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Abstract: Humankind has been obsessed with knots in religion, culture and daily life for millennia
while physicists like Gauss, Kelvin and Maxwell involved them in models already centuries ago.
Nowadays, colloidal particle can be fabricated to have shapes of knots and links with arbitrary
complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal
particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets
with complex topology. Knotted and linked colloidal particles induce knots and links of singular
defects, which can be inter-linked (or not) with colloidal particle knots, revealing diversity of
interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal
objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and
magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include
hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures,
which are classified based on homotopy theory, characterized by integer-valued topological
invariants and often contain knotted or linked preimages, nonsingular regions of space
corresponding to single points of the order parameter space. A zoo of topological solitons in liquid
crystals, colloids and ferromagnets promises new breeds of information displays and a plethora
of data storage, electro-optic and photonic applications. Their particle-like collective dynamics
echoes coherent motions in active matter, ranging from crowds of people to schools of fish.

This review discusses the state of the art in the field, as well as highlights recent
developments and open questions in physics of knotted soft matter. We systematically overview
knotted field configurations, the allowed transformations between them, their physical stability,
and how one can use one form of knotted fields to model, create and imprint other forms. The
large variety of symmetries accessible to liquid crystals and colloids offer insights on stability,
transformation and emergent dynamics of fully nonsingular and singular knotted fields of
fundamental and applied importance. The common thread of this review is the ability to
experimentally visualize these knots in real space. The review concludes with a discussion of how
the studies of knots in liquid crystals and colloids can offer insights into topologically related
structures in other branches of physics, with answers to many open questions, as well as how
these experimentally observable knots hold a strong potential for providing new inspirations to
the mathematical knot theory.
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1. Introduction

Topological concepts are currently at the research frontier of modern condensed matter physics,
with the exciting recent developments promising to revolutionize the future of many
technologies, ranging from quantum computing to pre-engineered mechanics of materials [1,2].
Although topological knot-related ideas are found in early works by Gauss, Kelvin, Tait and
Maxwell [3-7], itis only recently that the concepts of topology are successful in explaining entirely
new types of physical behavior of condensed matter systems [1,2], including phenomena that
cannot be interpreted otherwise. Various types of knots are studied in practically all fields of
physics [1-11]. The mathematical knot theory, once inspired by early models in physics [3], has
become a major branch of topology with connections to statistical mechanics, models of exotic
states in Bose-Einstein condensates, theories in elementary particle and nuclear physics,
guantum field theory, quantum computing, solid-state physics, and many other exciting frontiers
of physics research [8-11]. The knots and links in these theories are beautiful mathematical
constructs that, however, typically do not manifest themselves as physical objects accessible to



experiments. This review concerns the studies of physical knots in condensed matter systems
such as liquid crystals (LCs) and colloids [12-15] — ones that exist in three-dimensional (3D) space
of these ubiquitous soft materials, that can be manipulated by laser tweezers and that can be
directly observed in a microscope.

Recognizing some of the key milestones in understanding the role of topology in physical
behavior, the 2016 Nobel prize was awarded for theoretical discoveries of topological phase
transitions and topological phases of matter [16-18], where many of the original breakthroughs
resulted from considering two-dimensional (2D) systems. The situation is even more complex in
3D, where various knot-like structures can be supported, localized spatially and stabilized
energetically, including both knotted filaments (vortex lines/defects/singularities) and knotted
nonsingular textures such as skyrmions and hopfions [6-11]. Topological solitons are well-studied
in theoretical models of high-energy physics [6,7] aiming to describe the behavior of fundamental
particles and atomic nuclei. This review considers such structures in ordered soft condensed
matter systems, which can be realized and characterized in detail experimentally, like in the cases
of LCs and colloids. Although quantum phenomena and hard condensed matter systems received
much of the recent attention in applying topology-related ideas [1], potentially even a greater
playground for deploying topological concepts exists in soft condensed matter. While topological
effects in soft matter encompass a much broader spectrum of phenomena [2,19,20], here we
focus on knotted structures of the order parameter fields and their interaction with topologically
nontrivial surfaces in LCs and colloids.

Historically, knotted fields in the modern physics emerged in classical and quantum field
theories [6,7,21,22] and in branches ranging from optics to chemistry, materials science, particle
physics, fluid mechanics and cosmology [19,20,23-32]. Recently, knotted fields found many
experimental and theoretical embodiments, including both nonsingular solitons and knotted
vortices [32-48]. Knots often arise in electromagnetic fields [28,37]. For example, researchers
found solutions to Maxwell’'s equations with knotted and linked field lines [37]. Recent
developments in optical holography and microlithography make it possible to structure the flow
of light in free space whereas the rich vectorial and phase structure of sculpted light allows for
different kinds of knotted and linked light beams. For example, knotted optical vortices have
been embedded into laser beams by Dennis and coworkers [28]. Understanding the knots which
can be embedded in holograms [28] has even led to the new classes of knots now being studied
in the knot theory [8-11]. Moreover, unlike in the case of various material systems [24,26], knot
structures in electromagnetic fields could be hosted in free space, therefore arising in completely
linear systems, including knotted field lines, optical vortices and knotted textures in polarization
[37,38]. Numerical studies [19,20] have revealed characteristic cascades of fluid knot topologies
and explicit forms of knotted flow fields with tunable helicity have been shown [39]. At the same
time, Irvine and collaborators developed techniques [19,20,27] to embed knotted vortex
filaments in fluids experimentally. In Bose-Einstein Condensates, knotted topological solitons
were realized as the initial “imprinted” states that then decayed, revealing interesting dynamics
[40,41]. In magnetic hard condensed matter systems, knot solitons could be stabilized as free
energy minima in thin films and discs of non-centrosymmetric magnets [42], as well as in the bulk
of chiral materials with crystalline anisotropy [43] or helicoidal structure [44]. Studies of various
knots and related topological effects are highly interdisciplinary in nature and equally important
for understanding synthetic macromolecules and biopolymers [45-47] and quantum material



systems [48].

This brief and non-exhaustive overview of exciting new developments in studies of knots
shows how the manifestations of knotted fields penetrate different branches of science and how
theoretical and experimental explorations can now go hand-in-hand in these systems, something
that was far from possible in the past, when knots were mainly a subject of theoretical curiosity.
The knots that are part of this review are realized in soft condensed matter media [12-15], which
make them significantly more experimentally accessible, even though these systems can exhibit
an exceptionally broad range of accessible symmetries and degrees of freedom at the same time.
While focusing on various knotted fields in soft matter, the article draws attention of readers to
related recent developments in other branches of physics, as well as emphasizes how soft matter
media like colloids and LCs can serve as model systems to predict topologically related structures
in other branches of science.

What is soft condensed matter? Nobel laureate de Gennes defined soft matter [12, 49]
as a broad combination of systems with strong response functions, which are capable of strong
responses to weak external stimuli. These strong responses originate largely from the fact that
the competing, behavior-defining interactions between the constituent building blocks of soft
matter are weak and comparable in strength to thermal fluctuations [13]. Another defining
feature of soft matter is that it often combines fluidity and ordering [12-15], with a very broad
range of intermediate mesophases (phases in-between the fully ordered crystalline and
disordered fluid states) with the order parameter fields possibly being scalar, vectorial and
tensorial. LCs and colloids are classic examples of soft matter [12-15] and will be the focus of this
review. The soft matter systems offer the possibility of laboratory realization and modeling of
effects that are typically hard to probe. For example, order-disorder transitions in nematic LCs
allowed for probing the Kibble mechanism of cosmic string dynamics in the models of Early
Universe Cosmology [50] whereas colloids were used to model and probe dynamics of dislocation
defects and glass formation in atomic and molecular system [14,51,52]. In a similar way, the
power of soft matter can be extended to modeling topology of singular and solitonic knotted
fields. LC colloids, where molecular LCs serve as the host medium for colloidal particles [53-55],
are of particular interest from this standpoint as they combine the complexity of molecular and
colloidal LC systems. Figure 1 shows examples of soft matter systems with vectorial and different
tensorial order parameters, including uniaxial nonpolar nematic (Fig. 1a) and ferromagnetic (Fig.
1b) LCs, as well as orthorhombic (Fig. 1c) and polar non-orthorhombic ferromagnetic (Fig. 1d)
biaxial LCs. What kinds of knots can be realized in such fields? The answer, which can be
experimentally tested using LCs and colloids, has a fundamental importance spanning well
beyond condensed matter because topology and free energy potentials can be mapped to that
of related problems in other physical systems. Having soft matter systems as host media with
facile responses to external stimuli [12,13] for these knotted fields also enables various types of
control by external fields, boundary conditions, light, and so on. The main goal of this review is
to describe the recent progress in realizing zoos of knotted fields in LCs and colloids, as well as to
emphasize how this can aid in similar explorations in other branches of physics.

Below the review article proceeds with a brief historic overview (Section 2), which is
followed by the discussion of general classifications of different types of knots and links and
topologically nontrivial field configurations (Section 3). The article then continues with
overviewing the recent progress in studies of various topologically nontrivial structures in



nematic colloids and drops, where singular defects are commonplace (Section 4). The structure,
topology and self-assembly of solitonic knots in LC and colloidal soft matter systems are discussed
in Section 5. Section 6 is devoted to emergent out-of-equilibrium behaviors of such knotted fields
and particle-like topological solitons. The review article then concludes with a brief discussion of
open questions, opportunities and perspectives in this research area (Section 7).

2. Historic remarks

Humankind has been long fascinated with knots and used them for both practical and spiritual
needs throughout history [4,56-58]. Over the last several millennia, knots often served as
decorations, signs, religious symbols and, in a more prosaic daily life, just as the ubiquitous means
to hold things together (Fig. 2) [4, 8,57,58]. Diversity of knots allowed them to be used in rather
different contexts ranging from recording information on ropes and strings to writing, boat sailing,
climbing, netting, textile manufacturing and so on [4,57,58], and of course to tie shoelaces. As
decorations and symbols, knots are important components of Tibetan, Roman, Celtic, Byzantine,
Coptic, Islamic, Kievan Rus’, Ethiopian, Chinese and Indian cultures, among many other (Fig. 2)
[4,56,57]. For example, the so-called Eternal Knot (also known as the “endless” knot) is a symbol
of the ultimate unity of everything, one of the Eight Auspicious Signs endemic to Hinduism,
Jainism and Buddhism religions [4,56,57]. In different cultures, many other types of knots were
widely used to symbolize love, family, eternity, union, wedding and so on [4,57]. These special
cultural and religious uses of knots as symbols co-existed with their widespread uses for practical
and recently also scientific needs. For example, after joining the ends, the common overhand
knot becomes a trefoil knot (Fig. 2a,b), the simplest nontrivial knots in the mathematical knot
table that is also found in the Celtic Book of Kells (Fig. 2c) and nowadays is often used for the
identification with Celtic culture. This very same trefoil knot is also a symbol of trinity in
Christianity and different variants of it played important roles in Japanese, Korean and Tibetan
cultures [4]. The Solomon link and Borromean rings (Fig. 2d,e) are two more out of many other
examples of knots that are important in the mathematical and physics theories but also have
history of being used as important symbols [4]. While being part of Chinese history for several
millennia, knots like the one shown in Fig. 2f are also widely used decorations in East Asian
countries nowadays. The Gordian Knot legend is an example showing how, historically, knots
could be associated with challenging problems and nontrivial solutions to them, in this case
involving Alexander the Great in 333 BC [4,57]. Knotty problems are associated with challenging
issues not just in different branches of science (where knots actually often materialize in polymer
chains, molecular structures, field configurations and many other embodiments), but also in
politics, various legal practices, relations and so on [4].

An important branch of modern mathematics is knot theory, which also has an interesting
history [3-8]. In 1833, Carl Friedrich Gauss introduced the linking integral for computing the
linking number of two knots and, together with his student Johann Benedict Listing, did
important early studies of knots from a mathematical viewpoint [4]. A very strong interest in
studies of knots was sparked by early models of vortex atoms developed slightly later in Scotland,
where Sir William Thomson (Lord Kelvin) had an interesting hypothesis that atoms were knots of
swirling vortices [3-8]. Long before even the very existence of atoms was widely accepted, Kelvin
and his colleagues in Edinburgh (among whom the most prominent ones were James Clerk
Maxwell and Peter Guthrie Tait) classified various closed-loop knots into tables that they were



hoping could match the periodic table of chemical elements, where different elements would
correspond to topologically distinct knots [3-5]. Experimentally, Tait and Maxwell created smoke
rings and links as simple model systems accessible at that time [3-6]. The researchers even hoped
that the systematic classification of all possible knots would explain how atoms absorb and emit
light [3-5]. Despite failing to explain the nature of atoms, these early works of Kelvin, Tait and
Maxwell became a nucleus for the development of the modern mathematical knot theory [4,8],
an important foundation for understanding various types of knots that eventually emerged in
different branches of physics, biology, chemistry and cosmology [3-11]. Throughout history,
cross-pollinating connections between the knot theory and physics emerged many times. For
example, being inspired by Kelvin’s model of atoms [59], Skyrme proposed a topological model
of subatomic particles with different baryon numbers [21,59,60]. As another connection between
the knot theory and physics, Ed Witten was awarded the Fields Medal partly for bringing new
insights into the knot theory based on quantum physics [61]. Witten also established connections
between the Skyrme model and quantum chromodynamics [60].

Another important concept that is a subject of this review, the soliton, also has important
historic roots in 19t™-century Scotland, where it was first observed in 1834 by John Scott Russell
[62,63]. A solitary wave called “soliton” is typically associated with a propagating self-reinforcing
wave packet that persists for long time. Such solitary waves have been observed in many
branches of physics, with perhaps the other most known example beyond the solitons in fluid
dynamics being the optical solitons that take the form of self-focusing, non-spreading laser
beams that propagate without diverging due to nonlinear optical effects [62,63]. From a more
general standpoint, solitons are solutions of nonlinear partial differential equations describing
different physical systems and they often have topologically nontrivial nature, with the subclass
of topological solitons often exhibiting various knotted structures in physical fields and order
parameter spaces [7,62,63]. Such topological solitons in higher spatial dimensions can be stable
and stationary in nature or exhibit a host of different types of translational and rotational motions
and other dynamics. The topology-related ideas in studies of solitons were introduced by Skyrme
[21], who was inspired by works of Kelvin and Russell’s at the same time [7,59], and these studies
also relate to other physics concepts, such as instantons and singular topological defects.

Remarkably, ideas that knots in fields could emerge and behave like particles persistently
recurred throughout the history, with the knotted fields of Gauss in the early 1830s to Kelvin,
Maxwell and Tait later in the 19t century, and Skyrme and Witten in the second half of 20t
century being just several particularly interesting examples [3-7]. With many roots in history,
fundamental studies of knotted fields nowadays promise means to realize new materials with
pre-engineered properties that differ from those of naturally occurring ones, as well as may
provide new inspirations to the mathematical knot theory and physics models in many branches
of science, well beyond condensed matter physics. This review article will show how knots in soft
matter systems indeed behave like particles, resembling behavior of atoms, molecules and other
particles, being capable of forming crystals and even exhibiting active-matter behavior.

3. Mathematical foundations

3.1. Diversity of knots and links

In exploring diverse manifestations of knots in physics it is important to systematically classify
them. Starting from the times of Kelvin and Tait [6], this is done by creating tables of knots (Fig.



3), where distinct knots are labeled by knot properties, such as the crossing number [4]. In the
most common Alexander-Briggs notation, each distinct knot is labeled by its crossing number
(the minimal number of double points in the knot’s planar projections). An additional subscript
used in this notation is a numbering index for each knot of that crossing number (Fig. 3), though
this subscript has no special significance because the order is arbitrary [4,6]. For example, the
simplest object of knot theory, the unknot, is labeled as 01 whereas the simplest knot distinct
from unknot, the trefoil knot, is denoted as 31 [3-6]. Similar notations classify multi-component
links of closed curves without common points (Fig. 4), including linked unknots and various
interlaced knots within the 3D space [6]. A widely known subclass of knots are torus knots that
(in one of their embodiments) fully reside on surfaces of tori (Fig. 2g), with the simplest of the
torus knots again being the trefoil 31 knot (Fig. 2b) [6]. Each torus knot can be further uniquely
specified by two integers pr and gr (Fig. 2g) [3,4]. The notation T(pr,qr) implies that the knot winds
g times around a circle in the interior of the torus, and p times around its axis of rotational
symmetry, though different notations are used as well. A T(pr,qr) knot is equivalent to a T(qr,pr)
torus knot and the crossing number is found as min{pr(qr-1), gr(pr-1) }, establishing the relation
between the different notations and characteristics of torus knots. As an example, a trefoil knot
in this notation can be labeled as T(2,3) or T(3,2) (Fig. 2g) [6]. Depending on a convention, the
signs of p and q define the directions in which the strands of the knot wrap around the torus,
where, most commonly, prqr>0 corresponds to the right-handed knot configuration (Fig. 2b) [6,8].

Like knots, links can be distinguished by their crossing numbers [4,8]. One way of
classifying the links is the Rolfsen table of the prime links labeled as C", by the crossing number
C, the number of closed loop components n, and the order number p among the links with C
crossings within the table (Fig. 4a) [6,8]. Multi-component unknots and knots can be interlaced
with each other in much more non-trivial ways than just the direct linking. For example, a series
of Brunnian links with three or more components can be inseparable from each other without a
direct linking of each of the component (Fig. 4b) [6]. A known example are Borromean rings with
6 crossings, though similar inseparability of closed loops is achieved in other configurations of
three or more components with different crossing numbers (Fig. 4b) [4,8]. Similar to knots, a
torus link is a multi-component link geometrically situated on the surface of a torus and is realized
when p and g are not relatively prime (Fig. 2g). Knots and links are chiral when they are not
equivalent to their mirror images (Fig. 2b). On the other hand, an oriented knot that cannot be
distinguished from its mirror image is an amphichiral (achiral) knot [3-6]. Therefore, knot’s
properties can be specified further and, overall, there are five types of knot symmetries defined
by chirality and invertibility [4,8] whose manifestations in material systems potentially could be
related to the ordered host medium’s symmetry. Torus knots are chiral (see the examples of
trefoil knots in Fig. 2b) [3-6].

What are the different ways in which knots and links could manifest themselves in soft
matter systems? Biopolymers, synthetic macromolecules, proteins, DNA and even small
molecule strands can take shapes of different knots and links [64-68], either because of the
chemical design or because of the random-walk-like processes. Colloids can be shaped as unknots,
knots and links [34,35, 69-72]. Singular vortices in LCs can take shapes of knots [33] and various
solitonic defects can be knotted too [32,73,74], with knots and links even emerging in the
topologically nontrivial states of the order parameter. These knots and links play an important
role in defining physical behavior of soft matter systems because of various types of topological



protection associated with them. When creating knots on strings like in the case of shoelaces,
such as the overhand knot in Fig. 2a, we often intend undoing them at a later time. Such
unknotting is possible by manipulating the loose ends of the string, but this would be impossible
if the string were to be infinitely long or if its two ends were to be glued together to transform
the overhand knot into a trefoil knot (Fig. 2a,b). All knotted configurations shown in Figs. 3 and 4
cannot be unknotted or transformed one to another without cutting or gluing, similar to how one
cannot inter-transform topologically distinct surfaces like a torus and a sphere. Throughout this
review, we shall see examples of how such topological protection manifests itself when related
to knotted topology of colloids and order parameter fields of various soft matter systems. Before
we proceed, however, it is useful to briefly review also the homotopy theory [75].

3.2. Homotopy theory of topological solitons and singular defects

Topologically nontrivial field configurations can be of singular type (singular topological defects),
containing regions of physical space where the order parameter cannot be defined, or instead of
nonsingular type (topological solitons), within which the structure of the field is continuous
everywhere, but it cannot be continuously morphed to a trivial uniform state without destroying
the order or introducing singular defects. Much like (though not exactly) genus and Euler
characteristics distinguish topologically distinct surfaces, various topological field configurations
can be classified on the basis of mappings of these fields from the physical configuration spaces
to the order parameter spaces (the manifolds of possible values of the order parameter) [75-77].
Typically this is the mapping from spheres of various dimensions to the order parameter spaces
that often are also spheres. Therefore, the homotopy groups of spheres classifying these
mappings are the most common (Fig. 5) and often utilized to label the different topologically
distinct field configurations, though there are also other homotopy group examples relevant to
LCs that will be also briefly discussed below in the review. Algebraic topology describes how such
spheres of various dimensions can wrap around each other, which is systematically characterized
by the homotopy groups that describe the structure of topological spaces (without considering
the precise geometry) [6,75]. In studies of topological solitons and singular defects, such
classifications provide valuable means of summarizing topologically different structures in the
order parameter fields, although the existence of a nontrivial element in the homotopy class does
not guarantee their energetic stability or experimental observation [75]. The n-dimensional
spheres (n-spheres, denoted as S") are defined as sets of points equidistant from the origin in
n+1 dimension, with an $! circle being the 1-sphere embedded in 2D space (R?), S? being an
ordinary sphere embedded in 3D space (R3) and S$° being 0-sphere embedded in R? that
comprises 2 points equidistant from the origin in 1D, and so on [3-7, 78,79]. The homotopy group
labeled as 1;(S") is the i-th homotopy group that enlists the topologically different maps from S
into S", where none of the distinct mappings can be continuously deformed to the other
mappings (Fig. 5) [75-79]. Algebraic topology results are well established and depend on the
integers i relative to n, with m(S")=0 for i<n (Fig. 5), which means that the corresponding
homotopy group is the trivial group [78,79]. In the case of mappings between spheres of the
same dimension (i=n), m,(S")=Z, so that the spheres can be wrapped around spheres integer
number of times for each map (Fig. 5). When i>n, a particularly interesting example of the
mappings is called the Hopf fibration [78,79] (Fig.5), which wraps S around $? an integer number



of times, m3(S?)=Z. How can this abstract mathematical knowledge of mappings help with
classifying topological defects in soft matter?

The procedures for utilizing homotopy theory for solitonic and singular defect field
configurations differ slightly because of their different nature. Since the singular defects in fields
are discontinuities in the form of walls, lines and points, with the order parameter varying
continuously outside these singular regions, one can surround them with spheres of the
corresponding dimensions (say S* for line defects and $? for point singularities) and characterize
how the field, like the vector or director field, varies around these spheres (Fig. 6) [75-77]. The
order parameter spaces often also take the form of spheres. For example, the order parameter
space for unit vectors in 3D space R3 is $?(describing all possible orientations of the unit vector),
but it becomes S* when these unit vectors are forced to confine their orientations into a 2D plane
R? and becomes S° when the unit vectors can only take orientations parallel or anti-parallel to
the positive direction in R. Therefore, the topologically distinct singular defects in unit vector
fields can be classified with the help of maps from the i-spheres surrounding them to n-spheres
describing their order parameter spaces [75]. Some of the simplest examples are illustrated in
Fig. 6. Just like one can wrap one circle around the other an integer number of times (imagine
wrapping a closed-loop rubber band around a finger), the structure mapped from S$* around a
singular defect in 2D can wrap the S* order parameter circle an integer number of times, m1(S?)=Z,
indicating that singular defects with integer winding numbers exist in this system (Fig. 6a,b). Also,
the structures of a vector field mapped from $? around a singular point defect in 3D can wrap the
$? order parameter sphere an integer number of times (Fig. 6c), m2(S?)=Z, again defining the
charges of all possible singular point defects in this system (Fig. 6) [75-77]. On the other hand,
the fact that mi(S?2)=0 informs one that singular line defects in 3D unit vector fields are
topologically unstable, so that they cannot be knotted or even exist because they can be
smoothly morphed to a uniform topologically trivial state [75]. Likewise, since m2(S?)=0, one
cannot form topologically nontrivial point defects when the unit vectors are forced to take
orientations confined to a 2D plane [76].

What about nonsingular solitonic structures with different topologies? While they may
seem to be rather different from singular defects, always having the field orientation well defined,
they can be classified on the basis of the very same sphere-to-sphere maps (Fig. 5) [75-79]. In R,
a solitonic 360°-twist nonsingular wall in a unit vector field has the far field vector pointing
upwards, and, thus, this configuration space can be “compactified” (by connecting the far-field
regions of R! with like-oriented unit vectors) into S* (Fig. 6d,e) [7,24,80]. The topological class of
the solitonic structures of this kind is then labeled by 71(S?)=Z, similar to the case of singular line
defects for the 2D unit vector fields (Fig. 6a,b,d,e) [80]. The configuration space of solitonic
topological structures embedded in the uniform far-field background in R? can be compactified
to $? (e.g. by means of stereographic projection), so that the nontrivial result 2(S$?)=Z from
algebraic topology (in addition to classifying singular point defects like the one shown in Fig. 6c)
also informs us that all possible topologically nontrivial structures in this case are characterized
by the integer-valued 2D skyrmion numbers (Fig. 6f) [81,82]. Similarly, the configuration space in
R3 with the uniform far-field is compactified to S3 through a higher-dimensional analog of
stereographic projection and the mathematical result from algebraic topology n3(S$?)=Z also
informs us that the Hopf indices of 3D spatially localized solitons also take integer values [7].



Unit vector fields are not the only ones encountered in soft matter (Fig. 1), and, thus, the
n-spheres cannot always represent the ground state manifolds for the order parameters [75-78].
The LC unit director fields with nonpolar symmetry describe the average orientation of rod like
molecules, n(r)=-n(r) (Fig. 1a). Because of the non-polar nature, representing all orientations of
n(r) on S? requires only half the sphere and leaves diametrically opposite points non-
distinguishable from each other (Fig. 6g) [75]. The order parameter space for n(r) is $?/Z,= RP?,
a sphere with diametrically opposite points identified (Fig. 6g). One of the major differences as
compared to the case of unit vectors is that w1(S?/Z,)=Z,, meaning that singular vortex lines
(disclinations) can be stable in 3D space of LCs [75,76], though only one type of such defect lines
can be realized that is topologically different from the uniform state. These defect lines can have
different local structures when embedded in 3D samples, including wedge disclinations with
opposite signs of winding numbers (Fig. 6h,j) (which are topologically distinct when realized in
2D) and twist disclinations (Fig. 6i). In 3D, however, the defect line structures shown in Fig. 6h-j
can be smoothly morphed one to another within R3 and are therefore topologically the same,
much like (though not exactly) surfaces of a doughnut and of a coffee mug are characterized by
the same value of genus g=1and (in one’s imagination) can be morphed one into another without
cutting or gluing [75]. In a similar way, unlike in the case of vector fields, one can realize
nonsingular twist domain walls with only 180°-twist of nonpolar n(r) embedded in a uniform far
field background (Fig. 6k,l), which are labeled by 71(SY/Z,)=r1(S)=Z [80]. Solitonic structures
that exist in lower dimensions can be also embedded in higher dimensions while being
translationally invariant with respect to translations along them. For example, the w,(S?)=Z
solitons can be found as translationally invariant structures spanning R3 of LCs and magnets,
either as individual spatially localized structures or periodic arrays [80]. When embedded in R3
in LC samples like glass cells of finite thickness, such solitons often terminate on m2(S?)=Z point
defects due to boundary conditions [80-83]. Similarly, translationally invariant solitonic walls
71(SY/Z>)=7Z are often embedded into finite-size structures in 2D by singular defects of the same
class 1(SY/Z,)=Z; in 3D samples with all 3D orientations of director allowed, such twist walls
are described by mi(S?%/Z,)=Z and can be embedded into a uniform background by the
n1(S?/Z,)=7Z disclinations, forming one type of the so-called “cholesteric fingers” [80]. The
examples above illustrate a more general rule for imbedding lower-dimensional solitonic
structures into a uniform background in higher dimensions with the singular defects of a
homotopy class matching that of solitons [80]. The soft-matter topological solitons and defects
have many topological counterparts in other branches of physics, ranging from elementary
particle physics to cosmology. For example, 7t3(S3)=Z Skyrme solitons (Fig. 5) are used to model
subatomic particles in high energy and nuclear physics [7,21], which is also the reason for
often referring to their mx(S$?)=Z low-dimensional analogs in LCs and magnets as “baby
skyrmions” [7,24,81].

Although exceptionally useful in classifying topologically distinct field configurations,
homotopy theory does not provide the means for exploring the entirety of topological complexity
of fields in soft matter even in cases when defects and solitons are embedded within a bulk of an
ordered medium like LC [83-87]. For example, a closed loop of a half-integer mi(S?/Z,)=Z,
disclination is equivalent to a point defect m2(S$?/Z,)=Z in the far-field, but its hedgehog charge
depends on how this disclination is closed on itself, its local structure, twisting, knotting and
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possible linking with other defect loops [83,85-87]. Knowledge of this relation cannot be
predicted solely by the homotopy theory, but can be understood by invoking the analysis of the
disclination’s structure along the loop, its twist and writhe [85,86]. In other words, the homotopy
theory identifies what the knotted fields can be comprised of, but not how to obtain field
configurations with desired 7t2($%/Z.) hedgehog number by looping and knotting m1(S?/Z,) vortex
lines or how to construct solitons with desired m3($?/Z,) Hopf index by looping and knotting 2D
72(S?/7Z;) skyrmions. Moreover, when LCs and colloidal ferromagnets interact with surfaces due
to various boundary conditions, the topology of structures of these fields interplays with that of
surfaces, which can be rather nontrivial and are a subject of ongoing studies. The sections below
will overview illustrative examples showing how topology can define behavior of soft matter
systems like nematic colloids, LCs, emulsions, polymer-LC composites, colloidal ferromagnets and
So on.

4. Topology of nematic colloids and drops

4.1. Spheres and handlebodies as colloidal particles and confinement surfaces

Colloids are an abundant type of soft matter consisting of tiny (typically nanometers-to-
micrometers in dimensions) particles dispersed in chemically distinct host media. The shape of
colloidal particles is usually spherical or topologically equivalent to a sphere, though recently
colloids with surfaces having a topology distinct of that of spheres have been developed [34].
When the dispersing medium of the colloidal system is the LC, many interesting forms of
interactions between the topologies for surfaces and molecular alignment fields can arise due to
the boundary conditions at the LC-particle interfaces. Figure 7 shows polarizing micrographs (Fig.
7a,b) of the so-called “elastic dipole” director structure (Fig. 7c) [53-55,88] formed by a solid
spherical colloidal particle immersed into an aligned nematic LC medium. The particle is
accompanied by a point defect and one can immediately recognize that the topological defect
effectively compensates for the radial structure of the director on the particle’s surface (Fig. 7c,d)
[53,55,88]. The boundary conditions on colloidal inclusion’s surfaces effectively act as a radial
hedgehog point defect, being compensated by a hyperbolic point defect of the opposite
hedgehog charge when embedded in the aligned LC (Fig. 7d). Such behavior is natural as the net
charge of defects and particles embedded in a uniformly aligned background has to be zero,
topologically neutral. Therefore, this structure not only has the dipolar-type elastic far-field
perturbation of n(r) [88], but also features a topological dipole formed by colloidal and singular
defect entities of opposite hedgehog charge. However, this simple example can be also
connected to the Poincare and Gauss topological theorems describing interactions of fields and
surfaces. Consistent with these theorems, the topological hedgehog charge of the distorted 3D
n(r) at the particle’s surface is £y/2=%1, where =2 is the Euler characteristic of the sphere [30].
Indeed, by choosing to vectorize the director so that vectors point out of the surface of the sphere,
one can see that the m=—1 topological charge of the particle-induced hedgehog point defect
(black and red filled circles shown in Fig. 7c, d) compensates for the +1 charge of the colloidal
particle and obeys the expected relation [55]. Had one chosen to globally vectorize n(r) so that
the vectors point into the particle’s surface, the charge of particle-induced defect would be -1
(sink) and that of the hyperbolic point defect nearby would be +1 (source), showing that the
hedgehog charges of point defects in nematics are defined up to the sign and that these signs
reverse upon changing vectorization directions between the two anti-parallel directions along
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n(r) [55]. For a nonpolar nematic n(r) field, inducing a hyperbolic hedgehog point defect is not
the only way to embed the particle with perpendicular surface boundary conditions within an
aligned LC. The other possible structure, shown in Fig. 7e, is what is a nematic colloidal
guadrupole (note the quadrupolar nature of elastic distortions away from it) with a so-called
“Saturn ring” disclination defect loop [88-92]. This disclination loop is an unknot of a vortex line,
the simplest object in the knot tables (Fig. 3). Since both the hedgehog point defect and the
disclination loop can compensate for the same radial structure of n(r) at particle’s surface, it
appears that this particular disclination loop and the point defect must be topologically
equivalent and assigned the same hedgehog charge [12,91]. In the case if a colloidal sphere
exhibits tangential boundary conditions, n(r) features two surface point defects capping the
particle at north and south poles (Fig. 7f) [53,54]. While here one can understand this
axisymmetric structure from very simple considerations of continuity of n(r) lines tangent to the
colloidal sphere’s surface, this is also a direct manifestation of the Hairy Ball theorem, which
requires that the field lines tangent to $? form defects with a net total winding number equal to
x = 2. Indeed, the degrees (winding numbers) of the two +1 defects in the ns(r) field tangent to
sphere’s surface add to +2 (Fig. 7f) [53,54]. Beyond tangential and perpendicular boundary
conditions, understanding of topological defects at the surfaces and in bulk of LCs induced by
spheres was recently extended to tilted and conically degenerate boundary conditions, where
boojums and disclination rings tend to appear at the same time [93,94].

Although the spherical nematic colloids are well studied and understood, topologically
nontrivial colloidal particles, such as the ones with shapes of handlebodies, can be fabricated by
means of photolithography, two-photon photopolymerization or wet chemical synthesis
[34,55,69-71]. Such colloidal particles can be characterized by Euler characteristic y =2—2g,
where g is particle’s genus determined by the number of holes in its surface [30]. Although the
role of particle topology in determining the colloidal behavior remains to be understood in
fundamental contexts related to Brownian motion, diffusion and self-assembly mediated by
electrostatic, depletion and other interactions, most of the work done to date was reported for
the case when such particles are introduced into a nematic LC [34,55,69-71, 92]. This interest in
such nematic colloidal dispersions of topologically complex particles stems from this soft matter
system’s ability of probing interactions between surfaces and field configurations, where these
particles induce topological defects dictated by colloidal topology. Surface functionalization of
particles, such as the handlebodies of different genus g made from silica, gold or different
polymers [34,55,69-71], allows one to define tangential, perpendicular and conically degenerate
boundary conditions for the LC molecular alignment and n(r) [34,55,69-71,93,94]. The strength
of these boundary conditions can be tuned by using different materials and surface
functionalization approaches [95-99]. The n(r) around these handlebody colloids, which
approaches the far-field director ng at large distances, can be probed by conventional polarizing
optical microscopy and different 3D director imaging techniques [100-103], including sub-
diffraction-limited mapping of n(r) [104].

Like for spheres (Fig. 7), the interplay between the topology of colloidal surfaces and LC
alignment field can be probed for ring-shaped and handlebody colloids with different boundary
conditions on particle surfaces as well. For tangential surface anchoring, this interplay prompts
the appearance of defects dubbed boojums (which we already encountered when discussing
colloidal spheres, Fig. 7f), which are ubiquitous and form on surfaces of ordered media like
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superfluids, LCs, and Bose-Einstein condensates [105-109]. To minimize free energy due to n(r)-
distortions (Fig.8), the nonspherical particles tend to align with their ring planes parallel to no,
although metastable configurations with ring planes perpendicular to ng are also observed and
can be reproducibly obtained by repetitive local melting of the LC by laser tweezers, followed by
guenching it back to the nematic state [69]. Handlebody-shaped polymer particles with different
genus g distort the nematic molecular alignment while obeying topological constraints to induce
at least 2g-2 boojums, as revealed by characterizing 3D textures of n(r) using polarized nonlinear
optical imaging (Fig. 8) [69]. Defects in the 2D ng(r) director field at the LC-colloid interface have
a net strength adding to y [30] of the handlebody, although one often also encounters additional
surface defects of opposite signs that self-compensate each other, providing additional ways of
satisfying topological constraints at multiple stable or metastable particle orientations [69]. For
example, a single colloidal torus with a ring plane parallel to ng induces four boojums (Fig. 8a-d)
in the most commonly observed structures [69]. A less frequently observed metastable
configuration of a torus particle aligned perpendicular to no contains no boojums, but rather a
non-singular axisymmetric n(r) that satisfies tangential boundary conditions on the surface of
particle while approaching no at large distances from its surface [69]. The 2D “surface” nematic
director at the surface of a torus with tangentially degenerate boundary conditions contains no
defects in the latter case, but four 2D defects (point disclinations) in the former case, two of
strength (winding number) +1 and two of strength -1 (Fig. 8a-d), with winding numbers adding
to zero, Z;s=y=0, in both cases. In a similar way, handlebody colloids with g>1 aligned with ring
planes parallel to no induce several stable and metastable configurations of n(r) with different
numbers and locations of boojums (Fig. 8e-m). The number of induced boojums for g=2 is most
commonly within 6 to 10 and the net winding number of defects in ns(r) tangent to particle’s
surface is always X;si=-2 (Fig. 8e-i). For colloids of genus 3, 4 and 5 (Fig. 8j-m) and all other colloids,
the total strength of the point disclinations piercing ns(r) at the LC-colloidal interface also adds to
the Euler characteristic, Z;si=y, in agreement with the Poincare-Hopf index theorem [69]. The
s=*1 point defects locally split into pairs of semi-integer disclinations of equivalent total strength
of singularity (Fig. 8i). Rather interestingly, these split-core boojums have handle-shaped bulk
disclination semi-loops terminating at the £1/2 surface defects within ns(r) (Fig. 8i) [69,110,111].
Although various stable and metastable states can be expected, colloidal surface topology
dictates presence of at least 2|y| half-integer defects or at least |y] integer-strength boojums (or
some combination of them) of total strength equal to y for strong and finite boundary conditions
on particles surfaces. We note that this does not have to be the case for weak surface anchoring
or for particles with dimensions approaching that of the size of singular defect cores (tens of
nanometers), where surface boundary conditions can be violated so that the particles produce
no or very little perturbations of the director [71].

Experiments reveal that colloidal handlebodies with perpendicular boundary conditions
also tend to spontaneously align with ring planes either perpendicular or parallel to ng, which
again is driven by minimizing the elastic energy costs of the particle-induced n(r) (Fig. 9) [34].
Handlebody colloidal particles with planes of rings parallel ng induce point defects, both inside
and outside of the rings (Fig. 9a-f), which manifest themselves as points of termination of dark
and bright brushes in the polarizing optical micrographs (Fig. 9g-i). Handlebody colloids aligned
perpendicular to no are all surrounded by single half-integer exterior disclination loops of
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hedgehog charge equal unity (Fig. 9j-n). Additionally, each such genus-g particle has g defects in
its holes, which are either singular disclination loops or hyperbolic point defects of elementary
(unity) topological hedgehog charge (Fig. 9j-n). Disclination loops in the holes of each handlebody
can be transformed into point defects and vice versa by melting the LC into an isotropic state
using high-power focused laser light, showing that they correspond to stable or metastable
structures (separated by energetic barriers) under the different conditions [34, 55]. Hedgehog
charges of these defects have been determined for vector field lines pointing perpendicularly
outward from the particle surfaces and mapping onto the $? order-parameter space for globally
vectorized n(r). Like for spheres (Fig. 7c,d), since n(r) is non-polar (n=-n), one could have chosen
the opposite direction of vectorizing, which would consequently reverse the signs of all hedgehog
charges due to defects and surfaces of particles, all embedded within an aligned LC. Although the
handlebodies orientated perpendicular and parallel to no induce very different n(r), the sum of
hedgehog charges is always pre-determined by +y/2=%(1-g). This finding is consistent with
predictions of topological theorems [30] that define the charge of the n(r) on the surface of
handlebody of given y. The topological hedgehog due to n(r) on particle’s surface is compensated
by the net charge of particle-induced defects 2. mj=t+y/2 (of opposite sign) in the LC bulk, as
needed to embed such a colloidal object into the uniformly aligned LC [34,55]. This relation was
found to hold for handlebodies with g=1, 2, ..., 5 (Fig. 9) and also for spherical colloids with g=0
(Fig. 7). Although perpendicular boundary conditions due to the handlebody-shaped particles in
the LC with a uniform ng can be satisfied by a minimum number of point or ring defects of the
same sign having the total hedgehog charge of > imi=%y/2, these field configurations are often
energetically costly and tend to relax to topology-satisfying field configurations that minimize the
elastic free energy but have additional self-compensating pairs of defects of opposite hedgehog
charge. In the experimental systems, colloidal g-handlebodies typically induce g+1 individual
defects, from which two self-compensating defects have opposite signs and appear just to
minimize free energy [55,112]. These additional self-compensating defects are caused by energy
minimization rather than topological requirements. That these extra defects help minimizing
energy may sound strange because they are typically associated with high energy costs, it often
turns out to be energetically beneficial to have such extra defects rather than much more severe
bend-splay-twist deformations of director that would be required to keep the overall number of
defects at the topologically required minimum.

Examples in Figs. 7-9 show that, by building on the interplay of surface and field topologies
with roots in Gauss, Hairy Ball and Poincare theorems, one can (on-demand) generate LC surface
defects of total net winding number adding to £y and bulk defects with hedgehog charges adding
to +x/2 by using colloidal particles with various Euler characteristics. It is also interesting that
colloidal unknots and handlebodies induce unknots or point defects in the forms of closed-loop
disclination defects in their interior and exterior [34,55], as well that the energetically-driven
number of unknots or singular points that a particle with perpendicular boundary conditions
generates in a nematic LC increases with g. Even though some of these unknots are topologically
self-compensating and some are being substituted by point defects to minimize energy [34], this
interplay between the topology of colloids and defects poses a question whether various knotted
vortices can be induced by colloidal particles with knot-like shapes, which is addressed in the next
section.
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4.2. Knots as colloidal particles
By taking advantage of two-photon photopolymerization [113] and other fabrication techniques
[55], it is also possible to fabricate knot-shaped microparticles (Fig. 10a-d) and explore the
interplay of topologies of the knotted surfaces and molecular alignment fields [35]. This may be
used for understanding other experimentally less accessible physical systems with similar
topological objects. On the other hand, such knotted colloids can be interesting building blocks
of topological matter arising from the mesoscale self-organization of knotted colloidal “atoms”
driven by minimization of elastic energy and mutual entanglement of induced defects [35]. When
dispersed in LCs, knotted colloids with controlled surface boundary conditions distort n(r), so that
minimization of free energy associated with these elastic distortions again plays a key role in the
physical behavior. For example, to minimize elastic free energy, trefoil particle knots tend to align
with their torus planes perpendicular to the undistorted far-field no. Particle-induced boojums at
their surfaces are visible in bright-field micrographs as dark points due to scattering (Fig. 10e). A
color-coded 3D representation of the azimuthal orientation of n(r) reveals 12 boojums around
the particle (Fig. 10f), forming nearby regions with the largest local curvature of the trefoil knot’s
surface [35] and where the particle’s surface is locally orthogonal to ne. These boojums can be
characterized by a net winding number s of the defects in 2D field ns(r) at the LC-particle interface,
just as in the case of colloidal handlebodies above, obtaining Zisi =y =0, where »=0 for the knot
particle’s surface [30]. Although this topological constraint could be satisfied in many different
ways that yield X;5=0, the one observed experimentally corresponds to a minimum of the total
free energy, containing 12 surface point defects, out of which six s=1 boojums localize on exterior
tips of the knot and their six s=-1 counterparts reside on the diametrically opposite sides of the
knotted tube along no [35]. Such characterization of particle-induced defects can be extended to
other torus knots, as shown for another example in Fig. 10g-j. Generally, colloidal torus knots
with tangential anchoring induce boojums which obey the same topological constraint Z;s;=0 as
their trefoil counterparts (Fig. 10g-j), since they all have »=0. Typically the number of self-
compensating surface defects in stable colloidal structures induced by torus-knot particles with
tangential anchoring is four times the number of knot string’s turns around the circular axis of
the corresponding torus, though one occasionally also observes metastable states having
different net numbers and locations of boojums with the winding number adding to =0 [35, 55].
Trefoil particle knots with perpendicular surface boundary conditions tend to align with a
torus plane orthogonal to no in the ground state (Fig. 11), but can also exhibit metastable
orientations, including those parallel to ne. Polarizing optical micrographs (Fig. 11a,b) and depth-
resolved nonlinear optical “slices” obtained for different polarizations of femtosecond excitation
laser light (Fig. 11d,e) show presence of defect lines and match the theoretical configuration (Fig.
11c,f) [35,55]. These defect lines compensate for the director distortion imposed by particle’s
surface (Fig. 11c,f). Two linear defects tracing the knotted particle’s tube is also the basic feature
of metastable states, although often accompanied by their rewirings (Fig.11g-j). This shows that
knotted particles can generate defect loops in nematic fields in such a way that these singular
loops are knotted too. For a trefoil knot particle shown in Fig. 11a-f, the two defect loops are
both trefoil knots linked with each other and with the particle knot (Inset of Fig. 11f), effectively
forming a three-component defect-particle composite link. Although the torus knot particles with
perpendicular boundary conditions are typically accompanied by two knotted half-integer defect
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lines, the topological constraints allow for flexibility in terms of precise ways of satisfying them
because the knotted and inter-linked loops can have different effective hedgehog charges that
just need to add to zero because of the colloidal torus knot’s surface with »=0. These
configurations can be selected by varying confinement, quenching of temperature and applying
external fields, thus creating an experimental arena for controlling this behavior. Knotted defects
can mediate colloidal self-assembly by means of both anisotropic elastic forcesand entanglement.
Therefore, by establishing general principles for the 3D control of defects, the demonstrated
interplay of topologies of knotted colloidal surfaces and nematic fields provides a basis for highly
unusual forms of self-assembly [55].

Knotted structures of disclinations could be also induced by particles differing from knots,
such as colloidal spheres [114-117] with perpendicular surface anchoring in twisted LC cells and
by nonorientable colloidal surfaces [36]. It is very interesting that free energy minimization and
topological constraints in these cases can yield knotted vortices as stable or metastable
structures in presence of confinement, though we will see later in the review that knotted
vortices and solitons can arise in LCs as stable field configurations even without colloids or
confinement [73]. On the other hand, colloidal knots in isotropic solvents have been considered
theoretically, as well as the potential of employing LC elastomeric knotted particles as topology-
changing colloidal objects has been numerically explored [114,115]. However, much more can be
done as topology has potential impacts on all aspects of colloidal science, from self-assembly of
crystals and quasi-crystals to out-of-equilibrium dynamics [118-122]. For example, one could
combine topology and active matter paradigms in an effort to achieve topology-dictated
nonequilibrium self-assembly of topologically distinct active particles [123-125]. Active colloids
are a distinct category of nonequilibrium matter in which energy uptake, dissipation and
movement take place at the level of discrete microscopic constituents [123]. They are known to
provide types of self-assembly not accessible in traditional equilibrium condensed matter
systems [123]. However, only topologically trivial types of active colloids (spherical or
topologically isomorphic to spheres) have been studied so far. The interplay of topologies of
surfaces and flow fields due to the self-propulsion of active particles could result in highly unusual
yet controlled and practically useful forms of self-assembly.

Large quantities of colloidal knots can be obtained by combining two-photon
photopolymerization and structured shaping of femtosecond laser light with spatial light
modulators [126]. In addition to polymer-based dielectric knot-shaped particles, researchers also
fabricated colloidal objects through 3D-spatially-resolved laser reduction of graphene oxide
nanoflakes [127]. Utilizing particle’s luminescence, shapes of such knots could be reconstructed
from 3D photoluminescence data (right-side of Fig. 10a) [127]. Because the internal orientation
of reduced graphene oxide flakes within the colloidal structures matches that of the surrounding
graphene oxide flakes, the fabricated knotted particles differ from the polymerized ones [35,55]
in that they do not induce noticeable director distortions or topological defects in the
surrounding LC host [127]. This demonstrates that topological defects can be avoided when the
boundary conditions for the director orientation on the surfaces of complex-shaped particles are
weak or match the director of the surrounding LC, even when the colloidal inclusions exhibit
nontrivial topology of knots. Super-paramagnetic knot-shaped colloidal particles have been also
reported and used to induce stick-slip motion of surface defects [128]. These examples show that
knot-shaped colloidal particles of different types are becoming accessible to the research
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community and offer a great potential for new soft matter science.

4.3. Linked composite colloids

Recent advances in particle fabrication also enabled colloids with topology of multicomponent
links classified in Fig. 4, such as the two-component Hopf and Solomon links (Fig. 12) [55,72].
What are the implications of topological linking on behavior of the nematic colloidal systems?
Micrometer-sized colloidal particles with differently linked components shaped as solid, rigid
polymeric rings undergo Brownian motion both relative to each other and as a whole when
dispersed in LCs [72]. These particles induce different director field configurations that define
elastic coupling between the components, where certain relative orientations and positions of
rings correspond to local or global free energy minima determined by LC’s orientational elasticity
of corresponding n(r) structures (Fig. 12) [72]. As an example, colloidal Hopf links consist of two
rings and are characterized by a linking number topological invariant Lk=%1, representing the
number of times that each closed colloidal loop winds around the other loop (Fig. 12a-e). In the
colloidal Solomon's link of Lk=%2 the two closed rings are doubly interlinked, so that this particle
exhibits four crossings of the two loops interweaving under and over each other (Fig. 12f-k). Out
of several stable and metastable n(r)-configurations induced by the Hopf-link colloids with
tangential anchoring, the most common one contains eight surface boojums (Fig. 12b-d), four on
each of the linked colloidal rings tilted away from nq. Elastic director distortions weakly couple
the two linked components, defining the equilibrium center-to-center distance and locations at
which these rings cross the planes of each other (Fig. 12d), as well as the equilibrium angle
between the center-to-center separation vector connecting the linked components and no.
Anisotropic elastic forces also keep the linked particles apart, acting against touching of the linked
component rings. Metastable colloidal and field configurations with other orientations of rings
and different numbers of boojums are also observed [72]. For example, one of them (Fig. 12e)
contains a boojum-free ring perpendicular to ng, linked to a ring with four boojums [72], both
with well-defined orientations relative to no. Boojums always appear in self-compensating pairs
of opposite winding numbers in 2D n(r) at the LC-particle interfaces, consistent with the zero
Euler characteristic of the rings of multicomponent particles. Colloidal Solomon links with
tangential boundary conditions tend to induce two times more boojums than their Hopf
counterparts (Fig. 12f-k), with these surface point defects located at the tip points of the tubes
along no. Large number of stable and metastable mutual positions and orientations of the linked
components, as well as their orientation with respect to no, leads to diverse n(r)-configurations
differing by the number of the generated boojum-antiboojum pairs with opposite 2D winding
numbers (Fig. 12f-k). These illustrative examples reveal that linked ring colloids inherit the
diversity of structures that we have seen above for single rings (e.g. individually each ring
component of the link can have no associated boojums or even numbers of self-compensating
boojums), but now with the diversity of accessible metastable and stable structures boosted
dramatically by different linking invariants, different relative orientations and positions of the
rings, as well as their relative orientations with respect to no.

Even more exotic behavior of linked colloids is observed when their surfaces impose
perpendicular boundary conditions for n(r) (Fig. 13). These particles tend to induce closed loops
(unknots) of singular defect lines [72]. In addition to the purely elastic coupling, colloidal
components often get entangled by unknots of defect lines that act as elastic strings (Fig. 13a-e).
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Surfaces of colloidal links have ¥=0, so that the hedgehog charge of n(r) on their surfaces is equal
%/2=0, requiring no bulk defects to embed in the aligned LC and also imposing constraints on the
overall zero bulk hedgehog charges of defects around such particles [30,55]. However, free
energy minimization and the nonpolar nature of n(r), combined with the rich configuration space
of the colloidal object itself, accommodate the boundary conditions on particle surfaces through
forming a variety of topologically distinct configurations of closed defect loops (Fig. 13) [72].
Individual linked components of the defect-colloidal entity freely move with respect to each
other due to thermal fluctuations. Having field configurations governed by the elasticity of the
nematic fluid, they exhibit relative separations and orientations corresponding to the free energy
minima (Fig. 13a-h) [72]. The simplest observed configuration involving a Solomon link with
perpendicular surface boundary conditions contains pairs of individual looped defect lines
following each of the linked components. Interestingly, particles of the same linking number and
perpendicular boundary conditions can induce configurations of defect loops which cannot be
continuously transformed one to another. For example, the Hopf-link colloids were found
exhibiting two to four unknots of half-integer defect lines, which can be linked with a single or
both colloidal rings or with each other, which are summarized along with the corresponding
graphs in Fig. 13i. The graphs show that the number of the linking-connected, inseparable graph
entities can range from one, when all particle and defect rings are inter-linked, to five, when Hopf
link particles are accompanied by four unlinked defect loops (Fig. 13i). These mixed, defect-
colloidal, multicomponent links cannot be smoothly morphed one to another, having different
total number of unknots (colloidal rings or defect loops) and number of links between them
visible in simplified topological skeletons and graph representations (Fig. 13i). Configurations in
Fig. 13i do not exhaust all topology-admissible structural varieties of field configurations.
Moreover, it is rather interesting that a single Hopf link of colloidal particles can be accompanied
by different configurations of up to four defect loops with different links between them. This
experimentally revealed topological diversity calls for applying techniques like ones used in Refs.
[83,86] to reveal further details of this fascinating behavior. Due to inseparability of the linked
particle components, pair and many-body interactions can exist among the linked components
belonging to the same composite particle, constrained by the physical linking, or to different
multicomponent particles. Sharing or linking of defect loops induced by the linked rings provides
an additional colloidal interaction mechanism due to the line tension, which is of the order of 50-
70 pN for singular half-integer defect lines [129], and which can alter response of such particles
to external stimuli like light [130,131].

Nematic colloidal links and knots above exemplify the unexpected emergent topological
complexity of defect structures that appear even when they are not required by the known
topological theorems for particle surfaces with zero Euler characteristics. However, in addition
to linked genus-one rings, one can study linked particles with larger g and larger number of linked
components. Beyond LCs, one can expect that linking will alter interactions between colloidal
components when, for example, interactions originate from electrostatic or depletion forces
[132,133], opening a new avenue for colloidal self-assembly and functionality.

4.4. Knotted vortices in nematic drops

Similar to nematic colloids, LC drops are a useful platform for probing the relationship between
surface confinement topology and defect structures in ordered media [55,134-143]. Genus g of
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closed surfaces of micrometer-sized nematic drops can be experimentally varied (Fig. 14). The
topological requirement that the net winding number of 2D surface defects in n(r) tangent to LC
droplet’s surface adds to y is effectively the same as for colloids discussed above [30,144]. Also,
the hedgehog charges of bulk defects in the drop’s interior need to add to +y/2 to compensate
for the hedgehog charge of the drop’s inner surface of given g [144]. Minimization of the total
free energy selects stable and metastable states out of configurations satisfying these constraints.
Therefore, by utilizing this interplay of topological invariants characterizing surfaces and fields,
similar to what we discussed above for colloids, one can either avoid defect formation for drops
of g=1 [144,145] or generate singular bulk and surface defects with well-defined topological
invariants for g>1. We shall see below how this allows for controllably obtaining line and point
defects labeled as m1($%/Z2)=7Z, (bulk disclinations in the 3D director field), m1(SY/Z,)= mi(S*)=Z
(surface defects in the 2D director fields at LC-droplet interfaces) and m,(S?/Z2)=Z bulk point
defects in 3D n(r).

Let us start with drops in a polymer matrix imposing tangential boundary conditions for
n(r). Figure 14a shows an array of torus-shaped g=1 drops embedded in such a polymer matrix.
Most of them contain defect-free concentric n(r), as expected for the confinement surface with
x=2-2g=0 (Fig. 14a,b), though some drops contain self-compensating defect pairs (Fig. 14a,c)
[144]. Although the Poincare-Hopf theorem [15] requires that the winding numbers s of defects
at the LC-polymer interface add to y, it does not prescribe particular ways for satisfying this
constraint, which explains this diversity of topology-compliant configurations. For g>1,
millimeter-sized drops with handles were shown to contain boojums at droplet surfaces [145], in
a way closely resembling how the topological constraints are satisfied for handlebody colloids
with tangential anchoring (Fig. 8). Differently, micrometer-sized drops tend to exhibit (Fig. 14d-
g) [144] half-integer disclinations spanning through the drop’s volume. Defects in the inter-tori
junctions are half-integer singular lines pinned to opposite parts of handlebody surfaces (Fig. 14d-
m). Some of the drops contain the minimum numbers of half-integer defects needed for the net
winding number to add to . For example, g=2 drops have two half-integer bulk defect lines
spanning the droplet’s volume (Fig. 14d-g), so that the LC interface with polymer matrix contains
four such s=-1/2 surface defects in ns(r) adding to y=-2 of the confining surface. Drops with g=3
have at least four such half-integer bulk defects (Fig. 14h-1) terminating on 8 surface defects in
ns(r), g=4 drops have at least six and g=5 drops at least 8 bulk half-integer defects (Fig. 14m,n).
The winding numbers of defects at the interfaces are thus always twice that of the sum of winding
numbers of half-integer disclinations spanning within the LC bulk, always adding to drop’s y when
considering winding numbers in ng(r). In the larger drops with tens-to-hundreds micrometers size,
boojums and half-integer defect lines can co-exist because they correspond to lower free energy
depending on their locations within the drops. As droplet size increases to millimeters [145], only
boojums are stable because of the lower free energy of corresponding n(r). The above examples
show how, in addition to appearance of boojums, the non-polar nature of n(r) allows for
satisfying Poincare-Hopf and Gauss theorems through the emergence of surface-terminating bulk
m1(S?/7Z,)=Z, defect lines, which assure that the m1(S'/Z2)=Z defects (associated with the end
points of bulk defect lines) in the interfacial 2D director field ns(r) ad to . This scenario cannot
be realized for vector fields which cannot host bulk defect lines in 3D because 7t1($2)=0.

Handlebody-shaped nematic drops with perpendicular boundary conditions also reveal a
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large diversity of configurations, including ones with linked and knotted defect lines that form
various knots [146] (Fig. 15). Singular disclinations shaped as unknots, knots and links, as well as
half-skyrmions and other nonsingular structures emerge depending on geometric and material
parameters. Surface topology and boundary conditions dictate the net topological hedgehog
charge m=x(1-g) of defects in the nematic bulk of drops, which, to assure the topological charge
conservation, compensate the hedgehog charge of the field on the drop’s inner confining surface,
complying with Gauss-Bonnet and Poincare-Hopf theorems [30]. One would therefore expect
that the nematic interior of a single torus is topologically uncharged, g=2 torus-confined drop
hosts a defect of m=+11 topological charge, and so on, where the sign of m depends on the choice
of vectorization direction of n(r). However, the mathematical theorems again allow for “flexibility”
in satisfying these constraints while also minimizing free energy. This leads to many topologically
nontrivial configurations that can be selected as energetically stable and metastable structures
[146]. For example, g=1 drop surfaces can induce a single integer-strength disclination loop
(topologically unstable, but energetically stabilized), two half-integer disclination loops, or non-
singular solitonic “escaped” n(r) (Fig. 15a-e), depending on geometric and material parameters.
While the hedgehog charges m (marked on figure parts) of disclination loops and knots add to
zero (Fig.15b,d), these results illustrate how loops and knots of s€Z,=n1(S?/Z,) disclinations can
yield different effective me€ Z=n,(S?/Z,) hedgehog charges to satisfy topological constraints
under different free-energy-minimizing conditions. As examples, Fig. 15¢ shows a Hopf link of
two half-integer disclination loops and Fig. 15d depicts a trefoil knot of a single half-integer defect
line, which are both permitted configurations for non-polar n(r). For large drops, escaped director
structures with nonsingular solitonic n(r) are energetically favourable (Fig. 15¢,f). Drops of higher
genus stabilize even larger combinations of multiple singular disclination loops and solitonic
configurations supplemented with additional point and disclination loop defects (Fig. 15f-m).
While hedgehog charges always add to +x/2, the particular defects that occur are selected as free
energy minima for given conditions. Three half-integer disclination loops form in small drops of
g=2 (Fig. 15g,h), with one running along the whole drop’s perimeter and the other two encircling
the holes. One disclination loop winds around the largest perimeter and g small loops encircle
holes for g>2 (Fig. 15g,h). For larger g=2 drops, the “escaped” director profiles appear instead of
defect rings (Fig. 15f,i-m), yielding point defects or small disclination loops localized in the drop’s
junction regions.

When droplet dimensions increase to hundreds of micrometers and millimeters, different
behaviors are observed, which were recently explored by Fernandez-Nieves and colleagues
[145,147]. For example, double-twisted toroidal configurations arise in drops with g=1 as a result
of saddle-splay LC elasticity and splay and bend deformations are often substituted by twist
deformations due to lower energetic costs [145,147]. When a chiral nematic LC is used,
depending on the relative dimensions of droplets and cholesteric pitch, knotted structures of
entangled disclination lines can appear even in spherical drops [142], which can also feature
constellations of high-charge point defects with hedgehog charges still adding to +1 [148,149].

A spectacular property of confined nematic systems is the diversity of structures satisfying
topological constraints imposed by mathematical theorems for given topology and boundary
conditions, which largely stems from the nonpolar nature of n(r). All half-integer defect lines
would be disallowed in polar systems, thus precluding appearance of knotted and linked defects
and highly reducing the number of topologically admissible structures. The fact that the nature
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of nematic fields allows for singular linked, knotted, and other configurations is important
beyond soft matter because nonpolar fields in cosmology and in other physical systems often
host defects topologically similar to nematic disclinations (cosmic strings), although much less
accessible experimentally [50, 150,151]. These studies could be extended to thin LC shells formed
by handlebody surfaces, an emergent research area where most studies so far focus on spherical
shells [143,152-155]. In addition to fundamental importance, this behavior may be of interest for
multi-state optically addressed topological memory devices [156] that can allow for recording
and reading information through laser-writing different topology-satisfying field configurations
within drops of controlled genus.

4.5. Surfaces with boundary & surface-bound defects

Surface genus and (related to it) Euler characteristic are not the only topological surface
properties defining interactions with LCs [36,157,158]. Colloids can also serve as physical analogs
of a mathematical surface with boundary [30], interacting with n(r) without inducing defects
[157]. Such colloids were recently experimentally demonstrated in the embodiment of very thin
nanofoils [157]. Disc-shaped flat nanofoils with tangential boundary conditions and thickness hs
spontaneously align with large-area faces parallel no while freely rotating around it (Fig. 16a-d).
They induce two surface boojums [75,105,106,159] when h#=1um (Fig. 16a), but not for
h~100nm when no defects are detectable (Fig. 16b). Overall, the LC-foil interactions are
determined by a competition of bulk elastic and surface anchoring energies at the nanofoil
perimeter, which is characterized by the anchoring extrapolation length &e [157]. When hi<<&g,
e.g. for hf <100nm (Fig. 16b), thin-foil particles behave as colloidal analogs of orientable surfaces
with boundary that induce no defects (Fig. 16b,d). Interestingly, particle-induced boojums with
fractional geometry-defined hedgehog charges of opposite signs are found when these surfaces
with boundary are shaped into hollow pyramids without a base, the pyramidal cones (Fig. 16e-j)
[157]. The pyramids spontaneously align with the base-tip vectors b either parallel or
perpendicular to no [157]. The particle geometry causes director distortions revealed by
polarizing micrographs (Fig. 16g-j), with the boojum defects at the apex points of inner and outer
surfaces of hollow pyramids. Mapping vectorized n(r) onto a two-dimensional sphere S? does not
fully cover it and the ratio of the covered and total areas of S?gives the fractional charge ms. For
these colloidal surfaces with boundaries, one finds self-compensation of hedgehog charges
associated with inner and outer boojums (Fig. 16h,j) [157]. Colloidal interactions between pairs
of nanofoil-based colloidal pyramids emerge from the minimization of elastic free energy,
typically resulting in nested assemblies [157, 159-161]. Formation of hollow octahedrons (Fig.
16k,i) is an example of colloidal assembly that leads to transformation of two pyramid-shaped
surfaces with boundary into a single closed surface without boundary, which then becomes
compliant with the Poincare-Hopf theorem. Indeed, winding numbers of boojums at vertices add
to octahedron’s =2 (Fig. 16i). Since extensions of the Poincare-Hopf theorem for surfaces with
boundaries are known only for special cases [30], experimental embodiments of such surfaces in
LC-colloidal systems are fundamentally important. Because all surfaces are characterized (up to
homeomorphism) by genus, orientability, and the number of boundary components, as stated
by the classification theorem [30], these colloids expands the scope of experimental topology. In
addition to thin metal foils (Fig. 16), LC colloids with boundaries can be made out of 2D materials,
like graphene and graphene oxide [158].
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Another interesting regime of interactions arises between the director field and surface
boundary conditions on geometrically and topologically nontrivial particles with sharp corners.
Using examples of faceted ring-shaped particles of g=1 [70], Fig. 17 demonstrates examples of
inter-transformation of induced defect lines as they migrate between locations in the bulk of the
nematic host and edge-pinned locations at particle surfaces. This behavior, also compliant with
topological constraints [70], is enriched by diversity of surface-pinned defect lines that appear
for facetted particles because winding number of such defect lines at LC surfaces is not
constrained to be a half-integer or integer and can be fractional, similar to the case of fractional
boojums induced by pyramidal cones that we discussed above [70]. In addition to common half-
integer defect lines encircling and entangling spherical and topologically nontrivial particles,
surface quarter-strength defect lines are commonly pinned to sharp edges of faceted particles
[70]. Nodes of defect lines with different strengths often form, of which some are pinned to
colloidal surfaces while others are the bulk defect lines only adhering to surfaces at their end
points. The winding number of individual surface-pinned disclinations around colloidal particles
is unconstrained and can be controlled by the geometry of colloidal inclusions while the overall
topological characteristics of particle-induced defects comply with topological theorems [70]. A
key feature of the particles showing such behavior is that the smallest particle’s dimension is
much larger than the surface anchoring extrapolation length [70], yielding strong boundary
conditions that cannot be violated at sharp edges of faceted particles. Such nematic colloids
exhibit director configurations with splitting and re-connections of singular defect lines,
prompted by colloidal particles with sharp edges and strong boundary conditions (Fig. 17). This
shows how diversity of topological defects can be expanded by invoking fractional surface
disclinations patterned with particle’s sharp geometric features shapes. The transformations of
bulk and surface defect lines induced by faceted colloids diversify the elasticity-mediated
colloidal interactions and can potentially enrich their controlled reconfigurable self-assembly.

Two examples of colloidal surfaces in this section illustrate the importance of geometry
and topology of colloidal surfaces in defining behavior of nematic colloids and various confined
systems. While geometry and topology are also important for conventional colloids [92], their
role is truly defining for nematic colloids and drops because defining formation of defects, elastic
distortions elasticity-mediated interactions, self-assembly and so on.

5. Topological solitons in liquid crystals and colloids

5.1. Two-dimensional skyrmions

Similar to many other branches of physics and cosmology, soft condensed matter systems like
LCs and colloids can host a large variety of topological solitons and related spatially localized
nonsingular structures. For example, the LCs host a variety of 2D merons (Fig.18a,b) and
skyrmions (Fig. 18c) [32, 162-172], where the latter are particle-like low-dimensional analogs of
Skyrme solitons in particle physics [7]. When embedded in 3D samples, these 2D Skyrme solitons
have topologically protected translationally invariant 2D tube-like structure (Fig. 18c,d) that
cannot be eliminated from a uniformly oriented background without destroying the order or
introducing singular defects. Not enjoying this type of topological protection, tubes of merons,
also known as fractional skyrmions (Fig. 18a), have a long history in the LC research field. In fact,
some of the earliest reports on LCs dealt with chiral phases in cholesterol derivatives, including
the so-called ‘blue phase’ [12,173-176]. These phases are various crystalline arrays of double-
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twist tubes that are fractional skyrmions (merons) [162-172], including cubic and hexagonal
lattices [165,175]. Rod-like molecules in a fractional skyrmions tube are parallel to its axis at the
center, twisting radially outwards to form barber-pole-like patterns on concentric cylindrical
surfaces (Fig. 18a). Full LC skyrmion tubes, with such a 180° radial twist from the central cylinder’s
axis to periphery, contain all possible molecular orientations and embed in a uniform far-field
background (Fig. 18c,d) [162]. Historically many structures were found to have such radial w-twist
from center to periphery in certain localized regions, but they were typically not 2D
translationally invariant, often transforming into and coexisting with singular defects. Recently,
researchers identified conditions needed for stability of 2D skyrmions as topologically distinct
objects with translational invariance [80, 163].

LC n(r) structures can be vectorized to give a smooth vector configuration (Fig. 18d-f),
which then has the $? order parameter space and is similar to skyrmions in the magnetization
field of magnets that drive much excitement in spintronics [177-184]. Recent studies
demonstrated that the density of such information could be increased using skyrmions with
varying topological degrees (whose distinction is topologically protected) [162]. LCs provided
insights into how high-degree skyrmionic structures can form [162] as stable chiral composite
skyrmion bags. To realize them, one places multiple single antiskyrmions (each with degree +1)
next to each other within a stretched skyrmion, thus forming the skyrmion bags (Fig. 18g-j) [162].
Moreover, multiple nested structures can be formed, with, say, antiskyrmion bags within
skyrmion bags and skyrmions within them, and so on [162]. This yields nonsingular skyrmionic
structures with arbitrary degrees and of both positive and negative signs because this design
allows for wrapping and unwrapping $? by mapping n(r) from the sample’s 2D plane by controlled
numbers of times in a non-alternating fashion [162]. The total degree of a bag with Na
antiskyrmions is Na—1. More complex structures with antiskyrmion bags inside skyrmion bags
have a net degree Na—Ns, where Ns is the total number of skyrmions; counting Ns and Na also
includes the nested skyrmion and antiskyrmion bags. Skyrmions and skyrmion bags in LCs require
careful selection of experimental conditions and materials to assure stability [80], where
important roles are played by soft but well-defined perpendicular boundary conditions on
confining surfaces, elastic anisotropy, confinement, etc.

Relation of 2D skyrmions to knots might be not apparent when examining their structure.
After all, knots reviewed in section 3 are intrinsically 3D in nature. However, skyrmions are
topologically protected, and, just like knots cannot be eliminated or inter-transformed without
cutting, skyrmions cannot be eliminated without destroying continuity of order within the LC.
Moreover, skyrmions and related structures can be part of knotted field configurations. For
example, Sutcliffe showed that knotted skyrmions can arise as energy minima in frustrated
magnets [26]. On the other hand, the heliknotons (structures emerging within a helical field,
which will be discussed below) comprise knots of fractional skyrmions [73]. We will also see
below how emergent behavior of chiral LCs leads to various types of knotting as a result of the
interplay of skyrmionic configurations with confinements and applied external fields [32,82,171].
In the bulk of chiral LCs and magnets, minimization of free energy can also lead to lattices of
orthogonally oriented skyrmions in helical and conical backgrounds, which was already observed
via direct optical imaging in LCs and for which there is indirect evidence from neutron scattering
experiments also in solid-state magnets [185].
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5.2. Torons with skyrmions and knots within them

In a geometry similar to that used for observing skyrmions and skyrmion bags [80,162,163],
discussed above, one can also observe structures with both skyrmion-like and Hopf and Seifert
fibrations features when a chiral LC with a ground-state pitch po is confined by substrates treated
for perpendicular alignment [32,82,171]. When the separation gap d of the confining planes is
approximately equal to po, the LC’s tendency to twist is incompatible with the strong perpendicular
boundary conditions. In this frustrated geometry, numerous localized solitonic configurations
emerge within the background of unwound no [32,80,82,186]. These solitonic configurations
incorporate energetically-favorable localized twist while meeting boundary conditions and can be
controlled using laser tweezers in both nonpolar chiral LCs [32] and chiral LC ferromagnets [187].
The simplest such configuration is known as an elementary toron (Fig. 19), which can be thought
of as a degree-one skyrmion terminating on point defects near substrates with perpendicular
boundary conditions [80]. In the cell midplane between confining substrates, the elementary toron
embeds a n-twist of n(r) radially from the center in all directions (Fig. 19a-c) and smoothly meets
the no-periphery [80]. This skyrmionic configuration within the LC bulk terminates at two singular
point defects near substrates (Fig. 19b,c). Vectorized n(r) from the toron’s midplane cross-section
(Fig. 19¢) maps to fully cover $? once (inset of Fig. 19d), like for an elementary skyrmion. This
skyrmion tube, however, terminates at point defects that match it to the uniform boundary
conditions at surfaces (Fig. 19b-d). Both top and bottom defects are self-compensating elementary
hedgehogs of opposite charge in vectorized n(r) and, like elementary skyrmions, are labeled by
n2(S?)=Z (n2(S?/Z2)=Z for the nonpolar case) [80]. It is therefore natural that the elementary
skyrmion tube orthogonal to the cell substrates is terminated (embedded in a uniform,
topologically trivial background) by the two point singularities, consistent with the notion that the
spatial translation of a 7t,(S?)=Z point singularity can leave a trace of a 72($?)=Z topological soliton
within the locally perturbed background no [75].

Torons have structural features that bring about resemblance of not only skyrmions, but
also the Hopf and Seifert fibrations, which can be seen by probing streamlines tangent to n(r) (Figs.
19¢ and 20). These streamlines form various torus knots, like the ones found in toroidal DNA
drops [138,188]. Regions near the toron’s circular axis resemble fragments of $3 to R3
stereographic projection [82]. Like in toroidal DNA drops [188], this implements L.C’s tendency
to twist while forming an axisymmetric configuration. Differently from biopolymer drops, toron’s
n(r)-twist rate changes smoothly as one moves away from its axis, accommodating effects of
confinement and presence of the singular defects, so that different torus knots form (Fig. 19e).
Incompatible with Euclidian 3D space [188], 3D twist is inherently frustrated, but the geometry of
fiber bundles shows how LC embeds it into toron’s volume [ 188]. Knots T(pt,qr) are part of Hopf
and Seifert fibrations with different twist properties and can be visualized with a series of
streamlines of n(r). The toron configuration has spatially-varying director distortions deviating
from the idealized 3D twisted structure that one could obtain by the stereographic projection, so
that both the rate of the twist and the formed T(pr,qr) knots of streamlines depend on the location
within a toron. This is because the toron combines the favorable 3D twisted region with some bend
and splay distortions that aid in embedding the twisted director configuration into uniform far field
while minimizing the overall free energy. Within a toron (Fig. 20), one finds Hopf links T(1,1),
trefoil T(3,2), pentafoil T(5,3), quatrefoil T(3,4) and other torus knots formed by the streamlines
(Fig. 20). As electric field morphs the toron (Fig. 20a-e), different knots on torus surfaces never
pass through each other (Fig. 20e-g), but the contour lengths of the closed-loop knots increase with
voltage (Fig. 20c-e). While the elementary toron is a skyrmion tube terminated on point defects, it
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also has an interpretation inspired by the torus-knot-like streamlines tangent to n(r). One can think
of it as a half-skyrmion double-twist tube (or a tube of twist-escaped integer-strength line) forming
a circular loop and compensated near substrates by a pair of hyperbolic point defects [32] (Fig.
20h). It has been shown that the point defects within these torons can open up into singular half-
integer defect loops [32]. Therefore, within the 2D axially symmetric cross-section of a toron with
two such singular loops (Fig. 201) [32], the half-skyrmion (meron and also twist-escaped integer-
strength line) is compensated by two singular defect lines in a way similar to what has also been
shown for individual linear half-skyrmions embedded into a uniform background and periodic
lattices [168]. The overall structure of torons evolves with changing parameters and, under
different realization conditions, brings about analogies with not only 2D skyrmions and half-
skyrmion loops (or double-twist tori as opposed to double twist tubes), but also with Hopf fibration
in the streamlines tangent to n(r) [171]. Depending on the pitch po, sample thickness d, elastic
constants and applied fields, elementary toron’s lateral extent relative to po and 3D shape vary, so
that one or the other of these mutually equivalent descriptions of torons is used [82].

Torons have been generated by laser tweezers and means such as temperature quenching
from isotropic phase both as individual objects and in periodic arrays [172,189,190], with and
without lattice defects. Toron lattices have been used as diffractive optical elements whereas
lattices with edge dislocations could be utilized as generators of optical laser vortices [165]. These
lattices with and without lattice defects could be reconfigured or erased by applying external
electric fields, showing how topologically nontrivial knotted objects in soft matter can be utilized
in various photonic, electro-optic and singular optics applications [165]. In addition to chiral LCs,
torons have been discovered in solid-state magnetic systems [191]. While types of torons with
loops of half-integer singular lines can exist in LCs with nonpolar n(r) (Fig. 20i), they are
disallowed in vector fields of colloidal and solid-state magnets, where only the structures with
point defects have been observed (Fig.19a-c and Fig. 20h) (which is because half-integer
disclinations cannot exist as standalone objects in vector fields, where m:($2)=0) [187, 191].
Another localized topological object, dubbed “hopfion” [24], has fully nonsingular structure
spatially confined in 3D and can also exist in both polar and nonpolar fields, as we shall see next.

5.3. Hopfions in ferromagnetic colloidal fluids

The topological Hopf soliton, also called “hopfion™, was recently observed experimentally and
modeled numerically in magnetic fluids formed by colloidal dispersions of magnetically
monodomain platelets within a chiral nematic host [24]. This soliton contains knotting of the order
parameter that can be described by utilizing the concept of “preimage”, the spatial region of the
ferromagnet’s 3D space with a single unit magnetization field m(r) orientation corresponding to a
single point on $? (Fig. 21a). For hopfions, preimages of all S*>-points are closed loops [7] (Fig.
21a,b). Imbedding into a uniform mo and localizing in three spatial dimensions (Fig. 22), hopfions
are classified on the basis of maps from R3 U {00} = §? to the ground state manifold $? of 3D unit
vectors, 3(S?) = Z [7]. Topologically distinct hopfions are characterized by the Hopf index Q €
Z with a geometric interpretation of the linking number of any two closed-loop preimages. Most
of R3 is occupied by the preimage of the point in $? corresponding to mo (Fig. 22) [24], except
for the interior of a torus-embedded region, within which all other preimages are smoothly packed.
Preimages with the same polar angles but different azimuthal angles tile into tori; then tori
corresponding to different polar angles nest within each other, all imbedded within the biggest
torus that has all the preimages in its interior, except for the mo-preimage that is in its exterior (Fig.
22) [24]. Stable hopfions in physical systems ranging from elementary particles to cosmology have
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been predicted by Faddeev, Niemi, Sutcliffe and many others [7,22,42], as well as demonstrated
experimentally as stable solitons in colloidal ferromagnets and LCs [24,192, 193]. Nonlinear
optical 3D imaging was utilized to unambiguously identify topological solitons, revealing an
experimental equivalent of the mathematical Hopf map (Fig. 21c,d) and relating experimental and
theoretical closed-loop preimages of distinct S2-points [24]. Agreement of experimental and
simulated real-space cross-sectional nonlinear optical images of hopfions and preimages of
different points of the order parameter space (Fig. 21c,d) confirms the hopfion identity. While
nonlinear optical imaging of m(r) cannot discriminate m(r) and -m(r) because of being based on
orientations of transition dipole moments of the organic LC molecular host [24], this ambiguity
related to telling apart the preimages of diametrically opposite points is lifted by probing the
response to applied magnetic fields B in directions parallel or anti-parallel to mo (Fig. 21e). B
applied anti-parallel to mo forces the soliton to grow, with outer diameter increasing and the inner
region shrinking [24], with the opposite response for Bl | mo (Fig. 21¢). Since the coupling of B
and m is linear, described by a corresponding free energy term, this eliminates the m versus —m
ambiguity, so that the entire structure can be smoothly vectorized [24].

The detailed structure of axisymmetric m(r) within the static Hopf soliton is depicted in
Fig. 21f,g. It minimizes the Frank-Oseen free energy of a chiral ferromagnetic LC at no applied
external fields:

(D)

Fce = J.dr{[j' (V-m)2 +%|:m (me)]2 +%[m><(V><m):|2 +q0K22m‘(V><m)}

For splay, twist and bend Frank elastic constants equal, K=K;/=K22=K33, within the one-constant
approximation [12], the ferromagnetic LC’s free energy functional reduces to a micromagnetic
Hamiltonian for non-centrosymmetric chiral magnets for A=K/2 and D=Kqo [24,167,177]:

F= J‘dr[A(Vm)z+Dm-(V><m)} (2)

where coefficients A and D for magnetic solids describe the effective exchange energy and the
Dzyaloshinskii-Moriya coupling. Numerical minimization of both free energy functionals yields
minima corresponding to Hopf solitons with linked preimages (Figs. 21-23) [24,42,193]. This
linking cannot change without a breakdown of m(r) continuum, e.g. through melting or generation
of singular defects, further helping to stabilize such topological solitons. Hopfions with different
Hopf indices can co-exist in monodomain samples because they all can correspond to local or
global free energy minima. Both the ferromagnetic LC and a Hopf link of any two preimages with
consistently defined circulations of a hopfion are chiral, so that taking a mirror image negates the
linking number and Q while also transforming a left-handed ferromagnetic LC into its right-handed
counterpart [24,193]. Many-body elastic interactions between individual hopfions in presence of
a lateral confinement lead to hexagonal arrays imbedded into mo [24], consistent with their
particle-like nature. Self-assembly of hopfions may result in 2D and 3D solitonic condensed matter
phases, analogs of the so-called “A-phase” of 2D skyrmions [177-183], which calls for a detailed
study of phase diagrams.

Minimization of free energy given by Eq. (2) predicts existence of 3D topological solitons
in solid non-centrosymmetric ferromagnets [42] with experimental values of 4 and D. Like in the
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case of the chiral term in free energy for ferromagnetic colloidal systems [24], Dzyaloshinskii-
Moriya term in Eq. (2) helps overcoming the stability constraints defined by the Derick theorem
[196]. Solid-state magnetic hopfions have been predicted to exist in nanodiscs, thin films and
nanochannels of non-centrosymmetric magnetic solids with perpendicular surface anisotropy [42]
(Fig. 23a,b), featuring closed-loop preimages of all $? points, with each pair linked Q times. Due

B ) =he"m-(0, /2
to the field topology, the emergent magnetic field (By,), = hem-(d,m 3, m) of a solid-state

elementary hopfion spirals around its symmetry axis with a unit flux quantum (Fig. 23c,d) [42].
Streamlines of Bem, describing the interaction between conduction electrons and the spin texture,
also resemble Hopf fibration [194]. This behavior of Bem mimics the topology of preimages for
hopfions (Fig. 23e,f). It will be interesting to explore in future whether Bem in solid-state systems
can also mimic behavior of preimages in high-Hopf-index hopfions, like the ones with O=2
Solomon link topology (Fig. 23f). The capability of encoding 1, 0, 2, -1 and other states in the
topological charges of 3D Hopf solitons in a chiral magnet can lead to data storage and other
spintronics applications, with some of them already pursued in modeling [42, 195]. While the
stability of 3D solitons like hopfions has been always challenged by Derrick theorem [192-196],
their experimental observation in chiral LCs and colloidal ferromagnets [24,192] offered insights
that led to the predictions of such hopfions in magnetic solid-state materials [193,195],
demonstrating the power of using soft matter as model systems. The insight in this particular case
is that the energetic stability of Hopf solitons is enhanced by the medium’s chirality and that such
topological objects can be hosted as stable or metastable structures in systems with Hamiltonians
like the ones given by Egs. (1) and (2) of chiral ferromagnetic colloidal LCs and solid-state
magnets.

5.4. Hopfions in nonpolar liquid crystals

Hopf solitons in chiral nematics differ from the ones in vector fields of chiral magnets discussed
above in that they are realized in the nonpolar field with the $?/Z> order parameter space [192].
Shown in Fig. 24 are elementary LC hopfions with opposite signs of Hopf indices. Rod-like
molecules and n(r) twist by 27 in all radial directions from the central axis to no-periphery within
both solitons (Fig. 24) [192]. By vectorizing n(r) of the two solitons (Fig. 24), so that no points in
the same direction for both of them and so that circulations of preimages are defined continuously,
one finds Q=1 for the soliton shown in Fig. 24a-e and O=-1 for the one in Fig. 24f-j. For both
hopfions, all $?/Z>-points for the nonpolar director have individual preimages in the form of two
linked loops (Fig. 24) [192]. This is expected since the manifold $%/Z: is effectively half of $? and
the smoothly vectorized version of the hopfion has all preimages of $? in the form of individualized
closed-loop regions. While the handedness of n(r)-twist is determined by LC chirality and is the
same for the two solitons within the same host material, the localized director configurations yield
Hopf links of preimages of opposite handedness (Fig. 24c-e, h-j), which, interestingly, both
correspond to energy minima (though with somewhat different energies) [192]. For both hopfions,
experimental preimages closely match their theoretical counterparts (Figs. 24d,e and i,j). The Q-
values stay the same upon inverting the vectorization direction n(r)—-n(r), different from the case
of hedgehog charges of point defects in nonpolar LCs that change signs with n(r)—-n(r) [34].
However, taking a mirror image negates the linking numbers of all preimage links and Q values,
again different from hedgehog charges of point defects that would stay unchanged [34]. These
properties of LC hopfions also apply to their topological counterparts in chiral magnets discussed
above [24, 193].
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Interesting soliton configurations arise with increasing the amount of the radial n(r)-twist
embedded within no. For example, n(r) twists by 4= in all radial directions from the two solitons’
central axes to their periphery in Fig. 25a,b,h,i, yielding two-closed-loop preimages of S$?-points
for vectorized n(r), with preimages of each point on $?/Z> of nonpolar n(r) comprising four
individual closed loops (Figs. 25d-g,k-n). Preimages for the same polar angle @ of vectorized n(r)
and with different azimuthal n(r)-orientations tile into tori (Figs. 25f,m). There are always two
such tori for a given @ (Figs. 25f,m), which is different from the case of elementary hopfions (Fig.
24). For all S>—points of vectorized n(r) of the soliton shown in Fig. 25a-g (Fig. 25h-n), the
individual preimages are formed by two separate unlinked closed loops while preimages of two
separate S>—points form two Hopf links with the linking number +1 (-1) for each of them, as seen
in Fig. 25d,e (Fig. 25k,1). Tori formed by preimages of constant § remain separate until merging
with the far field background when n(r) becomes parallel no (Fig. 25f,g,m,n). The behavior of the
individual $?/Z>-preimages of nonpolar n(r) is reminiscent to that of pairs of S?-preimages for
vectorized n(r) (Fig. 25d-g, k-n). The preimages of $?-points in the vicinity of the north pole are
two separate tori that characterize n(r) smoothly transforming to no in their exterior (Fig. 25g,n).
Thus, one can interpret the two solitonic structures shown in Fig. 25 as O=2 and Q=-2 hopfions,
respectively, each formed by coaxial arrangements of two separate like-charged hopfions of Hopf
index O=1 (Fig. 25a-g) and O=-1 (Fig. 25h-n). Hopfions that could be thought of as comprising
elementary hopfions of opposite signs of O have been observed [192], including the ones with a
O=1 hopfion in the interior and Q=-1 hopfion in the exterior of the coaxial hybrid solitons and vice
versa [192]. Coaxially arranged hopfions of opposite signs can annihilate and transform into a
uniform state, whereas that of like-charged hopfions gives high-index solitons with O being the
sum of O values of individual structures [192,193]. While each hopfion is uniquely characterized
by Q and the corresponding linking number of preimages, there are different ways to obtain the
same linking numbers within a soliton. For example, a hopfion with O=2 could have 2 Hopf links
for each pair of preimages or a single Solomon link [193]. Analogously, a localized solitonic
structure with O=0 could be comprised of coaxially arranged O=-1 and Q=1 hopfions or simply
have no linked closed-loop preimages (even if still featuring closed-loop preimages) [193]. Such
variations of inter-linking are often found within the same 3D solitons, where, as an example, pairs
of some preimages can form Solomon, but others form two Hopf links, in each case with the same
linking number [192,193]. Moreover, even individual preimages can have different geometry
within different parts of order parameter space for the same soliton, as long as the linking number,
which is the topological invariant defining Q, is conserved for all pairs of preimages [193]. The
large number of possibilities to realize solitonic structures of given Q (in both experiments and
modeling) contributes to the diversity of Hopf solitons [192], which is revealed by simplified-
topology and graph presentations (Fig. 26). In these graphs, the closed-loop preimage components
are filled circles colored according to the positions of corresponding points on the ground-state
manifold and the individual links are indicated by black edges connecting these circles (Fig. 26)
[192]. Moreover, Figs. 21-26 illustrate that not only elementary hopfions but entire zoos of
3(S?) = Z and 73 (S?/Z2) = Z solitons exist in soft matter. The insights into the diversity of
structural embodiments of topological Hopf Solitons experimentally revealed by LC and colloidal
systems are useful for theoretical modeling and experimental discovery of such topological objects
in other branches of physics.

5.5. Hybrid torons & twistions
In addition to the elementary torons with mt-twist of n(r) from their central axes to the no-periphery
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in all radial directions (Fig. 19), torons with larger amounts of such twist also exist. For example,
torons shown in Fig. 27a,b contain 3n-twist of n(r) in all radial directions [192]. Additionally,
torons with 5m and larger amounts of twist within axisymmetric toron structures were found in
recent experiments [192]. Preimages of distinct points on the $?/Z> or $? for such toron-hopfion
hybrid structures are either closed loops or bands starting and terminating on the hyperbolic point
defects (Figs. 27c-e). Such torons can be thought of as a separate elementary hopfion and an
elementary toron arranged coaxially so that their symmetry axes coincide. The multicomponent
preimages, comprised of closed loops and half-loop bands that terminate on the point singularities,
reveal diversity of topological and structural compositions of such torons (Fig. 26). Solitonic and
singular topological structures also co-exist within hybrid structures called “twistions”, localized
configurations that embed spatially localized twisted regions into a uniform no-background but
lack axial symmetry and (unlike torons) contain more than two point defects [197] (Fig. 28).
Within a structure shown in Fig. 28, n(r) twists from its interior to periphery by ~m, though
twistions with larger amounts of such twist exist too, analogously to what was discussed above for
torons [192,193,197]. The twistion in Fig. 28a-c contains a stretched loop of n—twist of n(r) and
four self-compensating hyperbolic point defects, as revealed with the help of cross-sections. Its
topology can be again analyzed using preimages, which are bands spanning between the four point
singularities (Fig. 28d,e). This example shows that localized skyrmion-, toron- and hopfion-like
field configurations in confined chiral nematic LCs are not restricted to hosting none (as in
skyrmions and hopfions) or only pairs (as in the torons) of self-compensating singular defects.
Such self-compensation can occur in a number of other more complex ways, e.g. with four
hyperbolic point defects shown in addition to various solitonic components with band-like or
closed-loop preimages (Fig. 28). Similar multi-point-defect configurations with solitonic n(r) in-
between have been also reported for cholesteric LC drops [149].

5.6. Topological inter-transformations of solitons

LCs are known for their facile responses to external fields, though this switching typically involves
topologically trivial structures [12]. Switching of solitonic structures in chiral nematic and
ferromagnetic LCs has been explored too, demonstrating both topology-preserving morphing and
topological transformations (involving changes of topological invariants) driven by electric and
magnetic fields [193]. The far-field director no and magnetization mo were fixed to assure
compactification of R3 to $ for the 3D solitonic structures during switching. Since ferromagnetic
LC is polar, m(r) responds differently to external magnetic fields H and —H, making magnetically
driven transformations of solitons especially rich (Fig. 29) [193]. As an example, an axisymmetric
soliton with complex linking of preimages but net O=0 at zero field is shown in Fig. 29a,b [193].
H applied parallel or anti-parallel to mo drives this soliton’s m(r) through a series of continuous
and discontinuous deformations (Figs. 29c,d), where the distinct types of encountered preimage
linking are shown schematically in the insets [193]. A structural diagram in the coordinates of
thickness-to-pitch ratio d/p and applied magnetic field (Fig. 29d) encompasses a wealth of knotted
configurations, where Hopf index Q stays unchanged within some parameter ranges, but changes
discontinuously at the boundaries of the diagram between the topologically distinct states with
different Q. Within a broad range of parameters, solitons morph without changing topology (Fig.
29d) [193]. The S$? ground state manifold splits into two subspaces (Fig. 29b) separated by a
boundary at a critical polar angle 6. dependent on H (Fig. 29¢). Different preimages of points on
$2 not only coexist within the same knot soliton, smoothly embedding within a localized volume
in R3, but also are magnetically inter-transformed while remaining nonsingular, as long as the
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linking number of all preimage pairs for a given soliton stays conserved. Outside of the central
parts of the diagram, with changing d/p and H, Q=0 solitons with complex preimage linking
discontinuously inter-transform into O=-1 solitons, torons and other structures (Fig. 29d) [193].
Since both chiral LCs and colloidal ferromagnets are optically birefringent, different Hopf index
values can be associated with optical signatures, such as polarization rotation, phase retardation,
and light transmission when the sample is placed between polarizers, which could potentially
expand the wealth of current electro-optic applications of these soft matter systems [12]. The
illustrative example of a structural diagram with the topological soliton switching is just one of
many that have been reported, including examples of magnetic- and electric-field controlled
stability diagrams of solitons in LC, colloidal and solid-state magnetic systems [42,44,73,193].
The similarity of findings in physical behavior (including switching) of solitons in soft and hard
chiral condensed matter systems [42,44,73,193] once again shows how LCs and colloids can be
used as model systems in the studies of solitons in other fields.

5.7. Heliknotons and crystals of knots

Recently, stable micrometer-sized knots, called “heliknotons”, have been demonstrated in helical
fields of chiral nematic LCs [73]. The helical fields comprise a triad of orthonormal fields (Fig.
30a): the molecular n(r) field, the helical axis x(r) field and ©(r)L n(r)Lx(r). Heliknotons are
topological solitons with linked closed-loop n(r)-preimages (Fig. 30b) while their x(r) and t(r)
contain half-integer singular vortex lines forming knots (Fig. 30c). Therefore, the heliknoton is a
hybrid embodiment of both preimage and vortex knots [73]. These knot solitons embed in a helical
background and form spontaneously after the transition from the isotropic to LC phase when an
electric field E is applied to a positive-dielectric-anisotropy chiral LC along the far-field helical
axis y,. These structures comprise localized regions (depicted in gray in Fig. 30b,c) of perturbed
helical fields and twist rate [73]. They display 3D particle-like properties, with anisotropic pair
interaction potential varying from attractive to repulsive and from tens to thousands of kgT [73],
depending on the choice of LC, applied voltage U, sample thickness, equilibrium cholesteric pitch
po, etc. The inter-heliknoton interactions arise from sharing long-range perturbations of the fields
and minimizing the overall free energy for different relative positions [73]. These interactions
enable a plethora of crystals, including 2D and 3D low-symmetry and open lattices (Fig. 30) [73],
with tunable crystallographic symmetries and lattice parameters [73]. 3D crystals of heliknotons
emerge in samples of thickness >4po, when anisotropic interactions yield triclinic pedial lattices
(Fig. 30d), whereas 2D crystals form in thinner samples. Besides the Q = 1 elementary
heliknotons, Q = 2 and Q = 3 topological solitons were observed as well [73], with preimages in
the material field n(r)linked twice and three times, respectively. For Q = 2 (Q = 3) heliknotons,
singular vortex lines in x(r) and t(r) form closed 51 (71) knots co-located with the same knot of
a meron in n(r). These and other heliknotons with even larger Q can be ground-state and
metastable structures [73], behaving like particles. However, unlike the atomic, molecular and
colloidal crystals, heliknoton crystals exhibit giant electrostriction and dramatic symmetry
transformations under <1V voltage changes. The closed-loop preimages of heloknoton’s are inter-
linked with the torus-knot of vortices within the orthonormal fields [73], showing how remarkably
beautiful and complex knotting of helical fields can be and calling for their search in other physical
systems. For example, they can potentially emerge in solid-state non-centrosymmetric magnets
and ferromagnetic LCs with helical fields and Hamiltonians similar to those of chiral LCs, as
recently predicted theoretically [44].
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6. Topological, solitonic & knotted active matter

6.1. Solitons as active particles in passive LCs
The examples showing the role of topology in the LC and colloidal soft matter behavior presented
so far relate to equilibrium or metastability conditions, but even richer interplay of topology,
ordering and fluidity can emerge under the out-of-equilibrium conditions. Topological structures
of defects and solitons in LCs and nematic colloidal particles can be effectively “activated” by
supplying energy [81,82,197-201], just like this was done in the past with granular particles by
shaking them [123,202,204], as an example. When supplied to LC and colloidal samples on
macroscopic scales under well controlled conditions, the external energy can be converted into
motion on the individual soliton or singular defect basis; this can lead to various types of emergent
active matter behavior, differing from classic effects like electrophoresis and dielectrophoresis
where external fields predictably predetermine motions of particles. As we shall see below while
focusing on examples that involve skyrmnions and torons, this enables synthetic active matter with
rich varieties of collective motions of particle-like topological solitons and defects. While Skyrme
solitons have been used historically as physical models of subatomic particles [7] and a variety of
other topologically protected field configurations are commonly utilized as models of particles in
different branches of physics, the significance of the active-matter-like behavior of topological
solitons and defects in soft matter directly shows the utility of such topological models in active
matter. We shall review how periodic pulses of applied field lead to squirming motion of individual
skyrmions and torons [81,82] and then how this enables collective schooling and orderly motions
of hundreds-to-millions of such topologically-protected particle-like structures, with all motion
directions selected spontaneously and arising from emergent behavior, uncorrelated with
directions of the oscillating fields [198-201]. While in active nematics topological defects behave
as active particles themselves [123,202,205], the active topological solitons that we will focus on
here can be understood as active particle-like objects within an effectively passive medium,
behaving as active topological excitations [81,82,198-201]. With fluid flows and complex
hydrodynamics being an important part of the conventional active nematics and behavior of defects
within them [123,202,205], the situation can be very different in the case of active topological
solitons in passive nematics that rely mostly on the rotational director dynamics to move [81,82].
Various backflow effects can be present (though typically not strong) during such dynamics
[81,82], but they are localized and not instrumental in defining motions that arise from non-
reciprocity of rotations of n(r). The way topological solitons move when invoking this
nonreciprocal rotational director dynamics could be paralleled with stadium waves (which move
around the stadium without people actually leaving their seats) and concert-wave dance dynamics
in response to music that can propagate with the speed of sound without carrying the dancers with
them. The LC soliton motions also resemble dynamics of topologically similar skyrmions in spin
textures in solid-state magnets that can move through rotations of spins within solid films with up
to kilometer-per-second speeds, being of interest for spintronics applications like in racetrack
memory devices [162, 180-185]. However, the most fascinating feature of topological soliton
behavior in soft matter is that their emergent collective motions can mimic that found in biological
systems, like in schools of fish, though here happening without advection but rather through
rotational dynamics in the order parameter field [200].

Facile response of LCs to periodically varying fields can cause local conversion of electric,
magnetic, mechanical or other forms of energy into elastic energy stored within solitonic n(r)-
deformations and then into soliton’s translational motion [81,82,198-201]. In the electric field case,
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dielectric coupling of n(r) with electric field E morphs a soliton (Fig. 31a-f) and elastic free-energy
costs associated with this deformation tend to drive relaxation of n(r) back to the initial state that
minimizes energy at zero applied field. The non-reciprocal nature of n(r)-rotation in response to
switching voltage U on and off causes translation of solitons in lateral directions (Fig. 31g-i).
Within each voltage modulation period 7m, the solitons are asymmetrically squeezed during the
“field-on” cycle and relax to minimize the elastic free energy during the “field-off” cycle of Tm
(Fig. 31h,i) [81]. This periodic non-reciprocal asymmetric morphing of the localized n(r)
resembles squirming in biological systems, albeit LC solitons have no cell boundaries, density
gradients or interfaces, so that the similarity is limited, mainly just in terms of the nonreciprocal
character [82]. Like for active colloidal or granular particles [124,125,202-204], the energy
conversion happens at the scale of individual particle-like solitons. Although the oscillating
energy-supplying field is applied globally to the entire sample, its direction is not related to the
emergent motion direction [81]. Depending on the applied voltage, this morphing of LC solitons
by voltage pulses can take place below or slightly above the threshold of switching of the LC
director in the background far away from the solitons [81,199,200], though in both cases the LC
host medium features no or very minimal macroscopic flows, so that the LC stays passive
(practically no advection) while the topological solitons start exhibiting active-particle-like
emergent motions.

6.2. Out-of-equilibrium elastic interactions and schooling of skyrmions

Out-of-equilibrium elastic interactions between moving skyrmions emerge to reduce the free
energy costs of n(r)-distortions around the topological solitons, albeit without the dynamic n(r)
reaching equilibrium because of the periodic voltage modulation and soliton motions [200]. These
interactions, at least partially, define collective behavior of skyrmions while they move (Fig. 32a,b).
The elastic interactions between skyrmions confined to a 2D plane have dipolar nature (note also
that the director configuration around a skyrmion in an applied field is of dipolar type, Fig. 31c,{),
though the complex temporal evolution of n(r) with modulated U effectively changes their tilt
relative to the 2D sample plane within each 7m [200]. Such dynamic dipolar skyrmions mutually
repel at small U, but exhibit anisotropic dipolar-like interactions, including attractions, when the
oscillating field E prompts symmetry breaking and motions [200]. E rotates preimage dipoles
(connecting preimages of S2-poles of the vectorized n(r)) from being orthogonal to the sample
plane at U=0 to being tilted or in-plane when U increases. Since the response of n(r) to oscillating
U is fast (10-100 ms) as compared to the timescales of skyrmion motions at ~1 um/s, tuning n(r)
by U and frequency f modifies elastic forces and prompts cohesion within schools of skyrmions.
The emergent behavior and orientational-elasticity-mediated pair and many-body interactions of
such topological solitons can be understood as that of elastic dipoles with periodically oscillating
tilt with respect to the 2D sample plane (Fig. 32) [200]. The nature of instantaneous interactions
between continuously morphing solitons effectively changes within each 7m, but the overall
collective behavior then arises from the cumulative effects of Tm-averaged instantaneous
interactions (Fig. 32a-c). This behavior gives origin to a variety of emergent behaviors of moving
solitonic assemblies (Fig. 32a) and schools of solitons (Fig. 32b-e).

In presence of thousands-to-millions of skyrmions, applied E initially induces random
tilting of the director around individual skyrmions, so that their south-north preimage unit vectors
p: = Pi/|Pi| initially point in random in-plane directions. Individual skyrmions exhibit translational
motions with velocity vectors v; roughly antiparallel to their p;. With time, coherent directional
motions emerge, with schooling of skyrmions either individually-dispersed (Fig. 32b,c) or within
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various cluster-like assemblies [200]. Velocity and polar order parameters S=|Y.} v;|/(Nvs) and
Sy=| >N p;| /N characterize degrees of ordering of v; and p; within the moving schools, where N is
the number of skyrmionic particles and vs is the absolute value of velocity of a coherently-moving
school. Both order parameters increase from zero to ~0.9 within seconds (Fig. 32d), indicating the
emergence of coherent unidirectional motion of particle-like solitons. The dynamic elasticity-
mediated assembly of multi-skyrmions within schools (Fig. 32) echoes nuclear physics models
(where subatomic particles with high baryon numbers are modeled as clusters of elementary
skyrmions [7]), with each skyrmion cluster characterized by a net total skyrmion number
corresponding to a sum of topological invariants of elementary solitons within it [81,82,200].
Interestingly, one often observes dynamic fission and fusion of such clusters during the active
schooling [200]. Figure 32e¢ summarizes the schooling behavior of skyrmions within a structural
diagram, showing electric reconfigurability of this emergent behavior [200]. It is surprising and
unexpected that relatively simple topological solitons, the 2D skyrmions, exhibit such complex
out-of-equilibrium behavior when powered by oscillating electric fields. How can this behavior be
altered further by increasing the number density of the solitons and by presence of singular point
defects co-existing with the skyrmions (e.g. within the elementary toron structures)?

6.3. Crystals of moving torons

Let us now consider an experimental geometry similar to that discussed above (Fig. 33a), but with
dense polycrystalline arrays of torons (Fig. 33b,c). An oscillating field E applied to a chiral LC
with such polycrystalline arrangements of torons prompts motions of crystallites and lattice defects
(Fig. 33d), showing behavior very different from that of skyrmions discussed above [199]. E is
again applied orthogonally to cell substrates and motions emerge along a spontaneously selected
direction in a plane orthogonal to E (Fig. 33a-d). The crystallites have different orientations of
crystallographic axes of the quasi-hexagonal lattice relative to the average motion direction before
and during motion (Fig. 33b-d). The temporal evolution of deformations of the complex director
field upon turning U on and off is not invariant upon time reversal, prompting lateral translations
of torons, which synchronize to yield coherent motions of the crystallites of torons within quasi-
hexagonal periodically deformed lattices (Fig. 33) [199]. Although the average direction of motion
of toron crystallites is well defined, individual torons within the lattices execute rather elaborate
“dancing-like” dynamics (Fig. 33e), where local translations in directions other than motion
direction average out over longer periods of time. As a result, the primitive cells of crystals of
torons are translated along the average motion direction (Fig. 33e) with velocities approaching a
micrometer per second range (Fig. 33f). While there is no net displacement of toron lattices and
both scyrmions and singular point defects within them at zero applied field (though thermal
fluctuations of toron positions are present), this displacement becomes linear in time soon after the
periodically oscillating voltage is applied (Fig. 33f). Numerical modeling and experiments reveal
that this motion is accompanied by voltage U-dependent lateral shifts of hyperbolic point defects
and tilts/deformations of preimages as compared to those at U=0 (Fig.33g,h). This electrically-
powered self-shearing of torons is apparent when visualizing the south-pole preimages and lateral
shifts of the singular point defects at opposite confining surfaces (Fig. 33h), as well as can be
inferred from tracking point defects in bright-field microscopy (insets of Fig. 33f). Furthermore,
all the preimages also rotate around an axis normal to the sample plane [199] (Fig. 331). As voltage
is effectively turned on and off within each period of square-wave modulation, toron’s preimages
rotate counterclockwise and clockwise (Fig. 331), so that the director evolution that is manifested
through such textural changes is not invariant upon reversal of time (Fig. 331). Collective motions
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of crystallites of these solitons prompt fascinating evolution of grain boundaries and 5-7 defects
[199], which are not generated by external stresses (like this would be the case, for example, during
mechanical deformation of crystalline solids) but rather emerge from collective motions of
crystallites of topological solitons within the material’s interior, powered by the conversion of
energy on an individual soliton basis. Furthermore, these complex dynamics arise from facile
responses of the LC to external fields, which can be related to periodic morphing of knotted
director streamlines within each toron [82], like the ones depicted in Fig. 20 [199], further enriched
by electrically powered periodic shearing and dynamics of lattice defects. The collective dynamics
of torons within lattices increases the hexatic order parameter and also causes polar ordering of
asymmetrically sheared solitons, as well as leads to rather high velocity order parameters, which
are all rather unexpected emergent properties [199]. These findings show that, being “activated”
through supplying energy that is converted into motion locally, singular point defects, torons,
skyrmions and various other knotted solitonic field configurations can emerge as a new breed of
topological active matter [81,82,199,200,205-208].

6.4. Utility of the activated solitonic matter

While motion of individual solitons and their schools or crystals can take place with no or very
little advection, these dynamic textures of n(r) can be used for transporting colloidal micro-cargo
with well-defined surface boundary conditions by coupling the localized director textures with the
solid particles through surface anchoring boundary conditions [82]. It is tempting to again draw an
analogy of such particle transportation with the so-called “crowd surfing” typically enjoyed by
concert performers, where the relatively static crowd transports the artist with localized dynamics
of moving hands. However, it is important to note that the soliton-assisted transportation of
colloidal particles throughout the LC generates more significant (though still localized) fluid flows
[82]. Considering that the “activated” topological solitons can be realized in very diverse synthetic
material systems under geometry and sample preparation conditions similar to those of LC displays
[200], their out-of-equilibrium emergent behavior might be of interest for technological
applications, ranging from microfluidics to dynamic diffraction gratings and singular optics. For
example, one can envisage their use in generating emergent patterns of polarization and intensity
of light (including optical vortices and knots made from them) through exploiting optical
properties of the uniaxial LC host media. Since torons and skyrmions can be also pinned to
surfaces in desired locations using laser tweezers, further control of their out-of-equilibrium
behavior like jamming was recently achieved by combining static (often serving as obstacles) and
dynamic topological solitons [81,198,201]. In general, the combination of topological protection,
reconfigurability and the facile response of the optically anisotropic LC host medium makes the
topological solitons ideal for applications in various emergent technologies and as model systems
in fundamental research.

7. Open questions, opportunities and perspectives

While the study of knotted and other topological structures in soft matter attracts a great deal of
interest, many fundamental questions remain to be answered, including a systematic
classification of these configurations, the allowed transformations between them, their physical
stability, and how to use one form of knotted fields to create and imprint other forms. The large
variety of symmetries accessible within the selection of soft matter host media (Fig. 1) [13] will
allow for gaining insights on stability, transformation and dynamics of fully nonsingular and
singular knotted fields. The open questions to be answered include the following. What
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restrictions do different material symmetries impose on the knot types that can be realized?

What knot invariants have physical significance for each knotted field realization? How do
soliton-type and singular knotted fields coexist with each other and with other topological
defects, colloids, confining surfaces? How do director fields switch between different knotted
states? What new knotted condensed matter phases are possible for different symmetries? What
are the mechanisms by which knotted fields are stabilized? When knots decay or emerge within a
uniform background, what are the topological cascades of knot types in different systems? What
is the relation between topological complexity and energy landscapes? Can turbulence be
engineered in LC fluids through imprinting knotted flow structures, like in microfluidics
embodiments [208, 209]? How do knotted structures in a complex soft matter medium interact?
What types of dynamics and active-particle-like motion of singular knots [209, 210] of line
defects and topological solitons in 3D active nematics can be realized? Can interaction of knotted
structures and confining surfaces be controlled [211]? What are the implications of knotting of
vortex lines in LCs on the structure of their cores [212-215]? How extensions of topological
concepts to dynamical phenomena can lead to entanglement of dynamic and static material
properties? Could active nematics or passive nematics with activated dynamics of defects host
soft matter analogs of instantons [7]? Can knotted optical fields act as templates to excite knotted
liquid crystal and ferromagnetic states, and vice versa? Orientationally ordered soft matter
provides unique opportunities for integrating analytical, numerical and analog modeling with
experiments to answer the above questions.

While topologically protected knotted solitons and vortices can exhibit behavior similar to
that of particles, with effective dimensions in nanometer and micrometer ranges, it is of interest to
explore how such structures interact and co-exist with colloidal particles in LC colloidal
dispersions, gels and emulsions [216-221]. Preliminary studies in this direction have appeared
already [222,223], demonstrating that colloidal particles immersed in LCs can be accompanied by
combinations of solitonic and singular structures, but more extensive research explorations are still
needed. For example, 3D solitons like heliknotons could effectively bond with colloidal objects to
form hybrid soliton-colloidal crystals, or instead new breeds of hybrid structures could arise from
their interactions. These studies could lead to sparse but ordered open and closed 2D and 3D
lattices of colloidal superstructures [73,224], or may also diversify our abilities of knotting nematic
field configurations. If thinking about both colloids and solitons as “big atoms”, this may also
significantly expand our abilities of modeling atomic and molecular systems with soft matter, as
well as going beyond what is accessible to atomic and molecular building blocks in terms of
symmetries of organization, responses to external stimuli, etc.

Throughout the article, relations between topological structures in soft matter and the ones
in other branches of science have been mentioned. Experimental realizations and deeper
understanding of, for example, hopfions and heliknotons in solid-state magnetic systems may be
aided by explorations of such structures in LCs and colloids [42,44,73,74]. Indeed, the synergy in
studies of these solitons in different systems is even beyond just the topological equivalence and
analogy, and can build on similarity of free energy functionals, various types of surface and bulk
anisotropies, field couplings, etc. [42,44]. In many other physical systems, like elementary particle
physics and cosmology, structures of fields are not experimentally accessible and, thus, ordered
soft matter media can provide much needed model systems and deeper insights [7]. On the other
hand, synergy can be developed in explorations of topological configurations even within different
soft matter systems. For example, Petit-Garrido and others [225,226] demonstrated how vortices
within molecular monolayers can imprint arches of singular disclinations within LCs in contact
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with them, but such study could also involve topological solitons and knotted vortices. Having
self-assembled monolayers made of photo-responsive molecules, e.g. the ones containing
azobenzene, may enable interesting dynamics, similar to what was observed for spiraling 1D
solitons [227], but now this could be extended to higher dimensional solitons, like skyrmions and
hopfions.

In addition to the most common examples discussed above, more complex LCs and
colloids can be characterized by a variety of other types of order parameters and the
corresponding order parameter spaces (Fig. 1c,d). For example, particularly interesting high-
dimensional order parameter spaces in these soft matter systems are SO(3)=S3/Z, of the
monoclinic biaxial colloidal ferromagnets [228] (Fig. 1d) and SO(3)/D2=S$3/Qg of the
orthorhombic biaxial nematics (Fig. 1c) [229]. The types of anticipated/allowed defects and
solitons in these systems are understood on the basis of homotopy theory, with one particularly
interesting example being the nonabelian line defects in the orthorhombic biaxial nematic LC,
m1(S3/Qg)=Qg [230], but little is known about the interactions of these soft matter systems with
confining and colloidal surfaces of complex topology and even the fundamental properties of these
defects have not been probed experimentally. What types of solitonic and singular knotted field
configurations can exist in these biaxial, low-symmetry nematics and colloidal ferromagnets? For
example, 13 (S%/Qg )=Z and ms (S3/Z, )= Z topological solitons in biaxial nematics and
ferromagnetic LCs would be rather interesting analogs of the Skyrme solitons in high energy
physics, but can they emerge as global or local free energy minima in these soft matter systems?
What would be the fate of various solitonic and singular knots during monoclinic-orthorhombic,
orthorhombic-uniaxial nematic and various other phase transitions involving these mesophases? It
is only now that researchers can start addressing such fundamentally important questions because
these soft matter systems become experimentally accessible [228,229]. The recent demonstration
of 3D active nematics [210] also promises a variety of new opportunities in realizing various out-
of-equilibrium knotted vortices and solitons. For example, both active [210, 231-237] and out-of-
equilibrium passive LCs with “activated” dynamic defects [81,82, 198-201] could reveal various
analogs of topological instantons and nontrivial topological connectivity where dynamics of
defects and topological solitons could even lead to formation of topological field configurations in
a different class, including various knotted field configurations. Although topological objects in
soft matter can be realized only in one-to-three-dimensional physical-configuration spaces (Fig.
5), time in certain cases can be treated as an additional spatial dimension (say R*"! for a 3D
configuration space with certain special temporal dynamics and the corresponding S *
compactification) [7, 238], so that an interesting question arises if topological objects predicted by the
homotopy theory and labeled as ma(S3)=Z, and m4(S3)=Z, could be potentially realized in out-of-
equilibrium soft matter systems. At the same time, active matter behavior, curvatures of confining
surfaces and orientational polar or nematic order could interplay to yield interesting topological
effects that are analogous to topology-enabled phenomena recently widely studied in quantum
materials [1, 237], with many new interesting possibilities arising and in need of exploration.

While the recent advances in study of topologically nontrivial structures in soft matter have
primarily fundamental importance, they could also be useful in various applications, extending the
scope of what is done already in relation to more classic types of topological defects. For example,
controlled patterning of defects in thin photo- and thermally-responsive LC elastomeric films
recently enabled tuning surface topography, e.g. inducing cone- and saddle-like deformations of
thin films and oscillating surface profiles [239-241]. Similar ideas can be extended to skyrmions,
hopfions and heliknotons, where topologically-protected nature of these field configurations can
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be utilized to produce well-defined localized mechanical responses, much like with singular
defects [239-241], but now with a considerably larger inventory of possibilities. Conversely,
topographic features at LC interfaces can be used to define and pattern spatial positions of various
knot solitons through harnessing interactions mediated by LC’s orientational elasticity, much like
colloidal particles in nematic LCs could be attracted by topographic features like pyramids [242].
On the other hand, optical effective refractive index patterns associated with various arrays of
solitons with and without lattice defects can be utilized to generate tunable diffraction patterns and
optical vortices in laser beams [164,165,243,244], where 3D topological solitons like heliknotons
[73] within crystalline arrays may again allow for much needed reconfigurability in defining these
diffractive elements and optical vortex generators. It will be interesting to explore how various
linear and nonlinear optical interactions within LCs can be exploited to use topological solitons in
guiding laser beams of light and optical solitons like nematicons [245], as well as how these
interactions can potentially enable practical applications in beam steering and telecommunications.
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(A

Figure 1. Orientationally ordered soft matter systems. (a) Schematic of a uniaxial LC made of rod-like
molecular mesogens. (b) Dispersion of monodomain magnetic colloidal nanoplates with magnetic moments
m and macroscopic magnetization M aligning with n (black lines), effectively “vectorizing” the nonpolar
director field n(r) by M(r) through selecting one of the directions parallel to it. (c) Biaxial nematic phase
with orthorhombic Do, point group symmetry characterized by three mutually perpendicular nonpolar
directors (red, green and blue double arrows). (d) Schematic of a ferromagnetic hexagonal nanoplate in a
nematic host with its magnetic moment tilted away from the LC ordering direction (left) and biaxial
ferromagnetic LC colloids with magnetization M tilted with respect to the director n (right), forming a
monoclinic biaxial ferromagnetic LC.

: A )
Figure 2. Knots in history, culture and science. (a) A common overhand knot. (b) Trefoil knot in two
embodiments of opposite handedness, which can be obtained by connecting the ends of the overhand knot;
these knots were generated using the KnotPlot freeware (https://knotplot.com). (c) The symbol of interlaced
triquetra [Madboy74/CC BY-SA (https:/creativecommons.org/licenses/by-sa/4.0 )] is a trefoil knot. (d,e)
Ancient decorations in the forms of (d) the Solomon link (Aquileia, Basilica. Photo by Giovanni Dall'Orto)
and (e) the Borromean link [Valknut detail from Stora Hammar stone. Adapted from
https://en.wikipedia.org/wiki/Valknut . CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) ].
() Used for millennia in Chinese culture [6,8-11], knots are also very common decorations nowadays, with
this Chinese knot decoration, for example, being commonplace in the Beijing airport. (g) Many closed-loop
mathematical knots belong to the class of torus knots and can be confined to surfaces of a torus; the
examples provided here are the unknots (top) and trefoil knots (bottom) featuring different numbers of
windings around the circular axis and axis of rotation of the torus provided in brackets. Note that the two
unknots (top) and the two trefoil knots (bottom) shown by red and green colors in each case are further
linked with each other while residing on the tori in each case, forming different two-component links.

i B
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Figure 3. A table of knots. Only the first simplest 24 knots are shown [6], with their Alexander-Briggs
notations given in the bottom-right of each knot. Knots were generated using the KnotPlot freeware
(https://knotplot.com ).
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Figure 4. Multi-component links. (a) Rolfsen table of the first prime links, with the first 36 links shown
along with the corresponding notations [6]. (b) Examples of Brunnian links with different numbers of
components and crossing numbers, with the first being the three-component Borromean link. All links were

generated using the KnotPlot freeware (https://knotplot.com ).
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Figure 5. Homotopy theory classification of singular and solitonic field configurations. The green,
yellow and blue colors highlight different examples of topologically nontrivial field configurations
discussed within this review, whereas the 73(S3)=Z topological solitons (red) arise in high energy and
nuclear physics models of subatomic particles.

Vector field

=€

Figure 6. Topologlcally nontrivial structures of fields. (a,b) Examples of 2D ni(S')=Z singular defects
classified by mapping the vector field from S' surrounding the singularity to $! order parameter space of
vectors confined to 2D plane, with the order parameter space covered once in (a) and twice in (b), yielding
the winding numbers. (c) An elementary +1 radial point defect representing a family of point singularities
with integer-valued hedgehog charges labeled as nt2(S?*)=Z. (d) An example of 7;(S")=Z topological soliton
in the form of an elementary 1D solitonic wall with 360° unit vector rotation embedded in the uniform
(vertical, pointing upwards) far-field background, which can be represented on S!, as shown in (e), where
red-blue colors on R! and §! correlate with and depict vector orientations. (f) Skyrmions in R? (bottom)
can be mapped bijectively from field configurations in $* (top) through stereographic projections (). The
Neel-type (bottom-left) and Bloch-type (bottom-right) 2D skyrmions are related by a smooth rotation (R)
of vectors. The vector orientations are shown as arrows colored according to the corresponding points on
the target $? (inset). (Part f is reproduced with permission from Ref. [80]). (g) Schematic of the $*/Z; order
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parameter space, with the diametrically opposite points of the circular base identified. (h-j) Half-integer
defects in non-polar 2D n(r), including wedge disclinations (h,j) that in 2D are characterized by opposite
s=+1/2 winding numbers, and a twist disclination (i). In R?, there is only one type of topologically distinct
disclinations different from a uniform state, with the topologically distinct states labeled m1(S$*/Z2)=Z; local
structures of defect lines like the ones shown in (h-j) can smoothly inter-transform one into another in 3D
and correspond to a single, topologically equivalent state. (k) Twisted wall with 180° rotation of nonpolar
n(r) embedded in a uniform background can be compactified on $!/Z,=S!. (1) Mapped director field of the
twisted wall winds around the order-parameter space S'/Z, once; since S!/Z,=S!, 1D LC solitons are
classified by m1(S)=Z.

(a) (b) (e) AL L ]/

elastic dipole formed by spherical colloidal particles with perpendicular surface anchoring in a planar
nematic LC cell. Orientations of polarizer, analyzer and the slow axis of a full-wave 530nm retardation
plate are labeled “P”, “A” and ““y”, respectively. (c,d) schematics showing the corresponding (c) nonpolar
and (d) vectorized n(r), with hyperbolic point defects shown by black (c) and red (d) filled circles. (e, f)
Schematics of the quadrupoloar n(r)-configuration around particles with (¢) homeotropic and (f) tangential
surface boundary conditions. The black ring in (e) represents the “Saturn ring” half-integer disclination
loop. Boojums are marked as black filled hemi-circles at the particle’s poles along the far-field alignment.
The inset in (f) shows the radial ny(r) director field at the interface of LC and colloidal sphere corresponding
to each of the two boojums.
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Figure 8. Colloidal tori and handlebodies with tangential boundary conditions. (a-d) Torus-shaped particle
with tangential anchoring and the ring plane parallel to no. Polarizing optical micrographs taken without (a)
and with (b) a 530 nm retardation plate with a slow axis Z'. Orientations of polarizer and analyzer are
labeled “P” and “A”, respectively. (c¢) Bright-field micrograph of a torus with four boojums visible as dark
spots. (d) Schematic of n(r) in a plane containing the ring and ny. Insets schematically depict 2D defects in
the director ny(r) tangent to particle’s surface. Green and red semi-spheres and circles represent,
respectively, s=1 and s=—1 surface defects in ny(r). (e-h) Colloidal handlebodies with g=2. Polarizing
optical micrographs (e, g) and corresponding bright-field (f, h) images of the handlebodies having ring
planes parallel to no but with the axis connecting centers of two rings at different orientations with respect
to ny. (i) Numerically calculated n(r) in the LC bulk (blue rods) and ny(r) on the surface (black rods) of the
g =2 colloidal handlebody; inset shows a detailed view of n(r) and ny(r) in the near-boojum regions marked
in (i), with the isosurfaces of constant reduced scalar-order parameter Q=0.25 shown in red and visualizing
a handle-shaped core structure of the boojum. (j-m) Colloidal handlebodies with genus of (j) 3, (k) 4 and
(I,m) 5. Reproduced with permission from [69].
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Figure 9. Colloidal handlebodies with perpendicular surface boundary conditions. (a-d) Schematics
showing the vectorized-field representations of n(r) (green lines with arrows) around single (a, ¢) and
double (b, d) colloidal handlebodies in the plane of the rings (c, d) and in planes orthogonal to them (a, b).
(e, f) Diagrams of vectorized n(r) around hyperbolic topological point defects of negative (e) and positive
(f) signs shown by red and magenta filled spheres. (g-j) Polarizing optical micrographs of n(r) for samples
with different colloidal handlebodies. Orientations of polarizer and analyzer are the same for all
micrographs (g-j) and are labeled “P” and “A” in (g). Colors in (j) emerge from polarized interference of
imaging light passing through the LC. (k-n) Schematics of n(r) (black lines) around colloidal handlebodies
of different genus. Red and magenta lines show outer and inner disclination loops of hedgehog charges m=-
1 and m=+1, respectively. Magenta spheres show the m=+1 hyperbolic point defects. Reproduced with
permission from [34].
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Figure 10. Nematic colloidal knots with tangential boundary conditions. (a) Trefoil colloidal knots shown
in (left) optical micrograph of a photopolymerized colloidal trefoil torus knot, with the corresponding 3D
model shown in the inset, and (right) nonlinear luminescence image of a particle fabricated by means of the
spatially-resolved graphene oxide reduction with femtosecond laser light (left-side image reproduced with
permission from [35]; right-side image reproduced with permission from [127]). (b-d) Scanning electron
micrographs of a (b) 4x4 array of T(5,3) torus knots and (c, d) a single T(3,2) knot shown as viewed along
the torus axis (c) and in an oblique direction (d). (e) Bright-field and polarizing optical micrographs taken
without polarizers (left), between crossed polarizers (middle), and with an additional 530 nm retardation
plate having its slow axis aligned as shown by the blue double arrow (right). Orientations of crossed
polarizers are shown by white double arrows. Locations of boojums are marked by red arrows. (f) 3D
nonlinear fluorescence pattern (left) and representation of n(r) deviating away from no due to the
incorporated trefoil knot particle (right). Colors depict the azimuthal orientation of n(r) when projected
onto a plane orthogonal to ny according to scheme shown in the inset. The structure is visualized on a tube
following the knotted particle’s surface; points where colors meet are the boojum defects. (g) Same as in
(f) but for T(5,3) particle. (h) Optical micrograph of the T(5,2) knot particle obtained for crossed polarizers
(white double arrows) and a phase retardation plate (blue double arrow) aligned with its slow axis at 45° to
polarizers and my. (i) Reconstructed 3D fluorescence pattern due to the T(5,2) colloidal knot particle and
n(r) induced by the particle as viewed perpendicular to the torus axis. (j) Corresponding numerical model
showing boojums induced by the T(5,2) particle. Green and magenta areas show the spatial regions of a
reduced scalar order parameter, corresponding to the s=—1 and s= 1 defects in the 2D n(r) at the LC-particle
interface, respectively. Reproduced with permission from [35].
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Figure 11. Colloidal knots with perpendicular boundary conditions. (a, b) Optical micrographs of a trefoil
knot in an aligned nematic (a) taken between crossed polarizers (white double arrows) and (b) with a 530
nm retardation plate (blue double arrow) inserted with its slow axis at 45° to polarizers. (c) Computer-
simulated n(r) within a cross-section perpendicular to the knotted tube marked in (f). (d, e) Nonlinear
polarized fluorescence images of n(r) around the knotted particle shown in (a, b) and for the femtosecond
excitation-light polarizations (green double arrows) at different orientations with respect to no. Red arrows
mark the defect lines visible in the image plane. (f) Computer-simulated n(r) around a trefoil knot with
perpendicular boundary conditions and the torus plane self-aligned orthogonally to no. Green and magenta
tubes show the regions with reduced scalar order parameter corresponding to the cores of the two knotted
singular defect lines seen in the cross-sections (d, ). The bottom-left inset shows a topological schematic
of the mutual linking between the particle knot (blue) and defect knots (green and magenta). (g-j) Bright-
field micrographs of colloidal knots aligned with the torus plane parallel to no, and taken without polarizers
(g, 1) and between crossed polarizers with an inserted full-wave retardation plate (h, j). Green arrows in (i)
indicate regions of the defect lines rewirings. Reproduced with permission from Ref. [35].
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Figure 12. Nematic colloidal two-component links with tangential boundary conditions. (a) Optical bright-
field micrograph (left) of a Hopf link particle with its 3D model shown in the inset and a 3D nonlinear
fluorescence image of the same particle (right). Red and green colors are used in the inset to distinguish the
two different linked rings. (b,c) Optical micrographs of a colloidal Hopf link in a nematic, as viewed
between crossed polarizers without (a) and with (b) an additional 530-nm wave plate (with its slow axis
marked by the yellow double arrow). (d) Numerically simulated n(r) depicted using colors on the particle’s
surfaces and using rods in the LC bulk. Colors show azimuthal orientations of n(r) with respect to ng
according to the scheme shown in the lower-left inset; lower-right inset shows details of the core structure
of a boojum splitting into a semi-loop of a half-integer defect line with the handle-shaped region of reduced
scalar order parameter shown in red. (¢) Numerical n(r) depicted as in (d) but in a metastable state when
the plane of one of the link’s rings is normal to no; inset shows a different perspective view of the same
link. (f, g) A colloidal Solomon link in a homeotropic nematic cell as viewed between (f) crossed polarizers
and (g) between crossed polarizers and a waveplate (yellow double arrow depicts orientation of the slow
axis). (h) A numerical model of n(r) depicted using colors on the particle surfaces corresponding to the
experimental images shown in (f) and (g). (i, j) Another configuration observed for a similar Solomon link
viewed between (i) crossed polarizers without and (j) with an inserted wave plate. (k) Corresponding
numerical n(r) depicted using colors on the particle surfaces. Crossed polarizers and the far-field director
are marked by white double arrows, as labeled on images. Reproduced with permission from [72].
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Figure 13. Nematic colloidal two-component links with perpendicular boundary conditions. (a-¢)
Colloidal Hopf link studied using optical micrographs taken (a,b) between crossed polarizers shown by
white double arrows (a) without and (b) with an additional full-wave 530nm retardation plate (yellow
double arrow shows its slow axis), and (c) in a bright-field mode. (d) A corresponding numerical model,
with n(r) shown by rods and defect lines as the red tubes of reduced scalar order parameter. Inset shows a
schematic of linked colloidal and defect loops. (¢) A zoom-in view of (c) focusing on the jumping
disclination seen in both experiments and theory, marked by red arrows in (d) and (e). (f-h) Another
configuration of a similar Hopf link. (f and g) Optical micrographs of this particle taken under conditions
like in (a,b). (h) A corresponding theoretical model; inset shows a simplified topological skeleton. (i)
Topological skeletons and graphical representations of Hopf link particles and accompanying closed defect
loops. The mutually linked, physical-particle rings are shown in blue and yellow colors, and the defect line
loops are shown in red. In the graphs, the individual links are indicated by black edges connecting the
corresponding red-blue-yellow filled circles that represent colloidal or defect rings; the overall number of
links is indicated next to the topological skeletons. Reproduced with permission from [72].
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Figure 14. Topologically nontrivial polymer-dispersed LC drops with tangential anchoring. (a-c) Polymer
matrix with g=1 nematic drops (a) as observed in an optical polarizing micrograph and (b) depicted based
on 3D numerical n(r) modeling (with the color-coded scheme of azimuthal orientations shown in the inset)
and (c) with zoomed-in n(r) in the vicinity of self-compensating defects found in metastable states of some
drops, as shown in the drop’s interior. Disclinations are shown as red tubes and filled circles representing
regions of reduced scalar order parameter. (d-g) Nematic g=2 drops (d) seen in a polarizing micrograph
obtained with an additional 530nm phase retardation plate, (e,f) in 3D representation of n(r) at the surface
of a g=2 drop based on (e¢) numerical modeling and (f) experiments. The color-coded scheme of azimuthal
orientations is shown in the inset of (e). (g) Nematic configurations and defects at the junction of two tori,
with n(r) at the LC-polymer interface depicted using rods and the line defect cores in the bulk of the g=2
drop shown using (red) regions of reduced scalar order parameter. (h-1) Nematic g=3 drops (h) seen in an
optical micrograph obtained between crossed polarizers and with an additional retardation plate and in (i,j)
3D representations of n(r) at the LC-polymer interface obtained (i) by numerical modeling and (j)
experimentally; the color-coded scheme of azimuthal orientations is shown in the inset. (k,I) Defect lines
at tori junctions seen as red tubes of reduced order parameter (k) and n(r) shown for one of them (1). (m,n)
Polarizing optical micrograph of g=5 drop obtained between crossed polarizers with an additional phase
retardation plate (m) and corresponding 3D representation of n(r) at the drop’s surface (n). For polarizing
micrographs, white double arrows depict orientations of crossed polarizers and the blue double arrows show
the orientation of a slow axis of the 530nm retardation plate. Reproduced with permission from [144].
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Figure 15. Handlebody-like LC drops with perpendicular boundary conditions. (a,b) Genus-one drops
with (a) a single s=1 and (b) two s=1/2 disclination unknots, having isosurfaces of reduced order parameter
shown in blue, with insets depicting n(r) in drops’ cross-sections. (¢) Hopf link and (d) trefoil T(3,2) torus
knot of half-integer disclination loops, with blue isosurfaces of reduced scalar order parameter. (¢) a drop
with nonsingular 3D-“escaped” n(r). (f) Escaped n(r) structures depicted in the drop’s midplane for a g=2
drop. Insets show junction regions and blue tubes depict isosurfaces of reduced order parameter. Hyperbolic
hedgehog defect core and disclination loops with zero (green-framed) and unity (red-framed) topological
charges. (g,h) g=2 drop with singular defects depicted using blue isosurfaces of reduced order parameter
(g) and corresponding cross-section of n(r) (h). (i) Experimental 3D polarized fluorescence texture for g=2
drop obtained by superimposing images with polarizations of probing light at 0°(red), 45°(green), 90°(blue),
and 135°(pink); note the dark areas in junctions, where n(r) is perpendicular to the image. (j) Escaped n(r)
in the midplane of a g=3 drop. (k-m) Texture like in (i) but for g=3, 4 and 5 drops, respectively; dark areas
in junctions are regions where n(r) is perpendicular to the images. Reproduced with permission from [146].
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Figure 16. Colloidal analogs of mathematical surfaces with boundary. (a,b) Optical images of discs made
of (a) thick foil with thickness h¢gz1 pum and (b) thin foil with h/=100 nm obtained in (left) bright-field and
polarizing imaging modes (middle) without and (right) with a 530 nm retardation plate with a fast axis y
inserted between the crossed polarizer (P) and analyzer (A); red arrows in (a) indicate boojums. (c,d)
Schematics of n(r) around (c) thick and (d) thin foils, with boojums in (c) depicted as red hemispheres. (e-
j) Colloidal pyramidal cones in a nematic LC: (e) schematic; (f) scanning electron micrographs of pyramids
made from gold foil with (left to right) hg=100 and 200 nm; (g) Polarizing optical micrograph and (h)
schematic of n(r) and defects around particles oriented with base-tip vector b Lno. (i) Polarizing micrograph
and (j) n(r) and defects around pyramids with blino. Red fragments of spheres in (h,j) show the fractional
boojums; red arrows indicate boojums in (g,i). (k) Bright-field (left), polarizing (middle) and reflection
(right) optical micrographs showing a colloidal octahedron formed through the assembly of two pyramidal
cones in a nematic LC, with n(r) and surface defects (red) depicted in (I). Reproduced with permission from
[157].

63



Figure 17. Edge-pinned defect lines induced by a faceted ring particle in a twisted nematic cell. (a,b,d,e)
Optical micrographs obtained between crossed (a,d,e) and parallel (b) polarizers labeled with “P”” and “A”.
A pair of bulk half-integer defects (shown by black arrows) inside the ring. Inset in (b) shows twist of n(r)
between orthogonal easy axes e, and e at the confining cell substrates. (¢) A zoomed-in view of the bulk
defect line seen in (d) while traversing from one particle’s edge to another. (c, f) Schematics of defects and
their transformation corresponding to (a, d), respectively. Handle-shaped bulk defect lines are shown as
thick red tubes. Quarter-strength edge-bound surface defect lines of opposite strengths (in terms of ther 2D
cross-sections) are shown using thin blue and orange lines, with strengths of opposite signs marked next to
them. (g-i) Schematics of n(r) (green lines) and defects in the region of transformation of disclinations
inside the ring opening (g) and outside (i) of a toroidal particle with faceted square cross section (h). Thick
red lines are handle-shaped bulk defects; blue and orange lines are quarter-strength edge-bound surface
defect lines of opposite signs of strengths with opposite signs marked next to them. Reproduced with
permission from [70].
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Figure 18. 2D skyrmions and skyrmion bags. (a) A translationally invariant quarter-skyrmion tube with
n(r) shown by rods colored based on orientations. Inset shows a color scheme for the nonpolar n(r) used
in (a—) and determined by director orientations as mapped to $*/Z, in the inset of (a). (b, ¢) Top views of
a half-skyrmion (b) and an elementary full LC skyrmion (c). (d) A translationally invariant skyrmion tube
visualized by colored arrows smoothly decorating n(r) based on $? shown in the bottom-right inset. (e,f)
Top views of a vectorized-field half-skyrmion (¢) and a full skyrmion (f). (g) Polarizing optical micrographs
of skyrmion bags with one-to-four antiskyrmions inside, two stable conformations of the bag with 13
antiskyrmions inside, and the bag with 59 antiskyrmions within it. (h,i) Computer-simulated counterparts
of the skyrmion bags in (g) depicted according to the insets in (a) and (d), respectively. Crossed polarizers
for (g,h) are marked by white double arrows in (g). (j) Close-up view of a computer-simulated bag with 3
antiskyrmions shown by colored arrows. Reproduced with permission from [162].
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Figure 19. 3D structure and topology of elementary LC torons. (a,b) Computer-simulated cross-sections
of an axisymmetric elementary toron shown in (a) plane orthogonal to no and (b) containing no. (Reproduced
with permission from [82]). (c) Elementary toron is a skyrmion terminating at the two point defects (red

65



spheres) to meet uniform surface boundary conditions and match the topologically nontrivial skyrmion tube
with the uniform far-field background of the 3D LC sample. Detailed field configurations on spheres around
the point defects are shown as right-side insets. (Reproduced with permission from [80]). (d) Toron’s
preimages of $>-points (inset, shown as cones), with regions where preimages meet corresponding to point
defects. (e) Closed-loop n(r)-streamlines within the toron at different distances from its circular axis form
different torus knots and links. Reproduced with permission from [82].

U (V)
Figure 20. Torus knots in director streamlines within torons. (a-d) Streamlines tangent to n(r) at applied
voltages U, with lengths depicted according to the color scheme, with the blue (red) colors representing the
short (long) ones. (¢) Contour length of streamlines normalized by the winding number of the torus knots
S/q versus U. Top-left inset shows examples of tracked torus knots and unknots at U=0.8V. The top purple
curve (circles) is the circumference of the circular axis. Crosses, asterisks, squares and triangles mark length
of the Hopf unknot and pentafoil, quatrefoil and trefoil knots, respectively. Torus knots tracked each have
insets representing their topology and the torus knot winding numbers, with the corresponding U-
dependencies of the contour lengths. (f) Torus surfaces where the respective torus knots and unknots are
found, including the circular axis. (g) Rectangles schematically represent unwrapped tori shown in (f) with
the same colors. Thin black lines indicate the streamlines that loop around the two axes of the torus to form
various knots. (a-g) Reproduced with permission from [82]. (h) Schematic of a triple-twisted toron
configuration consisting of two point defects (blue dots) and twist-escaped disclination loop (red line in the
midplane). (i) A different toron configuration with two half-integer defect rings replacing the point defects
as compared to that shown in (h). (h) and (i) reproduced with permission from [32].
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Figure 21. Hopfions in chiral colloidal ferromagnetic LCs. (a) Linking of hopfion’s circle-like closed-
loop preimages of points (cones) on $2. (b) Illustration of a Hopf map of closed-loop preimages of a hopfion
embedded in a far-field mo onto S (c, d) Computer-simulated and experimental preimages, respectively,
of two diametrically opposite S>-points (cones) in the top-right inset of (c). Bottom-right inset in (c¢) shows
signs of the crossings and circulation directions that determine linking of preimages. Inset in (d) is a
polarizing optical micrograph of a hopfion. (e) Polarizing optical micrographs showing polar response of
hopfions in a ¢ ferromagnetic LC, which expand (middle) and shrink (right) as compared to their zero-field
equilibrium size (left) when magnetic field is anti-parallel or parallel to my, respectively. (f, g) Cross-
sections of the hopfion taken in a plane orthogonal to mo (f) and in a plane containing my (g), with the
vector field shown using cones colored according to $* shown in the insets of (a,b). (h,i) Linking of
preimages of (h) two and (i) five representative points on S, including south- and north-pole preimages
(the latter corresponds to my and is the exterior of the torus confining all other preimages). (j) Preimages of
the S*-points of constant polar but varying azimuthal m(r)-orientations form a torus. Reproduced with
permission from [24].
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Figure 22. Tiling and linking of preimages of $*-points within a hopfion. Preimages of different azimuthal
m(r)-orientations tile into tori for the same polar angles, with the smaller tori nesting inside bigger tori; the
largest torus contains the north-pole preimage in its exterior corresponding to mo and the other preimages
nested within its interior.

(a)

Figure 23. Hopfions in solid-state non-centrosymmetric magnets. (a) Cross-sections of the magnetization
field within a hopfion in the plane perpendicular to mo (upper) and that containing mo (lower) in a magnetic
solid material. Magnetization fields are shown with cones colored according to $? (lower-left insets). In the
x—z cross section, black stripes at the top and bottom indicate interfaces with boundary conditions achieved
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using perpendicular surface anisotropy and thin-film confinement. (b) Preimages of $*-points indicated as
cones in the inset. Linking number of preimage pairs is consistent with the Hopf index O=1. (c) Geometry
and topology of Hopf fibration. (d) Visualization of the emergent magnetic field Bem by the isosurfaces of
constant magnitude and streamlines with cones indicating directions. (a-d) Reproduced with permission
from [42]. (e,f) For hopfions, preimages of §? in R® (and $°) form Hopf (¢) and Solomon links (f) with
linking numbers matching their Q = 1 (e) and O = 2 (f) Hopf indices. Since direct (¢) and inverse (¢ )
stereographic projections relate configurations on $* and in R* when embedded within ny and m,, these
solitons are characterized by $*—S? maps, n3(S$?)=Z homotopy group and Q€EZ; crossing signs in (e,f) are
marked in red. () and (f) reproduced with permission from [193].

Figure 24. Nematic LC hopfions. (a-e) Hopfion with Q=1 detrermined using the vectorized n(r). (a,b)
Computer-simulated (a) in-plane and (b) vertical cross sections of the axisymmetric n(r) of the hopfion
depicted using double cones and the color scheme that establishes correspondence between director
orientations and the points on $*Z (top right insets). (c) Computer-simulated preimages of the hopfion for
two sets of the diametrically opposite points on S$*/Z> marked by double cones in the top right inset. (d,e)
Comparison of representative (d) computer-simulated and (e) experimental preimages of the hopfion for
two diametrically opposite points on $%/Z, (top right insets). Gray arrows in (c-¢) show the consistently
determined circulation directions of the preimages. (f-j) Hopfion with O=—1, with characterizations and
visualizations done analogously to the ones shown in (a-¢). Reproduced with permission from [192].
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Figure 25. 3D solitons formed by coaxial arrangement of two elementary hopfions. (a-g) A O=2
topological soliton comprising 2 coaxially arranged hopfions, each with Hopf index O=1 (a,b) Computer-
simulated (a) in-plane orthogonal to ng and (b) vertical containing ng cross sections of the axisymmetric
n(r) of a O=2 soliton depicted using colored double cones; the color scheme establishes the correspondence
between n(r)-orientations and $?/Z, (insets). (c) A polarizing optical micrograph of such a soliton in a chiral
nematic LC. White double arrows show orientations of crossed polarizers. (d) Computer-simulated and (e)
experimental preimages of the soliton for the diametrically opposite points on $%Z, marked by double
cones in the inset. (f) For a constant polar angle (inset), the closed-loop preimages of individual points on
$? tile into two tori sharing the same vertical axis along no. (g) Preimages of the north and south poles of
$? for the vectorized n(r). (h-n) A O=-2 soliton just like the one shown in (a-g), but comprising 2 coaxial

hopfions with O=—1 each, with figure parts mirroring the ones in (a-g). Reproduced with permission from
[192].
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Figure 26. Linking diagrams and graphs of complex 3D topological solitons. The analysis reveals linking
of preimages of two different points on $? and S$*Z, on the basis of both nonpolar and vectorized n(r).
Insets in the red boxes at the top of the columns “linking diagrams” depict the order parameter spaces of
vectorized (top) and nonpolar (bottom) n(r), with arrows or double arrows indicating the points for which
the preimage linking is analyzed. The dashed lines on the $? and $%/Z, separate regions of S?and $*/Z, with
0<6. (top parts) and 6>0. (bottom parts), where 0. is the critical polar angle defining the boundary lines
between different sub-spaces of the order parameter space; 0. lines separate regions with different individual
preimages [192]. Locations of points corresponding to preimages, shown using single and double arrows
on $? and $*Z,, are the same for all solitons within the same column. In the graphs, individual links are
indicated by black or gray lines connecting the corresponding colored filled circles that represent closed-
loop preimages (black lines indicate positive signs of linking of preimages, whereas gray lines correspond
to the negative ones). The colors of the filled circles are indicative of the points on $? (for schematics shown
above the horizontal dashed lines of the table) or $?/Z, (for schematics shown below the horizontal dashed
lines of the table); for n(r) at 8<6., two out of eight filled circles of the graphs are shown as red and the rest
as orange to distinguish them on the basis of the number of times the corresponding preimages are linked.
The mutually linked preimage rings in the simplified topology presentations are also shown in colors
corresponding to their locations on $? and $%/Z, and have arrows denoting circulation consistent with the
far-field preimage. Point defects of torons within the topological skeletons are shown using black stars.
Both the topological skeleton and graph representations of preimage structures are constructed for the same
configurations and are provided next to each other for the case of vectorized n(r). Reproduced with
permission from [192].
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Figure 27. Complex toron structure formed by coaxial arrangement of elementary toron and hopfion. (a,b)
Computer-simulated (a) in-plane orthogonal to mo and (b) vertical containing mo cross-sections of
axisymmetric n(r) structure depicted using colored double cones; the color scheme establishes the
correspondence between director orientations and the points on $*Z, (insets). (¢) Computer-simulated and
(d) experimental preimages for the diametrically opposite points on $?/Z, marked by double cones in the
insets. Gray arrows indicate the consistently determined circulations of preimages. (e) For each polar angle,
closed-loop preimages of individual points on S$? tile into a torus and a sphere, with the sphere having two
small holes at poles corresponding to the two point defects. Reproduced with permission from [192].
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Figure 28. Twistion structure in a chiral nematic LC. (a)-¢c) Computer-simulated (a) in-plane and (b,c)
vertical cross sections of the 3D n(r) of the twistion shown with double cones and the color scheme of
director orientations according to $?/Z; (insets). Locations of vertical cross-sections (b) and (c) are depicted
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in (a) using arrows. (d) Computer-simulated preimages of the twistion for points on $?/Z> marked by double
cones in the inset. (¢) Computer-simulated preimages of the twistion for points on the “equator” of S$*/Z,
(top right inset). (f) A polarizing optical micrograph of the twistion, with the white double arrows showing
crossed polarizers. Reproduced with permission from [192].
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Figure 29. Control of localized topological structures by confinement and magnetic fields. (a) Computer-
simulated cross-section of a stable axisymmetric Q=0 soliton at H=0 and thickness-over-pitch ratio d/p=2.7.
(b) Ground-state manifold $* with four points (colored cones) corresponding to preimages of the same color
schematically shown in the insets of (d). Black circle shows the #.-boundary line separating subspaces of
$? with different types of individual preimages, double unlinked loops for >0, and a Hopf link of closed
loops for 8<8.. (c) The critical angle . and O vs. poH at d/p=2.7. Q values are indicated atop of the colored
regions of constant O=—1 (green regions) and O=0 (blue regions). Singular point defects (depicted by stars
in the insets) accompany the nonsingular solitons, forming elementary torons, within the diagram’s white
regions. poH is defined as positive when H is parallel to mo and negative when antiparallel to it. (d) Stability
diagram of the solitons vs. d/p and poH. Insets depict the diverse topology of two-point preimages and their
links for a family of hopfions with O = 0, —1, and the two different types of torons that emerge in different
regions of the diagram. Reproduced with permission from [193].
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Figure 30. Topology and self-assembled crystals of hehknotons (a) Hehcal field comprising a triad of
orthonormal n(r), x(r) and T(r). (b) Preimages in n(r) of a heliknoton colored according to their orientations
on $? for vectorized n(r) (inset). (¢) Knotted co-located half-integer vortex lines in y(r) and ©(r). Gray
isosurfaces in (b,c) show the localized regions of the distorted helical background. (d) Primitive cell of a
3D triclinic heliknoton crystal. Isosurfaces (gray) of heliknotons with distorted helical background are
colocated with both vortex knots (red) and preimages of antiparallel vertical orientations in n(r) (black and
white). (e,g) closed rhombic and (f) open heliknoton lattices obtained at U=1.9 V and U=1.7 V, respectively.
Reproduced with permission from [73].
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Figure 31. Translational skyrmion motions powered by an oscillating electric field. (a-f) Topology and
electric switching (topology-preserving morphing) of 2D baby skyrmions: (a-c) polarizing optical
micrographs of a 2D skyrmion at (a) no fields and (b, c) at voltages U indicated on the images. Electric
field applied to negative-dielectric-anisotropy LC is perpendicular to images. (d-f) Computer-simulated
vectorized n(r) corresponding to (a-c), shown using arrows colored according to corresponding points on
$? (insets), with the far-field orientations depicted using cones. (g) Translation of a skyrmion in response
to switching U on and off, with corresponding computer simulated results shown in the top-right inset. The
bottom inset illustrates the square waveform voltage driving with the carrier frequency fc =1 kHz and the
modulation period 7. Motion of the skyrmion is compared to that of a tracer nanoparticle at zero field
(black solid line) and at U=4V (green solid line). (h) Experimental and (i) computer-simulated polarizing
optical micrographs of a skyrmion when moving along a vector connecting the south- and north-pole
preimages (positive x). The schematic in the inset between experimental and computer-simulated
micrographs shows the timing of turning U on and off within the elapsed time equal to Tm, correlated with
the micrographs in (h,i). Reproduced with permission from [81].
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Figure 32. Schools of skyrmions. (a,b) Frames from videos of (a) moving chains and (b) a school of
moving skyrmions without clustering. Directions of the electric field E are marked on (a,b). Polarizer (P)
and analyzer (A) orientations and skyrmion school motion velocity vector (vs) are marked in (b). (¢)
Interaction potential, extracted from the radial distribution function g(7.c) shown in the inset, versus center-
to-center distances 7. for schooling skyrmions at conditions like the ones depicted in (b). (d) Evolution of
velocity Sy (blue data points and eye-guiding curve) and polar Sp (red data points and eye-guiding curve)
preimage vector order parameters with time. Insets schematically show the corresponding field
configurations. (¢) Diagram of static and dynamic skyrmion assemblies and schools versus packing fraction,
frequency f and voltage U. The configurations shown in the insets are consistent across all f at which
skyrmions are stable. Reproduced with permission from [200].
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Figure 33. Dynamics of 2D crystallites of torons. (a) Schematic of crystallite motions powered by electric
field orthogonal to the cell substrates. (b-d) Crystallites of torons colored according to orientations relative
to the motion direction (b) and in polarizing micrographs at zero applied voltage (c) and at U=2.5 V (d);
black arrows in (d) denote crystallite motions directions. Color scheme for visualizing crystallite
orientations in (b) is shown in the inset between (a) and (b). (e) Trajectories of crystallite motions at U=2.5
V, /=10 Hz, progressively zooming in on the details of translations, colored according to elapsed time (with
the maximum elapsed time marked in each part); dashed hexagons indicate the unit cell shift during motion,
colored according to the color-coded timescale. (f) Average displacement of the hyperbolic point defects
near confining substrate, analyzed with bright-field microscopy (video frames in insets). (g,h) South-pole
preimages (magenta) and point defects (orange and yellow) of a hexagonal unit cell of torons shown (g)
before and (h) during motion. (i) Nonreciprocal angular rotations of torons within crystallites upon voltage
modulation, with the times of turning instantaneous voltage on and off marked by the blue and red dashed
vertical lines. Reproduced with permission from [199].
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