatial profiles, Ke(x) and Ki(x), where the

spread of the inhibitory coupling (σi = 0.15 mm) was three times broader than that of the excit-

atory coupling (σe = 0.05 mm). The spatial footprints of these projections spanned approxi-

mately 0.6 mm which is consistent with the anatomical span of pyramidal dendrites [53].

When combined, these excitatory and inhibitory profiles produced the classic ‘Mexican hat’

profile shown in Fig 3B (black). As anticipated, this configuration of lateral coupling elicited

self-organized standing waves (Fig 3D) under spatially-uniform constant stimulation (J = 1).

Furthermore, the spatial frequency (2.5 cycles/mm) of the standing wave was predicted by the
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dominant spatial frequency of the Mexican hat, as we had previously seen in phase-based neu-

ral fields [52]. Nonetheless, slight variations in the selected pattern can occur on a trial to trial

basis [54]. More importantly, we were able to transform the standing wave into a traveling

wave (Fig 3E) by applying a small spatial shift (δ = 0.02) to the excitatory coupling profile. The

temporal frequencies of those traveling waves were typically −15 Hz, where negative frequen-

cies indicate leftwards motion. Even though the shift in Ke(x − δ) was barely noticeable, it still

produced a marked asymmetry in the Mexican hat (Fig 3C). Asymmetric coupling topologies

are known to induce traveling waves in neural fields [25, 55]. In this case, the asymmetric Mex-

ican hat operates like a spatial filter that responds maximally to waves that are phase-shifted to

the right, so the wave travels to the left.

Since the endogenous waves only emerged when the medium was stimulated, we hypothe-

sized that it would respond preferentially to stimuli whose spatiotemporal signature best

Fig 2. The Wilson-Cowan model of reciprocally-coupled excitatory and inhibitory neural populations. A:

Schematic of the coupling where the weight for the connection to e from i is denoted by wei. J(t) is an external stimulus.

B: The sigmoidal firing rate function. C: Time course of the mean firing rates U(t) for both the excitatory and

inhibitory populations in response to the unit-step stimulus. D: The limit cycle (black) in the phase plane. Nullclines

are shown in green. E: Bifurcation diagram showing the emergence of the limit cycle (shaded region) via a supercritical

Hopf bifurcation. Thick solid line indicates stable fixed points. Dashed lines indicate unstable fixed points. H is the

Hopf point. The thin solid lines emanating from the Hopf point describe the envelope of the oscillation in Ue.

https://doi.org/10.1371/journal.pcbi.1008164.g002
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matched that of the endogenous wave. We tested this idea by stimulating the asymmetrically

coupled medium with sinusoidal gratings that had identical spatial frequencies (fx = 2.5 cycles/

mm) but either moved in opposite directions (ft = −15 Hz versus ft = +15 Hz) or remained

stationary (ft = 0 Hz). As anticipated, the medium responded robustly to the stimulus whose

frequency characteristics matched that of the endogenous wave (Fig 4A). However it also

responded intermittently to the grating that moved in the opposite direction (Fig 4B) and the

stationary grating (Fig 4C). For the case of motion in the opposite motion, the responses pul-

sated in time with the stimulus and appeared to lurch in the same direction but with occasional

slips. The peak amplitude of the intermittent responses (Ue,max = 0.94 for the opposite grating;

Fig 3. Endogenous traveling waves in the spatial model. A: Schematic of the lateral coupling. The spatial profiles of

the excitatory and inhibitory projections are defined by Ke(x) and Ki(x) respectively. The inhibitory projections have

the furthest reach. The same profiles also apply to the connections between the excitatory and inhibitory cells but these

have been omitted for clarity. B: Symmetric Mexican hat coupling profile (black) constructed from symmetric

Gaussian profiles for the excitatory cells (green) and inhibitory cells (red) respectively. C: Asymmetric Mexican hat

obtained by shifting the excitatory coupling profile to the right by δ = 0.02 mm. D: Stationary waves in the spatial

model with symmetric lateral coupling, as per panel B. The gray scale indicates the mean firing rate of the excitatory

cells. The minimum and maximum values are listed in the upper-right corner. E: Traveling waves in the spatial model

with asymmetric lateral coupling, as per panel C.

https://doi.org/10.1371/journal.pcbi.1008164.g003
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Ue,max = 0.95 for the stationary grating) actually exceeded that for the preferred stimulus

(Ue,max = 0.89). The intermittent pulses evoked by the stationary grating were more regular.

Nonetheless, as a putative motion detector, the proposed model (Fig 3A) failed to discriminate

the preferred motion from the non-preferred motion.

The E-I-E model

We conjectured that this failure may be due to the model having insufficient degrees of free-

dom to accommodate the non-preferred motion signals. We therefore constructed a new

model with an additional excitatory population that we call the E-I-E model (Fig 5A). The

Fig 4. Effect of a moving grating stimulus on endogenous traveling waves. Here J(x, t) is the stimulus and Ue(x, t) is

the response of the medium. In all cases the medium is tuned (δ = 0.02) for leftward propagating waves with a spatial

frequency of fx = 2.5 cycles/mm and a temporal frequency of ft = −15 Hz. A: Case of a leftwards-moving grating whose

spatiotemporal signature matches that of the endogenous waves. B: Case of a rightwards-moving grating (ft = +15 Hz).

C: Case of a stationary grating (ft = 0 Hz).

https://doi.org/10.1371/journal.pcbi.1008164.g004
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equations of this model were defined as,

te
dUe1

dt
¼ �Ue1 þ FðweeUe1 � weiUi � be þ Je1Þ ð3Þ

ti
dUi

dt
¼ �Ui þ FðwieUe1 þ wieUe2 � wiiUi � biÞ ð4Þ

te
dUe2

dt
¼ �Ue2 þ FðweeUe2 � weiUi � be þ Je2Þ ð5Þ

where Ue1(t) and Ue2(t) are the normalized firing rates of the two excitatory populations and

Je1(t) and Je2(t) are their respective stimuli. All other parameters are the same as for Eqs (1) and

(2). The two excitatory populations in this model represent distinct assemblies of neurons that

have the same firing characteristics but are not directly connected to one another. They can

only interact via the common population of inhibitory neurons. The excitatory populations

receive independent stimulation on the assumption that they are innervated by distinct incom-

ing projections.

The E-I-E model proved to be remarkably selective to differential stimulation. When sti-

muli of different magnitude (Je1 6¼ Je2) were simultaneously applied to both populations, the

responses in Ue1 and Ue2 always favored the population with the greatest input. Furthermore,

those responses were mutually exclusive so that the ‘losing’ population was largely quiescent

irrespective of how much it was stimulated (Fig 5B). This suggested that the E-I-E model

robustly discriminates between incoming stimuli, even in the face of considerable ambiguity.

We therefore analyzed the model’s behavior over a range of differential stimuli Je1 = J + Δ and

Je2 = J − Δ which always favored population e1 (Fig 6A). In the analysis that follows, we used

numerical continuation to follow the steady-state responses in Ue1 and Ue2 while ramping J
and holding Δ fixed. We began with the case of ambiguous signals (Δ = 0).

Selective responses to ambiguous stimuli. Fig 6B shows the bifurcation diagrams for

both Ue1 and Ue2 for the case of Δ = 0 where the diagrams are identical because of symmetry.

For J < 1 the responses in Ue1 and Ue2 are monostable fixed points which are necessarily iden-

tical. Those fixed points diverge at J = 1 via a pitchfork bifurcation at the branch point (labeled

BP). For J > 1 the steady states of Ue1 and Ue2 may follow either of the upper or lower branches

of stable fixed points depending upon initial conditions. The selections are mutually exclusive

Fig 5. The E-I-E model. A: Schematic of the model. The excitatory populations e1 and e2 are not directly connected. B: Effect of differential stimulation

of e1 and e2 where Je1 > Je2 in the first pulse and Je1 < Je2 in the second pulse. The responses in Ue1 and Ue2 are mutually exclusive and selective to the

cell with the strongest stimulus.

https://doi.org/10.1371/journal.pcbi.1008164.g005
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so that if Ue1 selects the upper branch then Ue2 selects the lower branch, and vice versa. The

branch of identical fixed points (Ue1 = Ue2) continues to exist for J > 1 but is unstable (dashed

line) and forms a separatrix between the two branches of stable fixed points.

For J > 1.4 the fixed points lose stability via supercritical Hopf bifurcations (labeled H) that

give rise to co-existing stable limit cycles (shaded). The ambiguous stimulus allows Ue1 and Ue2

to select either of those limit cycles. As before, those selections are mutually exclusive. So if Ue1

selects the oscillation on the upper branch then Ue2 selects the oscillation on the lower branch,

and vice versa. The oscillations on the upper branch are much larger than those on the lower

branch. We regard the winner of the competition between e1 and e2 to be the one that selects

the branch of large oscillations.

Thus for ambiguous stimuli with J > 1.4 either e1 or e2 are equally likely to win but at least

the outcome is decisive. The separatrix between the upper and lower branches of solutions is

the key to that selectivity because it forces the responses of e1 and e2 to self-segregate even

though the stimuli (Je1 = Je2) are identical. We tested the outcomes of 10,000 trials of ambigu-

ous stimuli with J = 2 and random initial conditions, Ue 2 [0, 1] and Ui 2 [0, 1]. The results

confirmed that e1 and e2 were equally likely outcomes with 49.7% ± 1.2% of trials selecting e1

with a 99% confidence interval.

Selective responses to weakly biased stimuli. The selectivity of the E-I-E model is no lon-

ger at chance once the stimulus is biased (Δ 6¼ 0). Fig 6B shows the bifurcation diagrams for

Ue1 (left panel) and Ue2 (right panel) for the case of weakly biased stimulation (Δ = 0.03). The

pitchfork bifurcation is replaced by an ‘imperfect’ bifurcation that has no branch point. For

J < 1.3 the stable fixed points in Ue1 and Ue2 are both monostable. More importantly Ue1

Fig 6. Bifurcations in the E-I-E model under differential stimulation. A: Schematic of the model. B: Responses to identical stimulation Je1 = J + Δ and

Je2 = J − Δ where Δ = 0. C: Responses in Ue1 (upper panel) and Ue2 (lower panel) to weakly biased stimulation (Δ = 0.03). D: Responses to moderately

biased stimulation (Δ = 0.2). Solid lines indicate stable fixed points. Dashed lines indicate unstable fixed points. Shaded regions are the envelopes of

limit cycles. BP is branch point. H is Hopf bifurcation. LP is limit point.

https://doi.org/10.1371/journal.pcbi.1008164.g006
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steadily increases with J whereas Ue2 steadily decreases. This divergence in responses guaran-

tees that e1 wins the competition—provided that the stimulus is ramped slowly from zero. Fur-

thermore, the perceptual decision is robust for J > 1.34 where large oscillations emerge on the

upper branch (left panel; upper H) and small oscillations emerge on the lower branch (right

panel; lower H). The small oscillations in Ue2 are negligible compared to the large oscillations

in Ue1.

However that outcome is not guaranteed when the stimulus is suddenly onset rather than

slowly ramped. In that case, it is possible for Ue1 and Ue2 to select other stable states that co-

exist for J > 1.32 where a pair of stable and unstable fixed points emerge from the limit point

(LP). This minor branch of stable fixed points itself gives way to stable oscillations for J > 1.56.

For Ue1 those oscillations are small (left panel; lower H) and for Ue2 those oscillations are large

(right panel; upper H). If e2 happens to select that large-amplitude oscillation then it wins the

competition and the perceptual decision is a false positive. This occurred in 25.2% ± 1.12% of

trials (n = 10000, 99% CI) with J = 2 and random initial conditions. The false positives are for-

givable in this case because Δ = 0.03 is a very weak bias in the stimulus.

The potential for false positives is due to the existence of the limit point (LP). It is a remnant

of the branch point (BP in Fig 6A) that is lost when Δ 6¼ 0 transforms the pitchfork bifurcation

into an imperfect bifurcation. The position of the limit point is governed by the size of the bias

in the stimulus. Increasing Δ > 0 shifts the limit point towards higher J. If the bias is large

enough then it effectively eliminates the false positives by shifting the limit point beyond the

operating range of J.
Selective responses to strongly biased stimuli. Fig 6D shows the bifurcation diagrams

for Ue1 (left panel) and Ue2 (right panel) for the case of strongly biased stimuli (Δ = 0.2). The

limit point has been shifted beyond J > 2 and the remaining steady states are all monostable.

Thus e1 is guaranteed to win the competition for J > 0.84 where a large oscillation emerges in

Ue1 and a small corresponding oscillation emerges in Ue2. This was confirmed by numerical

simulation which found no false positives in 10,000 trials with J = 2 and random initial condi-

tions. The strong bias in the stimulus (� 20% of baseline) thus ensures that the correct

response is always selected.

The spatial E-I-E model

Returning to the problem of motion discrimination, we constructed a spatial variant of the

E-I-E model where the profiles of the lateral projections in the excitatory layers were shifted in

opposite directions (δ = ±0.02 mm) while the profile of the inhibitory projections remained

symmetric (Fig 7A). This coupling topology produced asymmetric Mexican hat profiles for

both the upper and lower layers of the model (Fig 7B and 7C). The spatiotemporal stimulus

J(x, t) was applied identically to both of the excitatory layers in this model. We hypothesized

that the opposing phase shifts in the lateral coupling profiles would impel waves in the top

layer to travel leftwards and those in the bottom layer to travel rightwards. While the external

stimulation would serve as a bias that favored the layer which best matched the spatiotemporal

signature of the stimulus. We reasoned that the selective response properties observed in the

E-I-E point model would also apply to spatiotemporal activity patterns in the spatial model.

We tested this concept by simulating the spatial E-I-E model with the same drifting gratings

that we used in Fig 4 and found that the excitatory layers of the model were exquisitely selec-

tive to the direction of the moving stimulus. Moreover we saw no false responses to motion in

the opposite direction. Fig 8A shows the response to a leftward moving grating whose spatial

(fx = 2.5 cycles/mm) and temporal (ft = −15 Hz) frequencies match those of the endogenous

wave in the top layer of excitatory neurons, represented by Ue1(x, t). The responses in Ue1(x, t)

PLOS COMPUTATIONAL BIOLOGY Direction-selective motion discrimination

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008164 September 2, 2020 10 / 20

https://doi.org/10.1371/journal.pcbi.1008164


spanned the majority of the variable’s dynamic range (0.01 < Ue1 < 0.89) whereas that in

Ue2(x, t) was very much suppressed (0 < Ue2 < 0.01). We interpreted the overwhelmingly

dominant activity of the e1 layer as a robust perceptual response to leftwards motion.

The symmetric result was also observed for a rightward moving grating whose spatial (fx =

2.5 cycles/mm) and temporal (ft = +15 Hz) frequencies match those of the endogenous wave in

the bottom layer of excitatory neurons, represented by Ue2(x, t). In that case, the e2 layer gave

the dominant response and the e1 layer was suppressed (Fig 8B). The model responded as

equally robustly to rightwards motion as it did to leftwards motion in these two test cases. The

response to stationary gratings (Fig 8C) was also pleasing as both layers e1 and e2 exhibited

suppressed responses (0.03 < U < 0.19) with no temporal oscillations. Such an outcome is the

spatiotemporal analogy of the diverging branches of fixed point solutions in the point model

under ambiguous stimulation (Fig 6A). Here that divergence is expressed as subtle differences

in the spatial patterns in Ue1(x, t) and Ue2(x, t) where the presence of a stationary pulse in one

pattern tends to suppress a corresponding pulse in the other. This is evident in the substantial

range of the point-wise differences between the two patterns, −0.14 < Ue1(x, t) − Ue2(x, t) <

0.14.

Tuning curves. The previous simulations (Fig 8) demonstrated robust discrimination

between leftward and rightward motion in specific test cases. We sought to generalize those

findings by quantifying the responses of Ue1(x, t) and Ue2(x, t) to stimulus gratings with a

range of spatial (0 < fx < 15) and temporal (−15 < ft < 15) frequencies.

The temporal frequency tuning curve (Fig 9A) was obtained by varying ft while holding

the spatial frequency of the stimulus grating fixed at fx = 2.5 cycles/mm. It plots the maximal

Fig 7. The spatial E-I-E model with asymmetric lateral coupling. A: Schematic of the model where the spatial

profiles of the excitatory projections, Ke1(x) and Ke2(x), are shifted in opposite directions. The lateral inhibitory

projections (not shown) remain symmetric. B: Asymmetric Mexican hat constructed from Ke1(x + δ) and Ki(x) where

δ = 0.02 mm. C: Asymmetric Mexican hat constructed from Ke2(x − δ) and Ki(x). Note the opposing phase shifts in the

Mexican hat profiles.

https://doi.org/10.1371/journal.pcbi.1008164.g007
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responses in Ue1(x, t) and Ue2(x, t) over the long term. The individual tuning curves for Ue1

(dotted line) and Ue2 (solid line) exhibit dramatic separation whereby e1 responds predomi-

nantly to leftward moving gratings (ft < 0) and e2 responds predominantly to rightward mov-

ing gratings (ft > 0). The responses are sharply constrained to the 5–28 Hz frequency band

which is why the stationary grating (ft = 0) did not elicit a strong response in either Ue1 or Ue2

(Fig 8C). The small kinks in the tuning curve are due to the periodic boundary conditions

which impel the spatial waves to accommodate the size of the domain. The tuning response

changes sharply when there is a transition in the spatial wavenumber.

The spatial frequency tuning curve (Fig 9B) was similarly obtained by varying fx while hold-

ing the temporal frequency fixed at ft = 15 Hz which corresponds to rightwards motion. For

this particular temporal frequency, the tuning curve for Ue2 (solid line) is strongly selective to

gratings with spatial frequencies 1.7 < fx < 5.0 cycles/mm. The response band is also remark-

ably sharp. Whereas the response for Ue1 (dotted line) is attenuated at all spatial frequencies

because it is tuned to motion in the opposite direction. The converse behavior is observed for

leftward moving gratings (ft = −15 Hz).

Fig 8. Direction-selective responses in the spatial E-I-E model. The cells in layer e1 were tuned to leftward motion (δ
= +0.02) and those in layer e2 were tuned to rightward motion (δ = −0.02). The external stimulus J(x, t) was applied

identically to both layers. Their spatiotemporal responses are Ue1(x, t) and Ue2(x, t). A: Case of a leftwards moving

grating (fx = 2.5 cycles/mm, ft = −15 Hz) which resonates with the endogenous wave in Ue1. B: Case of a rightwards

moving grating (fx = 2.5 cycles/mm, ft = +15 Hz) which resonates the endogenous wave in Ue2. C: Case of a stationary

grating (fx = 2.5 cycles/mm, ft = 0 Hz) which does not resonate with either.

https://doi.org/10.1371/journal.pcbi.1008164.g008
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Discussion

Our model demonstrates how neurons in the visual cortex can exploit endogenous back-

ground wave activity to compute non-separable spatiotemporal receptive fields without resort

to transmission delays. The proposed mechanism relies on the predisposition of the cortical

tissue to generate traveling waves of activity whose speed and direction are determined by the

lateral coupling topology. The waves act as spatiotemporal filters that selectively amplify those

stimuli that have similar space-time signatures to the wave—after retinotopic mapping of the

visual field onto the cortex.

Selectivity of the response is enhanced by competition between waves that travel in opposite

directions. That competition is mediated by the common pool of inhibitory cells which pro-

vide negative feedback to the opposing pools of excitatory cells. The dynamics of the E-I-E

assembly are such that compromise solutions between competing stimuli are inherently unsta-

ble, leading to winner-take-all decisions. In the case of the point model, the competition is

won by the excitatory cell with the stronger stimulus. In the case of the spatial model, it is won

by the excitatory cells whose endogenous wave pattern resonates most with the spatiotemporal

stimulus. Furthermore, the competition suppresses partial responses in the opposing detector.

Opponency is thus an effective neural strategy for suppressing false-positives in otherwise

imperfect detectors.

Motion detection as an emergent behavior

Our proposal offers new theoretical insights into how direction-selectivity can arise in the

visual cortex through the collective behavior of neurons therein. The endogenous wave activity

Fig 9. Tuning curves for the spatial E-I-E model. A: Temporal frequency tuning curve showing the maximal

responses in Ue1 and Ue2 for stimulus gratings with temporal frequencies −40 < ft < 40 Hz where negative frequencies

correspond to leftward motion. The spatial frequency of the grating is fixed at fx = 2.5 cycles/mm. B: Spatial frequency

tuning curve showing the maximal responses to gratings with spatial frequencies 0 < fx < 15 cycles/mm. In this case

the temporal frequency is fixed at ft = 15 Hz.

https://doi.org/10.1371/journal.pcbi.1008164.g009
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imposes a spatiotemporal bias on the background neural activity which in turn predisposes it

to resonate with the preferred stimulus. Direction-selectivity is thus an emergent property of

many neurons rather than a property of any single neuron. If such a neuron were to be isolated

from its neighbors then it would immediately lose its spatiotemporal response properties.

Lateral inhibition as a mechanism for traveling waves

Our model also suggests that excitation and inhibition should be expected to co-vary in

response to the preferred stimulus. This behavior is consistent with invasive recordings of the

dendritic currents in the primary visual cortex of anesthetized cats by Priebe and Ferster [56].

They found that the excitatory and inhibitory currents co-vary at different phases and that the

peaks of the inhibitory currents were maximal for the preferred stimulus rather than the null

stimulus. Their findings are in contradiction to the standard model which predicts a strong

inhibitory response to the null stimulus [56]. In our model, inhibition rises and falls cyclically

because it is a mechanism of oscillation rather than a mechanism of stimulus suppression. The

stimulus evokes maximal oscillations in the preferred excitatory cells while suppressing activity

in the opposing excitatory cells. Whereas the inhibitory cells respond maximally either way.

Thus the concept of lateral inhibition as a mechanism of wave generation may better explain

the observed fluctuations in excitation and inhibition than the standard model of inhibition as

a mechanism of stimulus suppression.

We know of no direct biological evidence for the types of shifts in lateral coupling that we

have assumed in our model. It is likely that such shifts would be too small to detect. In any

event, small asymmetries are probably the norm in biological systems. Asymmetries have pre-

viously been reported in the receptive fields of simple and complex cells in visual cortex [5].

Those asymmetries are thought to reflect asymmetries in the dendritic arbors of those cells.

However, some physiological studies report no correlation between the morphology of the

dendritic arbors and the orientation or directional selectivity of those cells [16, 57]. These stud-

ies only considered the physical shape of the dendritic footprint and ignored the importance of

the spatial densities of the dendritic receptors therein [51].

The functional role of opponency

The perceptual phenomenon of motion opponency is well documented but its functional role

remains mysterious [58]. In theoretical models it is typically portrayed as a hypothetical sub-

traction between the outputs of neurons with opposing preferences. In the case of the E-I-E

model, the mechanism of opponency is inherent within the circuitry itself. It plays a dual role

in driving the oscillatory dynamics as well as selecting the winning response. Without oppo-

nency, the simpler E-I model fails to discriminate against the non-preferred stimuli because it

lacks the degrees of freedom to accommodate other scenarios. The opposing E-I-E circuitry,

on the other hand, has enough degrees of freedom to accommodate both scenarios. The func-

tional role of opponency may thus be to avoid false positives by alleviating the dynamical frus-

tration of the loser.

We believe that the same concept can also be extended to the two-dimensional visual field

by arranging opposing pairs of excitatory kernels along a few cardinal directions of motion

with some overlap between them. As before, the excitatory kernels would only be coupled to a

common layer of inhibitory cells. Such an arrangement could mimic the hexagonal anatomical

structure of the primary visual cortex where cells with similar directional tuning properties

tend to be connected with each other [59–61]. Bressloff [62] has previously used a similar

approach to model the effect of orientation-specific hypercolumns on geometric visual

hallucinations.
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Opponency in other sensory domains

The E-I-E model has some interesting properties that make it an effective neural circuit for

resolving competing responses, potentially in any sensory domain. The symmetry of the circuit

means that symmetric solutions to ambiguous stimuli do exist but those solutions lose stability

when the baseline stimulus exceeds a critical threshold. The unstable symmetric solutions thus

act as a separatrix between co-existing stable solutions which are dominated by each of the

opposing excitatory populations. Whether those stable solutions are fixed points or limit cycles

depends largely upon the choice of τe and τi. In our case, oscillations were crucial to the spatio-

temporal signature of visual motion. However that need not be the case for other sensory

domains where fixed points may be more appropriate.

Similar models

Zhang [63] previously proposed a similar double-ring network with asymmetric lateral cou-

pling for head-direction tuning cells in the hippocampus. In that model, the position of the

head was encoded by a bump attractor that was continuously shifted one way or the other to

integrate signals from proprioceptors in the head. The motion of the bump was driven by

asymmetric coupling that was modulated in time by the proprioceptors for clockwise and anti-

clockwise movement. The double rings operated in opposition in the sense that they pushed

and pulled the bump in opposite directions. However the goal of that mechanism was to inte-

grate movements from opposing proprioceptors rather than to suppress competing perceptual

decisions, as is the goal of our model. Conversely, Ermentrout and colleagues [64, 65] showed

that bump attractors can also be made to travel with slow negative feedback rather that asym-

metric lateral coupling. In the absence of a stimulus, the direction of travel is determined by

initial conditions. It is likely that a moving stimulus could force the bump to travel in the same

direction but it is not clear how that mechanism could be used to discriminate between motion

in opposite directions.

Limitations and future work

Like many computational theories of vision, our proposal relies on the retinotopic mapping

between the visual field and the cortex to preserve the geometric relationship between the

stimulus and the endogenous neural activity. For simplicity, we assumed a one-to-one map-

ping between visual and cortical coordinates whereas the anatomical mapping is actually a log-

polar relationship [66]. We anticipate that the use of log-polar retinotopic mapping would

likely extend our results to the motion of rotating spirals, radial spokes and expanding rings

[42].

Further work is required to extend the model to two spatial dimensions. One issue to con-

sider is how much overlap to apply between motion detectors with differing orientation prefer-

ences. Should orientation-selective motion detectors be antagonistic towards their nearby

counterparts or should they pool their outputs to achieve consensus? In terms of the E-I-E

model, antagonism between the opposing detectors is crucial to its selectivity. Directly cou-

pling the excitatory cells would weaken that mutual competition and encourage them to syn-

chronize their behavior. If that coupling is strong enough then the behavior of the E-I-E model

would effectively reduce to that of the simpler E-I model where all excitatory neurons operate

in unison. So there is a balance to be struck between mutual competition and mutual coopera-

tion for detectors with similar tuning preferences. Further research is required to elucidate the

conditions for achieving that balance.
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Methods

The equations for the spatial Wilson-Cowan model (Fig 3A) were defined as,

te
dUe

dt
¼ �Ue þ FðweeVe � weiVi � be þ JÞ ð6Þ

ti
dUi

dt
¼ �Ui þ FðwieVe � wiiVi � biÞ ð7Þ

where Ue(x, t) and Ui(x, t) are the spatiotemporal firing rates of the excitatory and inhibitory

neural populations with x 2 R1. The sigmoidal function,

FðvÞ ¼ 1=ð1 þ exp ð�vÞÞ ð8Þ

defined the firing rate of each cell population in response to the net input v. That input com-

prised of the spatially weighted activity Ve(x, t) and Vi(x, t) from nearby excitatory and inhibi-

tory cells. The spatial summation,

Vðx; tÞ ¼

Z

KðxÞ Uðx; tÞ dx ð9Þ

was computed by convolving the spatial activity in U(x, t) with the Gaussian kernel,

KðxÞ ¼
1

s
ffiffiffi
p

p exp
�ðx � dÞ

2

s2

� �

ð10Þ

where σ is the spatial spread parameter and δ is a spatial shift parameter. The spatial shift was

only applied to the excitatory cells. The connection weights w are scalar constants where wei

denotes the connection from an inhibitory population to an excitatory population. Parameters

be and bi represent the firing thresholds for the excitatory and inhibitory populations. Parame-

ters τe and τi are the time constants of excitation and inhibition. All parameter values are listed

in Table 1.

Similarly, the equations for the spatial E-I-E model (Fig 5A) were defined as,

te
dUe1

dt
¼ �Ue1 þ FðweeVe1 � weiVi � be þ JÞ ð11Þ

te
dUe2

dt
¼ �Ue2 þ FðweeVe2 � weiVi � be þ JÞ ð12Þ

ti
dUi

dt
¼ �Ui þ FðwieVe1 þ wieVe2 � wiiVi � biÞ ð13Þ

where Ue1(x, t) and Ue2(x, t) are the firing rates of the excitatory cells and Ui(x, t) is the firing

rate of the inhibitory cells.

Visual stimulation was represented by the spatiotemporal signal J(x, t) which was applied to

the excitatory cells only. It was defined as a sinusoidal moving grating,

Jðx; tÞ ¼
a

2
cos 2pfx x � 2pft tð Þ þ 1ð Þ ð14Þ

where α is the amplitude of the grating and fx and ft are its spatial and temporal frequencies.
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Numerical simulation

The forward models were simulated using Version 2019a of the Brain Dynamics Toolbox [67,

68] running in MATLAB R2019b. The differential equations were integrated forward in time

using the ode23 solver with variable time steps and error tolerances of AbsTol = 1e-6
and RelTol = 1e-6. The numerical continuation was performed using MATCONT [69, 70]

version 7p1 with the default tolerances. The step size for branch of equilibrium points was lim-

ited to MaxStepSize = 0.1. The step size for the branch of limit cycles was limited to

MaxStepSize = 0.5.
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