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ABSTRACT

Alpine glaciers, with their valuable combination of highly sensitive response to climate and near-global extent, are
powerful tools for investigating previous and present climate changes. They also represent critical water resources
for areas around the globe, with the potential for far-reaching effects in a warming world. Advancements
to understand and model glacial changes and the variables influencing them are therefore paramount. Many
glacier models fall into one of two endmembers: either highly complex transient models requiring careful
tuning of multiple parameters to individual glaciers, or basic empirical correlations of glacier area and length
with few considerations for local and regional variations in characteristics. Here we detail a physical steady-
state model for alpine glaciers relating directly to glacier mass balance (via the equilibrium line altitude) while
retaining the simplicity of other morphology methods, and simultaneously including error estimates. We provide
custom MATLAB functions as a user-friendly and generally-applicable method to estimate glacier equilibrium line
altitudes from only a limited number of glacier bed topography and glacier width measurements. As a test of
the model’s efficacy, we compare the model results for present-day glaciers in the Swiss Alps with previously
published estimates of equilibrium line altitudes and intermediate model outputs.

e The method estimates glacier equilibrium line altitudes from a limited set of bed topography measurements
and constraints on glacier width.

e The method is based on continuity equations, reducing the need for empirical coefficients tuned with measured
data.

e The method uses Monte Carlo sampling and bootstrapping to generate uncertainty bounds on the equilibrium
line altitude estimates.
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Introduction

Changes in glacier size and extent are fundamentally related to the mass balance of the glacier.
An annual mass surplus (when net accumulation exceeds ablation) leads to glacier growth, while a
deficit leads to glacier retreat. Such transitions can be visually drastic, with some glaciers changing by
kilometers in response to minor perturbations in climate. A more comparable measure of the glacier
response to climate change than glacier area or length changes is the concept of the equilibrium
line altitude (ELA). The ELA is the boundary between the accumulation and ablation zones on a
glacier and represents the elevation at which the annual amount of mass added through accumulation
exactly equals the annual amount of mass lost through ablation [1]. As a direct measure of glacier
mass balance, the ELA facilitates explicit comparisons of climate in space and time by accounting for
dependencies on glacier size, extent, and shape, and by integrating the myriad variables that can drive
changes in climate into a single comparable metric.

The most accurate method to determine the ELA is direct measurements of the distribution of
accumulation and ablation on a glacier. Such measurements, however, are only available for a small
subset of modern glaciers, and entirely absent for paleoglaciers. Several empirical proxy methods
have therefore been developed to estimate ELA when direct measurements of mass balance are not
possible. Some of the more widely used are the accumulation area ratio (AAR), the toe-to-headwall
altitude ratio (THAR), the area-weighted mean altitude (AMA), and the median elevation of the glacier
(MEG) [2,3]. Such statistical methods are useful within many contexts. Braithwaite and Raper [3] for
instance found an overall R = 0.99 for 94 glaciers between steady-state ELA and one of the simplest
ways to estimate ELA (MEG). Estimates of individual glaciers, however, can significantly diverge.
Moreover, the empirical nature of these methods make them relatively easy to apply, but is also one
of the primary inherent limitations on their applicability and interpretability. Because the empirical
coefficients are derived from aggregate glacier data sets, these models are only valid for glaciers
within the boundary conditions of the training data, typically with no a priori method to determine
whether such an assumption is valid when applied to other regions or other periods of time. Such
regionally-tuned coefficients can vary widely. AAR values among modern glaciers, for instance, vary
between 0.22 and 0.72, resulting in a large range in possible ELA estimates depending on the value
chosen [4]. The other empirical methods for ELA reconstructions suffer from similar concerns as the
AAR method. Additionally, such methods provide no insight into the sensitivity or uncertainty of the
estimates to glacier characteristics such as bed topography or areal distribution. All of these methods,
although useful in many circumstances, highlight the need for additional progress to help better
constrain ELA estimates in a robust, self-consistent manner and place the estimate within the context
of model error, while still requiring minimum inputs.

This manuscript presents a method to reconstruct ELA estimates based on continuity equations,
while only requiring estimates of bed topography, glacier length, and glacier width. The ELA model
also generates intermediate results of continuous modeled bed topography, ice surface elevation, and
glacier width along the length of the glacier (Fig. 1). An added strength of this model is that such
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Fig. 1. Graphical abstract describing the ELA modeling process used in this study.

intermediate outputs allow for increased diagnostics on model performance or troubleshooting. The
required inputs for the model are similar to those required for simple geomorphic methods, but based
on continuity equations rather than relying purely on empirical correlations while also accounting for
physical errors in measurements. This method can equally apply to existing glaciers or paleo-glacier
extents where glacial moraines are adequately preserved.

Methodology

The presented model is largely derived from a simple linear glacier-length model presented in [5],
with modifications specific to quantifying ELAs and ELA changes. The limited model inputs necessarily
require simplifying assumptions that do not include all details pertinent to specific glaciers. Such
details can be significant for some applications (e.g. dynamic modeling of glacier response, higher
order surface energy and mass balance modeling, etc.), and other methods would be better suited to
these circumstances. The proposed model is specifically intended to estimate the ELA of snow-fed,
clean ice, temperate valley glaciers with relatively simple bed and areal geometries.

The ELA model also provides analytical constraints on the error associated with model outputs.
Such uncertainties are fundamental in determining the significance and reliability of results, but
rigorous physical uncertainties of ELA estimates are rarely presented in paleo-glacier research, either
because such uncertainties are difficult to assign for geomorphic methods like THAR and AAR or
because higher order models are sufficiently complex to challenge error propagation. Uncertainty
estimates in this study are calculated based on Monte Carlo simulations of bootstrapped residuals of
the input parameters. These uncertainties give insight into the range of plausible ELA values based on
both uncertainty of input parameters and the ability of the model assumptions to accurately represent
those inputs.

Other computational methods exist to estimate the ELA of paleoglaciers. Benn and Hulton
[6] presents an Excel™ spreadsheet to calculate the ice surface profiles of a former mountain glacier
or ice cap, given bed topography and a yield stress. Pellitero et al. [7] provides a Python-based
ArcGIS toolbox to automatically calculate glacier ELAs with a choice of methods (Accumulation-Area
Ratio, Area-Altitude-Balance Ratio, Area-Altitude, or median elevation). The tool requires a DEM of the
reconstructed glacier surface as input. Pellitero et al. [8] builds on [7] by adding the ability to estimate
and interpolate a paleoglacier ice surface given the 3D bed topography and a center flowline. These
methods represent important steps forward by incorporating ice flow laws and automating much of
the process in ELA calculations in an accessible manner.

Similar to [6,8], the presented ELA model also estimates the glacier surface based on centerline
ice flow, given bed topography. It also aims to automate many of the steps in calculating an ELA to
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provide an easy-to-use and widely applicable method of ELA estimation. The main advantages of the
presented ELA model are (1) less reliance on empirical relations which require tuning of coefficients
and (2) the inclusion of robust uncertainty bounds based on Monte Carlo sampling. The decreased
reliance on empirical correlations permits more widespread applicability without a priori knowledge
and tuning of model coefficients. Such coefficients are determined regionally using glacier mass
balance measurements from many glaciers in the area, even though nearby glacier values can diverge
notably [2]. The proposed ELA model seeks to avoid these empirical complications by estimating the
ELA directly from continuity equations. Another important advantage of the proposed ELA model is
the incorporation of Monte Carlo bootstrapping. This permits estimation of robust uncertainties both
from error in input parameters and from model limitations. These uncertainties give proper context
to how accurate results are for specific glaciers, as well as how sensitive these glaciers are to various
inputs. Although this requires more complex modeling and computation to generate results compared
to empirical methods, most of this complexity is fully automated and abstracted away from the user.
It therefore retains simplicity, applicability, and usability while implementing more complex modeling
and more robust uncertainty estimates.

Balance equation

The fundamental basis of the ELA model is an integrated balance formula (Eq. (1)) for steady-state
glaciers from [5],

L. L
By :/ bdx:ﬂ/ [W(X) (H(X) + 2(x) — ELA)]dx 1)
0 0

where By, is the total net balance, x is the distance down glacier, b is the specific balance rate at x, L
is the glacier length, 8 is the balance gradient, w(x) is the glacier width at x, H(x) the ice thickness
at x, z(x) represents the valley topography, and ELA is the equilibrium line altitude. In steady state
conditions (like we assume for glaciers with well-developed moraine sequences), the total net balance
is zero. The balance gradient 8 can be dropped in this case, and Eq. (1) can then be adapted to solve
for the ELA (Eq. (2)).

JowEOH X)X + [ w(x)z(x)dx

EIA = I
Jo w(x)dx

(2)

We then estimate each of the three components (H(x), w(x), and z(x)) along the length of the
glacier and solve for each component using trapezoidal numerical integration to derive an estimate
for ELA. Methods for the estimation of each of these components are detailed below.

Glacier bed modeling

Bed topography measurements follow a representative 1D line along the glacier profile taken down
the center of the glacier. We then estimate z(x) from a best-fit two-term exponential curve of this 1D
profile line (Eq. (3)), where a, b, ¢, and d are fitting coefficients optimized in the model using the
elevation data inputs (see Fig. 2 for examples). Optimizations in this ELA model use nonlinear least
squares regression based on trust region algorithms [9].

z(x) = ae? + ce®™ (3)

This two-term exponential estimate is best suited for valleys with relatively simple bed
topographies. Caution should be used when applying this method to glacier beds with more complex
bed features, such as steep cliffs or over deepenings, as these are not always readily captured in the
model.
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Fig. 2. Bed elevation reconstructions for the four validation sites. Yellow circles denote measured bed elevation values, black
lines represent the modeled bed profile, and blue shading represents model error (2 standard deviations). Note that scales are
not consistent between subplots.

Ice thickness modeling

To first order, the thickness of a glacier depends largely on the slope and shear stress at the bed
[1]. The simplest equation to approximate ice thickness is therefore

T
H:W (4)

where H is the ice thickness (m), T is the basal shear stress (Pa), p is the ice density (kg/m3), gis
acceleration due to gravity (m/sz), and 6 is the angle at the bed interface [1]. In areas with shallow
slopes, however, Eq. (4) leads to ice thickness unrealistically approaching infinity. [5] demonstrates
a square root relation between length and ice thickness (assuming perfect plasticity), which we
incorporate into our estimates in order to address this issue.

2 Tl
Hm = 3V pg(1+sind) )

Eq. (5), however, gives the mean ice thickness (Hy) for the glacier, rather than continuous values
along its length. To model ice thickness profiles, we assume a parabolic distribution (true of a perfectly
plastic glacier on a flat bed) around the mean ice thickness (see Fig. 3 for examples). The basal shear
stress () is assumed to scale with ice thickness, following the relationship presented in [10] (Eq. (6)),
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Fig. 3. Modeled glacier ice surfaces for the four validation glaciers. Yellow circles denote measured ice elevation values, black
lines represent the mean modeled bed topography (Fig. 2), blue lines represent the modeled ice surface profile, and blue
shading represents model error (2 standard deviations).

where Az is the difference between the minimum and maximum bed elevation.

Az > 1600 m = t = 150 kPa
500m < Az < 1600 m = T = 0.005 + 1.598 Az — 0.435Az* kPa
Az <500m = 7 =3AzkPa (6)

Glacier width modeling

Due to the high diversity in glacier shape/geometry, estimating the plan-view profile of the glacier
in a consistent yet simple manner is difficult. Additionally, accurately constraining the width of the
accumulation area for paleoglaciers presents further challenges, due to a lack of preserved moraines
or other features delineating glacier boundaries in these areas. To best cope with these issues, we
estimate glacier width using an exponential formula (Eq. (7)) of the same form as presented in [5].
The initial starting parameters are the minimum width of the glacier at the toe (w0), maximum glacier
width in the accumulation zone (wpngy), the distance down glacier (x), and the distance down glacier
to the point of maximum width (Lyymax)-

X

- Lwmax (7)

w; — W, 1
max Oxe

w(x) =wg +
LWmax



D.G. Keeler, S. Rupper and J.M. Schaefer / MethodsX 8 (2021) 101173 7

RHONE FINDEL
2000 3000
| o |
] 2000
2 1000 2
o o Q
B 5 1000
E g
-= =
g 0 g 0
= =
B ] 5 -1000
& -1000 8
© 1 O 2000
- o 1
Do A———————— -3000 — T ——————
0 2000 4000 6000 8000 0 2000 4000 6000
Meters down glacier Meters down glacier
GRIEO§ SILVRETTA
1000 - 1000
2500 500
2 . ]
o
E ]
=
& 0 0 <
z
b
2 4 4
2 500 4500
) 1 .
1000 AT 000 —
0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000
Meters down glacier Meters down glacier

Fig. 4. Glacier width modeling for the four validation sites. Compares the overall modeled areal profile (and modeled
uncertainty) with discrete measured points of each glacier’s width. Yellow circles denote width measurements for points on
the glacier, black lines represent the modeled width profile, and blue shading represents model error (2 standard deviations).
Note that scales are not consistent between subplots.

This produces an exponential curve, following the general shape of many glaciers. The model then
performs least squares nonlinear curve fitting (again based on trust region techniques) on the initial
parameter estimates to optimize the fit to the input width estimates (see Fig. 4 for examples).

The model can also incorporate glacier tributaries. The tributaries are initially modeled as
independent glaciers, including profile centerline elevations and width measurements. The calculated
tributary glacier volume is then added to the main glacier at corresponding elevation levels as
additional modeled glacier width. Added caution should be exercised with this model when including
tributary glaciers, as the glacier plan profile can depart more severely from the assumed idealized
shape constraints.

Monte Carlo simulations

We perform Monte Carlo simulations to capture the distribution of plausible ELAs for a given
glacier. Such estimation of uncertainty is important to adequately compare the significance of
results, particularly if attempting to compare results from differing methodologies or between
regions. Monte Carlo methods are widely used in modeling of glacier mass and energy balance for
uncertainty estimation [11]. In our approach, we perform bootstrapping with replacement techniques
to incorporate the uncertainty of input parameters and to include any known errors in those
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Table 1
Required format for ELA model inputs.
Field name Dimensions Field description
X_dist [N x 1] Vector of glacier length from 0 : N, where N is the total length of the glacier in
meters
Bed_pts [nx 2] A matrix with positions along the glacier centerline (in meters) in the first
column and corresponding bed elevation measurements (meters a.s.l.) in the
second
Ice_surf [nx 2] A matrix with positions along the glacier centerline (in meters) in the first

column (this should match the first column in ‘Bed_pts’) and corresponding ice
surface elevation measurements (meters a.s.l.) in the second

Width_pts [m x 2] A matrix with positions along the glacier centerline (in meters) in the first
column and corresponding glacier width measurements (meters) in the second
(widths should orthogonally intersect the centerline)

Table 2
ELA model error assumptions.
Variable name Default value Variable description
zSTD 25m Standard deviation in measured glacier bed elevation
wSTD 60 m Standard deviation in measured glacier width values
tau_STD 5.0 x 10* Pa Standard deviation in estimated basal shear stress (used in ice thickness calculations)
rho 917l<g/m3 Density of ice (used in ice thickness calculations)
g 9.8 m/s2 Acceleration due to gravity (used in ice thickness calculations)

parameters, assuming Gaussian error distributions. Each model run consists of 1000 simulations in
order to approximate a continuous distribution in plausible ELA values. The Monte Carlo simulations
do increase the computational load, especially compared to the automated methods of [6,7], taking
~1 min to process one glacier on a single core. The model code, however, utilizes parallel processing,
enabling much greater scalability to larger data sets with the proper hardware.

Data and analysis workflow

The complete ELA model MATLAB code is publicly available (https://github.com/durbank/
ELA-model), with v0.1.0 the particular version used in this manuscript. In brief, the ELA model
function ELA_calc.m requires two dataset inputs (discrete estimates of bed topography and discrete
estimates of glacier width, both measured downglacier along the centerline of the glacier valley)
and the number of Monte Carlo simulations to perform. Approximately ten quasi-equally spaced
points along the length of the glacier are often sufficient, though the optimum number depends on
the length and complexity of the bed topography and glacier geometry. To avoid issues of model
extrapolation (and to automatically include the overall glacier length), both the toe and the head of
the glacier should be included in these measurements. The ELA model input data should be provided
as a MATLAB structure with four fields, as summarized in Table 1. Tributary glaciers, if present, should
be provided as variable input arguments (formatted as MATLAB structures according to Table 1) after
the number of simulations to perform. The format_inputs.m function takes.csv files of glacier bed
topography and glacier width measurements and creates a properly-formatted MATLAB structure to
serve as input to the ELA model.

In addition to the inputs, there are model parameter assumptions built into the model prescribing
the assumed errors for Monte Carlo sampling. Updating these assumptions to better reflect specific
input data is a simple matter of editing the assigned values. Table 2 shows a summary of these
parameters and their default values.

For the development and validation of this model, we used a particular ArcGIS software workflow
to generate the ELA model inputs. We include this workflow as a diagram (Fig. 5), but model inputs
can be generated and provided using any desired methods, as long as they are properly formatted.
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Fig. 5. Flowchart showing the ArcGIS workflow used to generate ELA model inputs. Orange denotes steps performed in ArcMap,
while blue denotes steps performed in MATLAB. The first step is to generate a characteristic centerline for the glacier. This
centerline can be drawn freehand or calculated in some other way. Then extract the bed elevation along the centerline using
the DEM input (recorded as distance along the centerline), and save to a temporary.xls file. Import this file into MATLAB and
use the “ice_thick.m” function (part of the ELA model) to estimate the ice surface elevation at points along the centerline
transect. Import the ice surface results back to ArcMap and combine with the centerline transect values. The final steps require
an outline of the glacier in question. These boundaries can be drawn from the aerial imagery for modern glaciers, or else
from the moraines of paleoglaciers. In the case of paleoglacier moraines, the accumulation region of the glacier can be broadly
defined by the valley boundaries. Calculate polylines at each discrete point along the transect at the elevation of the ice surface
and orthogonal to the centerline at that point. The intersection of these orthogonal lines (at the elevation of the ice surface at
that point) with either the glacier boundaries (in the case of modern glacier outlines and portions of paleoglaciers constrained
by moraines) or the bed topography (in the case of the accumulation zone of paleoglaciers) defines the glacier width at each
transect point. The results of distance down the glacier centerline, estimated bed elevation, and estimated glacier widths are
then saved as a.csv file for import to the ELA model.

Table 3

Summary characteristics of the 4 validation glaciers.
Glacier Min elevation Max elevation Observed ELA Area Length Max width
Gries 2500 m 3277m 3084 m 4.28 km* 5216 m 1441 m
Silvretta 2498 m 3078 m 2829 m 2.58 km? 3193 m 1307 m
Findel 2600 m 3570 m 3233m 14.5 km? 7089 m 3835m
Rhone 2200 m 3480 m 2918 m 14.4 km? 9751 m 3256 m

Model validation

We validate the ELA model by matching our reconstructions with direct observations of four
modern glaciers in the European Alps. These glaciers were primarily selected due to the availability
of data requisite for a data-model comparison (including present-day ice thickness, bed topography
beneath the present-day glacier, mass balance measurements, aerial photography and DEMs).
Moreover, the validation glaciers show variation in overall area, length, width, and elevation extent,
thereby providing a range of possible glacier geometries (see Table 3 for differences). This range of
glacier characteristics enables a more rigorous test of robustness and general applicability of the ELA
model. Although all 4 validation glaciers are limited to the European Alps, the method should be
more widely applicable to similar glaciers in other regions (clean-ice, land-terminating temperate
mountain glaciers) without regional tuning of empirical coefficients. The four test glaciers are the
Gries, Findel, Rhone, and Silvretta Glaciers. Three of these glaciers (Gries, Silvretta, and Findel) have
continuous multi-year mass balance measurements from stake networks compiled by the World
Glacier Monitoring Service (WGMS), and therefore make for the most compelling comparisons. The
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Rhone Glacier has mass balance measurements from a handful of isolated years, providing a less
certain, but still useful comparison to the model and other glaciers.

Data sources

We obtained width and overall length measurements for the 4 validation glaciers from LANDSAT
5 satellite imagery and ASTER global digital elevation models (GDEMs). As the LANDSAT 5 imagery
has a horizontal resolution of £30 m, we prescribe a conservative 60 m error for glacier width
measurements (error for both edges of glacier boundaries). ASTER GDEM data have a vertical root-
mean-squared error of +15 to +25 m, depending on several environmental conditions (surface
covering, topography, surface roughness, etc.). [12]. As our model exclusively involves mountainous
snow-covered regions, we utilize the more conservative +25 m error in calculations of bed topography
and ice surface elevations. Bed elevation validation measurements are from modeled topographies in
[13,14], constrained using multiple GPR profiles and/or borehole depths for each glacier.

The Silvretta and Gries glaciers have the best-constrained mass balances with 50 years of
published data for each [15]. In order to compare the current climatic ELA of these glaciers with
our modeled ELA, we determine measured ELAs from the linearly detrended, annually-measured ELA
values from 1981 to 2010 for both glaciers, with uncertainty calculated using a 95% margin of error.
The Findel Glacier has similarly well-constrained mass balance measurements from a glacier stake
network [15], but with a much shorter record (2005-2010). We compare the mean ELA over this time
to the modeled ELA for Findel Glacier. The Rhone Glacier does not have consistent year-to-year mass
balance measurements. Instead, we take modeled steady-state ELA estimates from air temperature
correlations (1971-1990) provided in [4]. These ELA estimates are constrained with the few years
of available stake mass balances (mean % between measured ELA and air temperature-correlated
ELA is 0.89). No uncertainty estimates were provided for the Rhone Glacier ELA. For consistency, we
assume Gaussian uncertainties with bounds similar to the margins of error of the mass balances for
the Silvretta, Gries, and Findel glaciers (50 m).

Model comparisons

The model results, including bed topography, ice thickness, plan-profiles, and ELAs, are
summarized in Figs. 2-4 and 6 for all four validation sites. Most of the intermediate model outputs
match measured values within error. Points of increased disagreement likely result mainly from local
variability and the inherent smoothing caused by model fit constraints and optimization. Exceptions
to this include the overdeepened section apparent in the Gries Glacier (Fig. 2), which represents a
systemic shift in bed topography not adequately captured in the model. Similarly, most differences
in modeled and measured ice surface (Fig. 3) likely result from local variations in ice thickness
of a scale finer than the input data resolution (e.g. ice crevasses), but with little effect on the
final ELA estimate. An exception to this explanation is Findel Glacier, wherein the model appears
to systemically overestimate the ice thickness, and a corresponding overestimation of the ELA by
a similar magnitude (see Figs. 3 and 6). Although isolating an exact reason for this overestimation
is challenging, it may be related to violations of the assumed perfect plasticity of the modeled
ice or to ice thinning/downwasting due to climate disequilibrium, neither of which are accounted
for in this ELA model. Modeled glacier width results generally closely match those recorded from
satellite imagery (Fig. 4). The most noticeable exception to this is the Rhone Glacier, with a few clear
outliers in the accumulation area. These may be related to difficulties in accurately defining the glacier
boundaries in the accumulation area, or else may simply represent a more complex glacier geometry
that this ELA model will not fully capture. Regardless, these deviations do not appear to significantly
affect the final ELA estimate.

Modeled ELA estimates for the four validation sites and comparisons to corresponding observed
ELAs are presented in Fig. 6. The figure additionally includes empirical estimates of ELA using the AAR,
AMA, MEG, and THAR methods for each validation glacier. We use two AAR values (0.5 and 0.67) to
show how the choice of this parameter influences the estimate. We assign THAR a coefficient of 0.35.
As the MEG is equivalent to THAR=0.5, these two metrics also show the effect of varying this ratio
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of error for the 4 validation glaciers, although Gries Glacier appears to have a systemic bias. The results show a mean bias
in central estimates for modeled ELAs of —14.8 m relative to measured ELAs, with no consistent direction in bias. The largest
difference occurs with the Gries Glacier, with a central bias in modeled ELA of —155 m relative to the observed ELA.

Table 4

ELA mean biases for different methods.
Method Mean bias (m)
AAR=0.50 218
AAR=0.67 —58.3
AMA 96.8
MEG -771
THAR=0.35 -314
ELA model -14.8

as well. All four validation glaciers show agreement within errors between observed and modeled
ELA values, although the central estimate for Gries glacier differs by ~150 m. None of the empirical
methods consistently estimate the ELA within observed uncertainty for all 4 glaciers, although the
AAR=0.50 and MEG iterations perform the best of the empirical methods. THAR (with ratio=0.35)
consistently underestimates the ELA, while AMA consistently overestimates the ELA for these glaciers.
Table 4 summarizes the the mean biases over the four validation sites compared to the observed mean
ELA. The ELA model and the AAR method (ratio=0.50) perform the best overall with mean biases of
—14.8 m and 21.8 m respectively.

Likely sources of error to explain discrepancies between the observations and modeled results
involve more complex considerations not accounted for with the simple ELA model. For instance,
more complex bed topographies, differences in shading/shielding by valley walls, debris cover, and
accumulation through avalanching can all affect the recorded ELA in mass balance measurements,
none of which are considered in the ELA model. It is important to note that the model is particularly
sensitive to errors in bed topography, as these values influence estimates of slope, ice thickness, and
width and therefore can potentially strongly affect the final ELA estimates. Differences in steady-state
assumptions may also be an important factor in differences between modeled and measured modern
ELAs. The ELA model assumes steady-state conditions, whereas the annual mass balance reflects



12 D.G. Keeler, S. Rupper and J.M. Schaefer / MethodsX 8 (2021) 101173

emergent climate conditions. Glaciers typically have either an annual mass surplus or deficit in a given
year, complicating comparisons of our results to measured ELA values. Such a limitation, however, is
inherent to all morphology-based ELA models. For instance, all methods significantly underestimate
the ELA for Gries glacier, suggesting this glacier could be strongly out of equilibrium. Overall, the
presented results show a high degree of confidence in the model’s ability to estimate glacier ELAs
(within calculated uncertainties) from relatively few geomorphic inputs, supporting the use of the
presented ELA model for simple valley glaciers across a wide spectrum of bed slope geometries,
glacier shapes, glacier widths, and elevation extents.

The incorporation of additional variables and modeling components could address some of these
limitations and improve the overall effectiveness of the model. For instance, the methods presented in
[6,8] also include a “shape friction factor” parameter that accounts for lateral drag in topographically-
constrained glacier valleys. This F factor relates the frictional lateral drag to the glacier cross-
sectional area and perimeter length of the ice-topography contact [8]. As these required inputs are
also generated during intermediary steps in our ELA model, an F factor implementation could be
incorporated into the ELA model in the future, potentially improving the ELA estimates for valley
glaciers. In light of the sensitivity of the model to bed slope, using a non-parametric interpolation
method for bed topography estimates could improve the ELA estimates, but would also require more
complex modifications of the model to avoid discontinuous step changes in ice thickness and other
parameters.

Conclusions

The model described here accurately estimates ELAs from Alpine valley glaciers of varying size,
topography, and areal distribution while utilizing a small set of easily-obtained measurements. The
model provides errors based on the physical uncertainties of model inputs, a crucial factor for
determining the significance and importance of results. We validate the model on a set of glaciers
in the Alps spanning a variety of characteristics (bed topography, size, elevation extent, etc.). The
model performs at least as well as traditional empirical methods of ELA estimation while minimizing
reliance on optimized empirical coefficients, adding uncertainty estimates, and providing insight for
the sensitivity of individual glaciers to model inputs. Based on these validations and the physics-based
nature of the model, this ELA model should serve as a robust, easily applicable, self-consistent method
for ELA glacier reconstructions in varied areas, including the broader European Alps, alpine regions
of the Arctic, the Southern Alps in New Zealand, and similar glaciated locations. The model should
also be readily applicable to paleoglacier reconstructions based on preserved moraine sequences,
permitting rapid and consistent comparisons of glacier changes through time and across diverse
regions. Such studies will permit enhanced insight into the mechanisms of climate change in the past,
and help us to better understand present and future changes to critical glacial and water resources in
a warming world.
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