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Abstract—Predictive modeling of networked data finds many
real-world applications, such as fraud detection in social net-
works, drug discovery in biomedical networks, paper topic classi-
fication in citation networks, and so forth. Although the advanced
machine learning approaches can help build reasonably accurate
predictive models, their applicability is immensely hindered by
the data labeling tasks, which are onerous, time-consuming, and
error-prone. In this paper, we propose a novel active learning
paradigm for networked data, named fopology-and-content-aware
(TACA) active learning, aiming to minimize the number of labels
while achieving a desirable level of model accuracy. Overall,
TACA advances existing works from two aspects: (1) TACA
makes no assumption on the network property, whereas most
existing works only perform effectively on a locally consistent
network in which linked nodes are expected to share the same
labels and (2) TACA generates queries without relying on model
performance, thereby enjoying robust predictive results even
when noises exist in the queried labels. Both theoretical and
empirical evidences are presented, substantiating the effectiveness
of and optimism our approach.

Index Terms—Active Learning, Networked Data, Node Em-
bedding Techniques, Graph Neural Networks

I. INTRODUCTION

Supervised learning systems such as deep learning usually
envision a large labeled training dataset, so as to achieve
leading performance in real-world applications. Data labeling
in practice, however, is often a long, laborious, and expensive
process, making the deployment of such systems economically
impractical. To overcome this issue, active learning (AL) has
been proposed with the aim of relieving labeling overhead.
The key design of AL is to craft a querying strategy that
wisely decides which instances to ask an oracle (e.g., human
expert) for their labels. Both theoretical [1], [2] and empirical
evidences [3]-[5] have substantiated that, being assisted with
a well-crafted strategy, the learning system can attain a desired
level of accuracy at a significantly reduced labeling budget.

Despite effective, most existing AL methods are tailored
for data instances that are identically and independently dis-
tributed (i.i.d.). However, such an i.i.d. nature may not hold in
many applications, where the data instances are linked through
topological structures. Examples abound, e.g., social networks
where cyber users are connected via follower-followee rela-
tions [6], [7], bibliographic graphs with research papers citing
or cited by, other papers to form nature links [8], [9], e-
commercial networks where online products being frequently

bought together are correlated [10], [11]. We refer to such data
characterizable by graphs as the networked data.

The challenge of performing AL with networked data lies in
the lack of a principled querying strategy for harmonizing such
information that is conveyed by instance features and graph
topologies. Existing works fail to address this challenge well
and are limited in two aspects. First, to leverage the graph in-
formation, prior works make the local consistency assumption
on the network property, where the linked instances are highly
expected to share the same labels [12]-[15]. As a result, they
do not generalize well to a wider range of problems in which
such an assumption does not hold.

Second, most AL methods generate label-querying strate-
gies in a model-focused means. That is, to select the next
instance, they must depend on the performance of the learner
trained so far, presuming the labels of the previously queried
instances are perfectly correct. Unfortunately, as a general
case, human labelers can make mistakes. Being trained on
noisy labels, the learners suffer from deteriorated performance,
leading to non-informative queries in the remaining iterations,
where the new labels cannot improve model performance or
may even increase the prediction errors [16]-[18].

Motivated by these observations, this work explores two
questions: (1) Can the network information be more effectively
exploited without relying on the local consistency assumption?
(2) Can we craft a querying strategy that is model-free, so as
to enjoy an inherent robustness to noisy labels?

Our answer to these questions provides a novel active learn-
ing paradigm, named topology-and-content-aware (TACA) ac-
tive learning. The key idea is twofold: (1) learning informative
node embeddings without making any assumption on the net-
work property, and (2) generating queries with no dependence
on model performance. To realize the idea, the design of
TACA comprises two main phases. In phase I, we devise a
novel multi-granular graph auto-encoder (MGAE) to embed
the instance features and network topologies into a latent space
in a harmonic manner [19], [20]. Specifically, MGAE takes
into account both i) local-consistency-based knowledge, in
which immediate neighbors on graphs tend to have identical
labels, and ii) global-consistency-based knowledge, in which
instances having similar feature semantics are likely to share
the same labels. Notably, MGAE operates in a purely unsu-
pervised fashion, thus able to tolerate noisy labels.

In phase II, based on the node embeddings learned in



phase I, we generate queries by employing the uncertainty
reduction principle [18], so as to abort any reliance on model
performance. In particular, we theoretically show that the
instances with the highest level of predictive uncertainty, on
which the learner is most likely to make errors, can be
identified via gauging their geometric relations with other node
embeddings in the latent space. Through labeling these most
uncertain instances, the learner become immune to the same
type of errors, thereby improving prediction accuracy.

Due to the page limitation, we defer technical details (e.g.,
proofs) and complete experiments to supplementary material
by the following link: https://bit.ly/3d 1nSOm.

II. ACTIVE LEARNING WITH NETWORKED DATA

Problem Statement. Let a graph G = (V, &) represent the
networked data, where each edge F;; € £ links two nodes V;
and Vj, and each node V; € V represents an instance being
associated with a d-dimensional feature vector x; € R

Let h* : V — Y be the true hypothesis underlying data,
where Y € {Y7,...,Yc} denotes a label space comprising
C classes. We aim to learn a predictive model f that can
approximate h* with a minimized labeling effort. Let L
and U denote the labeled and unlabeled nodes (instances),
respectively, and V = {£,U}. Our learning problem is then
formulated as a min-max game as follows.

mindy (R, f), s.t. |L] < B, (1)

f = argmaxEy, e [Pr(y; | Vi, f),
feH
where B denotes the labeling budget and dy (-, ) represents
a distance metric defined over the hypothesis space H that
gauges the discrepancy between our learned model f and
the true hypothesis h*. Our goal is to search an f that
approximates h* within a small labeling budget B < |V)|.

A. Challenges and Prior Efforts

One plausible idea to tackle the label scarcity issue is to
enrich the node information. Intuitively, the more information
each node contains, the smaller the number of labels required
to train an accurate model would be. For networked data, the
information sources from two channels — the node features and
the network topology. We desire a node embedding method
that can harmonizes both two channels of information, so as
to better the model performance.

Crafting such an embedding method is non-trivial, where
three challenges arise in our learning problem. First, because
the labels are scarce (due to limited labeling budget) and
noisy (due to human mistakes), this embedding method must
operate in an unsupervised fashion, which remains an open and
challenging problem in graphs. Existing methods [19], [21],
[22] that entail label supervision for learning node embeddings
are functionally infeasible in this context.

Second, real-world networked data are usually sizeable
by comprising tens of thousands of nodes and hundreds of
thousands of edges. The embedding method must scale-up to
such large graphs. Conventional graph learning methods [23]-
[26] requiring as an input the entire graph are not scalable
and thus inapplicable. Also, these methods in general capture

node cluster structures, which is linear, leading to restricted
expressiveness hence inferior prediction accuracy.

Third, although recent graph-neural-network (GNN) ad-
vances [15], [27]-[29] have manifested remarkably perfor-
mance by means of learning scalable and expressive node
embeddings, they commonly make the local consistency as-
sumption which, unfortunately, may not hold in real practices.
Consider, for example, a fraudulent user in a social network
who only follows (links to) multiple normal users on purpose.
The local consistency assumption enforces a message passing
among the linked nodes, such that they are placed closely
in the embedding space. Thus, the malicious message (e.g.,
advertising, rumoring) of the fraudulent users are “washed-
out” by the benign features of their normal neighbors. As a
result, such fraudulent users are over-confidently misclassified
as normal, if its neighboring normal users are queried and
labeled before. Such examples abound in a wide range of real
applications [7], [30] to which, evidently, those GNN-based
node embedding methods are not generalizable.

B. Our Insights

Tailoring an embedding method to overcome these chal-
lenges can provide active learners with informative node
representations, leading to desirable learning performance.
However, to our best knowledge, no existing research has
addressed all the three challenges simultaneously.

To fill the gap, we propose a novel graph embedding
method, termed multi-granular graph auto-encoder (MGAE),
which possesses four nice properties as follows. i) It learns
node embeddings in a purely unsupervised manner. ii) It
uses neural architecture to capture non-linear data structures
underlying the embedding space. iii) It does not take the entire
graph as input; Rather, it can be updated in a stochastic way
and hence is scalable. iv) It lifts the local-consistency assump-
tion by leveraging the global-consistency network information,
thereby being more applicable. These properties empower our
MGAE method to well address the aforementioned challenges.

III. OUR APPROACH

We now present the technical details of TACA active
learning approach. Specifically, TACA consists of two core
building blocks: Multi-granular graph auto-encoder that learns
informative node embeddings from both local and global
network neighbors (in Section III-A) and Model-free active
query generator that decides the nodes to be labeled without
relying on the model performance (in Section III-B).

A. Multi-Granular Graph Auto-encoder (MGAE)

The nature of designing MGAE is built upon a key ob-
servation that nodes conveying similar feature semantics can
be topologically faraway. Revisit the example — a group of
fraudulent users spreading malicious messages may not link
to each other but only to the normal users on purpose. In such
situations, the nodes associated with similar and informative
feature contents scatter across the network and can be faraway
from each other. It is thus desirable to learn node embeddings
by taking such global-consistency-based knowledge into con-
sideration. Our MGAE method is to serve this purpose.


https://bit.ly/3d1nS0m

Overall, MGAE consists of an encoder and a decoder. In
the encoding phase, it discovers the community structure that
underlies the node feature space, and then leverages such a
structure to extract an intermediate graph in a coarse granular-
ity. To clarify notion, the nodes in the coarse graph are termed
abstract nodes. Each abstract node synopsizes the information
from a node community, within which the nodes share the
similar feature contents. In the decoding phase, MGAE inherits
an inner-product-based read-out function from [27]; It reads
out the coarse graph from the abstract nodes at first, and then
it decomposes the abstract nodes into a finer granularity, based
on which the original network is reconstructed.

By this design, each node embedding is forced to aggregate

information from other nodes those in the same community
(which could be topologically faraway) hence is less likely to
be overridden by their immediate neighbors. The details of the
encoder and decoder are presented as follows.
Encoder: coarse graph extraction. The operations of each
encoder layer comprise two main steps. First, we explore the
underlying node communities from the node feature matrix via
spectral clustering, which equals to solving the nonnegative
matrix factorization problem [31]. Second, we apply soft-
assignments of nodes to generate the adjacency matrix and
node embeddings, yielding coarse graph and abstract nodes,
respectively. Specifically, consider an encoder with L hidden
layers, where each layer is a convolution layer interleaved with
a graph coarsening operation, as shown in Figure 1. The output
of the [-th convolution layer is recursively given by:

Zt(elr)np = ReLU (A(lfl)z(lfl)w(l)) c R™M-1 ><zz’ )

where | € {1,...,L} and Z® = X € R™ is the
original node feature matrix. Denoted by A0 = D_%(A +
I)D_% € R™ "™ the normalized graph Laplacian, with A
being the adjacency matrix of the original network topology.
The weight matrix W! € R#-1X% parameterizes the layer
and W! € R%#1_ As such, Zt(ér)np lowers the dimension of
each node vector but does not change the number of nodes
in the graph. The graph coarsening operation then reduces the
number of nodes by constructing abstract nodes, defined as:

Z(l—l) ~ P(Z)Q(l)T c R™-1 XZzi—1 (3)
70 — P(Z)th(i[)np e RM*# 4)
AW — pOTAC-DPO) ¢ grxm. )

where Q) € Rj_”lxm represents the basis matrix, with its
column vectors being the cluster centroids and there are n;
clusters in total. P() indicates the cluster membership matrix
in which each entry Pflj) indicates the probability that node
V; belongs to the j-th cluster.

To understand what is happening in each encoder layer, we
extrapolate the physical meanings of Eqgs. (2), (3), (4), and (5)
as follows. Consider the first layer that takes in the original
node feature vectors X € R™*?, First, Eq.(2) propagates the
feature information of each node to its first-order neighbors,
mapping the node vectors in a new latent space: R? — R*!,
And, in a parallel fashion, the node communities underlying
the original R%feature space is discovered via Eq. (3). Second,
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Fig. 1: Nllustration of two main steps in the encoding phase.
(I) Convolution layer changes the dimension of the node
embeddings z;_1 +— z;; (II) Coarse graph extractor reduces
the number of nodes in the network n;_1 — n;.

the nodes falling into the same community are aggregated
to form the abstract nodes with linear combinations through
Eq. (4), and the connectivity among those abstract nodes indi-
cates the topology of the coarse graph, calculated in Eq. (5).
An illustration of this process is shown in Figure 1.

By stacking more such encoder layers, local-consistency-

based knowledge, which is afforded by the convolution layers,
and global-consistency-based knowledge, which is captured
through the construction of the coarse graphs, are embedded
in an interchangeable manner.
Decoder: hierarchical readout. Our decoder proceeds a hier-
archical readout process, starting from the most coarse-grained
graph, decomposing its abstract nodes to a finer granularity,
hence reading-out a finer-grained graph. This process iterates
until the original network is recovered.

Specifically, the number of decoder layers equals to that in
the encoder, i.e., L. The hierarchical readout in each decoder
layer is defined as follows.

AU+D — g ((P(l))TZ(l)Z(l)T(P(Z)T)T> ’ ©6)

where ¢(-) is the logistic sigmoid and (-)' denotes the general-
ized Moore-Penrose pseudo inverse [32]. Along this way, the
last decoder layer outputs a recovery of the original network
topology, i.e., A() ¢ R™ " The entire MGAE architecture
is updated according to the discrepancy between AL and the
input network topology A, e.g., ((A, A1) = ||[A — A(D)|]2,
where £(-,-) is a differentiable and desirable convex loss
function such as the Frobenious-norm loss.

B. Model-Free Active Query Generator

Based on the learned node embedding, we now study how
to generate active queries for predictive modeling. The key
idea lies to select the nodes on which the model is most
likely to make errors. By labeling these most uncertain nodes,
the model can avoid making the same type of errors, thereby
enjoying an improved prediction performance.

However, the human labors are likely to make mistakes in
practice, yielding noisy labels. The model trained with these
noises is distorted. Traditional querying strategies that are
model-focused, e.g., [33], [34], depending on historical model
performance to generate new queries, are hence negatively
affected by the distorted model; Indeed, they are likely to



Fig. 2: A bipartite system view of our active querying strategy.

generate non-informative queries since it is not distinguish-
able whether an uncertain instance carries unseen and new
knowledge or is merely labeled by mistake.

To combat against this issue, we in this work leverage the
recent theoretical advance [18] to design a model-free active
query generator, aborting the reliance on model performance
by relating the node uncertainty with the node-wise geometric
property in the embedding space. Specifically, we cast the node
querying task into a bipartite system optimization problem,
where labeled and unlabeled nodes are disjointly placed at the
two sides of the system. At each iteration, one node from the
unlabeled side is moved to the labeled side by following the
overall uncertainty reduction principle.

Let §(V; | V}) denote the uncertainty of node V; when node
V is labeled. To select the node that maximizes the uncertainty
reduction for the entire system, we solve the program below.

arg max Z (Vi |V;) — Z S Vil V), (D
Vie yvicu VieUu\V;
VieL VLUV
where the first term sums up the uncertainty between a pair
of two nodes, each of which from one side of the system. The
second term evaluates the overall system uncertainty after a
node V}* is moved from U to L, i.e., labeled.

Figure 2 visualizes how a node is queried by optimizing
Eq. (7). There are two labeled nodes V{ and V, and four
unlabeled nodes Vi, Vs, V3, and Vy. After querying Vj, the
overall uncertainty reduction of the system comprises two
parts. First, the uncertainty of V; has been directly removed
(i.e., 9 — 0). Second, by knowing Vj, the uncertainties
of V7 and V3 are intermediately reduced (i.e., 5 — 4 and
7 — 3, respectively). Thus, the overall uncertainty reduction
of querying V, is 9 + 1 + 4 = 14. Similarly, we calculate
overall uncertainty reduction individually for V7, V5 and V3,
and select the node having the maximal value.

The problem then is to calculate the node uncertainty, with
the crux lying in how to relate the model accuracy with
the nodes’ geometric relations. Fortunately, we can exploit
the Maximum Distance Minimization (MDM) theory [18] to
derive an /¢;-distance-based uncertainty measurement, which
is computationally simple yet offers our querying strategy a
nice property as follows.

Theorem IIL.1 (MDM). Let z; and z; denote the embeddings
of an arbitrary unlabeled node V; and a labeled node V;,
respectively. Denoted by

AV = 38V V)= nf lai— 7l ®
VieL J

the overall uncertainty of V; given a labeled set L. The
estimation error dy (h*, f) is upper bounded by node V; that
maximizes Eq. (8), namely V; = arg maxy, ¢, A(V;).

Theorem III.1 suggests that, through querying the label of
a node that maximizes the infimum ¢;-distance to the pre-
viously labeled nodes, the discrepancy upper-bound between
our learned model (i.e., f) and the true hypothesis (i.e., h*) is
lowered in an iterative greedy fashion. As a result, the node
queried in such a manner is guaranteed to be informative,
where the gain of model accuracy can be reasonably expected.

IV. EXPERIMENTS

This section delivers empirical evidence to exhibit that our
topology-and-content-aware (TACA) active learning approach
is effective and can achieve superior performance over the
active learning counterparts. To be specific, we elaborate the
general evaluation setups in Section IV-A and present the
experimental results in Section I'V-B.

A. General Setup

Datasets. Our experiments are carried out over five real-world
datasets that are widely used in the graph learning literatures.
The details are depicted as follows.

Cora, DBLP, and PubMed are three bibliographic datasets
that are widely used in the literature [8], [9], [12], representing
the citation networks. Each node in the citation network
indicates one research paper, which may cite or be cited by
other papers, naturally forming the links between pairs of
nodes. In addition, each node is also described by a feature
vector, with entries representing the unique words used in
the respective paper. The class labels corresponding to each
dataset represent one domain of interest. For example, the class
labels in the Cora dataset represent 7 machine-learning-related
domains, including neural networks, probabilistic methods,
genetic algorithms, and others.

Amazon [10] is a dataset profiling the co-purchase net-
work from Amazon, in which nodes represent products,
edges pinpoint the product pairs that are frequently bought
together, node features include bag-of-words embedded in
product reviews, and class labels indicate the product category.
Flickr [11], [35] is an image dataset collected from Flickr, in
which two nodes (images) are linked if they share common
metadata, such as from the same location, submitted to the
same gallery, and taken by friends. Each image is associated
with a feature vector (e.g., reviews) to encode the image
information. The class labels are given by the image tags.
Table I summarizes the detailed statistics of the five datasets.

Evaluation Protocol. We split each dataset into train-
ing/validation/test sets with an 8 : 1 : 1 ratio. Before learning,
the labels of all instances in the training set are masked. At
each iteration, once one query is generated, the label of the
corresponding instance is revealed. The predictive model is
trained on the instances whose labels have been exposed so
far, and then performs prediction on the test set. To avoid
the cold-start problem, we start building the predictive model
when at least 20 instances have been quired.

In MGAE, one hidden layer is implemented for both the
encoder and the decoder. That is, one intermediate coarse
graph is extracted from the original data network, and then,
based on the abstract nodes, the topologies of the coarse



TABLE I: Statistics of the studied datasets

Dataset | # of Nodes | # of Edges | # of Features | # of Classes
Cora 2708 10,556 1433 7
DBLP 17,716 105,734 1639 4
PubMed 19,717 88,648 500 3
Amazon TA87 119,043 745 8
Flickr 89,250 899,756 500 7

graph and the original network are reconstructed in a layer-
by-layer fashion. The width of the hidden layer determines the
network aggressiveness of compressing information from the
feature vectors. The number of the abstract nodes decides the
information grainy degree of the discovered node communities
— the larger the number, the more fine-grained information is
captured by each node community. We tune these parameters
via the validation set, with the hidden layer width and the
abstract node number chosen from {128,64,32,16,8} and
{11,9,7,5, 3}, respectively. For predictive modeling, we em-
ploy an MLP (multi-layer perceptron) with one hidden layer
as the classifier. Adam optimizer is employed for training both
the encoder and the classifier in a full-batch manner, with an
{2-penalized weight decay of be—4. The learning rate is grid-
searched in {le—5, le—4, 1le—3}.

Compared Methods. For comprehensive comparison, we
take several representative active learning methods that are
graph-theory-based, optimization-based, and deep-learning-
based as counterparts, which are highlighted below.

ALTG [36] generates instance queries purely based on
the geometric properties of graphs. Specifically, this method
acquires labels of the nodes that disconnect most regions of a
graph through minimal edge cuts.

PAL [5] formalizes active learning under a Markov decision
framework. Deep reinforcement learning is employed to learn
an optimal policy that maximizes model performance with a
fixed labeling budget.

ALFNET [12] trains a content-only learner and a collective
learner. It pre-clusters the data instances, and iteratively gen-
erates queries from the cluster that yields the highest level of
disagreement between the two learners.

LLGC [13] casts the active learning problem into the
problem of minimizing transductive Rademacher complexity.
To leverage network information, this method regularizes the
predictive model by imposing the local consistency assump-
tion, i.e., the linked instances sharing the similar labels.

B. Experimental Results

Figure 3 shows the classification accuracy of our TACA
approach and the compared counterparts on all datasets under
varying budget (i.e., the number of labeled instances). Notably,
if we use the labels of all training instances to directly train a
predictive model, the performance of the obtained predictive
model indeed offers an upper bound of the active learning
methods, as indicated by the dashed red line in Figure 3.
From these figures, the learning accuracy of every method
is seen to keep increasing with a larger budget. The reason
is that the predictive model can enjoy more information
provided by more labeled instances to achieve better prediction

performance. However, our TACA expedites the learning curve
of classifier more effectively and is more accurate than all
other methods with the same limited budget across all datasets.
Such results confirm that TACA can select more informative
instances comparing to other active learning methods. In other
words, TACA achieves accurate prediction performance with
the fewest queries among all compared methods.

In addition, from Figures 3 (a), (b), (c), (d), and (e), we
observe that ALTG almost performs the worst for all datasets.
This demonstrates that it is insufficient to rely only on the
graph geometric properties to generate meaningful queries in
attributed graphs, implying that information resided in the
node feature space directly determines model performance and
shall not be ignored. PAL performs the second worst on 4 out
of 5 datasets. This suggests that information conveyed by the
node features is also insufficient for node classification, neces-
sitating to consider graph topologies. One exception occurs
on the Amazon dataset, where PAL beats ALTG, ALFNET,
and LLGC. This is probably due to the reason that local
consistency may not hold in the Amazon product classification
tasks. For example, the frequently bought products (e.g., the
add-on items) may link with multiple other products from
very different categories. Enforcing the linked products to
share similar labels/features may hinder model representa-
tiveness (consider the canonical beer-diaper example), which
thus degrades the prediction performance. This finding is also
supported by the underperformed ALFNET and LLGC on the
Amazon dataset, since both methods explicitly make the local
consistency assumption.

Moreover, comparing ALFNET to LLGC, we observe that
the learning speed of ALFNET is extremely slow, although it
achieves almost similar results as those of LLGC after conver-
gence, i.e., ALFNET ties LLGC on Cora, DBLP, and PubMed
but it outperforms LLGC on Flickr. These results confirm
better the robustness of the model-free active learning methods
(i.e., LLGC and TACA) than that of the model-focused method
(i.e., ALFNET). Specifically, if noises exist in the previously
queried labels, the trained model is inaccurate. As a result,
the model-focused method fails to gauge the informativeness
of the unlabeled instances, thus suffering from randomness
until enough queried instances are correctly labeled. Flickr is
such a noisy dataset, where the passive learner can achieve
only 51% accuracy. ALFENET is seen to underperforms all
the compared methods with the limited budget of less than
600 labeled instances. In contrast, our proposed TACA does
not rely on model performance when generating queries hence
performs robustly on Flickr even with a few labels.

V. CONCLUSION

This paper proposed a fopology-and-content-aware (TACA)
active learning paradigm towards accurate predictive modeling
for networked data without onerous labeling effort. The key
idea of our paradigm is to learn informative node embed-
dings, such that the active learner can enjoy enriched node
information and hence achieves good prediction performance
with a few node labels. To that end, a novel embedding
method, named multi-granular graph auto-encoder (MGAE),
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Fig. 3: Classification accuracy of ALTG, PAL, ALFET, LLGC, and our TACA on all five datasets with various budgets.

is proposed to harmonize information conveyed by both node
features and network topologies. MGAE advances the prior
art by taking into account the knowledge with respect to both
local and global network consistencies, without imposing any
assumption on the network property. A model-free querying
strategy was then crafted to query the labels for the most
uncertain nodes by gauging their geometric relations in the
embedding space. Notably, our querying strategy does not rely
on the historical model performance and thus is robust to noisy
labels. A theoretical analysis substantiated the effectiveness of
our approach, and extensive empirical evaluation on five real-
world datasets further evidenced the performance superiority
of our approach over four active learning counterparts.
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