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ABSTRACT
In this paper, we propose a new framework to implement interior
point method (IPM) in order to solve some very large-scale linear
programs (LPs). Traditional IPMs typically use Newton’s method to
approximately solve a subproblem that aims to minimize a log-
barrier penalty function at each iteration. Due its connection to New-
ton’smethod, IPM is often classified as second-ordermethod – agenre
that is attachedwith stability and accuracy at the expense of scalabil-
ity. Indeed, computing aNewton step amounts to solving a large sys-
tem of linear equations, which can be efficiently implemented if the
input data are reasonably sized and/or sparse and/orwell-structured.
However, in case the above premises fail, then the challenge still
stands on the way for a traditional IPM. To deal with this challenge,
one approach is to apply the iterative procedure, such as precon-
ditioned conjugate gradient method, to solve the system of linear
equations. Since the linear system is different in each iteration, it is
difficult to find good pre-conditioner to achieve the overall solution
efficiency. In this paper, an alternative approach is proposed. Instead
of applying Newton’s method, we resort to the alternating direction
method of multipliers (ADMM) to approximately minimize the log-
barrier penalty function at each iteration, under the framework of
primal–dual path-following for a homogeneous self-dual embedded
LP model. The resulting algorithm is an ADMM-Based Interior Point
Method, abbreviated as ABIP in this paper. The newmethod inherits
stability from IPM and scalability fromADMM. Because of its self-dual
embedding structure, ABIP is set to solve any LP without requiring
prior knowledge about its feasibility. We conduct extensive numer-
ical experiments testing ABIP with large-scale LPs from NETLIB and
machine learning applications. The results demonstrate that ABIP
compares favourably with other LP solvers including SDPT3, MOSEK,
DSDP-CG and SCS.
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1. Introduction

By and large, traditional interior point method (IPM) for linear program (LP) is
based on solving a sequence of log-barrier penalty subproblems using Newton’s method
[29,35,40,53]. It turns out that with a suitable penalty-parameter choice scheme, one step of
Newton’s method usually yields a very good initial solution for the next log-barrier penalty
subproblem. As a result, the crux of IPMs boils down to the computation of Newton steps,
which requires to solve system of linear equations (e.g.[20,29,40,54]). On the surface of
it, computing Newton’s direction then amounts to the Cholesky decomposition of a large
(often ill-conditioned) matrix or even computing its inverse, which can be done when the
dimensions are not exceedingly high, or the input data are sparse and/or well-structured.
In general, however, computing Newton’s direction is computationally expensive. Because
of this connection to Newton’s method, IPM is often classified as a second-order approach.
Typical to the second-order methods, IPM is known to be stable and accurate, but com-
puting Newton’s direction remains a challenge when the problem is dense and large scale.
On the other hand, recently there has been considerable research attention paid on the
so-called first-order methods, in that no Newton direction is needed. One very successful
first-order method is called alternating direction method of multipliers (ADMM), which
is essentially a gradient-based algorithm for the dual of a linearly constrained optimization
model; see, for example, [16,19,21,22,31] and the recent survey papers [7,15]. It turns out
that the ADMM is highly scalable; however, it may suffer from numerical instability and it
may take overly many iterations to compute an accurate solution. A natural question thus
arises: Can we combine the benefits from both campuses? This paper aims to provide an
affirmative answer to the afore question.

Before moving further to that question, let us first mention a beautiful technique which
resolved a difficulty that baffled researchers in the early days of the IPM. The difficulty is
that an IPM requires an interior feasible solution to begin with, but an LP may not even
be feasible let alone availability of an interior feasible solution. To tackle this, Ye et al. [55]
proposed a homogeneous self-dual (HSD) reformulation of the original LP, which contains
all the information that one may possibly care to obtain: an optimal solution if it exists; or,
if the problem is infeasible or unbounded, a certificate that proves the case. Interestingly,
the HSD has a ready interior feasible solution, while an optimal solution is guaranteed to
exist. A central path following algorithm was subsequently proposed in [55] to solve the
HSD. Later, Xu et al. [48] proposed a simplified homogeneous self-dual model. However,
in either cases computing the Newton directions remains to be the chore. In this paper, we
propose to apply the ADMM to approximately solve the log-barrier penalty subproblems
from the path-following scheme for the HSD. The resulting algorithm, ADMM-based IPM
(abbreviated as ABIP henceforth), inherits advantages of both IPM and ADMM. It turns
out that ABIP is robust, highly scalable and achieves high accuracy. Moreover, as a bene-
fit inherited from HSD, ABIP finds both primal and dual optimal solutions if they exist;
otherwise it finds a certificate proving primal or dual infeasibility.

There have been lots of efforts to efficiently compute Newton’s step in IPMs. Exist-
ing approaches adopted in IPM for computing Newton’s step include sparse matrix
factorization, Krylov subspace method and preconditioned conjugate gradient method
(cf. [6,10,13,18,25,26]). Very recently, Cui et al. [10] proposed a novel inner-iteration
preconditioned Krylov subspace method which overcomes the severe ill-conditioning of
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linear equations solved in the final phase of interior-point iterations. Despite several pro-
gresses along this direction, the performance of these methods still highly depends on the
structure of the problem and the input data and suffers from the curse of dimensionality.
For example, the system of linear equation data of the IPM is changing every iteration and
becomes more and more ill-conditioned, so that it is typically hard to find a good pre-
conditioner for the CG method. Moreover, often we have to solve more than one system
of linear equations with different right-hand-side vectors. By investigating the structure
of the problem in HSD, we discover that ADMM can be used to approximately solve the
log-barrier penalty problems very efficiently. Though connected with the classical operator
splitting methods in [16,17,19], renaissance of ADMM in recent years was due to its suc-
cess in signal processing [9,50], image processing [23,51] and machine learning problems;
see a recent survey paper [7] and the references therein. An interesting and positive dis-
covery through our study reported in this paper is twofold: (1) we find that the overall IPM
strategy such as central-path following greatly improve the stability and robustness of the
variable-splitting approach; (2) it turns out that the log-barrier penalty subproblem under
the central path following scheme for the HSD is well-structured and can be efficiently
solved by ADMM.

Recently, there are several attempts on designing first-order methods for solving LPs
(and conic programs); see [45,47,52,56]. Without an HSD framework, such methods are
not suited for primal or dual infeasible problems. More recently, the ADMM-based solvers
for LP have been explored prior to our method, e.g. a split conic solver (SCS) developed by
O’Donoghue et al. [36], which applies ADMM to solve the homogeneous self-dual embed-
ding of the original LP. Therefore, ABIP is similar to SCS in that they are both based on
ADMM and HSD. However, conceptually ABIP is built within the IPM framework, so that
it can be used as an optional solver when the data is large and dense for any existing IPM
solver. It is our hope that, by combining ADMM with interior-point strength, the solver
would have an additional machinery to improve its solution robustness. For example, the
scheme ofABIP can easily incorporate the notion of step-sizes andwide neighbourhoods of
the central path (cf. [43]). The efficacy ofABIP is confirmed by our extensive numerical tests
on large-scale LPs from NETLIB and machine learning applications. Finally, we remark
that extendingABIP to amore general convex conic optimization setting is straightforward.

1.1. Notation and organization

Throughout this paper, we denote vectors by bold lower case letters, e.g. x, and matrices
by regular upper case letters, e.g. X. The transpose of a real vector x is denoted as x�. For a
vector x, and a matrix X, ‖x‖ and ‖X‖ denote the �2 norm and the matrix spectral norm,
respectively. For two symmetric matrices A and B, A � B indicates that A−B is symmetric
positive semi-definite. The superscript, e.g. xt , denotes iteration counter. log(x) denotes
the natural logarithm of x. e denotes the vector of all ones. ej denotes the coordinate vector
with jth entry being 1. I is an identity matrix with appropriate dimension. For two vectors
x and y, the Hadamard product is denoted as x ◦ y = (x1y1, . . . , xnyn).

The rest of the paper is organized as follows. In Section 2,we discuss somebackgroundof
homogeneous self-dual embedding. In Section 3, we propose our ABIPmethod for solving
the homogeneous self-dual embedding with log barrier functions. We also discuss how
ABIP can be simplified and reduced to a matrix-free algorithm. The iteration complexity
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of ABIP is also analysed. In Section 4, we propose several techniques that help improve the
performance of ABIP in practice. In Section 5, we present extensive numerical results on
large-scale LPs fromNETLIB andmachine learning applications and compare with several
existing LP solvers. We make some concluding remarks in Section 6.

2. Homogeneous and self-dual linear programming

We are interested in solving the following primal-dual pair of linear programs (LP):

(P)
min c�x
s.t. Ax = b,

x ≥ 0,
(D)

max b�y
s.t. A�y + s = c,

s ≥ 0,
(1)

where x ∈ R
n is the primal variable, y ∈ R

m and s ∈ R
n are the dual variables, the problem

data are A ∈ R
m×n, b ∈ R

m and c ∈ R
n with m ≤ n, and without loss of generality, we

assume thatA is of full row rank. The primal and dual optimal objective values are denoted
as p∗ and d∗ respectively.

In addition to the celebrated simplex method of Dantzig [11] in 1940s, the interior
point method (IPM), which was pioneered by Karmarkar [30] and intensively developed
by many researchers in the 1980s and 1990s, has been a standard approach to solve lin-
ear program (1). In the early years of IPM, initial feasible interior solutions were assumed
to be available at hand. Clearly, this assumption can be restrictive. To address this issue
specifically, Ye et al. [55] proposed to solve the following homogeneous and self-dual linear
programming with arbitrary initial points x0 > 0, s0 > 0 and y0:

(HSD) min ((x0)�s0 + 1)θ

s.t. Ax − bτ + b̄θ = 0,

− A�y + cτ − s − c̄θ = 0,

b�y − c�x − κ + z̄θ = 0,

− b̄�y + c̄�x − z̄τ = −(x0)�s0 − 1,

y free, x ≥ 0, τ ≥ 0, s ≥ 0, κ ≥ 0, θ free,

(2)

where

b̄ = b − Ax0, c̄ = c − A�y0 − s0, z̄ = c�x0 + 1 − b�y0. (3)

The HSD (2) has many nice properties. In the following, we give a partial list (cf. [55]).

Theorem 2.1 (Theorem 2 in [55]): The following holds for (2):

(i) The optimal value of (2) is zero, and for any feasible point (y, x, τ , θ , s, κ), it holds

((x0)�s0 + 1) · θ = x�s + τκ .

(ii) There is a feasible solution (y, x, τ , θ , s, κ) to (2) such that

y = y0, x = x0, τ = 1, θ = 1, s = s0, κ = 1.
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(iii) There is an optimal solution (y∗, x∗, τ ∗, θ∗ = 0, s∗, κ∗) such that x∗ + s∗ > 0 and
τ ∗ + κ∗ > 0, which is called a strictly complementary solution.

Theorem 2.2 (Theorem 3 in [55]): Let (y∗, x∗, τ ∗, θ∗ = 0, s∗, κ∗) be a strictly complemen-
tary solution for (2). Then:

(i) (P) has a solution (feasible and bounded) if and only if τ ∗ > 0. In this case, x∗/τ ∗ is an
optimal solution for (P) and (y∗/τ ∗, s∗/τ ∗) is an optimal solution for (D).

(ii) If τ ∗ = 0, then κ∗ > 0, which implies that c�x∗ − b�y∗ < 0, i.e. at least one of c�x∗
and −b�y∗ is strictly less than zero. If c�x∗ < 0, then (D) is infeasible; if −b�y∗ <
0, then (P) is infeasible; and if both c�x∗ < 0 and −b�y∗, then both (P) and (D) are
infeasible.

Theorem 2.3 (Corollary 4 in [55]): Let (ȳ, x̄, τ̄ , θ̄ = 0, s̄, κ̄) be any optimal solution for (2).
If κ̄ > 0, then either (P) or (D) is infeasible.

3. An ADMM-based interior-point method

In [55], Ye et al. proposed an O(
√
n log( 1

ε
))-iteration and O(n3 log( 1

ε
))-arithmetic oper-

ation interior point algorithm to solve (2). However, like all interior-point methods, it
requires solving a linear system at each iteration and therefore does not scale well for dense
data. In this section, we propose our ABIP method which uses ADMM to solve the log-
barrier penalty subproblems for HSD, and we show that the procedures of ABIP can be
simplified. In this section, we also provide an iteration complexity analysis for ABIP.

3.1. The ABIPmethod

For ease of presentation, we choose y0 = 0, x0 = e and s0 = e, where e denotes the vector
of all ones. By introducing a constant parameter β > 0 and constant variables r = 0 and
ξ = −(x0)�s0 − 1 = −n − 1, (2) can be rewritten as

min β(n + 1)θ + 1(r = 0)+ 1(ξ = −n − 1)
s.t. Qu = v,

y free, x ≥ 0, τ ≥ 0, θ free, s ≥ 0, κ ≥ 0,
(4)

where

Q =

⎡
⎢⎢⎣

0 A −b b̄
−A� 0 c −c̄
b� −c� 0 z̄

−b̄� c̄� −z̄ 0

⎤
⎥⎥⎦ , u =

⎡
⎢⎢⎣
y
x
τ

θ

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎣
r
s
κ

ξ

⎤
⎥⎥⎦ ,

b̄ = b − Ae, c̄ = c − e, z̄ = c�e + 1, (5)

and the indicator function 1(C) equals zero if the constraint C is satisfied, and equals +∞
otherwise. The reason that we introduce a parameter β in the objective is completely for
ease of presentation. It does not change the solution of the problem.
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One classical way to solve (4) is to use log-barrier penalty to penalize the variables with
non-negativity constraints, which results in a primal–dual interior-pointmethod. The new
formulation with log-barrier penalty is

min B(u, v,μ),
s.t. Qu = v, (6)

where B(u, v,μ) is a barrier function defined as follows:

B(u, v,μ) = β(n + 1)θ + 1(r = 0)+ 1(ξ = −n − 1)− μ
∑
i
log(xi)

− μ
∑
i
log(si)− μ log(τ )− μ log(κ), (7)

andμ > 0 is the penalty parameter. In the kth iteration of IPM, one uses Newton’s method
to solve the KKT system of (6) with μ = μk. One then reduces μk to μk+1 for the next
iteration. When μk → 0, the solution of (6) approaches that of (4). The computational
bottleneck of IPM is that one has to assemble a Newton’s direction, which can be expensive
when the problem is large and data are dense.

Observing the structure of (6), we propose to use the Alternating Direction Method of
Multipliers (ADMM) to solve it inexactly. To do so, we first rewrite (6) as the following
problem by introducing auxiliary variables (ũ, ṽ):

min 1(Qũ = ṽ)+ B(u, v,μk),
s.t. (ũ, ṽ) = (u, v). (8)

By associating (scaled) Lagrange multipliers p to constraint ũ = u and q to constraint ṽ =
v, the augmented Lagrangian function for (8) can be written as

Lβ(ũ, ṽ,u, v,μk, p, q) := 1(Qũ = ṽ)+ B(u, v,μk)− 〈β(p, q), (ũ, ṽ)− (u, v)〉

+ β

2
‖(ũ, ṽ)− (u, v)‖2,

where β > 0 is the same parameter as in (4). The ith iteration of ADMM for solving (8) is
as follows:

(ũki+1, ṽ
k
i+1) = argmin

ũ,ṽ
Lβ(ũ, ṽ,uki , vki ,μk, pki , q

k
i ) =

∏
Qu=v

(uki + pki , v
k
i + qki ), (9)

(uki+1, v
k
i+1) = argmin

u,v
Lβ(ũki+1, ṽ

k
i+1,u, v,μ

k, pki , q
k
i ), (10)

(pki+1, q
k
i+1) = (pki , q

k
i )− (ũki+1, ṽ

k
i+1)+ (uki+1, v

k
i+1), (11)

where
∏

S(x) denotes the Euclidean projection of x onto the set S . A generic description
of our proposed approach – ABIP – is sketched as Algorithm 1.

3.2. Implementing ABIP

In this section, we discuss the detailed implementation of ABIP. In particular, we show
that the dual variables p and q in (9)–(11) can be eliminated using a proper initialization.
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Algorithm 1 The Basic Algorithmic Framework of ABIP for Linear Programming
1: Given parameters β > 0 and γ ∈ (0, 1). Set initial points (u00, v

0
0), (p

0
0, q

0
0) and

μ0 > 0.
2: for k = 0, 1, 2, . . . do
3: for i = 0, 1, 2, . . . do
4: if the termination criterion is satisfied then
5: break.
6: end if
7: Update (ũki+1, ṽ

k
i+1) by (9);

8: Update (uki+1, v
k
i+1) by (10);

9: Update (pki+1, q
k
i+1) by (11).

10: end for
11: Set (uk+1

0 , vk+1
0 ) = (uki+1, v

k
i+1) and (p

k+1
0 , qk+1

0 ) = (pki+1, q
k
i+1);

12: Set μk+1 = γμk.
13: end for

The framework of our analysis is similar to the one in [36], but the techniques we use are
quite different because theMoreau decomposition cannot be directly applied to (u, v)when
the log-barrier penalty function is used. The main technical result is summarized in the
following theorem.

Theorem 3.1: For the kth outer iteration of Algorithm 1, we initialize pk0 = vk0 and q
k
0 = uk0

with

xk0 ◦ sk0 = μk

β
e, τ k0 κ

k
0 = μk

β
, rk0 = 0, ξ k0 = −n − 1.

It then holds, for all iterations i ≥ 0, that

pki = vki , qki = uki , xki ◦ ski = μk

β
e, τ ki κ

k
i = μk

β
, rki = 0, ξ ki = −n − 1. (12)

Proof: We shall prove the result by induction. Indeed, the proof is based on the following
steps: (i) Iteration j = 0: the result holds true since we can initialize the variables accord-
ingly. (ii) The result holds true for iteration j = i+ 1 given that it holds true for iteration
j = i. We prove the desired result in two steps:

Step 1:We claim that

uki + vki = ũki+1 + ṽki+1. (13)

Indeed, we rewrite (9) as

(ũki+1, ṽ
k
i+1) =

∏
Q
(uki + vki ,u

k
i + vki ), (14)

whereQ = {(u, v) : Qu = v}. Moreover, it follows from Q being skew-symmetric that the
orthogonal complement ofQ isQ⊥ = {(v,u) : Qu = v}. Therefore, we conclude that,

(v,u) =
∏
Q⊥
(z, z), if (u, v) =

∏
Q
(z, z),
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because the two projections are identical for reversed output arguments. This implies that

(ṽki+1, ũ
k
i+1) =

∏
Q⊥
(uki + vki ,u

k
i + vki ). (15)

Therefore, combining (14) and (15) yields the desired result.
Step 2:We proceed to proving that

pki+1 = vki+1, qki+1 = uki+1, xki+1 ◦ ski+1 = μk

β
e, τ ki+1κ

k
i+1 = μk

β
, ξ ki+1 = −n − 1,

given

pki = vki , qki = uki (16)

and

xki ◦ ski = μk

β
e, τ ki κ

k
i = μk

β
, ξ ki = −n − 1. (17)

Indeed, we partition p and q as

p =

⎡
⎢⎢⎣
py
px
pτ
pθ

⎤
⎥⎥⎦ , q =

⎡
⎢⎢⎣
qr
qs
qκ
qξ

⎤
⎥⎥⎦ ,

and the optimality conditions of (10) are given by

0 = yki+1 − ỹki+1 + (py)ki , (18)

0 = −μ
k

β
· 1
xki+1

+ xki+1 − x̃ki+1 + (px)ki , (19)

0 = −μ
k

β
· 1
τ ki+1

+ τ ki+1 − τ̃ ki+1 + (pτ )ki , (20)

0 = (n + 1)+ θki+1 − θ̃ki+1 + (pθ )ki , (21)

0 = rki+1, (22)

0 = −μ
k

β
· 1
ski+1

+ ski+1 − s̃ki+1 + (qs)ki , (23)

0 = −μ
k

β
· 1
κki+1

+ κki+1 − κ̃ki+1 + (qκ)ki , (24)

0 = ξ ki+1 + n + 1. (25)
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First, we show that

rki+1 = (py)ki+1 = 0, yki+1 = (qr)ki+1.

Indeed, from (11), (18) and (22) we have that

(py)ki+1 = (py)ki − ỹki+1 + yki+1 = 0 = rki+1.

Furthermore, we have

(qr)ki+1
(11)= (qr)ki − r̃ki+1 + rki+1

(22)= (qr)ki − r̃ki+1
(13)= (qr)ki − (rki + yki − ỹki+1)

(18)= (qr)ki − (rki + yki − yki+1 − (py)ki )
(16)= yki − (rki + yki − yki+1 − rki ) = yki+1.

Second, we shall prove

xki+1 = (qs)ki+1, ski+1 = (px)ki+1, xki+1 ◦ ski+1 = μk

β
· e.

Indeed, from (11) and (16) we have

(px)ki+1 = (px)ki − x̃ki+1 + xki+1 = ski − x̃ki+1 + xki+1,

and

(qs)ki+1 = (qs)ki − s̃ki+1 + ski+1 = xki − s̃ki+1 + ski+1.

Combining the above two equations with (13) yields

(px)ki+1 + (qs)ki+1 = xki+1 + ski+1. (26)

Besides, from (19) and (11) we have

μk

β
· e = xki+1 ◦ (xki+1 − x̃ki+1 + (px)ki ) = xki+1 ◦ (px)ki+1, (27)

and from (23) and (11) we have

μk

β
· e = ski+1 ◦ (ski+1 − s̃ki+1 + (qs)ki ) = ski+1 ◦ (qs)ki+1. (28)

Therefore, we obtain

0 (27),(28)= xki+1 ◦ (px)ki+1 − ski+1 ◦ (qs)ki+1

(26)= xki+1 ◦ (xki+1 + ski+1 − (qs)ki+1)− ski+1 ◦ (qs)ki+1

= (xki+1 − (qs)ki+1) ◦ (xki+1 + ski+1).
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Since xki+1 + ski+1 > 0, we conclude that xki+1 = (qs)ki+1 which, combining with (28), leads
to

μk

β
· e = xki+1 ◦ ski+1.

It also directly follows from (26) that ski+1 = (px)ki+1. We use the same arguments to
conclude

τ ki+1 = (qκ)ki+1, κki+1 = (pτ )ki+1, τ ki+1κ
k
i+1 = μk

β
.

Finally, we show that

ξ ki+1 = (pθ )ki+1 = −n − 1, θki+1 = (qξ )ki+1 = μk

β
.

Indeed, from (11), (21) and (25) we have

(pθ )ki+1 = (pθ )ki − θ̃ki+1 + θki+1 = −n − 1 = ξ ki+1.

Furthermore, combining (16) and (17) we have

(pθ )ki = ξ ki = −n − 1,

which implies that

θki+1 − θ̃ki+1 = (pθ )ki+1 − (pθ )ki = 0. (29)

Therefore, we conclude that

(qξ )ki+1
(11)= (qξ )ki − ξ̃ ki+1 + ξ ki+1

(13)= (qξ )ki − θki − ξ ki + θ̃ki+1 + ξ ki+1

(17),(25)= (qξ )ki − θki + θ̃ki+1
(29)= (qξ )ki − θki + θki+1

(16)= θki+1.

This completes the proof. �

Observe that Theorem 3.1 simplifies Algorithm 1 by eliminating the dual variables p
and q. They are replaced by v and u, respectively. Moreover, note that u and v are separable
in (10). As a result, we can update u by

uki+1 = argmin
u

[
B̄(u,μk)+ β

2

∥∥∥u − ũki+1 + vki
∥∥∥2] , (30)

where

B̄(u,μ) := β(n + 1)θ − μ log(x)− μ log(τ ), (31)

and update v by

vki+1 = vki − ũki+1 + uki+1, (32)

which follows from the update for pki+1. Note that ṽki can now be eliminated from the
algorithm. Problem (30) admits closed-form solutions given by

yki+1 = argmin
y

[
1
2
‖y − ỹki+1 + rki ‖2

]
= ỹki+1, (33)
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xki+1 = argmin
x

[
−μ

k

β
log(x)+ 1

2
‖x − x̃ki+1 + ski ‖2

]

= 1
2

⎡
⎣(x̃ki+1 − ski )+

√
(x̃ki+1 − ski ) ◦ (x̃ki+1 − ski )+ 4μk

β

⎤
⎦ , (34)

τ ki+1 = argmin
τ

[
−μ

k

β
log(τ )+ 1

2
‖τ − τ̃ ki+1 + κki ‖2

]

= 1
2

⎡
⎣(τ̃ ki+1 − κki )+

√
(τ̃ ki+1 − κki ) ◦ (τ̃ ki+1 − κki )+ 4μk

β

⎤
⎦ , (35)

θki+1 = θ̃ki+1, (36)

where the last step is from (29). By eliminating pki and qki , (9) reduces to

(ũki+1, ṽ
k
i+1) =

∏
Qu=v

(uki + vki ,u
k
i + vki ).

It is easy to show (by the KKT condition) that the solution is given by

ũki+1 = (I + Q�Q)−1(I − Q)(uki + vki ) = (I + Q)−1(uki + vki ), (37)

because matrixQ is skew-symmetric. Moreover, we only need to invert (or factorize) I +Q
once at the beginning of the algorithm. In this sense, ABIP is matrix inversion free.

Therefore, we have shown that (9), (10) and (11) can be simply implemented by means
of (37), (30) and (32) respectively, and the solutions of (30) are given by (33), (34), (35)
and (36).

We use the following criterion to terminate the inner loop of Algorithm 1:

‖Quki − vki ‖2 ≤ μk. (38)

Finally, we present this specific implementation ABIP as Algorithm 2.

Remark 3.2: We denote (u∗
k , v

∗
k) as the optimal solution to (6) when μ = μk, which also

satisfies the following optimality conditions of (6):

Qu − v = 0,

x ◦ s = μk

β
e,

τκ = μk

β
,

θ = μk

β
,

r = 0,

ξ = −n − 1,

(x, s, τ , κ) > 0.

(40)
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Algorithm 2 The detailed implementation of ABIP
1: Set μ0 = β > 0 and γ ∈ (0, 1).
2: Set r00 = y00 = 0, (x00, τ

0
0 , s

0
0, κ

0
0 ) = (e, 1, e, 1) > 0, θ00 = 1, and ξ00 = −n − 1 with x00 ◦

s00 = μ0

β
e, and τ 00 κ

0
0 = μ0

β
.

3: for k = 0, 1, 2, . . . do
4: for i = 0, 1, 2, . . . do
5: if the inner termination criterion (38) is satisfied then
6: break.
7: end if
8: Update ũki+1 by using (37);
9: Update uki+1 by using (33), (34), (35) and (36);
10: Update vki+1 by using (32).
11: if the final termination criterion is satisfied then
12: return.
13: end if
14: end for
15: Set μk+1 = γ · μk;
16: Set rk+1

0 = 0, ξ k+1
0 = −n − 1 and

(yk+1
0 , xk+1

0 , sk+1
0 , τ k+1

0 , κk+1
0 , θk+1

0 ) = √
γ · (yki+1, x

k
i+1, s

k
i+1, τ

k
i+1, κ

k
i+1, θ

k
i+1).

(39)
17: end for

Moreover, (u∗
k , v

∗
k) is uniquely defined. In fact, (40) defines a central path (cf. [5,32,40,42])

of the homogeneous self-dual embedded model [55].
From Theorem 3.1, we have

Qũki − ṽki = 0,

xki ◦ ski = μk

β
e,

τ ki κ
k
i = μk

β
,

rki = 0,

ξ ki = −n − 1,(
xki , s

k
i , τ

k
i , κ

k
i

)
> 0,

and

θki = θ̃ki = (x̃ki )
�s̃ki + τ̃ ki κ̃

k
i + (ỹki )

�r̃ki
−ξ̃ ki

.

Together with the feasibility condition that ‖(ũki , ṽki )− (uki , v
k
i )‖ → 0 when i → +∞ (see

Lemma 3.4), we conclude that the optimal solution to problem (8) is on the central path.
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This implies that ABIP is indeed a central path following algorithm, in view of the classical
primal–dual central path following scheme.

Corollary 3.3: Following a similar argument as in Theorem 3.1, it is easy to prove:

(p∗
k , q

∗
k) = (v∗

k ,u
∗
k), (41)

where (p∗
k , q

∗
k) denotes the optimal dual solution of (8).

3.3. Iteration complexity analysis

In this section, we analyse the iteration complexity of ABIP. The following identity will be
frequently used in our analysis:

(a1 − a2)�(a3 − a4)

= 1
2
(‖a4 + a2‖2 − ‖a4 + a1‖2 + ‖a3 + a1‖2 − ‖a3 + a2‖2),∀a1, a2, a3, a4. (42)

To prove the main result, we need several technical lemmas.

Lemma 3.4: Given k ≥ 1, the sequence {‖uki − u∗
k‖2 + ‖vki − v∗

k‖2}i≥0 is monotonically
decreasing and converges to 0.

Proof: We observe from the optimality condition of problem (8) that

β(p∗
k , q

∗
k) ∈ ∂1(Qu = v)[u∗

k , v
∗
k ], −β(p∗

k , q
∗
k) ∈ ∂B(u∗

k , v
∗
k ,μ

k).

By using the convexity of 1(Qu = v) and (41) we have

0 ≤ β(u∗
k − ũki+1, v

∗
k − ṽki+1)

�(p∗
k , q

∗
k) = β(u∗

k − ũki+1, v
∗
k − ṽki+1)

�(v∗
k ,u

∗
k),

and using the convexity of B(u, v,μ) with respect to (u, v) and (41) we have

β(n + 1)(θ∗
k − θki+1) ≤ −β(u∗

k − uki+1, v
∗
k − vki+1)

�(p∗
k , q

∗
k)

= −β(u∗
k − uki+1, v

∗
k − vki+1)

�(v∗
k ,u

∗
k),

where we have used the fact β(n + 1)(θki+1 − θ∗
k ) = B(uki+1, v

k
i+1,μ

k)− B(u∗
k , v

∗
k ,μ

k) that

follows from the complementarity conditions xki ◦ ski = μk

β
e and τ ki κ

k
i = μk

β
. Summing up

the above two inequalities leads to

β(n + 1)(θ∗
k − θki+1) ≤ β(uki+1 − ũki+1, v

k
i+1 − ṽki+1)

�(v∗
k ,u

∗
k). (43)

Combining (11) and the optimality conditions of (9) and (10) yield

(pki+1, q
k
i+1)− (uki+1, v

k
i+1)+ (uki , v

k
i ) ∈ ∂1(Qu = v)[ũki+1, ṽ

k
i+1], (44)

− β(pki+1, q
k
i+1) ∈ ∂B(uki+1, v

k
i+1,μ

k). (45)
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From the convexity of 1(Qu = v), we have

0
(44)≤ (ũki+1 − u∗

k , ṽ
k
i+1 − v∗

k)
�(pki+1 − uki+1 + uki , q

k
i+1 − vki+1 + vki )

(42)= (ũki+1 − u∗
k , ṽ

k
i+1 − v∗

k)
�(pki+1, q

k
i+1)+ 1

2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki − ũki+1‖2

− ‖vki − ṽki+1‖2)+ 1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 − ‖uki+1 − u∗

k‖2

− ‖vki+1 − v∗
k‖2). (46)

From the convexity of B(u, v,μk) with respect to (u, v), we have

β(n + 1)(θki+1 − θ∗
k ) = B(uki+1, v

k
i+1,μ

k)− B(u∗
k , v

∗
k ,μ

k)

(45)≤ −β(uki+1 − u∗
k , v

k
i+1 − v∗

k)
�(pki+1, q

k
i+1), (47)

where the equality again follows from the complementarity conditions xki ◦ ski = μk

β
e and

τ ki κ
k
i = μk

β
. Adding (46) and (47) and using (12) yields

β(n + 1)(θki+1 − θ∗
k ) ≤ β(ũki+1 − uki+1, ṽ

k
i+1 − vki+1)

�(vki+1,u
k
i+1)

+ β

2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki − ũki+1‖2 − ‖vki − ṽki+1‖2)

+ β

2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2). (48)

Further adding (43) and (48), we have

0 ≤ (ũki+1 − uki+1, ṽ
k
i+1 − vki+1)

�(vki+1 − v∗
k ,u

k
i+1 − u∗

k)

+ 1
2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki − ũki+1‖2 − ‖vki − ṽki+1‖2)

+ 1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2)

(11),(12)= (vki − vki+1,u
k
i − uki+1)

�(vki+1 − v∗
k ,u

k
i+1 − u∗

k)

+ 1
2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki − ũki+1‖2 − ‖vki − ṽki+1‖2)

+ 1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2)

(42)= 1
2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2)− 1

2
(‖uki − uki+1‖2

+ ‖vki − vki+1‖2)+ 1
2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki − ũki+1‖2 − ‖vki − ṽki+1‖2)

+ 1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2). (49)
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Recall that (11) and (12) imply

‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 = ‖pki − pki+1‖2 + ‖qki − qki+1‖2

= ‖uki − uki+1‖2 + ‖vki − vki+1‖2. (50)

Now, we use (50) and (49) to obtain

1
2
(‖uki − ũki+1‖2 + ‖vki − ṽki+1‖2) ≤ ‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki+1

− u∗
k‖2 − ‖vki+1 − v∗

k‖2. (51)

Therefore, we conclude that {‖uki − u∗
k‖2 + ‖vki − v∗

k‖2}i≥0 is a monotonically decreasing
sequence. Note that {(uki , vki )}i≥0 is a bounded sequence, there must exist a subsequence
{(ukij , vkij)}j≥0 that converges to a limit point (ū, v̄). Since

−β(vkij ,ukij) = −β(pkij , qkij) ∈ ∂B(ukij , vkij ,μk),

by letting j → +∞ we have

x̄ ◦ s̄ = (μk/β) · e,
τ̄ κ̄ = μk/β ,

r̄ = 0,

ξ̄ = −n − 1,

(x̄, s̄, τ̄ , κ̄) > 0.

Furthermore, from (51) we have

‖ukij − ũkij+1‖2 + ‖vkij − ṽkij+1‖2 → 0,

which implies that (ũkij+1, ṽ
k
ij+1) converges to (ū, v̄). Therefore, we have Qū − v̄ = 0 and

θ̄ = (x̄)�s̄ + τ̄ κ̄ + (ȳ)�r̄
−ξ̄ = μk

β
.

Due to the uniqueness of the central path solution, we have (ū, v̄) = (u∗
k , v

∗
k), which implies

that

‖ukij − u∗
k‖2 + ‖vkij − v∗

k‖2 −→ 0, as j → +∞.

Therefore, we conclude that

‖uki − u∗
k‖2 + ‖vki − v∗

k‖2 −→ 0, as i → +∞.

This completes the proof. �
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Lemma 3.5: The sequence {‖uk0 − u∗
k‖2 + ‖vk0 − v∗

k‖2}k≥0 is uniformly bounded, i.e. there
exists a constant C>0 that does not depend on k or μk such that

‖uk0 − u∗
k‖2 + ‖vk0 − v∗

k‖2 ≤ C. (52)

Moreover, the iterates {(uki , vki )}, for k ≥ 1, i = 0, 1, . . . ,Nk, are uniformly bounded, i.e. there
exists a constant D>0 that does not depend on k or μk such that

‖uki ‖2 + ‖vki ‖2 ≤ D, ∀i = 0, 1, . . . ,Nk, (53)

where Nk denotes the number of inner iterations in the kth outer loop.

Proof: We recall an important fact (see, e.g.[55]) that the set of the central path points
{(u∗

k , v
∗
k)} with μk/β , i.e. the solution of (40), is uniformly bounded, where 0 < μk ≤ μ0.

That is, there exists a constant C1 that does not depend on k or μk such that

‖u∗
k‖2 + ‖v∗

k‖2 ≤ C1, ∀k ≥ 1. (54)

This also implies that the following inequality holds for the limiting point (u∗, v∗) of the
central path points {(u∗

k , v
∗
k)}, namely ‖u∗‖2 + ‖v∗‖2 ≤ C1. Using Lemma 3.4 and (38)

with μk > 0, we know that Nk < +∞ is well-defined for any fixed k ≥ 0. Now we claim
that

‖ukNk
− u∗‖2 + ‖vkNk

− v∗‖2 → 0, as k → +∞. (55)

Indeed, if the claim does not hold, then there exists δ > 0, and a subsequence {k� | � =
1, 2, . . .} with k� ↑ ∞ as � → ∞ and N′ > 0 such that

‖uk�Nk�
− u∗‖2 + ‖vk�Nk�

− v∗‖2 ≥ δ, for all � > N′.

Using the property of central path, we have ‖u∗
k − u∗‖2 + ‖v∗

k − v∗‖2 → 0 as k → +∞.
Thus there exists N′′ > 0 such that

‖uk�Nk�
− u∗

k�‖2 + ‖vk�Nk�
− v∗

k�‖2 ≥ δ/2, for all � > N′′.

This contradicts with (38). Thus (55) holds and there exists a constant D1 > 0 that does
not depend on k or μk such that

‖ukNk
‖2 + ‖vkNk

‖2 ≤ D1, for all k ≥ 0. (56)

Now we prove (52). For k = 0, since we choose μ0 = β , the initial point we choose
in Algorithm 2 satisfies (40) automatically, i.e. (u∗

0, v
∗
0) = (u00, v

0
0), and (38), i.e. ‖Qu00 −

v00‖2 ≤ μ0, and N0 = 0. Thus we have

‖u00 − u∗
0‖2 + ‖v00 − v∗

0‖2 = 0.

For k ≥ 0, by the definition of u and v, we have

‖uk+1
0 − u∗

k+1‖2 + ‖vk+1
0 − v∗

k+1‖2
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= ‖yk+1
0 − y∗

k+1‖2 + ‖xk+1
0 − x∗

k+1‖2 + (τ k+1
0 − τ ∗

k+1)
2

+ (θk+1
0 − θ∗

k+1)
2 + ‖sk+1

0 − s∗k+1‖2 + (κk+1
0 − κ∗

k+1)
2.

Recall that (cf. (39)) the following equation holds true,

(yk+1
0 , xk+1

0 , sk+1
0 , τ k+1

0 , κk+1
0 , θk+1

0 ) = √
γ (ykNk

, xkNk
, skNk

, τ kNk
, κkNk

, θkNk
).

This implies that

‖yk+1
0 ‖2 + ‖xk+1

0 ‖2 + (τ k+1
0 )2 + (θk+1

0 )2 + ‖sk+1
0 ‖2 + (κk+1

0 )2

= γ (‖ykNk
‖2 + ‖xkNk

‖2 + (τ kNk
)2 + (θkNk

)2 + ‖skNk
‖2 + (κkNk

)2)
(56)≤ γD1.

Putting these pieces together yields that

‖uk+1
0 − u∗

k+1‖2 + ‖vk+1
0 − v∗

k+1‖2 ≤ 2γD1 + 2C1.

Therefore, letting C = 2γD1 + 2C1 proves (52).
Now we prove (53). Note that (52) leads to (53) immediately. To see this, note that

combining (52) and Lemma 3.4 yields

‖uki − u∗
k‖2 + ‖vki − v∗

k‖2 ≤ C, ∀i = 0, 1, . . . ,Nk

which together with (54) implies

‖uki ‖2 + ‖vki ‖2 ≤ 2C + 2C1, ∀i = 0, 1, . . . ,Nk

proving (53) with D = 2C + 2C1. �

Lemma 3.6: The number of iterations (denoted by Nk) needed in the inner loop of
Algorithm 2 is

Nk ≤ log
(
2C(1 + ‖Q‖2)

μk

)[
log

(
1 + min

{
1
C3

,
μk

4DC3β

})]−1

, (57)

where C3 is defined as

C3 =
[
1 + 12λmax(A�A)

λ2min(AA�)
· max{1, ‖c‖2, ‖c̄‖2}

]
·
[
1 + 6

‖b̄‖2 · max{‖b‖2, ‖A‖2}
]
> 1.

(58)

Proof: It follows from Lemma 3.5 that B(uki , v
k
i ,μ

k) is strongly convex with respect to
(x, s, τ , κ). More specifically, we have

∇2
xB(u

k
i , v

k
i ,μ

k) = Diag

(
μk

xki . ∗ xki

)
� μk

D
· I,

∇2
s B(u

k
i , v

k
i ,μ

k) = Diag

(
μk

ski . ∗ ski

)
� μk

D
· I,
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∇2
τB(u

k
i , v

k
i ,μ

k) = μk

(τ ki )
2

� μk

D
,

∇2
κB(u

k
i , v

k
i ,μ

k) = μk

(κki )
2

� μk

D
.

Therefore, (48) is changed to

β(n + 1)(θki+1 − θ∗
k )+ μk

2D
(‖xki+1 − x∗

k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (κki+1 − κ∗
k )

2)

≤ β(ũki+1 − uki+1, ṽ
k
i+1 − vki+1)

�(vki+1,u
k
i+1)+ β

2
(‖uki − u∗

k‖2 + ‖vki − v∗
k‖2

− ‖uki − ũki+1‖2 − ‖vki − ṽki+1‖2)

+ β

2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2). (59)

By summing (43) and (59), using (50) and observing

(uki+1 − ũki+1, v
k
i+1 − ṽki+1)

�(v∗
k ,u

∗
k)+ (ũki+1 − uki+1, ṽ

k
i+1 − vki+1)

�(vki+1,u
k
i+1)

= (ũki+1 − uki+1, ṽ
k
i+1 − vki+1)

�(vki+1 − v∗
k ,u

k
i+1 − u∗

k)

= (pki − pki+1, q
k
i − qki+1)

�(vki+1 − v∗
k ,u

k
i+1 − u∗

k)

= (vki − vki+1,u
k
i − uki+1)

�(vki+1 − v∗
k ,u

k
i+1 − u∗

k)

= 1
2 (‖uki − u∗

k‖2 + ‖vki − v∗
k‖2 − ‖uki+1 − u∗

k‖2 − ‖vki+1 − v∗
k‖2)

− 1
2 (‖uki − uki+1‖2 + ‖vki − vki+1‖2),

we obtain

μk

2Dβ
(‖xki+1 − x∗

k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (κki+1 − κ∗
k )

2)

+ 1
2
(‖uki − ũki+1‖2 + ‖vki − ṽki+1‖2)

≤ ‖uki − u∗
k‖2 + ‖vki − v∗

k‖2 − ‖uki+1 − u∗
k‖2 − ‖vki+1 − v∗

k‖2. (60)

Moreover, from (45) we have

0 ≤ B(u, v,μk)− B(uki+1, v
k
i+1,μ

k)+ β(u − uki+1, v − vki+1)
�(pki+1, q

k
i+1) (61)

and

0 ≤ B(u, v,μk)− B(uki , v
k
i ,μ

k)+ β(u − uki , v − vki )
�(pki , q

k
i ). (62)

Letting (u, v) = (uki , v
k
i ) in (61) and (u, v) = (uki+1, v

k
i+1) in (62), and adding them up lead

to

0 ≤ −(uki − uki+1, v
k
i − vki+1)

�(pki − pki+1, q
k
i − qki+1)
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= (uki − uki+1, v
k
i − vki+1)

�(uki+1 − ũki+1, v
k
i+1 − ṽki+1)

= 1
2
(‖uki − ũki+1‖2 − ‖uki+1 − ũki+1‖2 − ‖uki − uki+1‖2)

+ 1
2
(‖vki − ṽki+1‖2 − ‖vki+1 − ṽki+1‖2 − ‖vki − vki+1‖2),

which implies that

‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2 ≤ ‖uki − ũki+1‖2 + ‖vki − ṽki+1‖2. (63)

Combining (60) and (63) yields

1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2)

+ μk

2Dβ
(‖xki+1 − x∗

k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (κki+1 − κ∗
k )

2)

≤ ‖uki − u∗
k‖2 + ‖vki − v∗

k‖2 − ‖uki+1 − u∗
k‖2 − ‖vki+1 − v∗

k‖2. (64)

Furthermore, we have (by denoting C4 := 6λmax(A�A)max{1, ‖c‖2, ‖c̄‖2}/λ2min(AA
�))

‖yki+1 − y∗
k‖2 ≤ 2(‖yki+1 − ỹki+1‖2 + ‖ỹki+1 − y∗

k‖2)
= 2‖yki+1 − ỹki+1‖2 + 2‖(AA�)−1A(A�ỹki+1 − A�y∗

k)‖2

= 2‖yki+1 − ỹki+1‖2 + 2‖(AA�)−1A(cτ̃ ki+1 − s̃ki+1

− c̄θ̃ki+1 − cτ ∗
k + s∗k + c̄θ∗

k )‖2

≤ C4(‖s̃ki+1 − s∗k‖2 + (τ̃ ki+1 − τ ∗
k )

2 + (θ̃ki+1 − θ∗
k )

2)+ 2‖yki+1 − ỹki+1‖2

≤ 2C4(‖ski+1 − s̃ki+1‖2 + (τ ki+1 − τ̃ ki+1)
2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗

k )
2)

+ C4(θ
k
i+1 − θ∗

k )
2 + 2‖yki+1 − ỹki+1‖2, (65)

and (by denoting C5 := 3max{‖b‖2, ‖A‖2}/‖b̄‖2)

(θki+1 − θ∗
k )

2 = (θ̃ki+1 − θ∗
k )

2 = 1
‖b̄‖2 ‖bτ̃ ki+1 − Ax̃ki+1 + r̃ki+1 − bτ ∗

k + Ax∗
k − r∗k‖2

≤ C5(‖x̃ki+1 − x∗
k‖2 + (τ̃ ki+1 − τ ∗

k )
2 + ‖r̃ki+1 − r∗k‖2)

= C5(‖x̃ki+1 − x∗
k‖2 + (τ̃ ki+1 − τ ∗

k )
2 + ‖r̃ki+1 − rki+1‖2)

≤ 2C5(‖xki+1 − x̃ki+1‖2 + (τ ki+1 − τ̃ ki+1)
2 + ‖xki+1 − x∗

k‖2

+ (τ ki+1 − τ ∗
k )

2)+ C5‖r̃ki+1 − rki+1‖2. (66)

By summing up (65) and (66), we have

‖yki+1 − y∗
k‖2 + (θki+1 − θ∗

k )
2

≤ 2(C4 + C5)(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2)
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+ 2C4(‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (θki+1 − θ∗
k )

2)

+ 2C5(‖xki+1 − x∗
k‖2 + (τ ki+1 − τ ∗

k )
2)

(66)≤ 2(C4 + C5)(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2)
+ 2C4(‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗

k )
2)

+ 2C5(‖xki+1 − x∗
k‖2 + (τ ki+1 − τ ∗

k )
2)+ 4C4C5(‖xki+1 − x̃ki+1‖2 + (τ ki+1 − τ̃ ki+1)

2)

+ 4C4C5(‖xki+1 − x∗
k‖2 + (τ ki+1 − τ ∗

k )
2)+ 2C4C5‖r̃ki+1 − rki+1‖2

(58)≤ C3(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2)+ C3(‖xki+1 − x∗
k‖2 + ‖ski+1

− s∗k‖2 + (τ ki+1 − τ ∗
k )

2). (67)

Noting that ‖rki+1 − r∗k‖2 = (ξ ki+1 − ξ∗
k )

2 = 0, we have

min

{
1

2C3
,
μk

4DC3β

}
(‖uki+1 − u∗

k‖2 + ‖vki+1 − v∗
k‖2)

≤ μk

4DC3β
(‖xki+1 − x∗

k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (κki+1 − κ∗
k )

2)

+ min

{
1

2C3
,
μk

4DC3β

}
(‖yki+1 − y∗

k‖2 + (θki+1 − θ∗
k )

2)

≤ μk

4Dβ
(‖xki+1 − x∗

k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (κki+1 − κ∗
k )

2)

+ 1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2)+ μk

4Dβ

· (‖xki+1 − x∗
k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗

k )
2)

≤ 1
2
(‖uki+1 − ũki+1‖2 + ‖vki+1 − ṽki+1‖2)

+ μk

2Dβ
(‖xki+1 − x∗

k‖2 + ‖ski+1 − s∗k‖2 + (τ ki+1 − τ ∗
k )

2 + (κki+1 − κ∗
k )

2)

(64)≤ ‖uki − u∗
k‖2 + ‖vki − v∗

k‖2 − ‖uki+1 − u∗
k‖2 − ‖vki+1 − v∗

k‖2,
where the second inequality is due to C3 > 1 and (67). Therefore, we obtain that

‖ukNk
− u∗

k‖2 + ‖vkNk
− v∗

k‖2

≤
(
1 + min

{
1

2C3
,
μk

4DC3β

})−Nk

(‖uk0 − u∗
k‖2 + ‖vk0 − v∗

k‖2)

≤ C

(
1 + min

{
1

2C3
,
μk

4DC3β

})−Nk

.
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On the other hand, we have

‖QukNk
− vkNk

‖2 = ‖Q(ukNk
− u∗

k)− (vkNk
− v∗

k)‖2 ≤ 2‖Q‖2‖ukNk
− u∗

k‖2 + 2‖vkNk
− v∗

k‖2.

Therefore, the number of iterations (denoted by Nk) needed in the inner loop of
Algorithm 2 should satisfy that

2C(1 + ‖Q‖2)
(
1 + min

{
1

2C3
,
μk

4DC3β

})−Nk

≤ μk,

which proves (57). �

Now we are ready to present the main result of the iteration complexity of Algorithm 2.

Theorem 3.7: Suppose that the ABIP is terminated whenμk < ε,where ε > 0 is a pre-given
tolerance. The total IPM and ADMM iteration complexities of ABIP are respectively

TIPM = O
(
log
(
1
ε

))
, TADMM = O

(
κ2A‖Q‖2
ε

log
(
1
ε

))
,

where κA := λmax(A�A)/λmin(AA�).

Proof: Note that ABIP consists of two types of loops: inner loops and outer loops. In the
outer loop, a log-barrier penalty problem is formedwith a penalty parameterμk, and in the
inner loop, this log-barrier penalty problem is solved by a two-block ADMM. The outer
loop is terminated when μk < ε, with a pre-given tolerance ε > 0. It is then easy to see
that the number of outer loops, i.e. the number of interior point iterations, is

TIPM =
⌈
log(μ0/ε)

log(1/γ )

⌉
.

For the total number of ADMM steps (rather than the ADMM steps between two IPM
outer loops), we have the following estimate:

TADMM =
TIPM∑
k=1

Nk =
TIPM∑
k=1

log
(
2C(1 + ‖Q‖2)

μk

)[
log

(
1 + min

{
1
C3

,
μk

4DC3β

})]−1

=
TIPM∑
k=1

log
(
2C(1 + ‖Q‖2)/μ0

γ k

)[
log

(
1 + min

{
1
C3

,
μ0γ k

4DC3β

})]−1

= O

(
κ2A‖Q‖2
ε

log
(
1
ε

))
.

This completes the proof. �
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Corollary 3.8: Assume that m = O(n), the total arithmetic operation complexity of ABIP is

T = O

(
n3 + n2κ2A‖Q‖2

ε
log
(
1
ε

))
.

Proof: ABIP can be divided into two parts. In the first part, we decompose thematrixwhich
requiresO(n3) arithmetic operations. In the secondpart, we perform severalmatrix–vector
and vector–vector operations where each ADMM iteration requires O(n2) arithmetic
operations. So Theorem 3.7 implies the desired result. This completes the proof. �

4. Implementation details

4.1. Termination criteria

So far we have not discussed how to terminate the outer loop ofABIP yet. In our implemen-
tation, we chose the one that is used in SCS [36]. Specifically, we run the algorithm until
it finds a primal–dual optimal solution or a certificate of primal or dual infeasibility of the
original LP pair (1), up to some tolerance. The detailed procedure is as follows. If τ ki > 0
in uki , then let (

xki
τ ki

,
ski
τ ki

,
yki
τ ki

)

be the candidate solution which is guaranteed to satisfy the feasibility condition. It thus
suffices to check if the residuals

preski = Axki
τ ki

− b, dreski = A�yki
τ ki

+ ski
τ ki

− c, dgapki = c�xki
τ ki

− b�yki
τ ki

,

are small. More specifically, we terminate the algorithm if

‖preski ‖ ≤ εpres(1 + ‖b‖), ‖dreski ‖ ≤ εdres(1 + ‖c‖),
‖dgapki ‖ ≤ εdgap(1 + |c�x| + |b�y|),

are met. The quantities εpres, εdres and εdgap are the primal residual, dual residual and
duality gap tolerances, respectively.

On the other hand, if the current iterates satisfy that

‖A�yki + ski ‖ ≤ εpinfeas

(
b�yki
‖b‖

)
, (68)

then yki
b�yki

is an approximate certificate for the primal infeasibility with the tolerance
εpinfeas; or if the current iterates satisfy that

‖Axki ‖ ≤ εdinfeas

(
−c�xki
‖c‖

)
, (69)

then− xki
c�xki

is an approximate certificate for the dual infeasibility with the tolerance εdinfeas.
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4.2. Over relaxation

In practice, we implemented some techniques that can accelerate the algorithm. One of
them is to incorporate a relaxation parameter in theADMM[16]. Specifically, when applied
to Algorithm 2, we replace all ũki+1 in the u- and v-updates with

αũki+1 + (1 − α)uki ,

where α ∈ [0, 2] is a relaxation parameter. In that case, (32), (33), (34), (35) and (36)
become

vki+1 = vki − αũki+1 − (1 − α)uki + uki+1

and

yki+1 = αỹki+1 + (1 − α)yki ,

xki+1 = 1
2

⎡
⎣(αx̃ki+1 + (1 − α)xki − ski )+

√√√√(αx̃ki+1 + (1 − α)xki − ski ) ◦ (αx̃ki+1

+(1 − α)xki − ski )+ 4μk

β

⎤
⎦ ,

τ ki+1 = 1
2

⎡
⎣(ατ̃ ki+1 + (1 − α)τ ki − κki )+

√√√√(ατ̃ ki+1 + (1 − α)τ ki − κki ) ◦ (ατ̃ ki+1

+(1 − α)τ ki − κki )+ 4μk

β

⎤
⎦ ,

θki+1 = αθ̃i+1 + (1 − α)θki .

When α = 1, this reduces to the corresponding update in Algorithm 2 given above; when
α > 1, this is known as over-relaxation; whenα < 1, this is known asunder-relaxation. Pre-
vious works [14,37] suggest that the performance of ADMM can be improved significantly
if one sets α ≈ 1.5.

4.3. Barzilai–Borwein spectral method for selecting β

The performance of ADMM highly depends on the choice of β . One way to accelerate
ADMM is to adaptively adjust β (see also [28,47]). In practice, we generated a sequence of
{βk}k≥0, where βk is only used in the kth outer iteration. Intuitively, the speed of travelling
along the central path is determined by μk and β , implying that adjusting β in each outer
iteration based on the iterates is equivalent to a predictor–corrector method [33]. The way
we adaptively adjust β is based on the Barzilai–Borwein spectral method [4,49], which is
proven to be superior than the residue balancing approach [47]. Indeed, for each k ≥ 0, we
select βk using spectral stepsize estimation and safeguarding at the beginning of the kth
outer iteration.

Spectral stepsize estimation:We calculate the first three iterates, i.e.(ũki ,u
k
i , v

k
i )

i=2
i=0, using

a fixed βk > 0 and an initial point (yk0, x
k
0, s

k
0, τ

k
0 , κ

k
0 , θ

k
0 ) obtained by (39) and r

k
0 = 0, ξ k0 =

−n − 1. Then we estimate the curvature, i.e.

v̂k1 = vk0 − αũk1 − (1 − α)uk0 + αuk1, v̂k2 = vk1 − αũk2 − (1 − α)uk1 + αuk2

and

�v̂k = v̂k2 − v̂k1, �ũk = α(ũk2 − ũk1)+ (1 − α)(uk1 − uk0).
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As is typical in Barzilai–Borwein stepsize gradient methods [4], the spectral stepsizes ϕkSD
and ϕkMG have the closed-form solutions as

ϕkSD = 〈�v̂k,�v̂k〉
〈�v̂k,�ũk〉 , ϕkMG = 〈�v̂k,�ũk〉

〈�ũk,�ũk〉 ,

where SD andMG refer to steepest descent andminimum gradient, respectively, and ϕkSD ≥
ϕkMG due to the Cauchy–Schwarz inequality. We then consider the hybrid stepsize rule
proposed in [57],

ϕk =
⎧⎨
⎩
ϕkMG, if 2ϕkMG > ϕkSD,

ϕkSD − ϕkMG/2, otherwise.
(70)

Similarly, we calculate

�uk = −(uk2 − uk1),

and the spectral stepsizes ψk
SD and ψk

MG as

ψk
SD = 〈�v̂k,�v̂k〉

〈�v̂k,�uk〉 , ψk
MG = 〈�v̂k,�uk〉

〈�uk,�uk〉 ,

and consider the hybrid stepsize rule again,

ψk =
⎧⎨
⎩
ψk
MG, if 2ψk

MG > ψk
SD,

ψk
SD − ψk

MG/2, otherwise.
(71)

Safeguarding: We suggest a safeguarding heuristic by accessing the quality of the curva-
ture estimates, i.e. only update the stepsize if the curvature estimates satisfy a reliability
criterion. More specifically, we consider the following quantities defined in [49]

ϕkcor = 〈�v̂k,�ũk〉
‖�v̂k‖‖�ũk‖ , ψk

cor = 〈�v̂k,�uk〉
‖�v̂k‖‖�uk‖ .

The spectral stepsizes are updated only if the estimation is sufficiently reliable, i.e.

β̂k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
ϕkψk, if ϕkcor > εcor and ψk

cor > εcor,

ϕk, if ϕkcor > εcor and ψk
cor ≤ εcor,

ψk, if ϕkcor ≤ εcor and ψk
cor > εcor,

βk, otherwise,

(72)

where εcor > 0 is a quality threshold for the curvature estimates. Notice that β̂k = βk when
both curvature estimates are deemed inaccurate while β̂k �= βk but β̂k ≈ βk implies that
β̂k and βk are both suitable to be used in the kth outer iteration.

A heuristic selection:We select a threshold εpenalty > 0 and set

(1) If β̂k �= βk and |β̂k − βk| ≤ εpenalty, then
βk+β̂k

2 will be used in the kth outer iteration.
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(2) If β̂k �= βk and |β̂k − βk| > εpenalty, then βk = β̂k and we redo the spectral step-size
estimation and safeguarding with the same initial point.

(3) If β̂k = βk, then the spectral step-size estimation and safeguarding will be continued
based on the subsequent iterates.

4.4. Linear system solver

In this section, we discuss how to efficiently compute the projection onto the subspace
Q = {(u, v) : Qu = v} in (37). This requires solving the linear system (I + Q)u = w for
some w ∈ R

m+n+2, i.e. ⎡
⎣wy
wx
wτ

⎤
⎦ =

[
M h

−h� 1

]⎡⎣uyux
uτ

⎤
⎦ ,

where

M =
[

I A
−A� I

]
, h =

[−b
c

]
.

This implies that

uτ = wτ + h�
[
uy
ux

]
,
[
uy
ux

]
= (M + hh�)−1

([
wy
wx

]
− wτh

)
,

whereM + hh� is the Schur complement of the lower right block 1 in I +Q. Therefore, we
can apply the Sherman–Morrison–Woodbury formula [39] to (M + hh�)−1 and obtain[

uy
ux

]
=
(
M−1 − M−1hh�M−1

1 + h�M−1h

)([
wy
wx

]
− wτh

)

and

uτ = wτ + c�ux − b�uy.

Therefore, (37) reduces to[
ỹki+1

x̃ki+1

]
=
(
M−1 − M−1hh�M−1

1 + h�M−1h

)([yki + rki
xki + ski

]
− (τ ki + κki )h

)
(73)

and

τ̃ ki+1 = τ ki + κki + c�x̃ki+1 − b�ỹki+1. (74)

Remark 4.1: In view of practical implementation, we can calculate and cacheM−1h before
the first iteration. In the subsequent iterations, the main computational cost lies in the
calculation of [

zy
zx

]
= M−1

[
yki + rki
xki + ski

]
,

while the other simple vector operations using cached quantities are cheap.
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To solve the linear system of the form
[

I −A
−A� −I

] [
zy

−zx

]
=
[
yki + rki
xki + ski

]
, (75)

we follow [36] and propose two approaches. The first approach is to compute a sparse per-
muted LDL� factorization [13] of the matrix in (75) before the first iteration and use this
cached factorization to solve the system in the subsequent steps. When the factorization
cost dominates, this technique is very effective since only one factorization is necessary and
all iterations after that can be carried out quickly. The second approach is to approximately
solve the system, involves first reformulate (75) and then solve it with the conjugate gradi-
ent method (CG) [41,46]. Each iteration of conjugate gradient requires multiplying once
byA and once byA�, each of which can be parallelized. IfA is very sparse, then these mul-
tiplications can be performed especially quickly; when A is dense, it may be better to first
form G = I + AA� in the setup phase. We terminate the CG iterations using the standard
same criterion; see [36] for the details.

4.5. Presolving and postsolving

Now we discuss issues in analysing large and sparse LPs prior to solving them with ABIP.
First, we remove several computational expensive subprocedures, e.g.forcing, dominated
and duplicate rows and columns procedures, as used in [3,24,27,34]. Second, we use Dul-
mage–Mendelsohn decomposition [38] to remove all the dependent rows in A and
reformulate the original problem in the form of problem (1).

We consider LPs formulated in the following form:

min c�x

s.t. Ax = b,

l ≤ x ≤ w,

whereA has some linearly dependent rows. Before solving themwithABIP, we run a simple
presolve procedure. More specifically, we detect and remove empty rows, singleton rows,
fixed variables and empty columns, togetherwith removing all the linearly dependent rows,
i.e.

(P1) An empty row: ∃i : aij = 0, ∀j. Either the ith constraint is redundant or infeasible.
(P2) An empty column: ∃j : aij = 0, ∀i. xj is fixed at one of its bounds or the problem is

unbounded.
(P3) An infeasible variable: ∃j : lj > wj. The problem is trivially infeasible.
(P4) A fixed variable: ∃j : lj = wj. xj can be substituted out of the problem.
(P5) A free variable: ∃j : lj = −∞, wj = ∞. xj can be substituted by two nonnegative

variables x+
j and x−

j .
(P6) A singleton row: ∃(i, k) : aij = 0, ∀j �= k, ajk �= 0. The ith constraint fixes variable

xj = bi
aik
.

(P7) Dulmage–Mendelsohn decomposition. All the linearly dependent rows are
detected and removed.
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Then we have a reduced LP problem as follows:

min c̃�x̃

s.t. Ãx̃ = b̃,

l̃ ≤ x̃ ≤ w̃,

where x̃, l̃, w̃ ∈ R
ñ and Ã ∈ R

m̃+ñ have full row rank. The last step is to reformulate the
above problem as in the form of problem (1). After the presolving, it is guaranteed that
l̃ > −∞. Now we can define U = {j : w̃j < +∞} and x̄ = x̃ − l̃, and obtain the desired
LP problem,

min c̃�x̄

s.t. Ãx̄ = b̃ − Ãl̃,

x̃U + s̃ = w̃U − l̃U ,

x̃ ≥ 0, s̃ ≥ 0.

After the presolve procedure, the reduced problem is ready to be solved by ABIP. A post-
solve procedure is used to convert the solution to the reduced problem back to the solution
to the original problem.

Remark 4.2: Since our algorithm is a purely first-order algorithm, we also conduct the
scale procedure after the presolve procedure tomake the problemsmore well-conditioned.
We refer to [36] for more details.

5. Numerical experiments

In this section, we report experimental results of ABIP on solving randomly generated LPs
and 6 instances from UCI collection.1 We also report the results on 114 instances from
NETLIB collection2 in the online supplementarymaterials due to the space limits. Tomake
the comparison fair, we compare the direct and indirect ABIPwith different group of state-
of-the-art solvers. More specifically, we compare the direct ABIP with SDPT3 [44],MOSEK
[2] and the direct SCS [36] and the indirect ABIP with DSDP-CG [6] and the indirect SCS
[36].

Our ABIP code is written in C with a MATLAB interface. It has multi-threaded and
single-threaded versions. The direct ABIP computes the (approximate) projections onto
the subspace using a direct method based on a single-threaded sparse permuted LDL�
decomposition from the SuiteSparse package [1,12,13], and the indirect ABIP using a pre-
conditioned conjugate gradient method (denoted by ABIP-CG). For a fair comparison, we
compare ABIP with SCS (v2.0.0) where the direct solver is single-threaded.

In the experimental results reported below, we use the termination criteria for ABIP in
Section 4.1 with default values

εpres = εdres = εdgap = εpinfeas = εdinfeas = 10−3or10−5, (76)

and that for Barzilai–Borwein spectral method in Section 4.3 with default values

εcor = 0.2, εpenalty = 0.1.
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For the scaling update in (39), a better heuristic update for x, s, τ and κ is available in
practice and we used it in our software package.3 Indeed, we used

((xk+1
0 )j, (sk+1

0 )j) =
⎧⎨
⎩
((xki+1)j, γ · (ski+1)j), if (xki+1)j ≥ (ski+1)j,

(γ · (xki+1)j, (s
k
i+1)j), if (ski+1)j ≥ (xki+1)j.

j = 1, 2, . . . , n,

and

((τ k+1
0 ), (κk+1

0 )) =
⎧⎨
⎩
(τ ki+1, γ · κki+1), if τ ki+1 ≥ κki+1,

(γ · τ ki+1, κ
k
i+1), if κki+1 ≥ τ ki+1.

The over-relaxation parameter is set to α = 1.8. Moreover, we set the maximum number
of ADMM steps of ABIP to 106. If the target accuracy in (76) is not achieved in 106 ADMM
steps, we terminate the code and claim that ABIP fails to solve this instance and use ‘–’ in
the table to indicate the failure.

The decreasing ratio γ is adjusted according to the value of the barrier parameter μ,
primal/dual feasibility violations and the duality gap.More specifically, we increase γ as the
iterate approaches the optimal solution. The objective value reported for all methods in the
experiments below is the one after postsolving. The time required to do any preprocessing,
i.e. presolving, postsolving, do/undo scaling and matrix factorization are included in the
total solve times. All the experiments were carried out on a laptop with Linux system and
8 2.60GHz cores and 16Gb of RAM.

For other four solvers, we use the following stopping criteria. For SCS, we change the
default α from 1.5 to 1.8, use the tolerance in the stopping tolerance as 10−3 or 10−5, and
set the maximum number ADMM steps to 106. These changes are made to ensure a more
fair comparison, because we found that the default parameter setting needs much longer
time to converge. Moreover, we use SCS-CG to denote SCS with a preconditiond conjugate
gradient method computing the projections onto the subspaces. For SDPT3 andDSDP-CG,
the maximum number of interior point steps are both set as the default value 100. For
MOSEK, we use the default settings. For all these solvers, we claim that they fail to solve
an instance (denoted by ‘–’ in the tables) if after the codes terminate, the target accuracy
in (76) is not achieved.

5.1. Random LP instances

In this section, we test the five solvers on randomly generated dense LPs. First, we generate
a Gaussian random vector x ∈ R

n and split its entries randomly into three groups. The first
group consists 60% of entries and their values are set to zero. The second group consists of
10% entries and their values are zoom in for 10 times larger. The rest of the entries are in the
third group and their values are zoomed out for 10 times smaller. We then generate vector
s ∈ R

n such that xisi = 0 for all i, and nonzero entries of s follow standard normal distri-
bution. This ensures the complementary slackness and zero duality gap. We generate the
data matrix A = U�DV ∈ R

m×n where D = diag(randn(m, 1)), U = sprandn(m,m, 0.2)
and V = sprandn(m, n, 0.2). We generate the dual solution y ∈ R

m with entries follow-
ing standard normal distribution. Finally, we set b = Ax and c = A�y + s, which ensures
primal and dual feasibility. The solution to the problem is not necessarily unique, but the
optimal value is given by c�x = b�y.
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Table 1. Performance of four direct solvers on randomly generated LPs. CPU times are in seconds.

(m, n) Solver obj pres dres dgap time

(500, 5000) ABIP 1.01e+04 1.10e−04 6.82e−04 9.56e−04 1.06e+01
SCS 1.01e+04 5.98e−04 4.28e−04 3.06e−04 1.42e+01
SDPT3 1.01e+04 1.22e−08 2.72e−05 2.20e−05 4.74e+01
MOSEK 1.01e+04 1.70e−12 4.51e−14 1.15e−12 1.22e+00

(500, 10000) ABIP −2.65e+04 6.88e−05 3.84e−04 9.60e−04 2.57e+01
SCS −2.65e+04 8.71e−04 4.37e−04 3.47e−04 2.21e+02
SDPT3 −2.65e+04 1.83e−08 4.81e−05 3.99e−05 8.22e+01
MOSEK −2.65e+04 1.03e−09 1.31e−09 2.07e−12 2.36e+00

(500, 20000) ABIP 3.41e+04 7.99e−05 2.28e−04 9.75e−04 6.16e+01
SCS 3.41e+04 7.91e−04 3.24e−04 3.10e−04 1.19e+02
SDPT3 3.41e+04 1.15e−08 9.55e−05 5.62e−05 1.73e+02
MOSEK 3.41e+04 4.55e−12 2.76e−14 6.15e−12 5.97e+00

(1000, 5000) ABIP −1.35e+04 7.12e−05 4.28e−04 8.83e−04 3.99e+01
SCS −1.35e+04 9.57e−04 9.11e−04 6.36e−04 1.51e+02
SDPT3 −1.35e+04 4.02e−09 7.22e−06 6.31e−06 2.62e+02
MOSEK −1.35e+04 6.00e−10 4.97e−11 8.72e−10 3.90e+00

(1000, 10000) ABIP 1.57e+05 9.27e−05 6.73e−04 9.73e−04 5.60e+01
SCS 1.57e+05 9.97e−04 7.49e−04 2.15e−05 2.49e+02
SDPT3 1.57e+05 6.34e−08 3.80e−05 3.15e−05 3.33e+02
MOSEK 1.57e+05 5.01e−10 2.05e−13 1.03e−10 7.04e+00

(1000, 20000) ABIP 1.47e+05 5.96e−05 4.56e−04 9.97e−04 1.22e+02
SCS 1.46e+05 9.68e−04 5.10e−04 3.36e−05 5.01e+02
SDPT3 1.46e+05 5.91e−08 1.10e−04 6.97e−05 8.34e+02
MOSEK 1.46e+05 2.54e−11 1.23e−13 6.39e−12 1.40e+01

(2000, 10000) ABIP −5.32e+04 3.76e−05 2.64e−04 9.85e−04 8.89e+02
SCS −5.32e+04 9.02e−04 8.35e−04 1.62e−04 9.94e+02
SDPT3 −5.34e+04 1.03e−08 5.81e−06 5.69e−06 2.29e+03
MOSEK −5.34e+04 5.52e−11 5.74e−11 7.22e−12 2.14e+01

(2000, 20000) ABIP −7.40e+04 3.36e−05 2.15e−04 9.92e−04 4.04e+03
SCS −7.40e+04 9.18e−04 7.06e−04 5.26e−04 5.47e+03
SDPT3 −7.42e+04 4.93e−08 1.79e−04 2.22e−04 3.37e+03
MOSEK −7.42e+04 1.97e−10 7.70e−12 1.14e−10 3.62e+01

(4000, 20000) ABIP −3.50e+05 2.88e−05 2.54e−04 1.00e−03 5.67e+03
SCS −3.50e+05 9.55e−04 8.84e−04 4.09e−04 6.72e+03
SDPT3 −3.50e+05 1.09e−08 9.06e−06 9.75e−06 1.64e+04
MOSEK −3.50e+05 5.04e−10 2.92e−10 1.95e−11 9.06e+01

Results: We report the comparison results of the four direct solvers in Table 1 and the
three indirect solvers in Table 2. The results in Table 1 show that ABIP compares favourably
to SCS and SDPT3, though it is inferior to the commercial solver MOSEK. For results in
Table 2, our ABIP-CG compares favourably to SCS-CG and DSDP-CG.

5.2. Sparse inverse covariance estimation

In this section, we compare the five solvers on solving the following problem which arises
from machine learning applications:

min
�∈Rd×d

‖�‖1

s.t. ‖��− Id‖∞ ≤ λ,
(77)

where � ∈ R
d×d denotes a sample covariance matrix, and λ > 0 denotes some noisy tol-

erance. This problem, known as sparse inverse covariance estimation (SICE), is widely
studied in high-dimensional statistics and machine learning [8]. For given �, SICE (77)
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Table 2. Performance of three indirect solvers on randomly generated LPs. CPU times are in seconds.

(m, n) Solver obj pres dres dgap time

(500, 5000) ABIP-CG −9.32e+02 1.75e−05 2.01e−04 9.66e−04 1.34e+03
SCS-CG −9.33e+02 6.00e−04 5.13e−04 9.22e−04 3.45e+03
DSDP-CG −9.32e+02 1.03e−10 – 2.45e−04 6.53e+01

(500, 10000) ABIP-CG 1.08e+04 4.70e−05 3.21e−04 9.95e−04 8.73e+02
SCS-CG 1.07e+04 8.38e−04 4.95e−04 3.85e−04 2.43e+03
DSDP-CG 1.07e+04 9.88e−11 – 1.25e−04 7.60e+01

(500, 20000) ABIP-CG 1.93e+04 2.82e−05 1.22e−04 9.94e−04 2.44e+03
SCS-CG 1.93e+04 8.66e−04 3.62e−04 9.99e−04 3.05e+03
DSDP-CG 1.93e+04 2.13e−11 – 5.32e−05 1.52e+02

(1000, 5000) ABIP-CG 7.73e+04 1.23e−04 7.69e−04 9.99e−04 8.53e+02
SCS-CG 7.71e+04 9.00e−04 8.12e−04 1.65e−04 4.59e+03
DSDP-CG 7.71e+04 1.24e−09 – 4.45e−04 3.28e+02

(1000, 10000) ABIP-CG −5.41e+04 6.38e−05 2.83e−04 9.93e−04 2.80e+03
SCS-CG −5.44e+04 9.97e−04 8.01e−04 4.20e−05 8.82e+03
DSDP-CG −5.43e+04 2.51e−11 – 3.68e−05 4.72e+02

(1000, 20000) ABIP-CG −1.70e+05 7.15e−05 3.32e−04 9.77e−04 4.53e+03
SCS-CG −1.71e+05 8.78e−04 7.34e−04 1.10e−04 3.34e+04
DSDP-CG −1.71e+05 6.39e−12 – 2.17e−04 5.86e+02

(2000, 10000) ABIP-CG 1.16e+05 4.91e−05 3.70e−04 9.86e−04 9.47e+03
SCS-CG 1.15e+05 9.38e−04 8.16e−04 8.01e−05 3.19e+04
DSDP-CG 1.15e+05 1.19e−09 – 4.43e−04 3.01e+03

Note: DSDP-CG does not provide the dual residuals.

aims to find a perturbed inverse convariance matrix which is also sparse. Note that SICE
(77) is separable for columns of � = (β1,β2, . . . ,βd), and thus can be decomposed to d
problems as follows:

min
βj∈Rd

‖βj‖1

s.t. ‖�βj − ej‖∞ ≤ λ.
(78)

Problem (78) can be written as a standard LP as follows:

min e�β+ + e�β−

s.t. �β+ −�β− + w+ = λe + ej,

w+ + w− = 2λe,

β+, β−, w+, w− ≥ 0,

(79)

where the number of variables is n = 4d and the number of constraints ism = 2d. In our
experiment, we set λ = 3

2

√
log(d)
N where N is the number of sampled data in the original

data.
Problem instances: We obtained � from the UCI Machine Learning Repository.4 The

statistics of the six selected instances is summarized in Table 3.
Results: Detailed numerical results are reported in Tables 4 and 5. From Table 4, we see

that MOSEK is the best among all the direct solvers possibly because of its preprocessing
procedure of detecting dependent columns.ABIP and SCS are comparable and the speedup
over SDPT3 is more significant as the problem size increases. ABIP is more robust than SCS
and SDPT3 as SCS fails on ucihapt and SDPT3 fail on gisette. FromTable 5,ABIP-CG ismore
robust than SCS-CG andDSDP-CG as SCS-CG fails on ucihapt and ucihar andDSDP-CG fail
on gisette.
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Table 3. Statistics of six instances in UCI collection.

Problem statistics

Name Samples (N) Variables (d) Threshold (λ) Rows (m) Cols (n) Nonzeros Sparsity

gisette 13,500 5000 0.0377 10,000 20,000 50,015,000 0.2501
isolet 7797 618 0.0431 1236 2472 765,702 0.2506
sEMG 1800 3000 0.1000 6000 12,000 18,009,000 0.2501
sEMGday 3600 2500 0.0699 5000 10,000 12,507,500 0.2501
ucihapt 10,929 561 0.0361 1122 2244 631,125 0.2507
ucihar 10,299 561 0.0372 1122 2244 631,125 0.2507

Table 4. Performance of four direct solvers on UCI. CPU times are in seconds.

Name Method obj pres dres dgap time

gisette ABIP 1.25e−05 1.00e−03 1.16e−04 6.47e−06 1.03e+03
SCS 1.25e−05 8.89e−04 9.54e−04 4.13e−08 2.31e+03
SDPT3 – – – – –
MOSEK 1.25e−05 7.11e−13 4.63e−15 2.89e−13 7.46e+01

isolet ABIP 6.37e+02 1.56e−04 9.99e−04 2.77e−08 1.89e+02
SCS 6.37e+02 7.34e−04 8.85e−04 1.28e−05 8.68e+02
SDPT3 6.37e+02 1.67e−08 1.45e−06 4.62e−08 2.89e+01
MOSEK 6.37e+02 2.89e−08 1.92e−10 2.43e−10 6.95e−01

sEMG ABIP 1.06e+02 9.68e−04 6.21e−04 3.19e−04 2.61e+02
SCS 1.07e+02 9.48e−04 8.61e−04 5.27e−05 2.85e+02
SDPT3 1.07e+02 2.35e−08 5.38e−06 4.06e−06 3.52e+03
MOSEK 1.07e+02 3.05e−09 5.76e−15 9.95e-10 2.99e+01

sEMGday ABIP 1.89e+02 4.04e−04 9.93e-04 4.55e−05 1.67e+02
SCS 1.89e+02 4.18e−04 9.99e−04 1.70e−05 2.43e+02
SDPT3 1.89e+02 1.23e−08 2.43e−06 1.21e−06 2.04e+03
MOSEK 1.89e+02 1.85e−09 1.10e−13 1.03e−09 1.76e+01

ucihapt ABIP 3.64e+03 2.23e−05 1.00e−03 4.65e−07 8.44e+02
SCS – – – – –
SDPT3 3.63e+03 7.73e−07 3.79e-07 4.25e−08 4.20e+01
MOSEK 3.63e+03 1.06e−10 1.56e−11 3.17e−14 7.46e−01

ucihar ABIP 2.05e+03 1.51e−04 1.00e−03 6.30e−07 1.42e+02
SCS 2.05e+03 3.55e−04 9.99e−04 1.88e−06 1.00e+03
SDPT3 2.05e+03 3.99e−08 1.67e−09 1.08e−13 4.65e+01
MOSEK 2.05e+03 2.16e−08 6.57e−10 5.77e−11 5.87e−01

5.3. NETLIB LP collections

In this section, we report the performance of all five solvers on 114 feasible instances from
NETLIB collection.5 NETLIB is a collection of LPs from real applications. It has been rec-
ognized as the standard testing data set for LP. Due to the space constraint, the detailed
numerical results on NETLIB are given in the online supplementary materials. Here we
give a brief discussion on our observations from the numerical results.

We observe that neither SCS nor SCS-CG is as robust as other solvers. To be more spe-
cific, SCS only successfully solved 89 and 63 problems when the target accuracy is set to
10−3 and 10−5 respectively, while SCS-CG only successfully solved 86 problems. MOSEK
is the most robust one while ABIP, ABIP-CG, SDPT3 and DSDP-CG are comparable, and
they all significantly outperform SCS and SCS-CG. This phenomenon can be explained by
the superior robustness of the interior-point methods over the pure first-order methods.
Furthermore, ABIP and ABIP-CG are also more efficient than SCS and SCS-CG on the col-
lection of problem instances that can be solved by all the solvers. Promising performances
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Table 5. Performance of three indirect solvers on UCI. CPU times are in seconds.

Name Method obj pres dres dgap time

gisette ABIP-CG 1.23e−05 9.87e−04 1.21e−04 4.48e−06 1.42e+04
SCS-CG 1.23e−05 9.93e−04 6.35e−04 1.85e−07 6.11e+04
DSDP-CG – – – – –

isolet ABIP-CG 6.37e+02 1.55e−04 9.98e−04 3.78e−07 2.18e+03
SCS-CG 6.37e+02 9.36e−04 9.52e−04 1.30e−06 1.20e+04
DSDP-CG 6.37e+02 3.70e−10 – 1.65e−04 4.24e+01

sEMG ABIP-CG 1.06e+02 9.95e−04 6.66e−04 2.41e−04 1.80e+03
SCS-CG 1.07e+02 9.56e−04 7.92e−04 1.07e−04 2.81e+03
DSDP-CG 1.07e+02 2.38e−12 – 3.18e−04 6.15e+03

sEMGday ABIP-CG 1.89e+02 4.07e−04 9.98e−04 3.76e−05 1.13e+03
SCS-CG 1.89e+02 4.72e−04 9.62e−04 3.49e−05 2.10e+03
DSDP-CG 1.89e+02 6.63e−11 – 2.76e−04 3.32e+03

ucihapt ABIP-CG 3.64e+03 2.36e−05 1.00e−03 4.73e−07 1.12e+04
SCS-CG – – – – –
DSDP-CG 3.63e+03 1.58e−07 – 1.82e−04 3.57e+01

ucihar ABIP-CG 2.05e+03 1.46e−04 1.00e−03 5.68e−07 2.24e+03
SCS-CG – – – – –
DSDP-CG 2.05e+03 4.42e−08 – 3.95e−04 3.27e+01

of ABIP and ABIP-CG strongly support the use of the first-order interior-point method on
very large LP problems.

Remark 5.1: From the numerical results presented here and the ones in the online
appendix, we have the following observations. (i) The second-order IPM is still the best
option either when the dataset is of small ormedium size, or when solutionwith high accu-
racy is desired. (ii) The first-order IPM (ABIP) is better than the vanilla first-order method
(ADMM) when the dataset is extremely large. (iii) We only focused on LP in this paper;
how to design general first-order IPM for other convex optimization problems remains a
future research topic.

6. Conclusion

In this paper, we present a novel implementation of the primal–dual interior point method
to solve linear programs via self-dual embedding. In our approach, we use the ADMM to
track the central path. Therefore, the new approach is an implementation of first-order inte-
rior point method (IPM). As such, it inherits intrinsic properties of the IPM. We present
a theoretical analysis showing that the overall complexity of ADMM steps is O( 1

ε
log( 1

ε
)),

and the extensive numerical experiments demonstrate that the new algorithm is stable in
performance and scalable in size. For the future research, we are interested in improving
the numerical stability by incorporating advanced iterative methods, and the numerical
efficiency by incorporating distributed computing environment.

Notes

1. https://archive.ics.uci.edu/ml/datasets.html
2. http://users.clas.ufl.edu/hager/coap/format.html
3. We sincerely thank an anonymous reviewer for suggesting this scaling strategy, which signifi-

cantly improved the efficiency of the algorithm.
4. https://archive.ics.uci.edu/ml/datasets.html
5. http://www.netlib.org/lp/

https://archive.ics.uci.edu/ml/datasets.html
http://users.clas.ufl.edu/hager/coap/format.html
https://archive.ics.uci.edu/ml/datasets.html
http://www.netlib.org/lp/
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