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Abstract: Humankind has been obsessed with knots in religion, culture and daily life for millennia 
while physicists like Gauss, Kelvin and Maxwell involved them in models already centuries ago. 
Nowadays, colloidal particle can be fabricated to have shapes of knots and links with arbitrary 
complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal 
particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets 
with complex topology. Knotted and linked colloidal particles induce knots and links of singular 
defects, which can be inter-linked (or not) with colloidal particle knots, revealing diversity of 
interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal 
objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and 
magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include 
hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures, 
which are classified based on homotopy theory, characterized by integer-valued topological 
invariants and often contain knotted or linked preimages, nonsingular regions of space 
corresponding to single points of the order parameter space. A zoo of topological solitons in liquid 
crystals, colloids and ferromagnets promises new breeds of information displays and a plethora 
of data storage, electro-optic and photonic applications. Their particle-like collective dynamics 
echoes coherent motions in active matter, ranging from crowds of people to schools of fish.  

This review discusses the state of the art in the field, as well as highlights recent 
developments and open questions in physics of knotted soft matter. We systematically overview 
knotted field configurations, the allowed transformations between them, their physical stability, 
and how one can use one form of knotted fields to model, create and imprint other forms. The 
large variety of symmetries accessible to liquid crystals and colloids offer insights on stability, 
transformation and emergent dynamics of fully nonsingular and singular knotted fields of 
fundamental and applied importance. The common thread of this review is the ability to 
experimentally visualize these knots in real space. The review concludes with a discussion of how 
the studies of knots in liquid crystals and colloids can offer insights into topologically related 
structures in other branches of physics, with answers to many open questions, as well as how 
these experimentally observable knots hold a strong potential for providing new inspirations to 
the mathematical knot theory. 
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1. Introduction  
Topological concepts are currently at the research frontier of modern condensed matter physics, 
with the exciting recent developments promising to revolutionize the future of many 
technologies, ranging from quantum computing to pre-engineered mechanics of materials [1,2]. 
Although topological knot-related ideas are found in early works by Gauss, Kelvin, Tait and 
Maxwell [3-7], it is only recently that the concepts of topology are successful in explaining entirely 
new types of physical behavior of condensed matter systems [1,2], including phenomena that 
cannot be interpreted otherwise. Various types of knots are studied in practically all fields of 
physics [1-11]. The mathematical knot theory, once inspired by early models in physics [3], has 
become a major branch of topology with connections to statistical mechanics, models of exotic 
states in Bose-Einstein condensates, theories in elementary particle and nuclear physics, 
quantum field theory, quantum computing, solid-state physics, and many other exciting frontiers 
of physics research [8-11]. The knots and links in these theories are beautiful mathematical 
constructs that, however, typically do not manifest themselves as physical objects accessible to 



 3 

experiments. This review concerns the studies of physical knots in condensed matter systems 
such as liquid crystals (LCs) and colloids [12-15] – ones that exist in three-dimensional (3D) space 
of these ubiquitous soft materials, that can be manipulated by laser tweezers and that can be 
directly observed in a microscope. 

Recognizing some of the key milestones in understanding the role of topology in physical 
behavior, the 2016 Nobel prize was awarded for theoretical discoveries of topological phase 
transitions and topological phases of matter [16-18], where many of the original breakthroughs 
resulted from considering two-dimensional (2D) systems. The situation is even more complex in 
3D, where various knot-like structures can be supported, localized spatially and stabilized 
energetically, including both knotted filaments (vortex lines/defects/singularities) and knotted 
nonsingular textures such as skyrmions and hopfions [6-11]. Topological solitons are well-studied 
in theoretical models of high-energy physics [6,7] aiming to describe the behavior of fundamental 
particles and atomic nuclei. This review considers such structures in ordered soft condensed 
matter systems, which can be realized and characterized in detail experimentally, like in the cases 
of LCs and colloids. Although quantum phenomena and hard condensed matter systems received 
much of the recent attention in applying topology-related ideas [1], potentially even a greater 
playground for deploying topological concepts exists in soft condensed matter. While topological 
effects in soft matter encompass a much broader spectrum of phenomena [2,19,20], here we 
focus on knotted structures of the order parameter fields and their interaction with topologically 
nontrivial surfaces in LCs and colloids. 

Historically, knotted fields in the modern physics emerged in classical and quantum field 
theories [6,7,21,22] and in branches ranging from optics to chemistry, materials science, particle 
physics, fluid mechanics and cosmology [19,20,23-32]. Recently, knotted fields found many 
experimental and theoretical embodiments, including both nonsingular solitons and knotted 
vortices [32-48]. Knots often arise in electromagnetic fields [28,37]. For example, researchers 
found solutions to Maxwell’s equations with knotted and linked field lines [37]. Recent 
developments in optical holography and microlithography make it possible to structure the flow 
of light in free space whereas the rich vectorial and phase structure of sculpted light allows for 
different kinds of knotted and linked light beams. For example, knotted optical vortices have 
been embedded into laser beams by Dennis and coworkers [28]. Understanding the knots which 
can be embedded in holograms [28] has even led to the new classes of knots now being studied 
in the knot theory [8-11]. Moreover, unlike in the case of various material systems [24,26], knot 
structures in electromagnetic fields could be hosted in free space, therefore arising in completely 
linear systems, including knotted field lines, optical vortices and knotted textures in polarization 
[37,38]. Numerical studies [19,20] have revealed characteristic cascades of fluid knot topologies 
and explicit forms of knotted flow fields with tunable helicity have been shown [39]. At the same 
time, Irvine and collaborators developed techniques [19,20,27] to embed knotted vortex 
filaments in fluids experimentally. In Bose-Einstein Condensates, knotted topological solitons 
were realized as the initial “imprinted” states that then decayed, revealing interesting dynamics 
[40,41]. In magnetic hard condensed matter systems, knot solitons could be stabilized as free 
energy minima in thin films and discs of non-centrosymmetric magnets [42], as well as in the bulk 
of chiral materials with crystalline anisotropy [43] or helicoidal structure [44]. Studies of various 
knots and related topological effects are highly interdisciplinary in nature and equally important 
for understanding synthetic macromolecules and biopolymers [45-47] and quantum material 
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systems [48]. 
This brief and non-exhaustive overview of exciting new developments in studies of knots 

shows how the manifestations of knotted fields penetrate different branches of science and how 
theoretical and experimental explorations can now go hand-in-hand in these systems, something 
that was far from possible in the past, when knots were mainly a subject of theoretical curiosity. 
The knots that are part of this review are realized in soft condensed matter media [12-15], which 
make them significantly more experimentally accessible, even though these systems can exhibit 
an exceptionally broad range of accessible symmetries and degrees of freedom at the same time. 
While focusing on various knotted fields in soft matter, the article draws attention of readers to 
related recent developments in other branches of physics, as well as emphasizes how soft matter 
media like colloids and LCs can serve as model systems to predict topologically related structures 
in other branches of science. 

What is soft condensed matter? Nobel laureate de Gennes defined soft matter [12, 49] 
as a broad combination of systems with strong response functions, which are capable of strong 
responses to weak external stimuli. These strong responses originate largely from the fact that 
the competing, behavior-defining interactions between the constituent building blocks of soft 
matter are weak and comparable in strength to thermal fluctuations [13]. Another defining 
feature of soft matter is that it often combines fluidity and ordering [12-15], with a very broad 
range of intermediate mesophases (phases in-between the fully ordered crystalline and 
disordered fluid states) with the order parameter fields possibly being scalar, vectorial and 
tensorial. LCs and colloids are classic examples of soft matter [12-15] and will be the focus of this 
review. The soft matter systems offer the possibility of laboratory realization and modeling of 
effects that are typically hard to probe. For example, order-disorder transitions in nematic LCs 
allowed for probing the Kibble mechanism of cosmic string dynamics in the models of Early 
Universe Cosmology [50] whereas colloids were used to model and probe dynamics of dislocation 
defects and glass formation in atomic and molecular system [14,51,52]. In a similar way, the 
power of soft matter can be extended to modeling topology of singular and solitonic knotted 
fields. LC colloids, where molecular LCs serve as the host medium for colloidal particles [53-55], 
are of particular interest from this standpoint as they combine the complexity of molecular and 
colloidal LC systems. Figure 1 shows examples of soft matter systems with vectorial and different 
tensorial order parameters, including uniaxial nonpolar nematic (Fig. 1a) and ferromagnetic (Fig. 
1b) LCs, as well as orthorhombic (Fig. 1c) and polar non-orthorhombic ferromagnetic (Fig. 1d) 
biaxial LCs. What kinds of knots can be realized in such fields? The answer, which can be 
experimentally tested using LCs and colloids, has a fundamental importance spanning well 
beyond condensed matter because topology and free energy potentials can be mapped to that 
of related problems in other physical systems. Having soft matter systems as host media with 
facile responses to external stimuli [12,13] for these knotted fields also enables various types of 
control by external fields, boundary conditions, light, and so on. The main goal of this review is 
to describe the recent progress in realizing zoos of knotted fields in LCs and colloids, as well as to 
emphasize how this can aid in similar explorations in other branches of physics.   

Below the review article proceeds with a brief historic overview (Section 2), which is 
followed by the discussion of general classifications of different types of knots and links and 
topologically nontrivial field configurations (Section 3). The article then continues with 
overviewing the recent progress in studies of various topologically nontrivial structures in 
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nematic colloids and drops, where singular defects are commonplace (Section 4). The structure, 
topology and self-assembly of solitonic knots in LC and colloidal soft matter systems are discussed 
in Section 5. Section 6 is devoted to emergent out-of-equilibrium behaviors of such knotted fields 
and particle-like topological solitons. The review article then concludes with a brief discussion of 
open questions, opportunities and perspectives in this research area (Section 7). 
 
2. Historic remarks 
Humankind has been long fascinated with knots and used them for both practical and spiritual 
needs throughout history [4,56-58]. Over the last several millennia, knots often served as 
decorations, signs, religious symbols and, in a more prosaic daily life, just as the ubiquitous means 
to hold things together (Fig. 2) [4, 8,57,58]. Diversity of knots allowed them to be used in rather 
different contexts ranging from recording information on ropes and strings to writing, boat sailing, 
climbing, netting, textile manufacturing and so on [4,57,58], and of course to tie shoelaces. As 
decorations and symbols, knots are important components of Tibetan, Roman, Celtic, Byzantine, 
Coptic, Islamic, Kievan Rus’, Ethiopian, Chinese and Indian cultures, among many other (Fig. 2) 
[4,56,57]. For example, the so-called Eternal Knot (also known as the “endless” knot) is a symbol 
of the ultimate unity of everything, one of the Eight Auspicious Signs endemic to Hinduism, 
Jainism and Buddhism religions [4,56,57]. In different cultures, many other types of knots were 
widely used to symbolize love, family, eternity, union, wedding and so on [4,57]. These special 
cultural and religious uses of knots as symbols co-existed with their widespread uses for practical 
and recently also scientific needs. For example, after joining the ends, the common overhand 
knot becomes a trefoil knot (Fig. 2a,b), the simplest nontrivial knots in the mathematical knot 
table that is also found in the Celtic Book of Kells (Fig. 2c) and nowadays is often used for the 
identification with Celtic culture. This very same trefoil knot is also a symbol of trinity in 
Christianity and different variants of it played important roles in Japanese, Korean and Tibetan 
cultures [4]. The Solomon link and Borromean rings (Fig. 2d,e) are two more out of many other 
examples of knots that are important in the mathematical and physics theories but also have 
history of being used as important symbols [4]. While being part of Chinese history for several 
millennia, knots like the one shown in Fig. 2f are also widely used decorations in East Asian 
countries nowadays. The Gordian Knot legend is an example showing how, historically, knots 
could be associated with challenging problems and nontrivial solutions to them, in this case 
involving Alexander the Great in 333 BC [4,57]. Knotty problems are associated with challenging 
issues not just in different branches of science (where knots actually often materialize in polymer 
chains, molecular structures, field configurations and many other embodiments), but also in 
politics, various legal practices, relations and so on [4].  

An important branch of modern mathematics is knot theory, which also has an interesting 
history [3-8]. In 1833, Carl Friedrich Gauss introduced the linking integral for computing the 
linking number of two knots and, together with his student Johann Benedict Listing, did 
important early studies of knots from a mathematical viewpoint [4]. A very strong interest in 
studies of knots was sparked by early models of vortex atoms developed slightly later in Scotland, 
where Sir William Thomson (Lord Kelvin) had an interesting hypothesis that atoms were knots of 
swirling vortices [3-8]. Long before even the very existence of atoms was widely accepted, Kelvin 
and his colleagues in Edinburgh (among whom the most prominent ones were James Clerk 
Maxwell and Peter Guthrie Tait) classified various closed-loop knots into tables that they were 
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hoping could match the periodic table of chemical elements, where different elements would 
correspond to topologically distinct knots [3-5]. Experimentally, Tait and Maxwell created smoke 
rings and links as simple model systems accessible at that time [3-6]. The researchers even hoped 
that the systematic classification of all possible knots would explain how atoms absorb and emit 
light [3-5]. Despite failing to explain the nature of atoms, these early works of Kelvin, Tait and 
Maxwell became a nucleus for the development of the modern mathematical knot theory [4,8], 
an important foundation for understanding various types of knots that eventually emerged in 
different branches of physics, biology, chemistry and cosmology [3-11]. Throughout history, 
cross-pollinating connections between the knot theory and physics emerged many times. For 
example, being inspired by Kelvin’s model of atoms [59], Skyrme proposed a topological model 
of subatomic particles with different baryon numbers [21,59,60]. As another connection between 
the knot theory and physics, Ed Witten was awarded the Fields Medal partly for bringing new 
insights into the knot theory based on quantum physics [61]. Witten also established connections 
between the Skyrme model and quantum chromodynamics [60]. 

Another important concept that is a subject of this review, the soliton, also has important 
historic roots in 19th-century Scotland, where it was first observed in 1834 by John Scott Russell 
[62,63]. A solitary wave called “soliton” is typically associated with a propagating self-reinforcing 
wave packet that persists for long time. Such solitary waves have been observed in many 
branches of physics, with perhaps the other most known example beyond the solitons in fluid 
dynamics being the optical solitons that take the form of self-focusing, non-spreading laser 
beams that propagate without diverging due to nonlinear optical effects [62,63]. From a more 
general standpoint, solitons are solutions of nonlinear partial differential equations describing 
different physical systems and they often have topologically nontrivial nature, with the subclass 
of topological solitons often exhibiting various knotted structures in physical fields and order 
parameter spaces [7,62,63]. Such topological solitons in higher spatial dimensions can be stable 
and stationary in nature or exhibit a host of different types of translational and rotational motions 
and other dynamics. The topology-related ideas in studies of solitons were introduced by Skyrme 
[21], who was inspired by works of Kelvin and Russell’s at the same time [7,59], and these studies 
also relate to other physics concepts, such as instantons and singular topological defects.   

Remarkably, ideas that knots in fields could emerge and behave like particles persistently 
recurred throughout the history, with the knotted fields of Gauss in the early 1830s to Kelvin, 
Maxwell and Tait later in the 19th century, and Skyrme and Witten in the second half of 20th 
century being just several particularly interesting examples [3-7]. With many roots in history, 
fundamental studies of knotted fields nowadays promise means to realize new materials with 
pre-engineered properties that differ from those of naturally occurring ones, as well as may 
provide new inspirations to the mathematical knot theory and physics models in many branches 
of science, well beyond condensed matter physics. This review article will show how knots in soft 
matter systems indeed behave like particles, resembling behavior of atoms, molecules and other 
particles, being capable of forming crystals and even exhibiting active-matter behavior. 
 
3. Mathematical foundations 
3.1. Diversity of knots and links  
In exploring diverse manifestations of knots in physics it is important to systematically classify 
them. Starting from the times of Kelvin and Tait [6], this is done by creating tables of knots (Fig. 
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3), where distinct knots are labeled by knot properties, such as the crossing number [4]. In the 
most common Alexander-Briggs notation, each distinct knot is labeled by its crossing number 
(the minimal number of double points in the knot’s planar projections). An additional subscript 
used in this notation is a numbering index for each knot of that crossing number (Fig. 3), though 
this subscript has no special significance because the order is arbitrary [4,6]. For example, the 
simplest object of knot theory, the unknot, is labeled as 01 whereas the simplest knot distinct 
from unknot, the trefoil knot, is denoted as 31 [3-6]. Similar notations classify multi-component 
links of closed curves without common points (Fig. 4), including linked unknots and various 
interlaced knots within the 3D space [6]. A widely known subclass of knots are torus knots that 
(in one of their embodiments) fully reside on surfaces of tori (Fig. 2g), with the simplest of the 
torus knots again being the trefoil 31 knot (Fig. 2b) [6]. Each torus knot can be further uniquely 
specified by two integers pT and qT (Fig. 2g) [3,4]. The notation T(pT,qT) implies that the knot winds 
q times around a circle in the interior of the torus, and p times around its axis of rotational 
symmetry, though different notations are used as well. A T(pT,qT) knot is equivalent to a T(qT,pT) 

torus knot and the crossing number is found as minpT(qT-1), qT(pT-1), establishing the relation 
between the different notations and characteristics of torus knots. As an example, a trefoil knot 
in this notation can be labeled as T(2,3) or T(3,2) (Fig. 2g) [6]. Depending on a convention, the 
signs of p and q define the directions in which the strands of the knot wrap around the torus, 
where, most commonly, pTqT>0 corresponds to the right-handed knot configuration (Fig. 2b) [6,8]. 

Like knots, links can be distinguished by their crossing numbers [4,8]. One way of 
classifying the links is the Rolfsen table of the prime links labeled as Cn

p by the crossing number 
C, the number of closed loop components n, and the order number p among the links with C 
crossings within the table (Fig. 4a) [6,8]. Multi-component unknots and knots can be interlaced 
with each other in much more non-trivial ways than just the direct linking. For example, a series 
of Brunnian links with three or more components can be inseparable from each other without a 
direct linking of each of the component (Fig. 4b) [6]. A known example are Borromean rings with 
6 crossings, though similar inseparability of closed loops is achieved in other configurations of 
three or more components with different crossing numbers (Fig. 4b) [4,8]. Similar to knots, a 
torus link is a multi-component link geometrically situated on the surface of a torus and is realized 
when p and q are not relatively prime (Fig. 2g). Knots and links are chiral when they are not 
equivalent to their mirror images (Fig. 2b). On the other hand, an oriented knot that cannot be 
distinguished from its mirror image is an amphichiral (achiral) knot [3-6]. Therefore, knot’s 
properties can be specified further and, overall, there are five types of knot symmetries defined 
by chirality and invertibility [4,8] whose manifestations in material systems potentially could be 
related to the ordered host medium’s symmetry. Torus knots are chiral (see the examples of 
trefoil knots in Fig. 2b) [3-6]. 

What are the different ways in which knots and links could manifest themselves in soft 
matter systems? Biopolymers, synthetic macromolecules, proteins, DNA and even small 
molecule strands can take shapes of different knots and links [64-68], either because of the 
chemical design or because of the random-walk-like processes. Colloids can be shaped as unknots, 
knots and links [34,35, 69-72]. Singular vortices in LCs can take shapes of knots [33] and various 
solitonic defects can be knotted too [32,73,74], with knots and links even emerging in the 
topologically nontrivial states of the order parameter. These knots and links play an important 
role in defining physical behavior of soft matter systems because of various types of topological 
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protection associated with them. When creating knots on strings like in the case of shoelaces, 
such as the overhand knot in Fig. 2a, we often intend undoing them at a later time. Such 
unknotting is possible by manipulating the loose ends of the string, but this would be impossible 
if the string were to be infinitely long or if its two ends were to be glued together to transform 
the overhand knot into a trefoil knot (Fig. 2a,b). All knotted configurations shown in Figs. 3 and 4 
cannot be unknotted or transformed one to another without cutting or gluing, similar to how one 
cannot inter-transform topologically distinct surfaces like a torus and a sphere. Throughout this 
review, we shall see examples of how such topological protection manifests itself when related 
to knotted topology of colloids and order parameter fields of various soft matter systems. Before 
we proceed, however, it is useful to briefly review also the homotopy theory [75]. 
 
3.2. Homotopy theory of topological solitons and singular defects  
Topologically nontrivial field configurations can be of singular type (singular topological defects), 
containing regions of physical space where the order parameter cannot be defined, or instead of 
nonsingular type (topological solitons), within which the structure of the field is continuous 
everywhere, but it cannot be continuously morphed to a trivial uniform state without destroying 
the order or introducing singular defects. Much like (though not exactly) genus and Euler 
characteristics distinguish topologically distinct surfaces, various topological field configurations 
can be classified on the basis of mappings of these fields from the physical configuration spaces 
to the order parameter spaces (the manifolds of possible values of the order parameter) [75-77]. 
Typically this is the mapping from spheres of various dimensions to the order parameter spaces 
that often are also spheres. Therefore, the homotopy groups of spheres classifying these 
mappings are the most common (Fig. 5) and often utilized to label the different topologically 
distinct field configurations, though there are also other homotopy group examples relevant to 
LCs that will be also briefly discussed below in the review. Algebraic topology describes how such 
spheres of various dimensions can wrap around each other, which is systematically characterized 
by the homotopy groups that describe the structure of topological spaces (without considering 
the precise geometry) [6,75]. In studies of topological solitons and singular defects, such 
classifications provide valuable means of summarizing topologically different structures in the 
order parameter fields, although the existence of a nontrivial element in the homotopy class does 
not guarantee their energetic stability or experimental observation [75]. The n-dimensional 
spheres (n-spheres, denoted as 𝕊n) are defined as sets of points equidistant from the origin in 
n+1 dimension, with an 𝕊1 circle being the 1-sphere embedded in 2D space (ℝ2), 𝕊2 being an 
ordinary sphere embedded in 3D space (ℝ3 ) and 𝕊 0 being 0-sphere embedded in ℝ 1 that 
comprises 2 points equidistant from the origin in 1D, and so on [3-7, 78,79]. The homotopy group 
labeled as πi(𝕊n) is the i-th homotopy group that enlists the topologically different maps from 𝕊i 
into 𝕊 n, where none of the distinct mappings can be continuously deformed to the other 
mappings (Fig. 5) [75-79]. Algebraic topology results are well established and depend on the 
integers i relative to n, with πi( 𝕊n)=0 for i<n (Fig. 5), which means that the corresponding 
homotopy group is the trivial group [78,79]. In the case of mappings between spheres of the 
same dimension (i=n), πn(𝕊n)=ℤ, so that the spheres can be wrapped around spheres integer 
number of times for each map (Fig. 5). When i>n, a particularly interesting example of the 
mappings is called the Hopf fibration [78,79] (Fig.5), which wraps 𝕊3 around 𝕊2 an integer number 
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of times, π3(𝕊 2)=ℤ. How can this abstract mathematical knowledge of mappings help with 
classifying topological defects in soft matter?  

The procedures for utilizing homotopy theory for solitonic and singular defect field 
configurations differ slightly because of their different nature. Since the singular defects in fields 
are discontinuities in the form of walls, lines and points, with the order parameter varying 
continuously outside these singular regions, one can surround them with spheres of the 
corresponding dimensions (say 𝕊1 for line defects and 𝕊2 for point singularities) and characterize 
how the field, like the vector or director field, varies around these spheres (Fig. 6) [75-77]. The 
order parameter spaces often also take the form of spheres. For example, the order parameter 
space  for unit vectors in 3D space ℝ3 is 𝕊2 (describing all possible orientations of the unit vector), 
but it becomes 𝕊1 when these unit vectors are forced to confine their orientations into a 2D plane 
ℝ2 and becomes 𝕊0 when the unit vectors can only take orientations parallel or anti-parallel to 
the positive direction in ℝ1. Therefore, the topologically distinct singular defects in unit vector 
fields can be classified with the help of maps from the i-spheres surrounding them to n-spheres 
describing their order parameter spaces [75]. Some of the simplest examples are illustrated in 
Fig. 6. Just like one can wrap one circle around the other an integer number of times (imagine 
wrapping a closed-loop rubber band around a finger), the structure mapped from 𝕊1 around a 

singular defect in 2D can wrap the 𝕊1 order parameter circle an integer number of times, 1(𝕊1)=ℤ, 
indicating that singular defects with integer winding numbers exist in this system (Fig. 6a,b). Also, 
the structures of a vector field mapped from 𝕊2 around a singular point defect in 3D can wrap the 

𝕊2 order parameter sphere an integer number of times (Fig. 6c), 2(𝕊2)=ℤ, again defining the 
charges of all possible singular point defects in this system (Fig. 6) [75-77]. On the other hand, 

the fact that 1( 𝕊 2)=0 informs one that singular line defects in 3D unit vector fields are 
topologically unstable, so that they cannot be knotted or even exist because they can be 

smoothly morphed to a uniform topologically trivial state [75]. Likewise, since 2(𝕊1)=0, one 
cannot form topologically nontrivial point defects when the unit vectors are forced to take 
orientations confined to a 2D plane [76].    

What about nonsingular solitonic structures with different topologies? While they may 
seem to be rather different from singular defects, always having the field orientation well defined, 
they can be classified on the basis of the very same sphere-to-sphere maps (Fig. 5) [75-79]. In ℝ1, 

a solitonic 360-twist nonsingular wall in a unit vector field has the far field vector pointing 
upwards, and, thus, this configuration space can be “compactified” (by connecting the far-field 
regions of ℝ1 with like-oriented unit vectors) into 𝕊1 (Fig. 6d,e) [7,24,80]. The topological class of 

the solitonic structures of this kind is then labeled by 1(𝕊1)=ℤ, similar to the case of singular line 
defects for the 2D unit vector fields (Fig. 6a,b,d,e) [80]. The configuration space of solitonic 
topological structures embedded in the uniform far-field background in ℝ2 can be compactified 

to 𝕊2 (e.g. by means of stereographic projection), so that the nontrivial result 2(𝕊2)=ℤ  from 
algebraic topology (in addition to classifying singular point defects like the one shown in Fig. 6c) 
also informs us that all possible topologically nontrivial structures in this case are characterized 
by the integer-valued 2D skyrmion numbers (Fig. 6f) [81,82]. Similarly, the configuration space in 
ℝ3 with the uniform far-field is compactified to 𝕊3 through a higher-dimensional analog of 

stereographic projection and the mathematical result from algebraic topology 3(𝕊2)=ℤ also 
informs us that the Hopf indices of 3D spatially localized solitons also take integer values [7].  



 10 

 Unit vector fields are not the only ones encountered in soft matter (Fig. 1), and, thus, the 
n-spheres cannot always represent the ground state manifolds for the order parameters [75-78]. 
The LC unit director fields with nonpolar symmetry describe the average orientation of rod like 

molecules, n(r)-n(r) (Fig. 1a).  Because of the non-polar nature, representing all orientations of 
n(r) on 𝕊 2 requires only half the sphere and leaves diametrically opposite points non-

distinguishable from each other (Fig. 6g) [75]. The order parameter space for n(r) is 𝕊2/ℤ2 ℝ𝑃2, 
a sphere with diametrically opposite points identified (Fig. 6g). One of the major differences as 

compared to the case of unit vectors is that 1(𝕊2/ℤ2)=ℤ2, meaning that singular vortex lines 
(disclinations) can be stable in 3D space of LCs [75,76], though only one type of such defect lines 
can be realized that is topologically different from the uniform state. These defect lines can have 
different local structures when embedded in 3D samples, including  wedge disclinations with 
opposite signs of winding numbers (Fig. 6h,j) (which are topologically distinct when realized in 
2D) and twist disclinations (Fig. 6i). In 3D, however, the defect line structures shown in Fig. 6h-j 
can be smoothly morphed one to another within ℝ3 and are therefore topologically the same, 
much like (though not exactly) surfaces of a doughnut and of a coffee mug are characterized by 
the same value of genus g=1 and (in one’s imagination) can be morphed one into another without 
cutting or gluing [75]. In a similar way, unlike in the case of vector fields, one can realize 

nonsingular twist domain walls with only 180-twist of nonpolar n(r) embedded in a uniform far 

field background (Fig. 6k,l), which are labeled by 1(𝕊1/ℤ2)1(𝕊1)=ℤ [80]. Solitonic structures 
that exist in lower dimensions can be also embedded in higher dimensions while being 

translationally invariant with respect to translations along them. For example, the 2( 𝕊2)=ℤ 
solitons can be found as translationally invariant structures spanning ℝ3 of LCs and magnets, 
either as individual spatially localized structures or periodic arrays [80]. When embedded in ℝ3 

in LC samples like glass cells of finite thickness, such solitons often terminate on 2(𝕊2)=ℤ point 
defects due to boundary conditions [80-83]. Similarly, translationally invariant solitonic walls 

1(𝕊1/ℤ2)=ℤ are often embedded into finite-size structures in 2D by singular defects of the same 

class 1(𝕊1/ℤ2)=ℤ; in 3D samples with all 3D orientations of director allowed, such twist walls 

are described by 1( 𝕊 2/ℤ2)=ℤ and can be embedded into a uniform background by the 

1( 𝕊2/ℤ2)=ℤ disclinations, forming one type of the so-called “cholesteric fingers” [80]. The 
examples above illustrate a more general rule for imbedding lower-dimensional solitonic 
structures into a uniform background in higher dimensions with the singular defects of a 
homotopy class matching that of solitons [80]. The soft-matter topological solitons and defects 
have many topological counterparts in other branches of physics, ranging from elementary 

particle physics to cosmology. For example, 3(𝕊3)=ℤ Skyrme solitons (Fig. 5) are used to model 
subatomic particles in high energy and nuclear physics [7,21], which is also the reason for 
often referring to their 2(𝕊2)=ℤ low-dimensional analogs in LCs and magnets as “baby 
skyrmions” [7,24,81].  

Although exceptionally useful in classifying topologically distinct field configurations, 
homotopy theory does not provide the means for exploring the entirety of topological complexity 
of fields in soft matter even in cases when defects and solitons are embedded within a bulk of an 

ordered medium like LC [83-87]. For example, a closed loop of a half-integer 1(𝕊2/ℤ2)=ℤ2 

disclination is equivalent to a point defect 2(𝕊2/ℤ2)=ℤ in the far-field, but its hedgehog charge 
depends on how this disclination is closed on itself, its local structure, twisting, knotting and 
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possible linking with other defect loops [83,85-87]. Knowledge of this relation cannot be 
predicted solely by the homotopy theory, but can be understood by invoking the analysis of the 
disclination’s structure along the loop, its twist and writhe [85,86]. In other words, the homotopy 
theory identifies what the knotted fields can be comprised of, but not how to obtain field 

configurations with desired 2(𝕊2/ℤ2) hedgehog number by looping and knotting 1(𝕊2/ℤ2) vortex 

lines or how to construct solitons with desired 3(𝕊2/ℤ2) Hopf index by looping and knotting 2D 

2(𝕊2/ℤ2) skyrmions. Moreover, when LCs and colloidal ferromagnets interact with surfaces due 
to various boundary conditions, the topology of structures of these fields interplays with that of 
surfaces, which can be rather nontrivial and are a subject of ongoing studies. The sections below 
will overview illustrative examples showing how topology can define behavior of soft matter 
systems like nematic colloids, LCs, emulsions, polymer-LC composites, colloidal ferromagnets and 
so on. 
 
4. Topology of nematic colloids and drops 
4.1. Spheres and handlebodies as colloidal particles and confinement surfaces 
Colloids are an abundant type of soft matter consisting of tiny (typically nanometers-to-
micrometers in dimensions) particles dispersed in chemically distinct host media. The shape of 
colloidal particles is usually spherical or topologically equivalent to a sphere, though recently 
colloids with surfaces having a topology distinct of that of spheres have been developed [34]. 
When the dispersing medium of the colloidal system is the LC, many interesting forms of 
interactions between the topologies for surfaces and molecular alignment fields can arise due to 
the boundary conditions at the LC-particle interfaces. Figure 7 shows polarizing micrographs (Fig. 
7a,b) of the so-called “elastic dipole“ director structure (Fig. 7c) [53-55,88] formed by a solid 
spherical colloidal particle immersed into an aligned nematic LC medium. The particle is 
accompanied by a point defect and one can immediately recognize that the topological defect 
effectively compensates for the radial structure of the director on the particle’s surface (Fig. 7c,d) 
[53,55,88]. The boundary conditions on colloidal inclusion’s surfaces effectively act as a radial 
hedgehog point defect, being compensated by a hyperbolic point defect of the opposite 
hedgehog charge when embedded in the aligned LC (Fig. 7d). Such behavior is natural as the net 
charge of defects and particles embedded in a uniformly aligned background has to be zero, 
topologically neutral. Therefore, this structure not only has the dipolar-type elastic far-field 
perturbation of n(r) [88], but also features a topological dipole formed by colloidal and singular 
defect entities of opposite hedgehog charge. However, this simple example can be also 
connected to the Poincare and Gauss topological theorems describing interactions of fields and 
surfaces. Consistent with these theorems, the topological hedgehog charge of the distorted 3D 

n(r) at the particle’s surface is /2=1, where =2 is the Euler characteristic of the sphere [30]. 
Indeed, by choosing to vectorize the director so that vectors point out of the surface of the sphere, 

one can see that the m=−1 topological charge of the particle-induced hedgehog point defect 
(black and red filled circles shown in Fig. 7c, d) compensates for the +1 charge of the colloidal 
particle and obeys the expected relation [55]. Had one chosen to globally vectorize n(r) so that 
the vectors point into the particle’s surface, the charge of particle-induced defect would be -1 
(sink) and that of the hyperbolic point defect nearby would be +1 (source), showing that the 
hedgehog charges of point defects in nematics are defined up to the sign and that these signs 
reverse upon changing vectorization directions between the two anti-parallel directions along 
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n(r) [55]. For a nonpolar nematic n(r) field, inducing a hyperbolic hedgehog point defect is not 
the only way to embed the particle with perpendicular surface boundary conditions within an 
aligned LC. The other possible structure, shown in Fig. 7e, is what is a nematic colloidal 
quadrupole (note the quadrupolar nature of elastic distortions away from it) with a so-called 
“Saturn ring” disclination defect loop [88-92]. This disclination loop is an unknot of a vortex line, 
the simplest object in the knot tables (Fig. 3). Since both the hedgehog point defect and the 
disclination loop can compensate for the same radial structure of n(r) at particle’s surface, it 
appears that this particular disclination loop and the point defect must be topologically 
equivalent and assigned the same hedgehog charge [12,91]. In the case if a colloidal sphere 
exhibits tangential boundary conditions, n(r) features two surface point defects capping the 
particle at north and south poles (Fig. 7f) [53,54]. While here one can understand this 
axisymmetric structure from very simple considerations of continuity of n(r) lines tangent to the 
colloidal sphere’s surface, this is also a direct manifestation of the Hairy Ball theorem, which 
requires that the field lines tangent to 𝕊2 form defects with a net total winding number equal to 

 = 2. Indeed, the degrees (winding numbers) of the two +1 defects in the ns(r) field tangent to 
sphere’s surface add to +2 (Fig. 7f) [53,54]. Beyond tangential and perpendicular boundary 
conditions, understanding of topological defects at the surfaces and in bulk of LCs induced by 
spheres was recently extended to tilted and conically degenerate boundary conditions, where 
boojums and disclination rings tend to appear at the same time [93,94]. 

Although the spherical nematic colloids are well studied and understood, topologically 
nontrivial colloidal particles, such as the ones with shapes of handlebodies, can be fabricated by 
means of photolithography, two-photon photopolymerization or wet chemical synthesis 

[34,55,69-71]. Such colloidal particles can be characterized by Euler characteristic  =2−2g, 
where g is particle’s genus determined by the number of holes in its surface [30]. Although the 
role of particle topology in determining the colloidal behavior remains to be understood in 
fundamental contexts related to Brownian motion, diffusion and self-assembly mediated by 
electrostatic, depletion and other interactions, most of the work done to date was reported for 
the case when such particles are introduced into a nematic LC [34,55,69-71, 92]. This interest in 
such nematic colloidal dispersions of topologically complex particles stems from this soft matter 
system’s ability of probing interactions between surfaces and field configurations, where these 
particles induce topological defects dictated by colloidal topology. Surface functionalization of 
particles, such as the handlebodies of different genus g made from silica, gold or different 
polymers [34,55,69-71], allows one to define tangential, perpendicular and conically degenerate 
boundary conditions for the LC molecular alignment and n(r) [34,55,69-71,93,94]. The strength 
of these boundary conditions can be tuned by using different materials and surface 
functionalization approaches [95-99]. The n(r) around these handlebody colloids, which 
approaches the far-field director n0 at large distances, can be probed by conventional polarizing 
optical microscopy and different 3D director imaging techniques [100-103], including sub-
diffraction-limited mapping of n(r) [104].  

Like for spheres (Fig. 7), the interplay between the topology of colloidal surfaces and LC 
alignment field can be probed for ring-shaped and handlebody colloids with different boundary 
conditions on particle surfaces as well. For tangential surface anchoring, this interplay prompts 
the appearance of defects dubbed boojums (which we already encountered when discussing 
colloidal spheres, Fig. 7f), which are ubiquitous and form on surfaces of ordered media like 
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superfluids, LCs, and Bose-Einstein condensates [105-109]. To minimize free energy due to n(r)-
distortions (Fig.8), the nonspherical particles tend to align with their ring planes parallel to n0, 
although metastable configurations with ring planes perpendicular to n0 are also observed and 
can be reproducibly obtained by repetitive local melting of the LC by laser tweezers, followed by 
quenching it back to the nematic state [69]. Handlebody-shaped polymer particles with different 
genus g distort the nematic molecular alignment while obeying topological constraints to induce 
at least 2g-2 boojums, as revealed by characterizing 3D textures of n(r) using polarized nonlinear 
optical imaging (Fig. 8) [69]. Defects in the 2D ns(r) director field at the LC-colloid interface have 

a net strength adding to  [30] of the handlebody, although one often also encounters additional 
surface defects of opposite signs that self-compensate each other, providing additional ways of 
satisfying topological constraints at multiple stable or metastable particle orientations [69]. For 
example, a single colloidal torus with a ring plane parallel to n0 induces four boojums (Fig. 8a-d) 
in the most commonly observed structures [69]. A less frequently observed metastable 
configuration of a torus particle aligned perpendicular to n0 contains no boojums, but rather a 
non-singular axisymmetric n(r) that satisfies tangential boundary conditions on the surface of 
particle while approaching n0 at large distances from its surface [69]. The 2D “surface” nematic 
director at the surface of a torus with tangentially degenerate boundary conditions contains no 
defects in the latter case, but four 2D defects (point disclinations) in the former case, two of 
strength (winding number) +1 and two of strength -1 (Fig. 8a-d), with winding numbers adding 

to zero, i si==0, in both cases. In a similar way, handlebody colloids with g>1 aligned with ring 
planes parallel to n0 induce several stable and metastable configurations of n(r) with different 
numbers and locations of boojums (Fig. 8e-m). The number of induced boojums for g=2 is most 
commonly within 6 to 10 and the net winding number of defects in ns(r) tangent to particle’s 

surface is always i si=-2 (Fig. 8e-i). For colloids of genus 3, 4 and 5 (Fig. 8j-m) and all other colloids, 
the total strength of the point disclinations piercing ns(r) at the LC-colloidal interface also adds to 

the Euler characteristic, i si=, in agreement with the Poincare-Hopf index theorem [69]. The 

s=1 point defects locally split into pairs of semi-integer disclinations of equivalent total strength 
of singularity (Fig. 8i). Rather interestingly, these split-core boojums have handle-shaped bulk 

disclination semi-loops terminating at the 1/2 surface defects within ns(r) (Fig. 8i) [69,110,111]. 
Although various stable and metastable states can be expected, colloidal surface topology 

dictates presence of at least 2 half-integer defects or at least  integer-strength boojums (or 

some combination of them) of total strength equal to  for strong and finite boundary conditions 
on particles surfaces. We note that this does not have to be the case for weak surface anchoring 
or for particles with dimensions approaching that of the size of singular defect cores (tens of 
nanometers), where surface boundary conditions can be violated so that the particles produce 
no or very little perturbations of the director [71]. 

Experiments reveal that colloidal handlebodies with perpendicular boundary conditions 
also tend to spontaneously align with ring planes either perpendicular or parallel to n0, which 
again is driven by minimizing the elastic energy costs of the particle-induced n(r) (Fig. 9) [34]. 
Handlebody colloidal particles with planes of rings parallel n0 induce point defects, both inside 
and outside of the rings (Fig. 9a-f), which manifest themselves as points of termination of dark 
and bright brushes in the polarizing optical micrographs (Fig. 9g-i). Handlebody colloids aligned 
perpendicular to n0 are all surrounded by single half-integer exterior disclination loops of 
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hedgehog charge equal unity (Fig. 9j-n). Additionally, each such genus-g particle has g defects in 
its holes, which are either singular disclination loops or hyperbolic point defects of elementary 
(unity) topological hedgehog charge (Fig. 9j-n). Disclination loops in the holes of each handlebody 
can be transformed into point defects and vice versa by melting the LC into an isotropic state 
using high-power focused laser light, showing that they correspond to stable or metastable 
structures (separated by energetic barriers) under the different conditions [34, 55]. Hedgehog 
charges of these defects have been determined for vector field lines pointing perpendicularly 
outward from the particle surfaces and mapping onto the 𝕊2 order-parameter space for globally 

vectorized n(r). Like for spheres (Fig. 7c,d), since n(r) is non-polar (n-n), one could have chosen 
the opposite direction of vectorizing, which would consequently reverse the signs of all hedgehog 
charges due to defects and surfaces of particles, all embedded within an aligned LC. Although the 
handlebodies orientated perpendicular and parallel to n0 induce very different n(r), the sum of 

hedgehog charges is always pre-determined by =(1-g). This finding is consistent with 
predictions of topological theorems [30] that define the charge of the n(r) on the surface of 

handlebody of given . The topological hedgehog due to n(r) on particle’s surface is compensated 

by the net charge of particle-induced defects imi=/2 (of opposite sign) in the LC bulk, as 
needed to embed such a colloidal object into the uniformly aligned LC [34,55]. This relation was 
found to hold for handlebodies with g=1, 2, … , 5 (Fig. 9) and also for spherical colloids with g=0 
(Fig. 7). Although perpendicular boundary conditions due to the handlebody-shaped particles in 
the LC with a uniform n0 can be satisfied by a minimum number of point or ring defects of the 

same sign having the total hedgehog charge of imi=/2, these field configurations are often 
energetically costly and tend to relax to topology-satisfying field configurations that minimize the 
elastic free energy but have additional self-compensating pairs of defects of opposite hedgehog 
charge. In the experimental systems, colloidal g-handlebodies typically induce g+1 individual 
defects, from which two self-compensating defects have opposite signs and appear just to 
minimize free energy [55,112]. These additional self-compensating defects are caused by energy 
minimization rather than topological requirements. That these extra defects help minimizing 
energy may sound strange because they are typically associated with high energy costs, it often 
turns out to be energetically beneficial to have such extra defects rather than much more severe 
bend-splay-twist deformations of director that would be required to keep the overall number of 
defects at the topologically required minimum. 

Examples in Figs. 7-9 show that, by building on the interplay of surface and field topologies 
with roots in Gauss, Hairy Ball and Poincare theorems, one can (on-demand) generate LC surface 

defects of total net winding number adding to  and bulk defects with hedgehog charges adding 

to  /2 by using colloidal particles with various Euler characteristics. It is also interesting that 
colloidal unknots and handlebodies induce unknots or point defects in the forms of closed-loop 
disclination defects in their interior and exterior [34,55], as well that the energetically-driven 
number of unknots or singular points that a particle with perpendicular boundary conditions 
generates in a nematic LC increases with g. Even though some of these unknots are topologically 
self-compensating and some are being substituted by point defects to minimize energy [34], this 
interplay between the topology of colloids and defects poses a question whether various knotted 
vortices can be induced by colloidal particles with knot-like shapes, which is addressed in the next 
section. 
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4.2. Knots as colloidal particles 
By taking advantage of two-photon photopolymerization [113] and other fabrication techniques 
[55], it is also possible to fabricate knot-shaped microparticles (Fig. 10a-d) and explore the 
interplay of topologies of the knotted surfaces and molecular alignment fields [35]. This may be 
used for understanding other experimentally less accessible physical systems with similar 
topological objects. On the other hand, such knotted colloids can be interesting building blocks 
of topological matter arising from the mesoscale self-organization of knotted colloidal “atoms” 
driven by minimization of elastic energy and mutual entanglement of induced defects [35]. When 
dispersed in LCs, knotted colloids with controlled surface boundary conditions distort n(r), so that 
minimization of free energy associated with these elastic distortions again plays a key role in the 
physical behavior. For example, to minimize elastic free energy, trefoil particle knots tend to align 
with their torus planes perpendicular to the undistorted far-field n0. Particle-induced boojums at 
their surfaces are visible in bright-field micrographs as dark points due to scattering (Fig. 10e). A 
color-coded 3D representation of the azimuthal orientation of n(r) reveals 12 boojums around 
the particle (Fig. 10f), forming nearby regions with the largest local curvature of the trefoil knot’s 
surface [35] and where the particle’s surface is locally orthogonal to n0. These boojums can be 
characterized by a net winding number s of the defects in 2D field ns(r) at the LC-particle interface, 

just as in the case of colloidal handlebodies above, obtaining isi = =0, where =0 for the knot 
particle’s surface [30]. Although this topological constraint could be satisfied in many different 

ways that yield isi=0, the one observed experimentally corresponds to a minimum of the total 
free energy, containing 12 surface point defects, out of which six s=1 boojums localize on exterior 
tips of the knot and their six s=-1 counterparts reside on the diametrically opposite sides of the 
knotted tube along n0 [35]. Such characterization of particle-induced defects can be extended to 
other torus knots, as shown for another example in Fig. 10g-j. Generally, colloidal torus knots 

with tangential anchoring induce boojums which obey the same topological constraint isi=0 as 

their trefoil counterparts (Fig. 10g-j), since they all have =0. Typically the number of self-
compensating surface defects in stable colloidal structures induced by torus-knot particles with 
tangential anchoring is four times the number of knot string’s turns around the circular axis of 
the corresponding torus, though one occasionally also observes metastable states having 

different net numbers and locations of boojums with the winding number adding to =0 [35, 55]. 
Trefoil particle knots with perpendicular surface boundary conditions tend to align with a 

torus plane orthogonal to n0 in the ground state (Fig. 11), but can also exhibit metastable 
orientations, including those parallel to n0. Polarizing optical micrographs (Fig. 11a,b) and depth-
resolved nonlinear optical “slices” obtained for different polarizations of femtosecond excitation 
laser light (Fig. 11d,e) show presence of defect lines and match the theoretical configuration (Fig. 
11c,f) [35,55]. These defect lines compensate for the director distortion imposed by particle’s 
surface (Fig. 11c,f). Two linear defects tracing the knotted particle’s tube is also the basic feature 
of metastable states, although often accompanied by their rewirings (Fig.11g-j). This shows that 
knotted particles can generate defect loops in nematic fields in such a way that these singular 
loops are knotted too. For a trefoil knot particle shown in Fig. 11a-f, the two defect loops are 
both trefoil knots linked with each other and with the particle knot (Inset of Fig. 11f), effectively 
forming a three-component defect-particle composite link. Although the torus knot particles with 
perpendicular boundary conditions are typically accompanied by two knotted half-integer defect 
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lines, the topological constraints allow for flexibility in terms of precise ways of satisfying them 
because the knotted and inter-linked loops can have different effective hedgehog charges that 

just need to add to zero because of the colloidal torus knot’s surface with =0. These 
configurations can be selected by varying confinement, quenching of temperature and applying 
external fields, thus creating an experimental arena for controlling this behavior. Knotted defects 
can mediate colloidal self-assembly by means of both anisotropic elastic forces and entanglement. 
Therefore, by establishing general principles for the 3D control of defects, the demonstrated 
interplay of topologies of knotted colloidal surfaces and nematic fields provides a basis for highly 
unusual forms of self-assembly [55].  

Knotted structures of disclinations could be also induced by particles differing from knots, 
such as colloidal spheres [114-117] with perpendicular surface anchoring in twisted LC cells and 
by nonorientable colloidal surfaces [36]. It is very interesting that free energy minimization and 
topological constraints in these cases can yield knotted vortices as stable or metastable 
structures in presence of confinement, though we will see later in the review that knotted 
vortices and solitons can arise in LCs as stable field configurations even without colloids or 
confinement [73]. On the other hand, colloidal knots in isotropic solvents have been considered 
theoretically, as well as the potential of employing LC elastomeric knotted particles as topology-
changing colloidal objects has been numerically explored [114,115]. However, much more can be 
done as topology has potential impacts on all aspects of colloidal science, from self-assembly of 
crystals and quasi-crystals to out-of-equilibrium dynamics [118-122]. For example, one could 
combine topology and active matter paradigms in an effort to achieve topology-dictated 
nonequilibrium self-assembly of topologically distinct active particles [123-125]. Active colloids 
are a distinct category of nonequilibrium matter in which energy uptake, dissipation and 
movement take place at the level of discrete microscopic constituents [123]. They are known to 
provide types of self-assembly not accessible in traditional equilibrium condensed matter 
systems [123]. However, only topologically trivial types of active colloids (spherical or 
topologically isomorphic to spheres) have been studied so far. The interplay of topologies of 
surfaces and flow fields due to the self-propulsion of active particles could result in highly unusual 
yet controlled and practically useful forms of self-assembly.  

Large quantities of colloidal knots can be obtained by combining two-photon 
photopolymerization and structured shaping of femtosecond laser light with spatial light 
modulators [126]. In addition to polymer-based dielectric knot-shaped particles, researchers also 
fabricated colloidal objects through 3D-spatially-resolved laser reduction of graphene oxide 
nanoflakes [127]. Utilizing particle’s luminescence, shapes of such knots could be reconstructed 
from 3D photoluminescence data (right-side of Fig. 10a) [127]. Because the internal orientation 
of reduced graphene oxide flakes within the colloidal structures matches that of the surrounding 
graphene oxide flakes, the fabricated knotted particles differ from the polymerized ones [35,55] 
in that they do not induce noticeable director distortions or topological defects in the 
surrounding LC host [127]. This demonstrates that topological defects can be avoided when the 
boundary conditions for the director orientation on the surfaces of complex-shaped particles are 
weak or match the director of the surrounding LC, even when the colloidal inclusions exhibit 
nontrivial topology of knots. Super-paramagnetic knot-shaped colloidal particles have been also 
reported and used to induce stick-slip motion of surface defects [128]. These examples show that 
knot-shaped colloidal particles of different types are becoming accessible to the research 
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community and offer a great potential for new soft matter science. 
 
4.3. Linked composite colloids  
Recent advances in particle fabrication also enabled colloids with topology of multicomponent 
links classified in Fig. 4, such as the two-component Hopf and Solomon links (Fig. 12) [55,72]. 
What are the implications of topological linking on behavior of the nematic colloidal systems? 
Micrometer-sized colloidal particles with differently linked components shaped as solid, rigid 
polymeric rings undergo Brownian motion both relative to each other and as a whole when 
dispersed in LCs [72]. These particles induce different director field configurations that define 
elastic coupling between the components, where certain relative orientations and positions of 
rings correspond to local or global free energy minima determined by LC’s orientational elasticity 
of corresponding n(r) structures (Fig. 12) [72]. As an example, colloidal Hopf links consist of two 
rings and are characterized by a linking number topological invariant Lk=±1, representing the 
number of times that each closed colloidal loop winds around the other loop (Fig. 12a-e). In the 
colloidal Solomon's link of Lk=±2 the two closed rings are doubly interlinked, so that this particle 
exhibits four crossings of the two loops interweaving under and over each other (Fig. 12f-k). Out 
of several stable and metastable n(r)-configurations induced by the Hopf-link colloids with 
tangential anchoring, the most common one contains eight surface boojums (Fig. 12b-d), four on 
each of the linked colloidal rings tilted away from n0. Elastic director distortions weakly couple 
the two linked components, defining the equilibrium center-to-center distance and locations at 
which these rings cross the planes of each other (Fig. 12d), as well as the equilibrium angle 
between the center-to-center separation vector connecting the linked components and n0. 
Anisotropic elastic forces also keep the linked particles apart, acting against touching of the linked 
component rings. Metastable colloidal and field configurations with other orientations of rings 
and different numbers of boojums are also observed [72]. For example, one of them (Fig. 12e) 
contains a boojum-free ring perpendicular to n0, linked to a ring with four boojums [72], both 
with well-defined orientations relative to n0. Boojums always appear in self-compensating pairs 
of opposite winding numbers in 2D n(r) at the LC-particle interfaces, consistent with the zero 
Euler characteristic of the rings of multicomponent particles. Colloidal Solomon links with 
tangential boundary conditions tend to induce two times more boojums than their Hopf 
counterparts (Fig. 12f-k), with these surface point defects located at the tip points of the tubes 
along n0. Large number of stable and metastable mutual positions and orientations of the linked 
components, as well as their orientation with respect to n0, leads to diverse n(r)-configurations 
differing by the number of the generated boojum-antiboojum pairs with opposite 2D winding 
numbers (Fig. 12f-k). These illustrative examples reveal that linked ring colloids inherit the 
diversity of structures that we have seen above for single rings (e.g. individually each ring 
component of the link can have no associated boojums or even numbers of self-compensating 
boojums), but now with the diversity of accessible metastable and stable structures boosted 
dramatically by different linking invariants, different relative orientations and positions of the 
rings, as well as their relative orientations with respect to n0. 

Even more exotic behavior of linked colloids is observed when their surfaces impose 
perpendicular boundary conditions for n(r) (Fig. 13). These particles tend to induce closed loops 
(unknots) of singular defect lines [72]. In addition to the purely elastic coupling, colloidal 
components often get entangled by unknots of defect lines that act as elastic strings (Fig. 13a-e). 
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Surfaces of colloidal links have =0, so that the hedgehog charge of n(r) on their surfaces is equal 

/2=0, requiring no bulk defects to embed in the aligned LC and also imposing constraints on the 
overall zero bulk hedgehog charges of defects around such particles [30,55]. However, free 
energy minimization and the nonpolar nature of n(r), combined with the rich configuration space 
of the colloidal object itself, accommodate the boundary conditions on particle surfaces through 
forming a variety of topologically distinct configurations of closed defect loops (Fig. 13) [72]. 
Individual linked components of the defect-colloidal entity freely move with respect to each 
other due to thermal fluctuations. Having field configurations governed by the elasticity of the 
nematic fluid, they exhibit relative separations and orientations corresponding to the free energy 
minima (Fig. 13a-h) [72]. The simplest observed configuration involving a Solomon link with 
perpendicular surface boundary conditions contains pairs of individual looped defect lines 
following each of the linked components. Interestingly, particles of the same linking number and 
perpendicular boundary conditions can induce configurations of defect loops which cannot be 
continuously transformed one to another. For example, the Hopf-link colloids were found 
exhibiting two to four unknots of half-integer defect lines, which can be linked with a single or 
both colloidal rings or with each other, which are summarized along with the corresponding 
graphs in Fig. 13i. The graphs show that the number of the linking-connected, inseparable graph 
entities can range from one, when all particle and defect rings are inter-linked, to five, when Hopf 
link particles are accompanied by four unlinked defect loops (Fig. 13i). These mixed, defect-
colloidal, multicomponent links cannot be smoothly morphed one to another, having different 
total number of unknots (colloidal rings or defect loops) and number of links between them 
visible in simplified topological skeletons and graph representations (Fig. 13i). Configurations in 
Fig. 13i do not exhaust all topology-admissible structural varieties of field configurations. 
Moreover, it is rather interesting that a single Hopf link of colloidal particles can be accompanied 
by different configurations of up to four defect loops with different links between them. This 
experimentally revealed topological diversity calls for applying techniques like ones used in Refs. 
[83,86] to reveal further details of this fascinating behavior. Due to inseparability of the linked 
particle components, pair and many-body interactions can exist among the linked components 
belonging to the same composite particle, constrained by the physical linking, or to different 
multicomponent particles. Sharing or linking of defect loops induced by the linked rings provides 
an additional colloidal interaction mechanism due to the line tension, which is of the order of 50-
70 pN for singular half-integer defect lines [129], and which can alter response of such particles 
to external stimuli like light [130,131].  

Nematic colloidal links and knots above exemplify the unexpected emergent topological 
complexity of defect structures that appear even when they are not required by the known 
topological theorems for particle surfaces with zero Euler characteristics. However, in addition 
to linked genus-one rings, one can study linked particles with larger g and larger number of linked 
components. Beyond LCs, one can expect that linking will alter interactions between colloidal 
components when, for example, interactions originate from electrostatic or depletion forces 
[132,133], opening a new avenue for colloidal self-assembly and functionality. 
 
4.4. Knotted vortices in nematic drops 
Similar to nematic colloids, LC drops are a useful platform for probing the relationship between 
surface confinement topology and defect structures in ordered media [55,134-143]. Genus g of 
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closed surfaces of micrometer-sized nematic drops can be experimentally varied (Fig. 14). The 
topological requirement that the net winding number of 2D surface defects in n(r) tangent to LC 

droplet’s surface adds to  is effectively the same as for colloids discussed above [30,144]. Also, 

the hedgehog charges of bulk defects in the drop’s interior need to add to /2 to compensate 
for the hedgehog charge of the drop’s inner surface of given g [144]. Minimization of the total 
free energy selects stable and metastable states out of configurations satisfying these constraints. 
Therefore, by utilizing this interplay of topological invariants characterizing surfaces and fields, 
similar to what we discussed above for colloids, one can either avoid defect formation for drops 
of g=1 [144,145] or generate singular bulk and surface defects with well-defined topological 
invariants for g>1. We shall see below how this allows for controllably obtaining line and point 

defects labeled as 1(𝕊2/ℤ2)=ℤ2 (bulk disclinations in the 3D director field), 1(𝕊1/ℤ2)= 1(𝕊1)=ℤ 

(surface defects in the 2D director fields at LC-droplet interfaces) and 2(𝕊2/ℤ2)=ℤ bulk point 
defects in 3D n(r). 

Let us start with drops in a polymer matrix imposing tangential boundary conditions for 
n(r). Figure 14a shows an array of torus-shaped g=1 drops embedded in such a polymer matrix. 
Most of them contain defect-free concentric n(r), as expected for the confinement surface with 

=2-2g=0 (Fig. 14a,b), though some drops contain self-compensating defect pairs (Fig. 14a,c) 
[144]. Although the Poincare-Hopf theorem [15] requires that the winding numbers s of defects 

at the LC-polymer interface add to , it does not prescribe particular ways for satisfying this 
constraint, which explains this diversity of topology-compliant configurations. For g>1, 
millimeter-sized drops with handles were shown to contain boojums at droplet surfaces [145], in 
a way closely resembling how the topological constraints are satisfied for handlebody colloids 
with tangential anchoring (Fig. 8). Differently, micrometer-sized drops tend to exhibit (Fig. 14d-
g) [144] half-integer disclinations spanning through the drop’s volume. Defects in the inter-tori 
junctions are half-integer singular lines pinned to opposite parts of handlebody surfaces (Fig. 14d-
m). Some of the drops contain the minimum numbers of half-integer defects needed for the net 

winding number to add to . For example, g=2 drops have two half-integer bulk defect lines 
spanning the droplet’s volume (Fig. 14d-g), so that the LC interface with polymer matrix contains 

four such s=-1/2 surface defects in ns(r) adding to =-2 of the confining surface. Drops with g=3 
have at least four such half-integer bulk defects (Fig. 14h-l) terminating on 8 surface defects in 
ns(r), g=4 drops have at least six and g=5 drops at least 8 bulk half-integer defects (Fig. 14m,n). 
The winding numbers of defects at the interfaces are thus always twice that of the sum of winding 

numbers of half-integer disclinations spanning within the LC bulk, always adding to drop’s  when 
considering winding numbers in ns(r). In the larger drops with tens-to-hundreds micrometers size, 
boojums and half-integer defect lines can co-exist because they correspond to lower free energy 
depending on their locations within the drops. As droplet size increases to millimeters [145], only 
boojums are stable because of the lower free energy of corresponding n(r). The above examples 
show how, in addition to appearance of boojums, the non-polar nature of n(r) allows for 
satisfying Poincare-Hopf and Gauss theorems through the emergence of surface-terminating bulk 

1(𝕊2/ℤ2)=ℤ2 defect lines, which assure that the 1(𝕊1/ℤ2)=ℤ defects (associated with the end 

points of bulk defect lines) in the interfacial 2D director field ns(r) ad to . This scenario cannot 

be realized for vector fields which cannot host bulk defect lines in 3D because 1(𝕊2)=0.  
Handlebody-shaped nematic drops with perpendicular boundary conditions also reveal a 
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large diversity of configurations, including ones with linked and knotted defect lines that form 
various knots [146] (Fig. 15). Singular disclinations shaped as unknots, knots and links, as well as 
half-skyrmions and other nonsingular structures emerge depending on geometric and material 
parameters. Surface topology and boundary conditions dictate the net topological hedgehog 
charge m=±(1-g) of defects in the nematic bulk of drops, which, to assure the topological charge 
conservation, compensate the hedgehog charge of the field on the drop’s inner confining surface, 
complying with Gauss-Bonnet and Poincare-Hopf theorems [30]. One would therefore expect 
that the nematic interior of a single torus is topologically uncharged, g=2 torus-confined drop 
hosts a defect of m=±1 topological charge, and so on, where the sign of m depends on the choice 
of vectorization direction of n(r). However, the mathematical theorems again allow for “flexibility” 
in satisfying these constraints while also minimizing free energy. This leads to many topologically 
nontrivial configurations that can be selected as energetically stable and metastable structures 
[146]. For example, g=1 drop surfaces can induce a single integer-strength disclination loop 
(topologically unstable, but energetically stabilized), two half-integer disclination loops, or non-
singular solitonic “escaped” n(r) (Fig. 15a-e), depending on geometric and material parameters. 
While the hedgehog charges m (marked on figure parts) of disclination loops and knots add to 

zero (Fig.15b,d), these results illustrate how loops and knots of s∈ℤ2=1(𝕊2/ℤ2) disclinations can 

yield different effective m∈ ℤ=2(𝕊2/ℤ2) hedgehog charges to satisfy topological constraints 
under different free-energy-minimizing conditions. As examples, Fig. 15c shows a Hopf link of 
two half-integer disclination loops and Fig. 15d depicts a trefoil knot of a single half-integer defect 
line, which are both permitted configurations for non-polar n(r). For large drops, escaped director 
structures with nonsingular solitonic n(r) are energetically favourable (Fig. 15e,f). Drops of higher 
genus stabilize even larger combinations of multiple singular disclination loops and solitonic 
configurations supplemented with additional point and disclination loop defects (Fig. 15f-m). 
While hedgehog charges always add to ±χ/2, the particular defects that occur are selected as free 
energy minima for given conditions. Three half-integer disclination loops form in small drops of 
g=2 (Fig. 15g,h), with one running along the whole drop’s perimeter and the other two encircling 
the holes. One disclination loop winds around the largest perimeter and g small loops encircle 

holes for g>2 (Fig. 15g,h). For larger g2 drops, the “escaped” director profiles appear instead of 
defect rings (Fig. 15f,i-m), yielding point defects or small disclination loops localized in the drop’s 
junction regions.  

When droplet dimensions increase to hundreds of micrometers and millimeters, different 
behaviors are observed, which were recently explored by Fernandez-Nieves and colleagues 
[145,147]. For example, double-twisted toroidal configurations arise in drops with g=1 as a result 
of saddle-splay LC elasticity and splay and bend deformations are often substituted by twist 
deformations due to lower energetic costs [145,147]. When a chiral nematic LC is used, 
depending on the relative dimensions of droplets and cholesteric pitch, knotted structures of 
entangled disclination lines can appear even in spherical drops [142], which can also feature 
constellations of high-charge point defects with hedgehog charges still adding to ±1 [148,149]. 

A spectacular property of confined nematic systems is the diversity of structures satisfying 
topological constraints imposed by mathematical theorems for given topology and boundary 
conditions, which largely stems from the nonpolar nature of n(r). All half-integer defect lines 
would be disallowed in polar systems, thus precluding appearance of knotted and linked defects 
and highly reducing the number of topologically admissible structures. The fact that the nature 
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of nematic fields allows for singular linked, knotted, and other configurations is important 
beyond soft matter because nonpolar fields in cosmology and in other physical systems often 
host defects topologically similar to nematic disclinations (cosmic strings), although much less 
accessible experimentally [50, 150,151]. These studies could be extended to thin LC shells formed 
by handlebody surfaces, an emergent research area where most studies so far focus on spherical 
shells [143,152-155]. In addition to fundamental importance, this behavior may be of interest for 
multi-state optically addressed topological memory devices [156] that can allow for recording 
and reading information through laser-writing different topology-satisfying field configurations 
within drops of controlled genus.  
 
4.5. Surfaces with boundary & surface-bound defects 
Surface genus and (related to it) Euler characteristic are not the only topological surface 
properties defining interactions with LCs [36,157,158]. Colloids can also serve as physical analogs 
of a mathematical surface with boundary [30], interacting with n(r) without inducing defects 
[157]. Such colloids were recently experimentally demonstrated in the embodiment of very thin 
nanofoils [157]. Disc-shaped flat nanofoils with tangential boundary conditions and thickness hf 
spontaneously align with large-area faces parallel n0 while freely rotating around it (Fig. 16a-d). 

They induce two surface boojums [75,105,106,159] when  hf1m (Fig. 16a), but not for 

hf100nm when no defects are detectable (Fig. 16b). Overall, the LC-foil interactions are 
determined by a competition of bulk elastic and surface anchoring energies at the nanofoil 

perimeter, which is characterized by the anchoring extrapolation length e [157]. When hf<<e, 

e.g. for hf 100nm (Fig. 16b), thin-foil particles behave as colloidal analogs of orientable surfaces 
with boundary that induce no defects (Fig. 16b,d). Interestingly, particle-induced boojums with 
fractional geometry-defined hedgehog charges of opposite signs are found when these surfaces 
with boundary are shaped into hollow pyramids without a base, the pyramidal cones (Fig. 16e-j) 
[157]. The pyramids spontaneously align with the base-tip vectors b either parallel or 
perpendicular to n0 [157]. The particle geometry causes director distortions revealed by 
polarizing micrographs (Fig. 16g-j), with the boojum defects at the apex points of inner and outer 
surfaces of hollow pyramids. Mapping vectorized n(r) onto a two-dimensional sphere 𝕊2 does not 
fully cover it and the ratio of the covered and total areas of 𝕊2 gives the fractional charge mb. For 
these colloidal surfaces with boundaries, one finds self-compensation of hedgehog charges 
associated with inner and outer boojums (Fig. 16h,j) [157]. Colloidal interactions between pairs 
of nanofoil-based colloidal pyramids emerge from the minimization of elastic free energy, 
typically resulting in nested assemblies [157, 159-161]. Formation of hollow octahedrons (Fig. 
16k,i) is an example of colloidal assembly that leads to transformation of two pyramid-shaped 
surfaces with boundary into a single closed surface without boundary, which then becomes 
compliant with the Poincare-Hopf theorem. Indeed, winding numbers of boojums at vertices add 

to octahedron’s =2 (Fig. 16i). Since extensions of the Poincare-Hopf theorem for surfaces with 
boundaries are known only for special cases [30], experimental embodiments of such surfaces in 
LC-colloidal systems are fundamentally important. Because all surfaces are characterized (up to 
homeomorphism) by genus, orientability, and the number of boundary components, as stated 
by the classification theorem [30], these colloids expands the scope of experimental topology. In 
addition to thin metal foils (Fig. 16), LC colloids with boundaries can be made out of 2D materials, 
like graphene and graphene oxide [158]. 



 22 

Another interesting regime of interactions arises between the director field and surface 
boundary conditions on geometrically and topologically nontrivial particles with sharp corners. 
Using examples of faceted ring-shaped particles of g=1 [70], Fig. 17 demonstrates examples of 
inter-transformation of induced defect lines as they migrate between locations in the bulk of the 
nematic host and edge-pinned locations at particle surfaces. This behavior, also compliant with 
topological constraints [70], is enriched by diversity of surface-pinned defect lines that appear 
for facetted particles because winding number of such defect lines at LC surfaces is not 
constrained to be a half-integer or integer and can be fractional, similar to the case of fractional 
boojums induced by pyramidal cones that we discussed above [70]. In addition to common half-
integer defect lines encircling and entangling spherical and topologically nontrivial particles, 
surface quarter-strength defect lines are commonly pinned to sharp edges of faceted particles 
[70]. Nodes of defect lines with different strengths often form, of which some are pinned to 
colloidal surfaces while others are the bulk defect lines only adhering to surfaces at their end 
points. The winding number of individual surface-pinned disclinations around colloidal particles 
is unconstrained and can be controlled by the geometry of colloidal inclusions while the overall 
topological characteristics of particle-induced defects comply with topological theorems [70]. A 
key feature of the particles showing such behavior is that the smallest particle’s dimension is 
much larger than the surface anchoring extrapolation length [70], yielding strong boundary 
conditions that cannot be violated at sharp edges of faceted particles. Such nematic colloids 
exhibit director configurations with splitting and re-connections of singular defect lines, 
prompted by colloidal particles with sharp edges and strong boundary conditions (Fig. 17). This 
shows how diversity of topological defects can be expanded by invoking fractional surface 
disclinations patterned with particle’s sharp geometric features shapes. The transformations of 
bulk and surface defect lines induced by faceted colloids diversify the elasticity-mediated 
colloidal interactions and can potentially enrich their controlled reconfigurable self-assembly. 

Two examples of colloidal surfaces in this section illustrate the importance of geometry 
and topology of colloidal surfaces in defining behavior of nematic colloids and various confined 
systems. While geometry and topology are also important for conventional colloids [92], their 
role is truly defining for nematic colloids and drops because defining formation of defects, elastic 
distortions elasticity-mediated interactions, self-assembly and so on.   
 
5. Topological solitons in liquid crystals and colloids  
5.1. Two-dimensional skyrmions 
Similar to many other branches of physics and cosmology, soft condensed matter systems like 
LCs and colloids can host a large variety of topological solitons and related spatially localized 
nonsingular structures. For example, the LCs host a variety of 2D merons (Fig.18a,b) and 
skyrmions (Fig. 18c) [32, 162-172], where the latter are particle-like low-dimensional analogs of 
Skyrme solitons in particle physics [7]. When embedded in 3D samples, these 2D Skyrme solitons 
have topologically protected translationally invariant 2D tube-like structure (Fig. 18c,d) that 
cannot be eliminated from a uniformly oriented background without destroying the order or 
introducing singular defects. Not enjoying this type of topological protection, tubes of merons, 
also known as fractional skyrmions (Fig. 18a), have a long history in the LC research field. In fact, 
some of the earliest reports on LCs dealt with chiral phases in cholesterol derivatives, including 
the so-called ‘blue phase’ [12,173-176]. These phases are various crystalline arrays of double-
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twist tubes that are fractional skyrmions (merons) [162-172], including cubic and hexagonal 
lattices [165,175]. Rod-like molecules in a fractional skyrmions tube are parallel to its axis at the 
center, twisting radially outwards to form barber-pole-like patterns on concentric cylindrical 
surfaces (Fig. 18a). Full LC skyrmion tubes, with such a 180° radial twist from the central cylinder’s 
axis to periphery, contain all possible molecular orientations and embed in a uniform far-field 

background (Fig. 18c,d) [162]. Historically many structures were found to have such radial -twist 
from center to periphery in certain localized regions, but they were typically not 2D 
translationally invariant, often transforming into and coexisting with singular defects. Recently, 
researchers identified conditions needed for stability of 2D skyrmions as topologically distinct 
objects with translational invariance [80, 163].  

LC n(r) structures can be vectorized to give a smooth vector configuration (Fig. 18d-f), 
which then has the 𝕊2 order parameter space and is similar to skyrmions in the magnetization 
field of magnets that drive much excitement in spintronics [177-184]. Recent studies 
demonstrated that the density of such information could be increased using skyrmions with 
varying topological degrees (whose distinction is topologically protected) [162]. LCs provided 
insights into how high-degree skyrmionic structures can form [162] as stable chiral composite 
skyrmion bags. To realize them, one places multiple single antiskyrmions (each with degree +1) 
next to each other within a stretched skyrmion, thus forming the skyrmion bags (Fig. 18g-j) [162]. 
Moreover, multiple nested structures can be formed, with, say, antiskyrmion bags within 
skyrmion bags and skyrmions within them, and so on [162]. This yields nonsingular skyrmionic 
structures with arbitrary degrees and of both positive and negative signs because this design 
allows for wrapping and unwrapping 𝕊2 by mapping n(r) from the sample’s 2D plane by controlled 
numbers of times in a non-alternating fashion [162]. The total degree of a bag with NA 
antiskyrmions is NA−1. More complex structures with antiskyrmion bags inside skyrmion bags 
have a net degree NA−NS, where NS is the total number of skyrmions; counting NS and NA also 
includes the nested skyrmion and antiskyrmion bags. Skyrmions and skyrmion bags in LCs require 
careful selection of experimental conditions and materials to assure stability [80], where 
important roles are played by soft but well-defined perpendicular boundary conditions on 
confining surfaces, elastic anisotropy, confinement, etc.  

Relation of 2D skyrmions to knots might be not apparent when examining their structure. 
After all, knots reviewed in section 3 are intrinsically 3D in nature. However, skyrmions are 
topologically protected, and, just like knots cannot be eliminated or inter-transformed without 
cutting, skyrmions cannot be eliminated without destroying continuity of order within the LC. 
Moreover, skyrmions and related structures can be part of knotted field configurations. For 
example, Sutcliffe showed that knotted skyrmions can arise as energy minima in frustrated 
magnets [26]. On the other hand, the heliknotons (structures emerging within a helical field, 
which will be discussed below) comprise knots of fractional skyrmions [73]. We will also see 
below how emergent behavior of chiral LCs leads to various types of knotting as a result of the 
interplay of skyrmionic configurations with confinements and applied external fields [32,82,171]. 
In the bulk of chiral LCs and magnets, minimization of free energy can also lead to lattices of 
orthogonally oriented skyrmions in helical and conical backgrounds, which was already observed 
via direct optical imaging in LCs and for which there is indirect evidence from neutron scattering 
experiments also in solid-state magnets [185].  
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5.2. Torons with skyrmions and knots within them 
In a geometry similar to that used for observing skyrmions and skyrmion bags [80,162,163], 
discussed above, one can also observe structures with both skyrmion-like and Hopf and Seifert 
fibrations features when a chiral LC with a ground-state pitch p0 is confined by substrates treated 
for perpendicular alignment [32,82,171]. When the separation gap d of the confining planes is 
approximately equal to p0, the LC’s tendency to twist is incompatible with the strong perpendicular 

boundary conditions. In this frustrated geometry, numerous localized solitonic configurations 
emerge within the background of unwound n0 [32,80,82,186]. These solitonic configurations 
incorporate energetically-favorable localized twist while meeting boundary conditions and can be 
controlled using laser tweezers in both nonpolar chiral LCs [32] and chiral LC ferromagnets [187]. 
The simplest such configuration is known as an elementary toron (Fig. 19), which can be thought 
of as a degree-one skyrmion terminating on point defects near substrates with perpendicular 
boundary conditions [80]. In the cell midplane between confining substrates, the elementary toron 
embeds a π-twist of n(r) radially from the center in all directions (Fig. 19a-c) and smoothly meets 
the n0-periphery [80]. This skyrmionic configuration within the LC bulk terminates at two singular 
point defects near substrates (Fig. 19b,c). Vectorized n(r) from the toron’s midplane cross-section 
(Fig. 19c) maps to fully cover 𝕊2 once (inset of Fig. 19d), like for an elementary skyrmion. This 
skyrmion tube, however, terminates at point defects that match it to the uniform boundary 
conditions at surfaces (Fig. 19b-d). Both top and bottom defects are self-compensating elementary 
hedgehogs of opposite charge in vectorized n(r) and, like elementary skyrmions, are labeled by 
2(𝕊2)=ℤ (2(𝕊2/ℤ2)=ℤ for the nonpolar case) [80]. It is therefore natural that the elementary 
skyrmion tube orthogonal to the cell substrates is terminated (embedded in a uniform, 
topologically trivial background)  by the two point singularities, consistent with the notion that the 
spatial translation of a 2(𝕊2)=ℤ point singularity can leave a trace of a 2(𝕊2)=ℤ topological soliton 
within the locally perturbed background n0 [75].  

Torons have structural features that bring about resemblance of not only skyrmions, but 
also the Hopf and Seifert fibrations, which can be seen by probing streamlines tangent to n(r) (Figs. 
19e and 20). These streamlines form various torus knots, like the ones found in toroidal DNA 
drops [138,188]. Regions near the toron’s circular axis resemble fragments of 𝕊 3 to ℝ3 
stereographic projection [82]. Like in toroidal DNA drops [188], this implements LC’s tendency 

to twist while forming an axisymmetric configuration. Differently from biopolymer drops, toron’s 
n(r)-twist rate changes smoothly as one moves away from its axis, accommodating effects of 
confinement and presence of the singular defects, so that different torus knots form (Fig. 19e). 
Incompatible with Euclidian 3D space [188], 3D twist is inherently frustrated, but the geometry of 
fiber bundles shows how LC embeds it into toron’s volume [188]. Knots T(pT,qT) are part of Hopf 
and Seifert fibrations with different twist properties and can be visualized with a series of 
streamlines of n(r). The toron configuration has spatially-varying director distortions deviating 
from the idealized 3D twisted structure that one could obtain by the stereographic projection, so 
that both the rate of the twist and the formed T(pT,qT) knots of streamlines depend on the location 
within a toron. This is because the toron combines the favorable 3D twisted region with some bend 
and splay distortions that aid in embedding the twisted director configuration into uniform far field 
while minimizing the overall free energy. Within a toron (Fig. 20), one finds Hopf links T(1,1), 
trefoil T(3,2), pentafoil T(5,3), quatrefoil T(3,4) and other torus knots formed by the streamlines 
(Fig. 20). As electric field morphs the toron (Fig. 20a-e), different knots on torus surfaces never 
pass through each other (Fig. 20e-g), but the contour lengths of the closed-loop knots increase with 
voltage (Fig. 20c-e). While the elementary toron is a skyrmion tube terminated on point defects, it 
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also has an interpretation inspired by the torus-knot-like streamlines tangent to n(r). One can think 
of it as a half-skyrmion double-twist tube (or a tube of twist-escaped integer-strength line) forming 
a circular loop and compensated near substrates by a pair of hyperbolic point defects [32] (Fig. 
20h). It has been shown that the point defects within these torons can open up into singular half-
integer defect loops [32]. Therefore, within the 2D axially symmetric cross-section of a toron with 
two such singular loops (Fig. 20i) [32], the half-skyrmion (meron and also twist-escaped integer-
strength line) is compensated by two singular defect lines in a way similar to what has also been 
shown for individual linear half-skyrmions embedded into a uniform background and periodic 
lattices [168]. The overall structure of torons evolves with changing parameters and, under  
different realization conditions, brings about analogies with not only 2D skyrmions and half-
skyrmion loops (or double-twist tori as opposed to double twist tubes), but also with Hopf fibration 
in the streamlines tangent to n(r) [171]. Depending on the pitch p0, sample thickness d, elastic 
constants and applied fields, elementary toron’s lateral extent relative to p0 and 3D shape vary, so 
that one or the other of these mutually equivalent descriptions of torons is used [82].   
 Torons have been generated by laser tweezers and means such as temperature quenching 
from isotropic phase both as individual objects and in periodic arrays [172,189,190], with and 
without lattice defects. Toron lattices have been used as diffractive optical elements whereas 
lattices with edge dislocations could be utilized as generators of optical laser vortices [165]. These 
lattices with and without lattice defects could be reconfigured or erased by applying external 
electric fields, showing how topologically nontrivial knotted objects in soft matter can be utilized 
in various photonic, electro-optic and singular optics applications [165]. In addition to chiral LCs, 
torons have been discovered in solid-state magnetic systems [191]. While types of torons with 
loops of half-integer singular lines can exist in LCs with nonpolar n(r) (Fig. 20i), they are 
disallowed in vector fields of colloidal and solid-state magnets, where only the structures with 
point defects have been observed (Fig.19a-c and Fig. 20h) (which is because half-integer 
disclinations cannot exist as standalone objects in vector fields, where 1(𝕊2)=0) [187, 191]. 
Another localized topological object, dubbed “hopfion” [24], has fully nonsingular structure 
spatially confined in 3D and can also exist in both polar and nonpolar fields, as we shall see next. 
 
5.3. Hopfions in ferromagnetic colloidal fluids  
The topological Hopf soliton, also called “hopfion”, was recently observed experimentally and 
modeled numerically in magnetic fluids formed by colloidal dispersions of magnetically 
monodomain platelets within a chiral nematic host [24]. This soliton contains knotting of the order 
parameter that can be described by utilizing the concept of “preimage”, the spatial region of the 

ferromagnet’s 3D space with a single unit magnetization field m(r) orientation corresponding to a 
single point on 𝕊2 (Fig. 21a). For hopfions, preimages of all 𝕊2-points are closed loops [7] (Fig. 
21a,b). Imbedding into a uniform m0 and localizing in three spatial dimensions (Fig. 22), hopfions 
are classified on the basis of maps from ℝ3 ∪ {∞} ≅ 𝕊3  to the ground state manifold 𝕊2 of 3D unit 
vectors, 𝜋3(𝕊2) = ℤ [7]. Topologically distinct hopfions are characterized by the Hopf index 𝑄 ∈
ℤ with a geometric interpretation of the linking number of any two closed-loop preimages. Most 
of ℝ3 is occupied by the preimage of the point in 𝕊2 corresponding to m0 (Fig. 22) [24], except 
for the interior of a torus-embedded region, within which all other preimages are smoothly packed. 
Preimages with the same polar angles but different azimuthal angles tile into tori; then tori 
corresponding to different polar angles nest within each other, all imbedded within the biggest 
torus that has all the preimages in its interior, except for the m0-preimage that is in its exterior (Fig. 
22) [24]. Stable hopfions in physical systems ranging from elementary particles to cosmology have 
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been predicted by Faddeev, Niemi, Sutcliffe and many others [7,22,42], as well as demonstrated 
experimentally as stable solitons in colloidal ferromagnets and LCs [24,192, 193]. Nonlinear 
optical 3D imaging was utilized to unambiguously identify topological solitons, revealing an 
experimental equivalent of the mathematical Hopf map (Fig. 21c,d) and relating experimental and 
theoretical closed-loop preimages of distinct 𝕊 2-points [24]. Agreement of experimental and 
simulated real-space cross-sectional nonlinear optical images of hopfions and preimages of 
different points of the order parameter space (Fig. 21c,d) confirms the hopfion identity. While 
nonlinear optical imaging of m(r) cannot discriminate m(r) and -m(r) because of being based on 
orientations of transition dipole moments of the organic LC molecular host [24], this ambiguity 
related to telling apart the preimages of diametrically opposite points is lifted by probing the 
response to applied magnetic fields B in directions parallel or anti-parallel to m0 (Fig. 21e). B 
applied anti-parallel to m0 forces the soliton to grow, with outer diameter increasing and the inner 
region shrinking [24], with the opposite response for Bm0 (Fig. 21e). Since the coupling of B 
and m is linear, described by a corresponding free energy term, this eliminates the m versus –m 
ambiguity, so that the entire structure can be smoothly vectorized [24]. 
 The detailed structure of axisymmetric m(r) within the static Hopf soliton is depicted in 
Fig. 21f,g. It minimizes the Frank-Oseen free energy of a chiral ferromagnetic LC at no applied 
external fields: 
  

           (1) 
 
 

 
For splay, twist and bend Frank elastic constants equal, K=K11=K22=K33, within the one-constant 
approximation [12], the ferromagnetic LC’s free energy functional reduces to a micromagnetic 
Hamiltonian for non-centrosymmetric chiral magnets for A=K/2 and D=Kq0 [24,167,177]: 

 
                                                                              (2) 
 

 
where coefficients A and D for magnetic solids describe the effective exchange energy and the 
Dzyaloshinskii-Moriya coupling. Numerical minimization of both free energy functionals yields 
minima corresponding to Hopf solitons with linked preimages (Figs. 21-23) [24,42,193]. This 
linking cannot change without a breakdown of m(r) continuum, e.g. through melting or generation 
of singular defects, further helping to stabilize such topological solitons. Hopfions with different 
Hopf indices can co-exist in monodomain samples because they all can correspond to local or 
global free energy minima. Both the ferromagnetic LC and a Hopf link of any two preimages with 
consistently defined circulations of a hopfion are chiral, so that taking a mirror image negates the 
linking number and Q while also transforming a left-handed ferromagnetic LC into its right-handed 
counterpart [24,193]. Many-body elastic interactions between individual hopfions in presence of 
a lateral confinement lead to hexagonal arrays imbedded into m0 [24], consistent with their 
particle-like nature. Self-assembly of hopfions may result in 2D and 3D solitonic condensed matter 
phases, analogs of the so-called “A-phase” of 2D skyrmions [177-183], which calls for a detailed 
study of phase diagrams.  

Minimization of free energy given by Eq. (2) predicts existence of 3D topological solitons 
in solid non-centrosymmetric ferromagnets [42] with experimental values of A and D. Like in the 
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case of the chiral term in free energy for ferromagnetic colloidal systems [24], Dzyaloshinskii-
Moriya term in Eq. (2) helps overcoming the stability constraints defined by the Derick theorem 
[196]. Solid-state magnetic hopfions have been predicted to exist in nanodiscs, thin films and 
nanochannels of non-centrosymmetric magnetic solids with perpendicular surface anisotropy [42] 
(Fig. 23a,b), featuring closed-loop preimages of all 𝕊2 points, with each pair linked Q times. Due 

to the field topology, the emergent magnetic field  of a solid-state 
elementary hopfion spirals around its symmetry axis with a unit flux quantum (Fig. 23c,d) [42]. 
Streamlines of Bem, describing the interaction between conduction electrons and the spin texture, 
also resemble Hopf fibration [194]. This behavior of Bem mimics the topology of preimages for 
hopfions (Fig. 23e,f). It will be interesting to explore in future whether Bem in solid-state systems 
can also mimic behavior of preimages in high-Hopf-index hopfions, like the ones with Q=2 
Solomon link topology (Fig. 23f). The capability of encoding 1, 0, 2, -1 and other states in the 
topological charges of 3D Hopf solitons in a chiral magnet can lead to data storage and other 
spintronics applications, with some of them already pursued in modeling [42, 195]. While the 
stability of 3D solitons like hopfions has been always challenged by Derrick theorem [192-196], 
their experimental observation in chiral LCs and colloidal ferromagnets [24,192] offered insights 
that led to the predictions of such hopfions in magnetic solid-state materials [193,195], 
demonstrating the power of using soft matter as model systems. The insight in this particular case 
is that the energetic stability of Hopf solitons is enhanced by the medium’s chirality and that such 
topological objects can be hosted as stable or metastable structures in systems with Hamiltonians 
like the ones given by Eqs. (1) and (2) of chiral ferromagnetic colloidal LCs and solid-state 
magnets. 
 
5.4. Hopfions in nonpolar liquid crystals 
Hopf solitons in chiral nematics differ from the ones in vector fields of chiral magnets discussed 
above in that they are realized in the nonpolar field with the 𝕊2/ℤ2 order parameter space [192]. 
Shown in Fig. 24 are elementary LC hopfions with opposite signs of Hopf indices. Rod-like 
molecules and n(r) twist by 2 in all radial directions from the central axis to n0-periphery within 
both solitons (Fig. 24) [192]. By vectorizing n(r) of the two solitons (Fig. 24), so that n0 points in 
the same direction for both of them and so that circulations of preimages are defined continuously, 
one finds Q=1 for the soliton shown in Fig. 24a-e and Q=-1 for the one in Fig. 24f-j. For both 
hopfions, all 𝕊2/ℤ2-points for the nonpolar director have individual preimages in the form of two 
linked loops (Fig. 24) [192]. This is expected since the manifold 𝕊2/ℤ2 is effectively half of 𝕊2 and 
the smoothly vectorized version of the hopfion has all preimages of 𝕊2 in the form of individualized 
closed-loop regions. While the handedness of n(r)-twist is determined by LC chirality and is the 
same for the two solitons within the same host material, the localized director configurations yield 
Hopf links of preimages of opposite handedness (Fig. 24c-e, h-j), which, interestingly, both 
correspond to energy minima (though with somewhat different energies) [192]. For both hopfions, 
experimental preimages closely match their theoretical counterparts (Figs. 24d,e and i,j). The Q-
values stay the same upon inverting the vectorization direction n(r)→-n(r), different from the case 
of hedgehog charges of point defects in nonpolar LCs that change signs with n(r)→-n(r) [34]. 
However, taking a mirror image negates the linking numbers of all preimage links and Q values, 
again different from hedgehog charges of point defects that would stay unchanged [34]. These 
properties of LC hopfions also apply to their topological counterparts in chiral magnets discussed 
above [24, 193].  
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Interesting soliton configurations arise with increasing the amount of the radial n(r)-twist 
embedded within n0. For example, n(r) twists by 4 in all radial directions from the two solitons’ 
central axes to their periphery in Fig. 25a,b,h,i, yielding two-closed-loop preimages of 𝕊2-points 
for vectorized n(r), with preimages of each point on 𝕊2/ℤ2 of nonpolar n(r) comprising four 
individual closed loops (Figs. 25d-g,k-n). Preimages for the same polar angle   of vectorized n(r) 
and with different azimuthal n(r)-orientations tile into tori (Figs. 25f,m). There are always two 
such tori for a given   (Figs. 25f,m), which is different from the case of elementary hopfions (Fig. 
24). For all 𝕊2–points of vectorized n(r) of the soliton shown in Fig. 25a-g (Fig. 25h-n), the 
individual preimages are formed by two separate unlinked closed loops while preimages of two 
separate 𝕊2–points form two Hopf links with the linking number +1 (-1) for each of them, as seen 
in Fig. 25d,e (Fig. 25k,l). Tori formed by preimages of constant  remain separate until merging 
with the far field background when n(r) becomes parallel n0 (Fig. 25f,g,m,n). The behavior of the 
individual 𝕊2/Z2-preimages of nonpolar n(r) is reminiscent to that of pairs of 𝕊2-preimages for 
vectorized n(r) (Fig. 25d-g, k-n). The preimages of 𝕊2-points in the vicinity of the north pole are 
two separate tori that characterize n(r) smoothly transforming to n0 in their exterior (Fig. 25g,n). 
Thus, one can interpret the two solitonic structures shown in Fig. 25 as Q=2 and Q=-2 hopfions, 
respectively, each formed by coaxial arrangements of two separate like-charged hopfions of Hopf 
index Q=1 (Fig. 25a-g) and Q=-1 (Fig. 25h-n). Hopfions that could be thought of as comprising 
elementary hopfions of opposite signs of Q have been observed [192], including the ones with a 
Q=1 hopfion in the interior and Q=-1 hopfion in the exterior of the coaxial hybrid solitons and vice 
versa [192]. Coaxially arranged hopfions of opposite signs can annihilate and transform into a 
uniform state, whereas that of like-charged hopfions gives high-index solitons with Q being the 
sum of Q values of individual structures [192,193]. While each hopfion is uniquely characterized 
by Q and the corresponding linking number of preimages, there are different ways to obtain the 
same linking numbers within a soliton. For example, a hopfion with Q=2 could have 2 Hopf links 
for each pair of preimages or a single Solomon link [193]. Analogously, a localized solitonic 
structure with Q=0 could be comprised of coaxially arranged Q=-1 and Q=1 hopfions or simply 
have no linked closed-loop preimages (even if still featuring closed-loop preimages) [193]. Such 
variations of inter-linking are often found within the same 3D solitons, where, as an example, pairs 
of some preimages can form Solomon, but others form two Hopf links, in each case with the same 
linking number [192,193]. Moreover, even individual preimages can have different geometry 
within different parts of order parameter space for the same soliton, as long as the linking number, 
which is the topological invariant defining Q, is conserved for all pairs of preimages [193]. The 
large number of possibilities to realize solitonic structures of given Q (in both experiments and 
modeling) contributes to the diversity of Hopf solitons [192], which is revealed by simplified-
topology and graph presentations (Fig. 26). In these graphs, the closed-loop preimage components 
are filled circles colored according to the positions of corresponding points on the ground-state 
manifold and the individual links are indicated by black edges connecting these circles (Fig. 26) 
[192]. Moreover, Figs. 21-26 illustrate that not only elementary hopfions but entire zoos of 
𝜋3(𝕊2) = ℤ and 𝜋3(𝕊2/ℤ2) = ℤ solitons exist in soft matter. The insights into the diversity of 
structural embodiments of topological Hopf Solitons experimentally revealed by LC and colloidal 
systems are useful for theoretical modeling and experimental discovery of such topological objects 
in other branches of physics.  
 
5.5. Hybrid torons & twistions 
In addition to the elementary torons with -twist of n(r) from their central axes to the n0-periphery 
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in all radial directions (Fig. 19), torons with larger amounts of such twist also exist. For example, 
torons shown in Fig. 27a,b contain 3-twist of n(r) in all radial directions [192]. Additionally, 
torons with 5 and larger amounts of twist within axisymmetric toron structures were found in 
recent experiments [192]. Preimages of distinct points on the 𝕊2/ℤ2 or 𝕊2 for such toron-hopfion 
hybrid structures are either closed loops or bands starting and terminating on the hyperbolic point 
defects (Figs. 27c-e). Such torons can be thought of as a separate elementary hopfion and an 
elementary toron arranged coaxially so that their symmetry axes coincide. The multicomponent 
preimages, comprised of closed loops and half-loop bands that terminate on the point singularities, 
reveal diversity of topological and structural compositions of such torons (Fig. 26). Solitonic and 
singular topological structures also co-exist within hybrid structures called “twistions”, localized 
configurations that embed spatially localized twisted regions into a uniform n0-background but 
lack axial symmetry and (unlike torons) contain more than two point defects [197] (Fig. 28). 
Within a structure shown in Fig. 28, n(r) twists from its interior to periphery by ~, though 
twistions with larger amounts of such twist exist too, analogously to what was discussed above for 
torons [192,193,197]. The twistion in Fig. 28a-c contains a stretched loop of –twist of n(r) and 
four self-compensating hyperbolic point defects, as revealed with the help of cross-sections. Its 
topology can be again analyzed using preimages, which are bands spanning between the four point 
singularities (Fig. 28d,e). This example shows that localized skyrmion-, toron- and hopfion-like 
field configurations in confined chiral nematic LCs are not restricted to hosting none (as in 
skyrmions and hopfions) or only pairs (as in the torons) of self-compensating singular defects. 
Such self-compensation can occur in a number of other more complex ways, e.g. with four 
hyperbolic point defects shown in addition to various solitonic components with band-like or 
closed-loop preimages (Fig. 28). Similar multi-point-defect configurations with solitonic n(r) in-
between have been also reported for cholesteric LC drops [149]. 
 
5.6. Topological inter-transformations of solitons  
LCs are known for their facile responses to external fields, though this switching typically involves 
topologically trivial structures [12]. Switching of solitonic structures in chiral nematic and 
ferromagnetic LCs has been explored too, demonstrating both topology-preserving morphing and 
topological transformations (involving changes of topological invariants) driven by electric and 
magnetic fields [193]. The far-field director n0 and magnetization m0 were fixed to assure 
compactification of ℝ3 to 𝕊3 for the 3D solitonic structures during switching. Since ferromagnetic 
LC is polar, m(r) responds differently to external magnetic fields H and –H, making magnetically 
driven transformations of solitons especially rich (Fig. 29) [193]. As an example, an axisymmetric 
soliton with complex linking of preimages but net Q=0 at zero field is shown in Fig. 29a,b [193]. 
H applied parallel or anti-parallel to m0 drives this soliton’s m(r) through a series of continuous 
and discontinuous deformations (Figs. 29c,d), where the distinct types of encountered preimage 
linking are shown schematically in the insets [193]. A structural diagram in the coordinates of 
thickness-to-pitch ratio d/p and applied magnetic field (Fig. 29d) encompasses a wealth of knotted 
configurations, where Hopf index Q stays unchanged within some parameter ranges, but changes 
discontinuously at the boundaries of the diagram between the topologically distinct states with 
different Q. Within a broad range of parameters, solitons morph without changing topology (Fig. 
29d) [193]. The 𝕊2  ground state manifold splits into two subspaces (Fig. 29b) separated by a 
boundary at a critical polar angle θc dependent on H (Fig. 29c). Different preimages of points on 
𝕊2 not only coexist within the same knot soliton, smoothly embedding within a localized volume 
in ℝ3, but also are magnetically inter-transformed while remaining nonsingular, as long as the 
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linking number of all preimage pairs for a given soliton stays conserved. Outside of the central 
parts of the diagram, with changing d/p and H, Q=0 solitons with complex preimage linking 
discontinuously inter-transform into Q=-1 solitons, torons and other structures (Fig. 29d) [193]. 
Since both chiral LCs and colloidal ferromagnets are optically birefringent, different Hopf index 
values can be associated with optical signatures, such as polarization rotation, phase retardation, 
and light transmission when the sample is placed between polarizers, which could potentially 
expand the wealth of current electro-optic applications of these soft matter systems [12]. The 
illustrative example of a structural diagram with the topological soliton switching is just one of 
many that have been reported, including examples of magnetic- and electric-field controlled 
stability diagrams of solitons in LC, colloidal and solid-state magnetic systems [42,44,73,193]. 
The similarity of findings in physical behavior (including switching) of solitons in soft and hard 
chiral condensed matter systems [42,44,73,193] once again shows how LCs and colloids can be 
used as model systems in the studies of solitons in other fields. 
 
5.7. Heliknotons and crystals of knots 
Recently, stable micrometer-sized knots, called “heliknotons”, have been demonstrated in helical 
fields of chiral nematic LCs [73]. The helical fields comprise a triad of orthonormal fields (Fig. 
30a): the molecular 𝐧(𝐫) field, the helical axis 𝛘(𝐫) field and  (𝐫)⊥ 𝐧(𝐫)⊥𝛘(𝐫). Heliknotons are 
topological solitons with linked closed-loop 𝐧(𝐫)-preimages (Fig. 30b) while their 𝛘(𝐫) and 𝛕(𝐫) 
contain half-integer singular vortex lines forming knots (Fig. 30c). Therefore, the heliknoton is a 
hybrid embodiment of both preimage and vortex knots [73]. These knot solitons embed in a helical 
background and form spontaneously after the transition from the isotropic to LC phase when an 
electric field E is applied to a positive-dielectric-anisotropy chiral LC along the far-field helical 
axis 𝝌0. These structures comprise localized regions (depicted in gray in Fig. 30b,c) of perturbed 
helical fields and twist rate [73]. They display 3D particle-like properties, with anisotropic pair 
interaction potential varying from attractive to repulsive and from tens to thousands of 𝑘B𝑇 [73], 
depending on the choice of LC, applied voltage U, sample thickness, equilibrium cholesteric pitch 
p0, etc. The inter-heliknoton interactions arise from sharing long-range perturbations of the fields 
and minimizing the overall free energy for different relative positions [73]. These interactions 
enable a plethora of crystals, including 2D and 3D low-symmetry and open lattices (Fig. 30) [73], 
with tunable crystallographic symmetries and lattice parameters [73]. 3D crystals of heliknotons 
emerge in samples of thickness  >4p0, when anisotropic interactions yield triclinic pedial lattices 
(Fig. 30d), whereas 2D crystals form in thinner samples. Besides the 𝑄 = 1  elementary 
heliknotons, 𝑄 = 2 and 𝑄 = 3 topological solitons were observed as well [73], with preimages in 
the material field 𝐧(𝐫)linked twice and three times, respectively. For 𝑄 = 2 (𝑄 = 3) heliknotons, 
singular vortex lines in 𝛘(𝐫) and 𝛕(𝐫) form closed 51 (71) knots co-located with the same knot of 
a meron in 𝐧(𝐫) . These and other heliknotons with even larger 𝑄  can be ground-state and 
metastable structures [73], behaving like particles. However, unlike the atomic, molecular and 
colloidal crystals, heliknoton crystals exhibit giant electrostriction and dramatic symmetry 
transformations under <1V voltage changes. The closed-loop preimages of heloknoton’s are inter-
linked with the torus-knot of vortices within the orthonormal fields [73], showing how remarkably 
beautiful and complex knotting of helical fields can be and calling for their search in other physical 
systems. For example, they can potentially emerge in solid-state non-centrosymmetric magnets 
and ferromagnetic LCs with helical fields and Hamiltonians similar to those of chiral LCs, as 
recently predicted theoretically [44].  
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6. Topological, solitonic & knotted active matter  
 

6.1. Solitons as active particles in passive LCs 
The examples showing the role of topology in the LC and colloidal soft matter behavior presented 
so far relate to equilibrium or metastability conditions, but even richer interplay of topology, 
ordering and fluidity can emerge under the out-of-equilibrium conditions. Topological structures 
of defects and solitons in LCs and nematic colloidal particles can be effectively “activated” by 

supplying energy [81,82,197-201], just like this was done in the past with granular particles by 
shaking them [123,202,204], as an example. When supplied to LC and colloidal samples on 
macroscopic scales under well controlled conditions, the external energy can be converted into 
motion on the individual soliton or singular defect basis; this can lead to various types of emergent 
active matter behavior, differing from classic effects like electrophoresis and dielectrophoresis 
where external fields predictably predetermine motions of particles. As we shall see below while 
focusing on examples that involve skyrmnions and torons, this enables synthetic active matter with 
rich varieties of collective motions of particle-like topological solitons and defects. While Skyrme 
solitons have been used historically as physical models of subatomic particles [7] and a variety of 
other topologically protected field configurations are commonly utilized as models of particles in 
different branches of physics, the significance of the active-matter-like behavior of topological 
solitons and defects in soft matter directly shows the utility of such topological models in active 
matter. We shall review how periodic pulses of applied field lead to squirming motion of individual 
skyrmions and torons [81,82] and then how this enables collective schooling and orderly motions 
of hundreds-to-millions of such topologically-protected particle-like structures, with all motion 
directions selected spontaneously and arising from emergent behavior, uncorrelated with 
directions of the oscillating fields [198-201]. While in active nematics topological defects behave 
as active particles themselves [123,202,205], the active topological solitons that we will focus on 
here can be understood as active particle-like objects within an effectively passive medium, 
behaving as active topological excitations [81,82,198-201]. With fluid flows and complex 
hydrodynamics being an important part of the conventional active nematics and behavior of defects 
within them [123,202,205], the situation can be very different in the case of active topological 
solitons in passive nematics that rely mostly on the rotational director dynamics to move [81,82]. 
Various backflow effects can be present (though typically not strong) during such dynamics 
[81,82], but they are localized and not instrumental in defining motions that arise from non-
reciprocity of rotations of n(r). The way topological solitons move when invoking this 
nonreciprocal rotational director dynamics could be paralleled with stadium waves (which move 
around the stadium without people actually leaving their seats) and concert-wave dance dynamics 
in response to music that can propagate with the speed of sound without carrying the dancers with 
them. The LC soliton motions also resemble dynamics of topologically similar skyrmions in spin 
textures in solid-state magnets that can move through rotations of spins within solid films with up 
to kilometer-per-second speeds, being of interest for spintronics applications like in racetrack 
memory devices [162, 180-185]. However, the most fascinating feature of topological soliton 
behavior in soft matter is that their emergent collective motions can mimic that found in biological 
systems, like in schools of fish, though here happening without advection but rather through 
rotational dynamics in the order parameter field [200].     

Facile response of LCs to periodically varying fields can cause local conversion of electric, 
magnetic, mechanical or other forms of energy into elastic energy stored within solitonic n(r)-
deformations and then into soliton’s translational motion [81,82,198-201]. In the electric field case, 
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dielectric coupling of n(r) with electric field E morphs a soliton (Fig. 31a-f) and elastic free-energy 
costs associated with this deformation tend to drive relaxation of n(r) back to the initial state that 
minimizes energy at zero applied field. The non-reciprocal nature of n(r)-rotation in response to 
switching voltage U on and off causes translation of solitons in lateral directions (Fig. 31g-i). 
Within each voltage modulation period Tm, the solitons are asymmetrically squeezed during the 
“field-on” cycle and relax to minimize the elastic free energy during the “field-off” cycle of Tm 
(Fig. 31h,i) [81]. This periodic non-reciprocal asymmetric morphing of the localized n(r) 
resembles squirming in biological systems, albeit LC solitons have no cell boundaries, density 
gradients or interfaces, so that the similarity is limited, mainly just in terms of the nonreciprocal 
character [82]. Like for active colloidal or granular particles [124,125,202-204], the energy 
conversion happens at the scale of individual particle-like solitons. Although the oscillating 
energy-supplying field is applied globally to the entire sample, its direction is not related to the 
emergent motion direction [81]. Depending on the applied voltage, this morphing of LC solitons 
by voltage pulses can take place below or slightly above the threshold of switching of the LC 
director in the background far away from the solitons [81,199,200], though in both cases the LC 
host medium features no or very minimal macroscopic flows, so that the LC stays passive 
(practically no advection) while the topological solitons start exhibiting active-particle-like 
emergent motions. 
 
6.2. Out-of-equilibrium elastic interactions and schooling of skyrmions 
Out-of-equilibrium elastic interactions between moving skyrmions emerge to reduce the free 
energy costs of n(r)-distortions around the topological solitons, albeit without the dynamic n(r) 
reaching equilibrium because of the periodic voltage modulation and soliton motions [200]. These 
interactions, at least partially, define collective behavior of skyrmions while they move (Fig. 32a,b). 
The elastic interactions between skyrmions confined to a 2D plane have dipolar nature (note also 
that the director configuration around a skyrmion in an applied field is of dipolar type, Fig. 31c,f), 
though the complex temporal evolution of n(r) with modulated U effectively changes their tilt 
relative to the 2D sample plane within each Tm [200]. Such dynamic dipolar skyrmions mutually 
repel at small U, but exhibit anisotropic dipolar-like interactions, including attractions, when the 
oscillating field E prompts symmetry breaking and motions [200]. E rotates preimage dipoles 
(connecting preimages of 𝕊2-poles of the vectorized n(r)) from being orthogonal to the sample 
plane at U=0 to being tilted or in-plane when U increases. Since the response of n(r) to oscillating 
U is fast (10-100 ms) as compared to the timescales of skyrmion motions at ~1m/s, tuning n(r) 
by U and frequency f modifies elastic forces and prompts cohesion within schools of skyrmions. 
The emergent behavior and orientational-elasticity-mediated pair and many-body interactions of 
such topological solitons can be understood as that of elastic dipoles with periodically oscillating 
tilt with respect to the 2D sample plane (Fig. 32) [200]. The nature of instantaneous interactions 
between continuously morphing solitons effectively changes within each Tm, but the overall 
collective behavior then arises from the cumulative effects of Tm-averaged instantaneous 
interactions (Fig. 32a-c). This behavior gives origin to a variety of emergent behaviors of moving 
solitonic assemblies (Fig. 32a) and schools of solitons (Fig. 32b-e). 

In presence of thousands-to-millions of skyrmions, applied E initially induces random 
tilting of the director around individual skyrmions, so that their south-north preimage unit vectors 
pi = Pi/|Pi | initially point in random in-plane directions. Individual skyrmions exhibit translational 
motions with velocity vectors vi roughly antiparallel to their pi. With time, coherent directional 
motions emerge, with schooling of skyrmions either individually-dispersed (Fig. 32b,c) or within 
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various cluster-like assemblies [200]. Velocity and polar order parameters Sv=|∑ 𝐯𝑖
𝑁
𝑖 |/(Nvs) and 

Sp=| ∑ 𝐩𝑖|
𝑁
𝑖 /𝑁 characterize degrees of ordering of vi and pi within the moving schools, where N is 

the number of skyrmionic particles and vs is the absolute value of velocity of a coherently-moving 
school. Both order parameters increase from zero to ~0.9 within seconds (Fig. 32d), indicating the 
emergence of coherent unidirectional motion of particle-like solitons. The dynamic elasticity-
mediated assembly of multi-skyrmions within schools (Fig. 32) echoes nuclear physics models 
(where subatomic particles with high baryon numbers are modeled as clusters of elementary 
skyrmions [7]), with each skyrmion cluster characterized by a net total skyrmion number 
corresponding to a sum of topological invariants of elementary solitons within it [81,82,200]. 
Interestingly, one often observes dynamic fission and fusion of such clusters during the active 
schooling [200]. Figure 32e summarizes the schooling behavior of skyrmions within a structural 
diagram, showing electric reconfigurability of this emergent behavior [200]. It is surprising and 
unexpected that relatively simple topological solitons, the 2D skyrmions, exhibit such complex 
out-of-equilibrium behavior when powered by oscillating electric fields. How can this behavior be 
altered further by increasing the number density of the solitons and by presence of singular point 
defects co-existing with the skyrmions (e.g. within the elementary toron structures)?   
 
6.3. Crystals of moving torons 
Let us now consider an experimental geometry similar to that discussed above (Fig. 33a), but with 
dense polycrystalline arrays of torons (Fig. 33b,c). An oscillating field E applied to a chiral LC 
with such polycrystalline arrangements of torons prompts motions of crystallites and lattice defects 
(Fig. 33d), showing behavior very different from that of skyrmions discussed above [199]. E is 
again applied orthogonally to cell substrates and motions emerge along a spontaneously selected 
direction in a plane orthogonal to E (Fig. 33a-d). The crystallites have different orientations of 
crystallographic axes of the quasi-hexagonal lattice relative to the average motion direction before 
and during motion (Fig. 33b-d). The temporal evolution of deformations of the complex director 
field upon turning U on and off is not invariant upon time reversal, prompting lateral translations 
of torons, which synchronize to yield coherent motions of the crystallites of torons within quasi-
hexagonal periodically deformed lattices (Fig. 33) [199]. Although the average direction of motion 
of toron crystallites is well defined, individual torons within the lattices execute rather elaborate 
“dancing-like” dynamics (Fig. 33e), where local translations in directions other than motion 
direction average out over longer periods of time. As a result, the primitive cells of crystals of 
torons are translated along the average motion direction (Fig. 33e) with velocities approaching a 
micrometer per second range (Fig. 33f). While there is no net displacement of toron lattices and 
both scyrmions and singular point defects within them at zero applied field (though thermal 
fluctuations of toron positions are present), this displacement becomes linear in time soon after the 
periodically oscillating voltage is applied (Fig. 33f). Numerical modeling and experiments reveal 
that this motion is accompanied by voltage U-dependent lateral shifts of hyperbolic point defects 
and tilts/deformations of preimages as compared to those at U=0 (Fig.33g,h). This electrically-
powered self-shearing of torons is apparent when visualizing the south-pole preimages and lateral 
shifts of the singular point defects at opposite confining surfaces (Fig. 33h), as well as can be 
inferred from tracking point defects in bright-field microscopy (insets of Fig. 33f). Furthermore, 
all the preimages also rotate around an axis normal to the sample plane [199] (Fig. 33i). As voltage 
is effectively turned on and off within each period of square-wave modulation, toron’s preimages 

rotate counterclockwise and clockwise (Fig. 33i), so that the director evolution that is manifested 
through such textural changes is not invariant upon reversal of time (Fig. 33i). Collective motions 
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of crystallites of these solitons prompt fascinating evolution of grain boundaries and 5-7 defects 
[199], which are not generated by external stresses (like this would be the case, for example, during 
mechanical deformation of crystalline solids) but rather emerge from collective motions of 
crystallites of topological solitons within the material’s interior, powered by the conversion of 
energy on an individual soliton basis. Furthermore, these complex dynamics arise from facile 
responses of the LC to external fields, which can be related to periodic morphing of knotted 
director streamlines within each toron [82], like the ones depicted in Fig. 20 [199], further enriched 
by electrically powered periodic shearing and dynamics of lattice defects. The collective dynamics 
of torons within lattices increases the hexatic order parameter and also causes polar ordering of 
asymmetrically sheared solitons, as well as leads to rather high velocity order parameters, which 
are all rather unexpected emergent properties [199]. These findings show that, being “activated” 

through supplying energy that is converted into motion locally, singular point defects, torons, 
skyrmions and various other knotted solitonic field configurations can emerge as a new breed of 
topological active matter [81,82,199,200,205-208]. 
 
6.4. Utility of the activated solitonic matter 
While motion of individual solitons and their schools or crystals can take place with no or very 
little advection, these dynamic textures of n(r) can be used for transporting colloidal micro-cargo 
with well-defined surface boundary conditions by coupling the localized director textures with the 
solid particles through surface anchoring boundary conditions [82]. It is tempting to again draw an 
analogy of such particle transportation with the so-called “crowd surfing” typically enjoyed by 

concert performers, where the relatively static crowd transports the artist with localized dynamics 
of moving hands. However, it is important to note that the soliton-assisted transportation of 
colloidal particles throughout the LC generates more significant (though still localized) fluid flows 
[82]. Considering that the “activated” topological solitons can be realized in very diverse synthetic 

material systems under geometry and sample preparation conditions similar to those of LC displays 
[200], their out-of-equilibrium emergent behavior might be of interest for technological 
applications, ranging from microfluidics to dynamic diffraction gratings and singular optics. For 
example, one can envisage their use in generating emergent patterns of polarization and intensity 
of light (including optical vortices and knots made from them) through exploiting optical 
properties of the uniaxial LC host media. Since torons and skyrmions can be also pinned to 
surfaces in desired locations using laser tweezers, further control of their out-of-equilibrium 
behavior like jamming was recently achieved by combining static (often serving as obstacles) and 
dynamic topological solitons [81,198,201]. In general, the combination of topological protection, 
reconfigurability and the facile response of the optically anisotropic LC host medium makes the 
topological solitons ideal for applications in various emergent technologies and as model systems 
in fundamental research. 
 
7. Open questions, opportunities and perspectives 
While the study of knotted and other topological structures in soft matter attracts a great deal of 
interest, many fundamental questions remain to be answered, including a systematic 
classification of these configurations, the allowed transformations between them, their physical 
stability, and how to use one form of knotted fields to create and imprint other forms. The large 
variety of symmetries accessible within the selection of soft matter host media (Fig. 1) [13] will 
allow for gaining insights on stability, transformation and dynamics of fully nonsingular and 
singular knotted fields. The open questions to be answered include the following. What 
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restrictions do different material symmetries impose on the knot types that can be realized?  
What knot invariants have physical significance for each knotted field realization?  How do 
soliton-type and singular knotted fields coexist with each other and with other topological 
defects, colloids, confining surfaces?  How do director fields switch between different knotted 
states?  What new knotted condensed matter phases are possible for different symmetries? What 
are the mechanisms by which knotted fields are stabilized? When knots decay or emerge within a 
uniform background, what are the topological cascades of knot types in different systems? What 
is the relation between topological complexity and energy landscapes? Can turbulence be 
engineered in LC fluids through imprinting knotted flow structures, like in microfluidics 
embodiments [208, 209]?  How do knotted structures in a complex soft matter medium interact?  
What types of dynamics and active-particle-like motion of singular knots [209, 210] of line 
defects and topological solitons in 3D active nematics can be realized? Can interaction of knotted 
structures and confining surfaces be controlled [211]? What are the implications of knotting of 
vortex lines in LCs on the structure of their cores [212-215]? How extensions of topological 
concepts to dynamical phenomena can lead to entanglement of dynamic and static material 
properties? Could active nematics or passive nematics with activated dynamics of defects host 
soft matter analogs of instantons [7]? Can knotted optical fields act as templates to excite knotted 
liquid crystal and ferromagnetic states, and vice versa?  Orientationally ordered soft matter 
provides unique opportunities for integrating analytical, numerical and analog modeling with 
experiments to answer the above questions. 
 While topologically protected knotted solitons and vortices can exhibit behavior similar to 
that of particles, with effective dimensions in nanometer and micrometer ranges, it is of interest to 
explore how such structures interact and co-exist with colloidal particles in LC colloidal 
dispersions, gels and emulsions [216-221]. Preliminary studies in this direction have appeared 
already [222,223], demonstrating that colloidal particles immersed in LCs can be accompanied by 
combinations of solitonic and singular structures, but more extensive research explorations are still 
needed. For example, 3D solitons like heliknotons could effectively bond with colloidal objects to 
form hybrid soliton-colloidal crystals, or instead new breeds of hybrid structures could arise from 
their interactions. These studies could lead to sparse but ordered open and closed 2D and 3D 
lattices of colloidal superstructures [73,224], or may also diversify our abilities of knotting nematic 
field configurations. If thinking about both colloids and solitons as “big atoms”, this may also 
significantly expand our abilities of modeling atomic and molecular systems with soft matter, as 
well as going beyond what is accessible to atomic and molecular building blocks in terms of 
symmetries of organization, responses to external stimuli, etc. 

Throughout the article, relations between topological structures in soft matter and the ones 
in other branches of science have been mentioned. Experimental realizations and deeper 
understanding of, for example, hopfions and heliknotons in solid-state magnetic systems may be 
aided by explorations of such structures in LCs and colloids [42,44,73,74]. Indeed, the synergy in 
studies of these solitons in different systems is even beyond just the topological equivalence and 
analogy, and can build on similarity of free energy functionals, various types of surface and bulk 
anisotropies, field couplings, etc. [42,44]. In many other physical systems, like elementary particle 
physics and cosmology, structures of fields are not experimentally accessible and, thus, ordered 
soft matter media can provide much needed model systems and deeper insights [7]. On the other 
hand, synergy can be developed in explorations of topological configurations even within different 
soft matter systems. For example, Petit-Garrido and others [225,226] demonstrated how vortices 
within molecular monolayers can imprint arches of singular disclinations within LCs in contact 
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with them, but such study could also involve topological solitons and knotted vortices. Having 
self-assembled monolayers made of photo-responsive molecules, e.g. the ones containing 
azobenzene, may enable interesting dynamics, similar to what was observed for spiraling 1D 
solitons [227], but now this could be extended to higher dimensional solitons, like skyrmions and 
hopfions. 

In addition to the most common examples discussed above, more complex LCs and 
colloids can be characterized by a variety of other types of order parameters and the 
corresponding order parameter spaces (Fig. 1c,d). For example, particularly interesting high-
dimensional order parameter spaces in these soft matter systems are SO(3)=𝕊3/ℤ2 of the 
monoclinic biaxial colloidal ferromagnets [228] (Fig. 1d) and SO(3)/D2= 𝕊3/𝑄8  of the 
orthorhombic biaxial nematics (Fig. 1c) [229]. The types of anticipated/allowed defects and 
solitons in these systems are understood on the basis of homotopy theory, with one particularly 
interesting example being the nonabelian line defects in the orthorhombic biaxial nematic LC, 
π1(𝕊3/𝑄8)=𝑄8 [230], but little is known about the interactions of these soft matter systems with 
confining and colloidal surfaces of complex topology and even the fundamental properties of these 
defects have not been probed experimentally. What types of solitonic and singular knotted field 
configurations can exist in these biaxial, low-symmetry nematics and colloidal ferromagnets? For 
example, π3 (𝕊3/𝑄8 )= ℤ  and π3 (𝕊3/ℤ2 )= ℤ  topological solitons in biaxial nematics and 
ferromagnetic LCs would be rather interesting analogs of the Skyrme solitons in high energy 
physics, but can they emerge as global or local free energy minima in these soft matter systems? 
What would be the fate of various solitonic and singular knots during monoclinic-orthorhombic, 
orthorhombic-uniaxial nematic and various other phase transitions involving these mesophases? It 
is only now that researchers can start addressing such fundamentally important questions because 
these soft matter systems become experimentally accessible [228,229]. The recent demonstration 
of 3D active nematics [210] also promises a variety of new opportunities in realizing various out-
of-equilibrium knotted vortices and solitons. For example, both active [210, 231-237] and out-of-
equilibrium passive LCs with “activated” dynamic defects [81,82, 198-201] could reveal various 
analogs of topological instantons and nontrivial topological connectivity where dynamics of 
defects and topological solitons could even lead to formation of topological field configurations in 
a different class, including various knotted field configurations. Although topological objects in 
soft matter can be realized only in one-to-three-dimensional physical-configuration spaces (Fig. 
5), time in certain cases can be treated as an additional spatial dimension (say ℝ3+1 for a 3D 
configuration space with certain special temporal dynamics and the corresponding 𝕊 4-

compactification) [7, 238], so that an interesting question arises if topological objects predicted by the 
homotopy theory and labeled as 4(𝕊3)=ℤ2 and 4(𝕊3)=ℤ2 could be potentially realized in out-of-
equilibrium soft matter systems. At the same time, active matter behavior, curvatures of confining 
surfaces and orientational polar or nematic order could interplay to yield interesting topological 
effects that are analogous to topology-enabled phenomena recently widely studied in quantum 
materials [1, 237], with many new interesting possibilities arising and in need of exploration.  

While the recent advances in study of topologically nontrivial structures in soft matter have 
primarily fundamental importance, they could also be useful in various applications, extending the 
scope of what is done already in relation to more classic types of topological defects. For example, 
controlled patterning of defects in thin photo- and thermally-responsive LC elastomeric films 
recently enabled tuning surface topography, e.g. inducing cone- and saddle-like deformations of 
thin films and oscillating surface profiles [239-241]. Similar ideas can be extended to skyrmions, 
hopfions and heliknotons, where topologically-protected nature of these field configurations can 
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be utilized to produce well-defined localized mechanical responses, much like with singular 
defects [239-241], but now with a considerably larger inventory of possibilities. Conversely, 
topographic features at LC interfaces can be used to define and pattern spatial positions of various 
knot solitons through harnessing interactions mediated by LC’s orientational elasticity, much like 
colloidal particles in nematic LCs could be attracted by topographic features like pyramids [242]. 
On the other hand, optical effective refractive index patterns associated with various arrays of 
solitons with and without lattice defects can be utilized to generate tunable diffraction patterns and 
optical vortices in laser beams [164,165,243,244], where 3D topological solitons like heliknotons 
[73] within crystalline arrays may again allow for much needed reconfigurability in defining these 
diffractive elements and optical vortex generators. It will be interesting to explore how various 
linear and nonlinear optical interactions within LCs can be exploited to use topological solitons in 
guiding laser beams of light and optical solitons like nematicons [245], as well as how these 
interactions can potentially enable practical applications in beam steering and telecommunications. 
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Figure 1. Orientationally ordered soft matter systems. (a) Schematic of a uniaxial LC made of rod-like 
molecular mesogens. (b) Dispersion of monodomain magnetic colloidal nanoplates with magnetic moments 
m and macroscopic magnetization M aligning with n (black lines), effectively “vectorizing” the nonpolar 

director field n(r) by M(r) through selecting one of the directions parallel to it. (c) Biaxial nematic phase 
with orthorhombic D2h point group symmetry characterized by three mutually perpendicular nonpolar 
directors (red, green and blue double arrows). (d) Schematic of a ferromagnetic hexagonal nanoplate in a 
nematic host with its magnetic moment tilted away from the LC ordering direction (left) and biaxial 
ferromagnetic LC colloids with magnetization M tilted with respect to the director n (right), forming a 
monoclinic biaxial ferromagnetic LC.  
 

 
Figure 2. Knots in history, culture and science. (a) A common overhand knot. (b) Trefoil knot in two 
embodiments of opposite handedness, which can be obtained by connecting the ends of the overhand knot; 
these knots were generated using the KnotPlot freeware (https://knotplot.com). (c) The symbol of interlaced 
triquetra [Madboy74/CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0 )] is a trefoil knot. (d,e) 
Ancient decorations in the forms of (d) the Solomon link (Aquileia, Basilica. Photo by Giovanni Dall'Orto) 
and (e) the Borromean link [Valknut detail from Stora Hammar stone. Adapted from  
https://en.wikipedia.org/wiki/Valknut . CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) ].        
(f) Used for millennia in Chinese culture [6,8-11], knots are also very common decorations nowadays, with 
this Chinese knot decoration, for example, being commonplace in the Beijing airport. (g) Many closed-loop 
mathematical knots belong to the class of torus knots and can be confined to surfaces of a torus; the 
examples provided here are the unknots (top) and trefoil knots (bottom) featuring different numbers of 
windings around the circular axis and axis of rotation of the torus provided in brackets. Note that the two 
unknots (top) and the two trefoil knots (bottom) shown by red and green colors in each case are further 
linked with each other while residing on the tori in each case, forming different two-component links. 

https://knotplot.com/
https://creativecommons.org/licenses/by-sa/4.0
https://en.wikipedia.org/wiki/Valknut
https://creativecommons.org/licenses/by-sa/3.0
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Figure 3. A table of knots. Only the first simplest 24 knots are shown [6], with their Alexander-Briggs 
notations given in the bottom-right of each knot. Knots were generated using the KnotPlot freeware 
(https://knotplot.com ). 
 

 
Figure 4. Multi-component links. (a) Rolfsen table of the first prime links, with the first 36 links shown 
along with the corresponding notations [6]. (b) Examples of Brunnian links with different numbers of 
components and crossing numbers, with the first being the three-component Borromean link. All links were 
generated using the KnotPlot freeware (https://knotplot.com ). 
 
 

https://knotplot.com/
https://knotplot.com/
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Figure 5. Homotopy theory classification of singular and solitonic field configurations. The green, 
yellow and blue colors highlight different examples of topologically nontrivial field configurations 

discussed within this review, whereas the 3(𝕊3)=ℤ topological solitons (red) arise in high energy and 
nuclear physics models of subatomic particles. 

 

 
Figure 6. Topologically nontrivial structures of fields. (a,b) Examples of 2D 1(𝕊1)=ℤ singular defects 
classified by mapping the vector field from 𝕊1 surrounding the singularity to 𝕊1 order parameter space of 
vectors confined to 2D plane, with the order parameter space covered once in (a) and twice in (b), yielding 
the winding numbers. (c) An elementary +1 radial point defect representing a family of point singularities 
with integer-valued hedgehog charges labeled as 2(𝕊2)=ℤ. (d) An example of 1(𝕊1)=ℤ topological soliton 
in the form of an elementary 1D solitonic wall with 360 unit vector rotation embedded in the uniform 
(vertical, pointing upwards) far-field background, which can be represented on 𝕊1, as shown in (e), where 
red-blue colors on ℝ1 and 𝕊1 correlate with and depict vector orientations. (f) Skyrmions in ℝ2 (bottom) 
can be mapped bijectively from field configurations in 𝕊2 (top) through stereographic projections (𝒫). The 
Neel-type (bottom-left) and Bloch-type (bottom-right) 2D skyrmions are related by a smooth rotation (ℛ) 
of vectors. The vector orientations are shown as arrows colored according to the corresponding points on 
the target 𝕊2 (inset). (Part f is reproduced with permission from Ref. [80]). (g) Schematic of the 𝕊2/ℤ2 order 
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parameter space, with the diametrically opposite points of the circular base identified. (h-j) Half-integer 
defects in non-polar 2D n(r), including wedge disclinations (h,j) that in 2D are characterized by opposite 
s=1/2 winding numbers, and a twist disclination (i). In ℝ3, there is only one type of topologically distinct 
disclinations different from a uniform state, with the topologically distinct states labeled 1(𝕊2/ℤ2)=ℤ2; local 
structures of defect lines like the ones shown in (h-j) can smoothly inter-transform one into another in 3D 
and correspond to a single, topologically equivalent state. (k) Twisted wall with 180 rotation of nonpolar 
n(r) embedded in a uniform background can be compactified on 𝕊1/ℤ2≅𝕊1. (l) Mapped director field of the 
twisted wall winds around the order-parameter space 𝕊1/ℤ2 once; since 𝕊1/ℤ2≅𝕊1, 1D LC solitons are 
classified by 1(𝕊1)=ℤ.   
 

 
Figure 7. Nematic colloids comprising spherical particles. (a, b) Polarizing optical micrographs of an 
elastic dipole formed by spherical colloidal particles with perpendicular surface anchoring in a planar 
nematic LC cell. Orientations of polarizer, analyzer and the slow axis of a full-wave 530nm retardation 
plate are labeled “P”, “A” and “”, respectively. (c,d) schematics showing the corresponding (c) nonpolar 
and (d) vectorized n(r), with hyperbolic point defects shown by black (c) and red (d) filled circles. (e, f) 
Schematics of the quadrupoloar n(r)-configuration around particles with (e) homeotropic and (f) tangential 
surface boundary conditions. The black ring in (e) represents the “Saturn ring” half-integer disclination 
loop. Boojums are marked as black filled hemi-circles at the particle’s poles along the far-field alignment. 
The inset in (f) shows the radial ns(r) director field at the interface of LC and colloidal sphere corresponding 
to each of the two boojums. 
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Figure 8. Colloidal tori and handlebodies with tangential boundary conditions. (a-d) Torus-shaped particle 
with tangential anchoring and the ring plane parallel to n0. Polarizing optical micrographs taken without (a) 
and with (b) a 530 nm retardation plate with a slow axis Z′. Orientations of polarizer and analyzer are 
labeled “P” and “A”, respectively.  (c) Bright-field micrograph of a torus with four boojums visible as dark 
spots. (d) Schematic of n(r) in a plane containing the ring and n0. Insets schematically depict 2D defects in 
the director ns(r) tangent to particle’s surface. Green and red semi-spheres and circles represent, 
respectively, s=1 and s=−1 surface defects in ns(r). (e-h) Colloidal handlebodies with g=2. Polarizing 
optical micrographs (e, g) and corresponding bright-field (f, h) images of the handlebodies having ring 
planes parallel to n0 but with the axis connecting centers of two rings at different orientations with respect 
to n0. (i) Numerically calculated n(r) in the LC bulk (blue rods) and ns(r) on the surface (black rods) of the 
g = 2 colloidal handlebody; inset shows a detailed view of n(r) and ns(r) in the near-boojum regions marked 
in (i), with the isosurfaces of constant reduced scalar-order parameter Q=0.25 shown in red and visualizing 
a handle-shaped core structure of the boojum. (j-m) Colloidal handlebodies with genus of (j) 3, (k) 4 and 
(l,m) 5. Reproduced with permission from [69]. 
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Figure 9. Colloidal handlebodies with perpendicular surface boundary conditions. (a-d) Schematics 
showing the vectorized-field representations of n(r) (green lines with arrows) around single (a, c) and 
double (b, d) colloidal handlebodies in the plane of the rings (c, d) and in planes orthogonal to them (a, b). 
(e, f) Diagrams of vectorized n(r) around hyperbolic topological point defects of negative (e) and positive 
(f) signs shown by red and magenta filled spheres. (g-j) Polarizing optical micrographs of n(r) for samples 
with different colloidal handlebodies. Orientations of polarizer and analyzer are the same for all 
micrographs (g-j) and are labeled “P” and “A” in (g). Colors in (j) emerge from polarized interference of 
imaging light passing through the LC. (k-n) Schematics of n(r) (black lines) around colloidal handlebodies 
of different genus. Red and magenta lines show outer and inner disclination loops of hedgehog charges m=-
1 and m=+1, respectively. Magenta spheres show the m=+1 hyperbolic point defects. Reproduced with 
permission from [34]. 
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Figure 10. Nematic colloidal knots with tangential boundary conditions. (a) Trefoil colloidal knots shown 
in (left) optical micrograph of a photopolymerized colloidal trefoil torus knot, with the corresponding 3D 
model shown in the inset, and (right) nonlinear luminescence image of a particle fabricated by means of the 
spatially-resolved graphene oxide reduction with femtosecond laser light (left-side image reproduced with 
permission from [35]; right-side image reproduced with permission from [127]). (b-d) Scanning electron 
micrographs of a (b) 4×4 array of T(5,3) torus knots and (c, d) a single T(3,2) knot shown as viewed along 
the torus axis (c) and in an oblique direction (d). (e) Bright-field and polarizing optical micrographs taken 
without polarizers (left), between crossed polarizers (middle), and with an additional 530 nm retardation 

plate having its slow axis aligned as shown by the blue double arrow (right). Orientations of crossed 
polarizers are shown by white double arrows. Locations of boojums are marked by red arrows. (f) 3D 
nonlinear fluorescence pattern (left) and representation of n(r) deviating away from n0 due to the 
incorporated trefoil knot particle (right). Colors depict the azimuthal orientation of n(r) when projected 
onto a plane orthogonal to n0 according to scheme shown in the inset. The structure is visualized on a tube 
following the knotted particle’s surface; points where colors meet are the boojum defects. (g) Same as in 
(f) but for T(5,3) particle. (h) Optical micrograph of the T(5,2) knot particle obtained for crossed polarizers 
(white double arrows) and a phase retardation plate (blue double arrow) aligned with its slow axis at 45° to 
polarizers and n0. (i) Reconstructed 3D fluorescence pattern due to the T(5,2) colloidal knot particle and 
n(r) induced by the particle as viewed perpendicular to the torus axis. (j) Corresponding numerical model 
showing boojums induced by the T(5,2) particle. Green and magenta areas show the spatial regions of a 
reduced scalar order parameter, corresponding to the s= −1 and s= 1 defects in the 2D n(r) at the LC-particle 
interface, respectively. Reproduced with permission from [35]. 
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Figure 11. Colloidal knots with perpendicular boundary conditions. (a, b) Optical micrographs of a trefoil 
knot in an aligned nematic (a) taken between crossed polarizers (white double arrows) and (b) with a 530 
nm retardation plate (blue double arrow) inserted with its slow axis at 45° to polarizers. (c) Computer-
simulated n(r) within a cross-section perpendicular to the knotted tube marked in (f). (d, e) Nonlinear 
polarized fluorescence images of n(r) around the knotted particle shown in (a, b) and for the femtosecond 
excitation-light polarizations (green double arrows) at different orientations with respect to n0. Red arrows 
mark the defect lines visible in the image plane. (f) Computer-simulated n(r) around a trefoil knot with 
perpendicular boundary conditions and the torus plane self-aligned orthogonally to n0. Green and magenta 
tubes show the regions with reduced scalar order parameter corresponding to the cores of the two knotted 
singular defect lines seen in the cross-sections (d, e). The bottom-left inset shows a topological schematic 
of the mutual linking between the particle knot (blue) and defect knots (green and magenta). (g-j) Bright-
field micrographs of colloidal knots aligned with the torus plane parallel to n0, and taken without polarizers 
(g, i) and between crossed polarizers with an inserted full-wave retardation plate (h, j). Green arrows in (i) 
indicate regions of the defect lines rewirings. Reproduced with permission from Ref. [35]. 
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Figure 12. Nematic colloidal two-component links with tangential boundary conditions. (a) Optical bright-
field micrograph (left) of a Hopf link particle with its 3D model shown in the inset and a 3D nonlinear 
fluorescence image of the same particle (right). Red and green colors are used in the inset to distinguish the 
two different linked rings. (b,c) Optical micrographs of a colloidal Hopf link in a nematic, as viewed 
between crossed polarizers without (a) and with (b) an additional 530-nm wave plate (with its slow axis 
marked by the yellow double arrow). (d) Numerically simulated n(r) depicted using colors on the particle’s 

surfaces and using rods in the LC bulk. Colors show azimuthal orientations of n(r) with respect to n0 
according to the scheme shown in the lower-left inset; lower-right inset shows details of the core structure 
of a boojum splitting into a semi-loop of a half-integer defect line with the handle-shaped region of reduced 
scalar order parameter shown in red. (e) Numerical n(r) depicted as in (d) but in a metastable state when 
the plane of one of the link’s rings is normal to n0; inset shows a different perspective view of the same 
link. (f, g) A colloidal Solomon link in a homeotropic nematic cell as viewed between (f) crossed polarizers 
and (g) between crossed polarizers and a waveplate (yellow double arrow depicts orientation of the slow 
axis). (h) A numerical model of n(r) depicted using colors on the particle surfaces corresponding to the 
experimental images shown in (f) and (g). (i, j) Another configuration observed for a similar Solomon link 
viewed between (i) crossed polarizers without and (j) with an inserted wave plate. (k) Corresponding 
numerical n(r) depicted using colors on the particle surfaces. Crossed polarizers and the far-field director 
are marked by white double arrows, as labeled on images. Reproduced with permission from [72]. 
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Figure 13. Nematic colloidal two-component links with perpendicular boundary conditions. (a-e) 
Colloidal Hopf link studied using optical micrographs taken (a,b) between crossed polarizers shown by 
white double arrows (a) without and (b) with an additional full-wave 530nm retardation plate (yellow 
double arrow shows its slow axis), and (c) in a bright-field mode. (d) A corresponding numerical model, 
with n(r) shown by rods and defect lines as the red tubes of reduced scalar order parameter. Inset shows a 
schematic of linked colloidal and defect loops. (e) A zoom-in view of (c) focusing on the jumping 
disclination seen in both experiments and theory, marked by red arrows in (d) and (e). (f-h) Another 
configuration of a similar Hopf link. (f and g) Optical micrographs of this particle taken under conditions 
like in (a,b). (h) A corresponding theoretical model; inset shows a simplified topological skeleton. (i) 
Topological skeletons and graphical representations of Hopf link particles and accompanying closed defect 
loops. The mutually linked, physical-particle rings are shown in blue and yellow colors, and the defect line 
loops are shown in red. In the graphs, the individual links are indicated by black edges connecting the 
corresponding red-blue-yellow filled circles that represent colloidal or defect rings; the overall number of 
links is indicated next to the topological skeletons. Reproduced with permission from [72]. 
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Figure 14. Topologically nontrivial polymer-dispersed LC drops with tangential anchoring. (a-c) Polymer 
matrix with g=1 nematic drops (a) as observed in an optical polarizing micrograph and (b) depicted based 
on 3D numerical n(r) modeling (with the color-coded scheme of azimuthal orientations shown in the inset) 
and (c) with zoomed-in n(r) in the vicinity of self-compensating defects found in metastable states of some 
drops, as shown in the drop’s interior. Disclinations are shown as red tubes and filled circles representing 

regions of reduced scalar order parameter. (d-g) Nematic g=2 drops (d) seen in a polarizing micrograph 
obtained with an additional 530nm phase retardation plate, (e,f) in 3D representation of n(r) at the surface 
of a g=2 drop based on (e) numerical modeling and (f) experiments. The color-coded scheme of azimuthal 
orientations is shown in the inset of (e). (g) Nematic configurations and defects at the junction of two tori, 
with n(r) at the LC-polymer interface depicted using rods and the line defect cores in the bulk of the g=2 
drop shown using (red) regions of reduced scalar order parameter. (h-l) Nematic g=3 drops (h) seen in an 
optical micrograph obtained between crossed polarizers and with an additional retardation plate and in (i,j) 
3D representations of n(r) at the LC-polymer interface obtained (i) by numerical modeling and (j) 
experimentally; the color-coded scheme of azimuthal orientations is shown in the inset. (k,l) Defect lines 
at tori junctions seen as red tubes of reduced order parameter (k) and n(r) shown for one of them (l). (m,n) 
Polarizing optical micrograph of g=5 drop obtained between crossed polarizers with an additional phase 
retardation plate (m) and corresponding 3D representation of n(r) at the drop’s surface (n). For polarizing 
micrographs, white double arrows depict orientations of crossed polarizers and the blue double arrows show 
the orientation of a slow axis of the 530nm retardation plate. Reproduced with permission from [144]. 
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Figure 15. Handlebody-like LC drops with perpendicular boundary conditions. (a,b) Genus-one drops 
with (a) a single s=1 and (b) two s=1/2 disclination unknots, having isosurfaces of reduced order parameter 
shown in blue, with insets depicting n(r) in drops’ cross-sections. (c) Hopf link and (d) trefoil T(3,2) torus 
knot of half-integer disclination loops, with blue isosurfaces of reduced scalar order parameter. (e) a drop 
with nonsingular 3D-“escaped” n(r). (f) Escaped n(r) structures depicted in the drop’s midplane for a g=2 
drop. Insets show junction regions and blue tubes depict isosurfaces of reduced order parameter. Hyperbolic 
hedgehog defect core and disclination loops with zero (green-framed) and unity (red-framed) topological 
charges. (g,h) g=2 drop with singular defects depicted using blue isosurfaces of reduced order parameter 
(g) and corresponding cross-section of n(r) (h). (i) Experimental 3D polarized fluorescence texture for g=2 
drop obtained by superimposing images with polarizations of probing light at 0°(red), 45°(green), 90°(blue), 
and 135°(pink); note the dark areas in junctions, where n(r) is perpendicular to the image. (j) Escaped n(r) 
in the midplane of a g=3 drop. (k-m) Texture like in (i) but for g=3, 4 and 5 drops, respectively; dark areas 
in junctions are regions where n(r) is perpendicular to the images. Reproduced with permission from [146]. 
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Figure 16. Colloidal analogs of mathematical surfaces with boundary. (a,b) Optical images of discs made 
of (a) thick foil with thickness hf≈1 μm and (b) thin foil with hf≈100 nm obtained in (left) bright-field and 
polarizing imaging modes (middle) without and (right) with a 530 nm retardation plate with a fast axis γ 

inserted between the crossed polarizer (P) and analyzer (A); red arrows in (a) indicate boojums. (c,d) 
Schematics of n(r) around (c) thick and (d) thin foils, with boojums in (c) depicted as red hemispheres. (e-
j) Colloidal pyramidal cones in a nematic LC: (e) schematic; (f) scanning electron micrographs of pyramids 
made from gold foil with (left to right) hf≈100 and 200 nm; (g) Polarizing optical micrograph and (h) 
schematic of n(r) and defects around particles oriented with base-tip vector b⊥n0. (i) Polarizing micrograph 
and (j) n(r) and defects around pyramids with b∥n0. Red fragments of spheres in (h,j) show the fractional 
boojums; red arrows indicate boojums in (g,i). (k) Bright-field (left), polarizing (middle) and reflection 
(right) optical micrographs showing a colloidal octahedron formed through the assembly of two pyramidal 
cones in a nematic LC, with n(r) and surface defects (red) depicted in (l). Reproduced with permission from 
[157]. 
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Figure 17. Edge-pinned defect lines induced by a faceted ring particle in a twisted nematic cell. (a,b,d,e) 
Optical micrographs obtained between crossed (a,d,e) and parallel (b) polarizers labeled with “P” and “A”. 
A pair of bulk half-integer defects (shown by black arrows) inside the ring. Inset in (b) shows twist of n(r) 
between orthogonal easy axes eb and et at the confining cell substrates. (e) A zoomed-in view of the bulk 
defect line seen in (d) while traversing from one particle’s edge to another. (c, f) Schematics of defects and 
their transformation corresponding to (a, d), respectively. Handle-shaped bulk defect lines are shown as 
thick red tubes. Quarter-strength edge-bound surface defect lines of opposite strengths (in terms of ther 2D 
cross-sections) are shown using thin blue and orange lines, with strengths of opposite signs marked next to 
them. (g-i) Schematics of n(r) (green lines) and defects in the region of transformation of disclinations 
inside the ring opening (g) and outside (i) of a toroidal particle with faceted square cross section (h). Thick 
red lines are handle-shaped bulk defects; blue and orange lines are quarter-strength edge-bound surface 
defect lines of opposite signs of strengths with opposite signs marked next to them. Reproduced with 
permission from [70]. 
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Figure 18. 2D skyrmions and skyrmion bags. (a) A translationally invariant quarter-skyrmion tube with 
n(r) shown by rods colored based on orientations. Inset shows a color scheme for the nonpolar n(r) used 
in (a–c) and determined by director orientations as mapped to 𝕊2/ℤ2 in the inset of (a). (b, c) Top views of 
a half-skyrmion (b) and an elementary full LC skyrmion (c). (d) A translationally invariant skyrmion tube 
visualized by colored arrows smoothly decorating n(r) based on 𝕊2 shown in the bottom-right inset. (e,f) 
Top views of a vectorized-field half-skyrmion (e) and a full skyrmion (f). (g) Polarizing optical micrographs 
of skyrmion bags with one-to-four antiskyrmions inside, two stable conformations of the bag with 13 
antiskyrmions inside, and the bag with 59 antiskyrmions within it. (h,i) Computer-simulated counterparts 
of the skyrmion bags in (g) depicted according to the insets in (a) and (d), respectively. Crossed polarizers 
for (g,h) are marked by white double arrows in (g). (j) Close-up view of a computer-simulated bag with 3 
antiskyrmions shown by colored arrows. Reproduced with permission from [162]. 
 

 
Figure 19. 3D structure and topology of elementary LC torons. (a,b) Computer-simulated cross-sections 
of an axisymmetric elementary toron shown in (a) plane orthogonal to n0 and (b) containing n0. (Reproduced 
with permission from [82]). (c) Elementary toron is a skyrmion terminating at the two point defects (red 
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spheres) to meet uniform surface boundary conditions and match the topologically nontrivial skyrmion tube 
with the uniform far-field background of the 3D LC sample. Detailed field configurations on spheres around 
the point defects are shown as right-side insets. (Reproduced with permission from [80]). (d) Toron’s 

preimages of 𝕊2-points (inset, shown as cones), with regions where preimages meet corresponding to point 
defects. (e) Closed-loop n(r)-streamlines within the toron at different distances from its circular axis form 
different torus knots and links. Reproduced with permission from [82]. 
 

 
Figure 20. Torus knots in director streamlines within torons. (a-d) Streamlines tangent to n(r) at applied 
voltages U, with lengths depicted according to the color scheme, with the blue (red) colors representing the 
short (long) ones. (e) Contour length of streamlines normalized by the winding number of the torus knots 
S/q versus U. Top-left inset shows examples of tracked torus knots and unknots at U=0.8V. The top purple 
curve (circles) is the circumference of the circular axis. Crosses, asterisks, squares and triangles mark length 
of the Hopf unknot and pentafoil, quatrefoil and trefoil knots, respectively. Torus knots tracked each have 
insets representing their topology and the torus knot winding numbers, with the corresponding U-
dependencies of the contour lengths. (f) Torus surfaces where the respective torus knots and unknots are 
found, including the circular axis. (g) Rectangles schematically represent unwrapped tori shown in (f) with 
the same colors. Thin black lines indicate the streamlines that loop around the two axes of the torus to form 
various knots. (a-g) Reproduced with permission from [82]. (h) Schematic of a triple-twisted toron 
configuration consisting of two point defects (blue dots) and twist-escaped disclination loop (red line in the 
midplane). (i) A different toron configuration with two half-integer defect rings replacing the point defects 
as compared to that shown in (h). (h) and (i) reproduced with permission from [32].   
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Figure 21. Hopfions in chiral colloidal ferromagnetic LCs. (a) Linking of hopfion’s circle-like closed-
loop preimages of points (cones) on 𝕊2. (b) Illustration of a Hopf map of closed-loop preimages of a hopfion 
embedded in a far-field m0 onto 𝕊2. (c, d) Computer-simulated and experimental preimages, respectively, 
of two diametrically opposite 𝕊2-points (cones) in the top-right inset of (c). Bottom-right inset in (c) shows 
signs of the crossings and circulation directions that determine linking of preimages. Inset in (d) is a 
polarizing optical micrograph of a hopfion. (e) Polarizing optical micrographs showing polar response of 
hopfions in a c ferromagnetic LC, which expand (middle) and shrink (right) as compared to their zero-field 
equilibrium size (left) when magnetic field is anti-parallel or parallel to m0, respectively. (f, g) Cross-
sections of the hopfion taken in a plane orthogonal to m0 (f) and in a plane containing m0 (g), with the 
vector field shown using cones colored according to 𝕊2 shown in the insets of (a,b). (h,i) Linking of 
preimages of (h) two and (i) five representative points on 𝕊2, including south- and north-pole preimages 
(the latter corresponds to m0 and is the exterior of the torus confining all other preimages). (j) Preimages of 
the 𝕊2-points of constant polar but varying azimuthal m(r)-orientations form a torus. Reproduced with 
permission from [24]. 
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Figure 22. Tiling and linking of preimages of 𝕊2-points within a hopfion. Preimages of different azimuthal 
m(r)-orientations tile into tori for the same polar angles, with the smaller tori nesting inside bigger tori; the 
largest torus contains the north-pole preimage in its exterior corresponding to m0 and the other preimages 
nested within its interior. 
 

 
Figure 23. Hopfions in solid-state non-centrosymmetric magnets. (a) Cross-sections of the magnetization 
field within a hopfion in the plane perpendicular to m0 (upper) and that containing m0 (lower) in a magnetic 
solid material. Magnetization fields are shown with cones colored according to 𝕊2 (lower-left insets). In the 
x−z cross section, black stripes at the top and bottom indicate interfaces with boundary conditions achieved 
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using perpendicular surface anisotropy and thin-film confinement. (b) Preimages of 𝕊2-points indicated as 
cones in the inset. Linking number of preimage pairs is consistent with the Hopf index Q=1. (c) Geometry 
and topology of Hopf fibration. (d) Visualization of the emergent magnetic field Bem by the isosurfaces of 
constant magnitude and streamlines with cones indicating directions. (a-d) Reproduced with permission 
from [42]. (e,f) For hopfions, preimages of 𝕊2 in ℝ3 (and 𝕊3) form Hopf (e) and Solomon links  (f) with 
linking numbers matching their Q = 1 (e) and Q = 2 (f) Hopf indices. Since direct (ϕ) and inverse (ϕ−1) 
stereographic projections relate configurations on 𝕊3 and in ℝ3 when embedded within n0 and m0, these 
solitons are characterized by 𝕊3→𝕊2 maps, π3(𝕊2)=ℤ homotopy group and Q∈ℤ; crossing signs in (e,f) are 
marked in red. (e) and (f) reproduced with permission from [193]. 
 

 
Figure 24. Nematic LC hopfions. (a-e) Hopfion with Q=1 detrermined using the vectorized n(r). (a,b) 
Computer-simulated (a) in-plane and (b) vertical cross sections of the axisymmetric n(r) of the hopfion 
depicted using double cones and the color scheme that establishes correspondence between director 
orientations and the points on 𝕊2/ℤ2 (top right insets). (c) Computer-simulated preimages of the hopfion for 
two sets of the diametrically opposite points on 𝕊2/ℤ2 marked by double cones in the top right inset. (d,e) 
Comparison of representative (d) computer-simulated and (e) experimental preimages of the hopfion for 
two diametrically opposite points on 𝕊2/ℤ2 (top right insets). Gray arrows in (c-e) show the consistently 
determined circulation directions of the preimages. (f-j) Hopfion with Q=−1, with characterizations and 
visualizations done analogously to the ones shown in (a-e). Reproduced with permission from [192]. 
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Figure 25. 3D solitons formed by coaxial arrangement of two elementary hopfions. (a-g) A Q=2 
topological soliton comprising 2 coaxially arranged hopfions, each with Hopf index Q=1 (a,b) Computer-
simulated (a) in-plane orthogonal to n0 and (b) vertical containing n0 cross sections of the axisymmetric 
n(r) of a Q=2 soliton depicted using colored double cones; the color scheme establishes the correspondence 
between n(r)-orientations and 𝕊2/ℤ2 (insets). (c) A polarizing optical micrograph of such a soliton in a chiral 
nematic LC. White double arrows show orientations of crossed polarizers. (d) Computer-simulated and (e) 
experimental preimages of the soliton for the diametrically opposite points on 𝕊2/ℤ2 marked by double 
cones in the inset. (f) For a constant polar angle (inset), the closed-loop preimages of individual points on 
𝕊2 tile into two tori sharing the same vertical axis along n0. (g) Preimages of the north and south poles of 
𝕊2 for the vectorized n(r). (h-n) A Q=-2 soliton just like the one shown in (a-g), but comprising 2 coaxial 
hopfions with Q=−1 each, with figure parts mirroring the ones in (a-g). Reproduced with permission from 
[192]. 
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Figure 26. Linking diagrams and graphs of complex 3D topological solitons. The analysis reveals linking 
of preimages of two different points on 𝕊2 and 𝕊2/ℤ2 on the basis of both nonpolar and vectorized n(r). 
Insets in the red boxes at the top of the columns “linking diagrams” depict the order parameter spaces of 

vectorized (top) and nonpolar (bottom) n(r), with arrows or double arrows indicating the points for which 
the preimage linking is analyzed. The dashed lines on the 𝕊2 and 𝕊2/ℤ2 separate regions of 𝕊2 and 𝕊2/ℤ2 with 
θ<θc (top parts) and θ>θc (bottom parts), where θc is the critical polar angle defining the boundary lines 
between different sub-spaces of the order parameter space; θc lines separate regions with different individual 
preimages [192]. Locations of points corresponding to preimages, shown using single and double arrows 
on 𝕊2 and 𝕊2/ℤ2, are the same for all solitons within the same column. In the graphs, individual links are 
indicated by black or gray lines connecting the corresponding colored filled circles that represent closed-
loop preimages (black lines indicate positive signs of linking of preimages, whereas gray lines correspond 
to the negative ones). The colors of the filled circles are indicative of the points on 𝕊2 (for schematics shown 
above the horizontal dashed lines of the table) or 𝕊2/ℤ2 (for schematics shown below the horizontal dashed 
lines of the table); for n(r) at θ<θc, two out of eight filled circles of the graphs are shown as red and the rest 
as orange to distinguish them on the basis of the number of times the corresponding preimages are linked. 
The mutually linked preimage rings in the simplified topology presentations are also shown in colors 
corresponding to their locations on 𝕊2 and 𝕊2/ℤ2 and have arrows denoting circulation consistent with the 
far-field preimage. Point defects of torons within the topological skeletons are shown using black stars. 
Both the topological skeleton and graph representations of preimage structures are constructed for the same 
configurations and are provided next to each other for the case of vectorized n(r). Reproduced with 
permission from [192]. 
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Figure 27. Complex toron structure formed by coaxial arrangement of elementary toron and hopfion. (a,b) 
Computer-simulated (a) in-plane orthogonal to n0 and (b) vertical containing n0 cross-sections of 
axisymmetric n(r) structure depicted using colored double cones; the color scheme establishes the 
correspondence between director orientations and the points on 𝕊2/ℤ2 (insets). (c) Computer-simulated and 
(d) experimental preimages for the diametrically opposite points on 𝕊2/ℤ2 marked by double cones in the 
insets. Gray arrows indicate the consistently determined circulations of preimages. (e) For each polar angle, 
closed-loop preimages of individual points on 𝕊2 tile into a torus and a sphere, with the sphere having two 
small holes at poles corresponding to the two point defects. Reproduced with permission from [192]. 
 

 
Figure 28. Twistion structure in a chiral nematic LC. (a)-c) Computer-simulated (a) in-plane and (b,c) 
vertical cross sections of the 3D n(r) of the twistion shown with double cones and the color scheme of 
director orientations according to 𝕊2/ℤ2 (insets). Locations of vertical cross-sections (b) and (c) are depicted 
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in (a) using arrows. (d) Computer-simulated preimages of the twistion for points on 𝕊2/ℤ2 marked by double 
cones in the inset. (e) Computer-simulated preimages of the twistion for points on the “equator” of 𝕊2/ℤ2 
(top right inset). (f) A polarizing optical micrograph of the twistion, with the white double arrows showing 
crossed polarizers. Reproduced with permission from [192]. 
 

 
Figure 29. Control of localized topological structures by confinement and magnetic fields. (a) Computer-
simulated cross-section of a stable axisymmetric Q=0 soliton at H=0 and thickness-over-pitch ratio d/p=2.7. 
(b) Ground-state manifold 𝕊2 with four points (colored cones) corresponding to preimages of the same color 
schematically shown in the insets of (d). Black circle shows the θc-boundary line separating subspaces of 
𝕊2 with different types of individual preimages, double unlinked loops for θ>θc and a Hopf link of closed 
loops for θ<θc. (c) The critical angle θc and Q vs. μ0H at d/p=2.7. Q values are indicated atop of the colored 
regions of constant Q=−1 (green regions) and Q=0 (blue regions). Singular point defects (depicted by stars 
in the insets) accompany the nonsingular solitons, forming elementary torons, within the diagram’s white 
regions. μ0H is defined as positive when H is parallel to m0 and negative when antiparallel to it. (d) Stability 
diagram of the solitons vs. d/p and μ0H. Insets depict the diverse topology of two-point preimages and their 
links for a family of hopfions with Q = 0, −1, and the two different types of torons that emerge in different 
regions of the diagram. Reproduced with permission from [193]. 
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Figure 30. Topology and self-assembled crystals of heliknotons. (a) Helical field comprising a triad of 
orthonormal n(r), χ(r) and τ(r). (b) Preimages in n(r) of a heliknoton colored according to their orientations 
on 𝕊2 for vectorized n(r) (inset). (c) Knotted co-located half-integer vortex lines in χ(r) and τ(r). Gray 
isosurfaces in (b,c) show the localized regions of the distorted helical background. (d) Primitive cell of a 
3D triclinic heliknoton crystal. Isosurfaces (gray) of heliknotons with distorted helical background are 
colocated with both vortex knots (red) and preimages of antiparallel vertical orientations in n(r) (black and 
white). (e,g) closed rhombic and (f) open heliknoton lattices obtained at U=1.9 V and U=1.7 V, respectively. 
Reproduced with permission from [73]. 
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Figure 31. Translational skyrmion motions powered by an oscillating electric field. (a-f) Topology and 
electric switching (topology-preserving morphing) of 2D baby skyrmions: (a-c) polarizing optical 
micrographs of a 2D skyrmion at (a) no fields and (b, c) at voltages U indicated on the images. Electric 
field applied to negative-dielectric-anisotropy LC is perpendicular to images. (d-f) Computer-simulated 
vectorized n(r) corresponding to (a-c), shown using arrows colored according to corresponding points on 
𝕊2 (insets), with the far-field orientations depicted using cones. (g) Translation of a skyrmion in response 
to switching U on and off, with corresponding computer simulated results shown in the top-right inset. The 
bottom inset illustrates the square waveform voltage driving with the carrier frequency fc = 1 kHz and the 
modulation period Tm. Motion of the skyrmion is compared to that of a tracer nanoparticle at zero field 
(black solid line) and at U=4V (green solid line). (h) Experimental and (i) computer-simulated polarizing 
optical micrographs of a skyrmion when moving along a vector connecting the south- and north-pole 
preimages (positive x). The schematic in the inset between experimental and computer-simulated 
micrographs shows the timing of turning U on and off within the elapsed time equal to Tm, correlated with 
the micrographs in (h,i). Reproduced with permission from [81]. 
 

 
Figure 32. Schools of skyrmions. (a,b) Frames from videos of (a) moving chains and (b) a school of 
moving skyrmions without clustering. Directions of the electric field E are marked on (a,b). Polarizer (P) 
and analyzer (A) orientations and skyrmion school motion velocity vector (vs) are marked in (b). (c) 
Interaction potential, extracted from the radial distribution function g(rcc) shown in the inset, versus center-
to-center distances rcc for schooling skyrmions at conditions like the ones depicted in (b). (d) Evolution of 
velocity Sv (blue data points and eye-guiding curve) and polar Sp (red data points and eye-guiding curve) 
preimage vector order parameters with time. Insets schematically show the corresponding field 
configurations. (e) Diagram of static and dynamic skyrmion assemblies and schools versus packing fraction, 
frequency f and voltage U. The configurations shown in the insets are consistent across all f at which 
skyrmions are stable. Reproduced with permission from [200]. 
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Figure 33. Dynamics of 2D crystallites of torons. (a) Schematic of crystallite motions powered by electric 
field orthogonal to the cell substrates. (b-d) Crystallites of torons colored according to orientations relative 
to the motion direction (b) and in polarizing micrographs at zero applied voltage (c) and at U=2.5 V (d); 
black arrows in (d) denote crystallite motions directions. Color scheme for visualizing crystallite 
orientations in (b) is shown in the inset between (a) and (b). (e) Trajectories of crystallite motions at U=2.5 
V, f=10 Hz, progressively zooming in on the details of translations, colored according to elapsed time (with 
the maximum elapsed time marked in each part); dashed hexagons indicate the unit cell shift during motion, 
colored according to the color-coded timescale. (f) Average displacement of the hyperbolic point defects 
near confining substrate, analyzed with bright-field microscopy (video frames in insets). (g,h) South-pole 
preimages (magenta) and point defects (orange and yellow) of a hexagonal unit cell of torons shown (g) 
before and (h) during motion. (i) Nonreciprocal angular rotations of torons within crystallites upon voltage 
modulation, with the times of turning instantaneous voltage on and off marked by the blue and red dashed 
vertical lines. Reproduced with permission from [199]. 
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