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Highlights
The development of gene editing
tools, including CRISPR/Cas9-mediated
targeted mutagenesis, for generating
loss-of-function mutants in the monarch
butterfly has positioned the monarch as
a well-suited model organism with
which to gain mechanistic insights into
the genetic and neurobiological bases
of animal migration.

Comparative genomics using whole-
The genetic architecture and neurogenetics of animal migration remain poorly
understood.With a sequenced genome and the establishment of reverse genetic
tools, the monarch butterfly has emerged as a promising model to uncover the
genetic basis of migratory behavior and associated traits. Here, we synthesize
major advances made in the genetics of monarch migration, which includes
the discovery of genomic regions associated with migration and molecular
mechanisms underpinning its seasonality. We highlight the catalytic role that a
rapidly growing number of contemporary genetic and molecular technologies
applicable to nonconventional organisms have had in these discoveries, and
outline new avenues of investigation to continue moving the field forward.
genome sequencing, largely driven by
the assembly of a draft genome se-
quence, has revealed genomic regions
strongly differentiated betweenmigratory
and nonmigratory monarch populations.
Over 500 candidate genes were associ-
ated with the migratory phenotype and
can now be functionally characterized.

Functional genomic studies of the sea-
sonal migration of the Eastern North
American population have revealed that
circadian clocksmediate the seasonal in-
duction of reproductive arrest exhibited
by migrants by affecting the vitamin A
pathway in the brain.

1Department of Biology and Center for
Biological Clocks Research, Texas A&M
University, College Station, TX 77843,
USA
2Genetics Interdisciplinary Program,
Texas A&M University, College Station,
TX 77843, USA

*Correspondence:
cmerlin@bio.tamu.edu (C. Merlin).
Emergence of the Monarch as a Genetic Model System for Animal Migration
Animal migration has evolved as a critical behavioral adaptation for survival in a wide range of taxa
and is characterized by a seasonal movement to escape unfavorable conditions. The remarkable
navigational abilities used bymigratory species to travel long distances and pinpoint their migratory
destination with incredible precision have captivated the imagination of generations of scientists
and the public alike [1,2]. Although mounting evidence suggests that the morphological, sensory,
physiological, and behavioral traits exhibited by migratory species are genetically encoded and
turned on at the appropriate time of the year and/or under specific environmental conditions, the
genetic and neurobiological bases of migration remains poorly understood [1,3]. While some prog-
ress has been made in identifying genes associated with migration in birds and insects [3–6],
mechanistic approaches to link genotype to the migratory phenotype are still generally lacking be-
causemigratory species are typically not easilymaintained in the laboratory and/or amenable to ge-
netic experimentation. One notable exception are the colorful eastern North American monarch
butterflies (Danaus plexippus), which leave their northeastern American and Canadian summer
breeding grounds every autumn and travel up to 3000 miles to reach their overwintering sites in
central Mexico [2,7–9]. Catalyzed by the sequencing of a draft genome and the development of
reverse genetics (see Glossary) tools over the last decade [10–12], the monarch has emerged
as a powerful model system to drive the field of animal migration into the realm of genetics [3].

In this review, we synthesize recent discoveries about the genes and pathways involved in dictating
several traits underlying the monarch migratory phenotype and outline possible future avenues of
genomic and genetic research on monarch migration to obtain mechanistic insights into the
mode of action of migratory genes. We also provide an integrated view of current knowledge of
the navigational capabilities of monarchs, focusing on time-compensated sun compass orientation,
andwe highlight how genetic and epigenomic tools can be employed to address current challenges
in understanding the intertwined molecular and neurobiological bases of flight orientation.

Migratory Cycle and Neuroethology of the Eastern North American Monarch
Each autumn, coincident with decreasing daylengths (i.e., photoperiods), millions of monarchs in
eastern North America and Canada take wing to accomplish one of the longest migrations known
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Glossary
ATAC-seq:molecular technique relying
on a hyperactive Tn5 transposase to
assess genome-wide chromatin
accessibility.
Bisulfite sequencing: bisulfite
treatment of DNA followed by
sequencing to determine the pattern of
DNA methylation.
CRISPR/Cas9: genome editing tool
using a designedRNAmolecule to guide
a DNA endonuclease enzyme to a
specific sequence of DNA.
CUT&RUN: molecular technique
relying on the endonuclease activity of
micrococcal nuclease and specific
antibodies to profile the epigenome
and/or identify binding sites of
transcription factors or proteins of
interest.
Enhancers: short regions of DNA on
which proteins can bind to increase the
probability of transcription of a target
gene.
Epigenetic: heritable and/or
environmentally induced external
modifications to DNA that turn genes
‘on’ or ‘off’ without altering the DNA
sequence.
Haplotypes: combinations of specific
alleles in an organism that are inherited
together from a single parent.
Homology-directed repair: cellular
mechanism to repair double-stranded
DNA breaks through homologous
recombination.
Population genomics: study of the
genome-wide genetic composition of
biological populations and the changes
in genetic composition that result from
the operation of selection.
Quantitative genetics: study of
genetic control of quantitative traits that
vary continuously across segregating
generations.
Reverse genetics: molecular method
used to test the function of a gene by
genetically engineering changes in its
sequence to disrupt its function.
RNA-seq: sequencing technique used
to identify the presence and quantity of
RNA in a given biological sample.
Transposon-based transgenesis:
technique allowing genes to be
transferred to a host organism’s
chromosome.
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in any insect (Figure 1, Key Figure). Over the next 2–3 months, these monarchs, which are
in a state of reproductive dormancy (i.e., diapause), fly southward from sunrise to sunset, only
stopping to nectar for accumulating fat reserves to survive the winter and gathering together to
roost for the night, until they reach their overwintering destination at a dozen sites atop volcanic
mountains in central Mexico. Year after year, monarchs congregate there in clusters, sometimes
on the exact same oyamel trees, and hunker down for the winter [7,8]. By the beginning of spring,
when temperatures and photoperiod increase, the same individuals start to become active again,
break diapause, mate, and then remigrate northward to the southern USA [2,7,13]. There,
milkweed, the monarchs’ host plant, is already sprouting in response to the same environmental
changes that monarchs experienced, thereby providing the necessary resources for monarch
females to lay their fertilized eggs before dying. At least two successive generations of reproduc-
tively active spring and nonoriented summer monarchs continue the journey north to repopulate
their full northern breeding grounds, presumably by following the northward progression of milk-
weed emergence across America [14]. The butterflies reaching the breeding areas mate again,
and, by late summer, their offspring are reprogrammed into autumn migrants that take flight
south as adults, starting the migratory cycle anew [15]. Autumn migrants are always on their
maiden voyage; thus, the migratory behavior cannot be socially learned and is instead innate.
However, because autumn migrants share the same genetic makeup as their nonmigratory
parents, the timing of migratory departure, southward flight orientation, and migratory physiology
(e.g., reproductive diapause, fat storage, increased longevity) appear to be triggered by changes
in environmental conditions. Similar to the switch in behavior and physiology observed in autumn
migrants, the reversal of flight orientation in spring remigrants has been shown to be environmen-
tally induced as well, but, in this case, by prolonged exposure to low temperatures that mimic
those experienced at the overwintering sites [16]. Environmental induction of the two-way migra-
tion of eastern North American monarchs suggests that epigenetic mechanisms triggered by
environmental changes regulate migratory behavior in this species [3].

Environmental cues not only play a vital role in triggering seasonal behavioral switches but also
provide the compass cues that guide monarchs in their migratory journey. Autumn migrants
and spring remigrants use a bidirectional time-compensated sun compass as their primary nav-
igational tool to direct flight orientation [16–20]. Autumn migrants can also use the inclination
angle of the Earth’s magnetic field for directional information [21], but whether this inclination
compass fine-tunes the time-compensated sun compass, serves as a backup mechanism on
overcast days (i.e., when the sun is not visible), or underlies a geomagnetic map sense that
could help monarchs pinpoint their overwintering area is still unknown [1]. Classical genetic and
neurogenetic studies are integral to establishing a comprehensive understanding of the genetic
architecture of monarch migration and the molecular and neurobiological bases of the
compasses used for monarch navigation. What have we learned from genetic studies so far,
and where do we go next to address current challenges and rapidly move the field forward?

Population Genetics for Migratory Gene Discovery
Initiated by the release of the monarch’s draft genome sequence almost a decade ago [10,22],
efforts to identify the genes and pathways underlying monarch migratory traits have capitalized
on the existence of monarch populations around the world with different migratory phenotypes
[6]. Aside from the iconic eastern North American monarch population, two other populations
undergo a seasonal migration, albeit of shorter distances: one in North America west of the
Rocky mountains, which migrates to the California coast, and another in Australia, whose
migration direction is seasonally reversed compared with that of North American populations
[23]. Several others, which appear to be nonmigratory and have formed through three indepen-
dent dispersal events from ancestrally migratory monarchs, can be found in Central America,
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Key Figure
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Figure 1. North American monarchs start migrating southward in the autumn, coincident with decreasing daylength
sensed by an endogenous timer functioning with circadian clock genes. Monarchs east of the Rocky Mountains (gray
line) navigate over long distances (red arrows) to their overwintering sites in Mexico (blue circle). In the spring, when tem-
peratures and photoperiod increase, the same individuals become reproductive, mate, and reverse their flight orientation
northward. The switch in compass orientation in seasonal migratory forms has been shown to result from prolonged ex-
posure to coldness that mimic those experienced at the overwintering sites, underscoring the critical importance to in-
crease conservation efforts of the overwintering sites that are threatened by logging. On their way back to the USA,
fertilized remigrant females lay their eggs on milkweed plants before dying (red arrows). Subsequent generations of spring
and summer butterflies progress northward following the latitudinal emergence of their host plants to repopulate the
northern summer breeding grounds (black arrows). Autumn migration and spring and summer breeding ranges are de-
noted by colored areas. Monarchs west of the Rocky Mountains also migrate southward in the autumn, overwinter along
the California coast (blue line), and remigrate northward in the spring, but the migration distances are much shorter than
those traveled by eastern North American monarchs. Modified from [3]. Photo credit: Aldrin Lugena.
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South America, the Caribbean, Europe, North Africa, and throughout the Pacific islands [6,24,25]
(Figure 2A). The apparent loss of migration in these populations has provided a unique opportu-
nity to study the genetics of monarch migration through population genomics approaches.
Resequencing of 80 individuals from migratory and nonmigratory populations identified about
5 Mb (~2%) of the genome encompassing 536 genes as targets of divergent natural selection,
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significantly associated with shifts in migratory behavior [6]. Among these 5 Mb, an outlier region
of 21 kb showed multiple signatures of strong divergent selection (Figure 2B) and an enrichment
of shared alleles in populations that originated from dispersal events, suggestive of a divergence
in haplotypes between nonmigratory populations and the migratory eastern North American
population [6]. Three candidate genes that could be involved in the migratory phenotype are
located within this 21-kb region and encode an F-box protein (FBXO45), whose homologue in
mice is a component of an E3 ubiquitin ligase complex that is selectively expressed in the
nervous system and regulates neurotransmission [26]; a transmembrane protein of unknown
function; and the α1-subunit of collagen type IV, which is essential for muscle morphogenesis
and function in Drosophila [27] (Figure 2C). On the basis of differential expression in flight muscles
of migratory and nonmigratory monarchs that are correlated with flight metabolic rates, collagen
type IV α1 has been proposed to regulate flight efficiency during long-distance migration [6]. Dif-
ferential expression studies using RNA-seq between migratory populations, including North
American and Australian populations, and nonmigratory populations could illuminate which of
the 536 candidate genes should be prioritized for in vivo functional characterization. However, be-
cause the migratory phenotype encompasses a suite of adapted traits that include morphology
(e.g., wing size and shape), development, sensory processing (e.g., circadian clocks, skylight
cues, and magnetic sensing), physiology (e.g., metabolism, regulation of reproduction), and
behavior (e.g., orientation and navigation, flight endurance), these differential expression studies
should be performed in a variety of tissues and across developmental stages.

As previously proposed, classical quantitative genetics using populations varying in their
migratory phenotypes are another unexplored, yet potent, way to identify candidate genes
underlying different aforementioned traits associated with migration in monarchs [1,28].
Performing crosses between migratory and nonmigratory monarchs, or between migratory
monarchs varying in their migration distances (e.g., eastern and western North American
populations), quantifying phenotypic traits related to migration in parental and F2 generations,
and mapping quantitative trait loci across the genome should not only extend the list of
candidate migratory genes but also correlate them with specific traits. Most of the population
genetics studies have so far focused on signatures of selection in coding DNA [5,6]. Expanding
detection of selection signals in noncoding genomic regions will be equally important because
evolutionary changes in enhancers, which regulate gene expression in higher eukaryotes,
could be associated with the variation in migratory phenotypes [29–31]. Ultimately, candidate
migratory genes and genomic regions should be functionally characterized in vivo. This should
be facilitated by the development of contemporary genome editing tools in the monarch,
including CRISPR/Cas9, for the generation of loss-of-function mutants by gene knockout or
the introduction of precise mutations via homology-directed repair [11,12,32], and by the
availability of a semiartificial diet for raising monarchs and maintaining large colonies of mutants
in laboratory conditionsi as an alternative to greenhouse-grown plants when those cannot be
generated in sufficient quantity [12]. In addition, being able to induce migratory behavior from
laboratory-raised monarchs will be necessary to test the effect of specific mutations. Although
we do not yet know which cues are necessary for triggering migratory behavior in laboratory
conditions, this could be accomplished by raising mutant monarchs along with their wild-
type siblings in greenhouses under natural conditions in late summer. Finally, the rich and
well-documented biology of the eastern North American seasonal migratory monarch also
offers unique opportunities to dissect the genetic basis of monarch migration [1,2,33]. As
discussed later, studies focused on this seasonal migratory population have already provided
glimpses of the molecular basis of some migratory traits and are likely to be central in building a
comprehensive picture of the biological basis of monarch migration and its genetic and
neurogenetic underpinnings.
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Figure 2. Genetic Dissection of Monarch Migration Using Population Genomics. (A) Monarch populations that
differ in their migratory phenotypes are distributed around the globe. In North America, two migratory populations separated
by the Rocky Mountains undergo seasonal migrations: the eastern population, best known for its spectacular long-distance
migration, overwinters in central Mexico; and the western population, which migrates over much shorter distances, overwin-
ters on the California coast. A third migratory population is present in Australia. However, monarchs also exist throughout
Central America, South America, the Caribbean, Europe, North Africa, and throughout the Pacific islands, where they appear
to have formed nonmigratory populations through three dispersal events from the ancestral eastern North American migra-
tory population. Whether they lack the ability to migrate or simply do not express this behavior in their local environments re-
mains an open question. (B) The variation in migratory phenotypes across populations has been leveraged for comparative
population genomics studies. Regions of the genome strongly differentiating North American monarchs and monarchs from
nonmigratory populations were identified by resequencing the genome of these individuals and applying quantitative mea-
sures of sequence differentiation. The most highly differentiated region contained three genes encoding the F-box protein
FBXO45, an uncharacterized transmembrane protein (DPOGS206536), and the α1-subunit of collagen type IV. Modified
from [6]. (C) Because of their strong association with a shift in migratory behavior, these genes (together with those found
in other differentiated genomic regions) may underpin the genetic basis of monarch migration. Photo courtesy of Monarch
Watch (left image) and Guijun Wan (right image).
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Circadian Clocks: Seasoned to Perfection
Timing is integral to the seasonal migration of eastern North American monarchs [3] because
the onset of migratory behavior and departure from breeding grounds is tightly linked to
the change in season (Figure 1), a response akin to that of many migratory birds [34]. To
follow timing schedules, animals keep track of the time of day and seasonal variations in
Trends in Genetics, September 2020, Vol. 36, No. 9 693
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daylength using endogenous timers such as circadian clocks [35,36]. Due to the key role of
circadian clocks in monarch sun compass navigation and potentially in seasonal timing [1,2],
the molecular mechanisms of monarch clock function have been defined using a
complement of in vitro and in vivo approaches, including the use of the monarch DpN1
cell line [37], Drosophila transgenesis [38], and nuclease-mediated targeted mutagenesis in
monarchs [11,12,39]. Similar to that found in Drosophila and mammals [36,40], the monarch
clock relies on a negative transcriptional/translational feedback loop in which circadian activators
drive the cell autonomous 24-h rhythmic transcription of circadian repressors that then
shut down their own transcription (Figure 3A). What distinguishes the monarch clock from the
clocks of Drosophila or mammals is the existence of two functionally distinct CRYPTOCHROMES:
a light-sensitive Drosophila-like CRYPTOCHROME (named CRY1 and absent in mammals)
that functions as a blue-light circadian photoreceptor and a light-insensitive mammalian-like
CRY (named CRY2 and absent in Drosophila) that serves as a potent circadian repressor
[12,38,41].

In the monarch, CLOCK (CLK) and BMAL1 transcription factors heterodimerize and activate
the rhythmic transcription of cry2, period (per), and timeless (tim) genes (Figure 3A,B). Upon
translation, CRY2, PER, and TIM form cytosolic complexes that translocate back into the
nucleus, where CRY2 inhibits, 24 h later, CLK:BMAL1-mediated transcriptional activation
[38]. The clock is reset daily when the blue-light circadian photoreceptor CRY1 mediates
TIM degradation upon light exposure, leading to the subsequent degradation of PER and
CRY2 and allowing a cycle of transcription to start anew [38] (Figure 3A,B). Importantly, the
discovery of a mammalian-like CRY in monarchs has now been extended to all insects,
with the exception of fly species belonging to the brachyceran lineage [39,42]. The in vivo
characterization of monarch CRY2 through nuclease-mediated reverse genetics [12,39]
has also revealed functional similarities with mammalian CRYs in their mode of repressive
action on CLK:BMAL1 [43–45], suggesting the interesting possibility that the monarch
could be used as a complementary model to the mouse in order to understand circadian
repression relevant to mammals, including humans. Additional putative players of the clock,
such as genes and their products involved in post-translational modifications and degradation
of core clock components, homologous to those in Drosophila and the mouse [36,40], have
also been identified in the monarch genome [10]. Functional characterization of these genes
should continue to further the understanding of the monarch clockwork and may reveal
additional surprises.

Seasonality and the Molecular Basis of Reproductive Diapause
Reproductive quiescence (also called ‘diapause’ in insects) is a hallmark of the migratory
phenotype [46,47]. Like migratory flight, diapause is a seasonal response exhibited by many
species in anticipation of unfavorable seasonal conditions [46]. Consistent with the classical
view that photoperiod is a major environmental signal used by animals living at temperate
latitudes to predict the onset of an unfavorable season and regulate the diapause response
in insects, eastern North American migratory monarchs enter into overwintering diapause in
the autumn, coincidentally to decreasing photoperiod [35]. Although entry into full diapause
likely depends on a combination of decreased daylength, decreased temperature, and
senescing milkweeds [15], female monarchs raised under short photoperiod develop signifi-
cantly less mature oocytes than when raised under long photoperiod [48]. This diapause-like
response has been harnessed to show that circadian clocks and/or clock genes in the mon-
arch brain are necessary for photoperiodic measurement [48]. Inactivation of the clock in the
monarch butterfly using loss-of-function mutants for the circadian activators CLK and
BMAL1 and the circadian repressor CRY2 abolishes photoperiodic responses in reproductive
694 Trends in Genetics, September 2020, Vol. 36, No. 9
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Figure 3. Circadian Clocks and the Induction of Seasonal Reproductive Diapause. (A) The core molecula
mechanism of the monarch circadian clock relies on a feedback loop in which the CLOCK (CLK) and BMAL1
heterodimer drives the rhythmic transcription of the cryptochrome 2 (cry2), period (per), and timeless (tim) genes
CRY2, PER, and TIM form complexes in the cytosol. Upon PER phosphorylation, PER and CRY2 are translocated into
the nucleus and repress CLK:BMAL1-mediated transcription. The blue-light circadian photorecepto
CRYPTOCHROME 1 (CRY1) resets the clock by mediating TIM degradation upon light exposure. (B) Expression
profiles of cry2, per, and tim mRNA levels over a 24-h day. (C) The circadian clock or clock genes in the brain are
involved in the induction of reproductive diapause exhibited by autumn migrants. The brain clock helps monarchs
distinguish long photoperiods (LP) in the summer from short photoperiods (SP) in the fall. The brain clock affects
photoperiodic responsiveness by regulating, in a photoperiod-dependent fashion, the expression of genes involved in
the vitamin A pathway. β-Carotene is transported into extraretinal neural cells of the adult brain via SANTA MARIA and

(Figure legend continued at the bottom of the next page.

Trends in Genetics

Trends in
r

.

r

)

Genetics, September 2020, Vol. 36, No. 9 695

Image of Figure 3


Trends in Genetics
output (Figure 3C), similar to that observed in a few other insect species [49–53]. How circadian
clocks, known to rhythmically regulate many biological pathways, could regulate the photope-
riodic responses had remained elusive until recently. RNA-seq studies aimed at identifying
rhythmic gene expression in brains of summer monarchs, autumn migrants, and monarchs
raised in long and short photoperiods identified the vitamin A pathway as being differentially
regulated in a photoperiod-dependent manner [48]. The key role of this clock-controlled
pathway in mediating the photoperiodic induction of diapause was further genetically validated
with a CRISPR/Cas9-mediated loss-of-function mutant of the gene nina B1, encoding the
rate-limiting enzyme that converts β-carotene into retinal, which lost the ability to enter dia-
pause under short photoperiod (Figure 3C) [48]. As in Drosophila [54], the entry into
diapause in monarchs results from a juvenile hormone (JH) deficiency in the corpora
cardiaca–corpora allata complex and a likely downregulation of insulin-like peptides in the
brain [10,55,56]. The link between the clock-controlled vitamin A pathway and JH regulation
is still unknown. A first step to determine how vitamin A affects the diapause response will be
to define the role of retinal in the brain, which could function in two ways: either as the
chromophore of an opsin-based deep brain photoreceptor for photoperiodic measurement
or to produce retinoic acid that could regulate a seasonal transcriptional program and/or
the seasonal plasticity of a neuronal network in the brain as in mammals [57,58]. Support
for the regulation of the photoperiodic control of seasonal reproduction by extraretinal
photoreceptors is not without precedent, as shown in avian species such as ducks and
Japanese quails [59]. Knocking out opsin-encoding genes in the monarch could help sort
out which of these two roles the vitamin A pathway plays in the photoperiodic control of
diapause response in insects.

Neurogenetics of Flight Orientation: Focus on the Bidirectional Time-Compensated
Sun Compass
Migratory flights require a suite of coordinated traits that include elongated wing morphology,
proper flight muscle physiology, and the ability to use biological compasses and maps to
navigate toward their overwintering destination [6,9,60]. While the existence of a true map
sense in monarchs is still under debate [1,61–63], the compasses exploited by migratory
monarchs to maintain directionality during their long-distance migration are defined and
rely on the use of either sun/skylight information [9,20,64,65] or the Earth’s geomagnetic
field [21]. Behavioral studies of the orientation of migratory monarchs, either tethered in a
flight simulator or released for disappearance bearings measurements, have established
that monarchs use a time-compensated sun compass as the major compass system for
both southward autumn and northward spring orientations [16,17,19] (Figure 4A). Direc-
tional cues from the daylight sky, which provide information about the position of the sun,
are sensed by two anatomically distinct areas of the eyes (the dorsal rim for polarized light
and the main retina for the sun’s azimuthal position) and integrated in the central complex
(CX), a midline structure of the insect brain [64,66–69] (Figure 4B). These directional cues
are not fixed over the course of the day, however, because the sun’s azimuthal position
changes from sunrise to sunset. Fixed flight direction is maintained through time compensa-
tion of the sun’s movement by circadian clocks, with those located in the antennae playing a
major role in this process [16–19,70] (Figure 4A). Grounded in neurophysiology and
neuroanatomy, progress has been made in identifying individual neurons within the CX
converted to retinal by the rate-limiting enzyme NINA B. Retinal can either be interconverted into retinol by a retino
dehydrogenase (RDH) or converted into retinoic acid (RA) by a retinaldehyde dehydrogenase (RALDH). RA binds to
retinoid receptors to regulate transcription of target genes. Functional disruption of the clock and of the vitamin
pathway disrupts photoperiod responsiveness. The connection between vitamin A and juvenile hormone deficiency
characteristic of diapausing monarchs, remains unknown. Modified from [48]. CC/CA, corpora cardiaca/corpora allata.

696 Trends in Genetics, September 2020, Vol. 36, No. 9
l

,



(B)

(C)

Antennal 
clocks

Brain 
clocks

Clock 
entrainment

Motor system

Oriented flight

Main
retina

Descending 
neuron

?

?

CX

Mapping clock circuitry using fluorescent proteins (FP)

Transposon Transposase

+

Clock gene 
promoter

FP

FP

FP

FP

Skylight 
input to the eye

Dorsal rim 
(polarized light)

Transgenesis CRISPR/Cas9-mediated HDR

Cut

Paste
DNA

Cas9
Clock gene 

locus

FP

DNA DSB

sgRNAs

HDR repair
template

FP

TSS

(A)

07.00h–19.00h

N

S

90o270o

With 
antennae

N

S

90o270o

01.00h–13.00h

N

S

90o270o

No 
antennae

N

S

90o270o

TrendsTrends inin GeneticsGenetics

Figure 4. Integration of Timing and Sun Compass Information for Flight Orientation. (A) Migrant monarchs housed in autumn light/dark (LD) cycles with lights on
at 07.00h and lights off at 19:00h and flown in a flight simulator in the morning orient in the proper southwesterly migratory direction (upper left). When housed in clock-
shifted LD cycles advanced by 6 h, monarchs interpret this morning sun as an afternoon sun and shift their orientation counterclockwise, demonstrating time
compensation of sun compass orientation (lower left). Modified from [2]. By contrast to autumn migrants with intact antennae, antenna-less migrants are disoriented as
a group, showing that the antennae contain the timer for sun compass orientation (upper and lower right). Modified from [18]. Colored dots indicate the orientation of
individuals; arrow indicates mean orientation of the group. (B) Skylight cues are sensed by the eyes (UV polarized light by the dorsal rim and colors of the light or the
sun itself by the main retina) and integrated into the central complex (CX; blue). Circadian clocks in the antennae provide the major timing information for sun compass
orientation behavior, but brain clocks could have a minor contribution. The neural pathways connecting circadian clocks to the CX remain to be determined (red lines
with question marks). Ultimately, the integrated signal is transmitted via descending neurons (gray line) to motor circuits to generate oriented flight behavior. Modified,
with permission, from [88]. (C) Genetic tools for genomic integration, including transposon-based transgenesis and CRISPR/Cas9-mediated homology-directed repair
(HDR), could be employed to mark clock neurons with fluorescent proteins and map the clock circuitry. Abbreviations: DSB, double-stranded break; sgRNA, single-
guide RNA; TSS, transcription start site.
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that integrate both azimuthal position and light polarization angle [66,67], but where exactly
in the brain time compensation of sun compass information occurs (i.e., in input neurons
of the CX, in the CX itself, or in the output descending neurons to the motor system) remains
a mystery. The continued development of genetic tools in the monarch to mark clock
neurons with membrane-tagged fluorescent proteins could help illuminate the neural
circuit connecting clocks to the sun compass (Figure 4C). The clock neuronal circuitry
could be mapped by integrating fluorescent proteins under the control of clock gene pro-
moters into the monarch genome, either randomly using piggyBac transposon-based
transgenesis [71,72] or in a targeted fashion at the endogenous clock loci using
Trends in Genetics, September 2020, Vol. 36, No. 9 697
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Figure 5. Coldness-Induced Reprogramming of Seasonal Flight Orientation to Study the Molecular Basis of Sun Compass Orientation. (A) Migrants
orient southwesterly in the autumn and reverse their flight northeasterly in the spring after prolonged exposure to overwintering coldness conditions (left). Autumn
migrants subjected to simulated overwintering-like coldness for 24 days in constant photoperiod also reverse their flight orientation northward (right). Modified,
with permission, from [16]. (B) The switch in flight orientation upon exposure to environmental coldness suggests an epigenetic reprogramming of flight
orientation. The genes, cis-regulatory elements (CREs) and putative transcription factors (TFs) that control their expression, which may be involved in this molecular
switch, could be identified through integrated approaches combining RNA-seq, ATAC-seq, and CUT&RUN in brains of autumn migrants and cold-treated autumn
migrants. RNA-seq quantifies differential gene expression between conditions. ATAC-seq detects open chromatin regions and TF footprints for the identification
of putative TFs. CUT&RUN profiles the epigenome through the use of antibodies against conserved histone marks enriched in permissive or repressive chromatin
regions. Abbreviations: UTR, untranslated region.
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CRISPR/Cas9-mediated homology-directed repair [73] (Figure 4C). The resulting identifica-
tion of the brain regions to which antennal and brain clock neurons project could then
guide electrophysiological recordings in wild-type monarchs and already available clock-
deficient mutants [11,12,39] to precisely define the neurons in which clock–compass
integration occurs.

The bidirectionality of the time-compensated sun compass orientation could also be exploited to
decipher how sun compass orientation is regulated at the molecular level. The environmental
condition that switches flight orientation from southward in autumn migrants to northward in
spring remigrants has been identified as a sustained exposure to overwintering-like coldness
[16] (Figure 5A). The molecular mechanism by which low temperature causes the switch in flight
direction could rely on temperature-dependent splicing, RNA editing patterns, or regulation of
gene expression via either noncoding RNAs or epigenetic mechanisms [3,74]. Transient expo-
sure of animals to environmental factors has been shown to induce and maintain behavioral
states by changing the neuronal epigenetic landscape that transcriptionally regulates genome-
wide gene expression [75]. In addition, post-transcriptional events such as splicing in Drosophila
and RNA editing in octopuses have been shown to be involved in temperature adaptation [76,77].
Performing RNA-seq studies in the brains of autumn migrants, autumn migrants reprogrammed
into spring remigrants by cold treatment, and wild-caught spring remigrants could be used to
698 Trends in Genetics, September 2020, Vol. 36, No. 9
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Outstanding Questions
What cues trigger migratory behavior
and at which developmental stages
are the cues sensed? Are circadian
clocks involved in triggering migration
and/or timing migratory departure?

Which genes and/or cis-regulatory
elements control migratory flight
orientation, its seasonal switch, and
migratory distances?

How does the vitamin A pathway in
the monarch brain mediate seasonal
responses? Does it function to
generate a deep brain photoperiodic
photoreceptor, or does it control
seasonal transcriptional programs
and/or neural plasticity?

How is time and sun compass
information integrated into the nervous
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detect differentially expressed genes and noncoding RNAs in addition to cold-dependent RNA
splicing or editing events (Figure 5B). Epigenetic regulation of gene expression in neurons in the
brain has also been shown in other behavioral contexts to result in long-term and robust behav-
ioral changes [78–82]. Epigenetic changes driving the seasonal switch in monarch flight orienta-
tion could occur either through the activation of specific transcription factors that can reprogram
gene regulatory networks or through alteration of chromatin structure via DNAmethylation or his-
tone post-translational modifications (Figure 5B). Cutting-edge technologies such as bisulfite
sequencing [83], ATAC-seq [84,85], and CUT&RUN [86,87] could be applied to the monarch
to profile the epigenome in the brains of each seasonal form and correlate differential gene
expression to its mechanism of regulation (i.e., through epigenetics or noncoding RNAs). The in-
tegration of such approaches holds great promise to reveal the underlying genetic basis of flight
orientation. In this review, we have described the current understanding of the genetic basis of
monarch migration and highlighted how genetic and epigenomic approaches could be
deployed to provide new insights into the poorly understood molecular and neurobiological
bases of flight orientation.

Concluding Remarks
The recent ‘genomic revolution’ and rise in cutting-edge genetic and molecular technologies
system to allow monarchs to maintain
flight orientation over the course of
the day?

Did nonmigratory populations present
across the globe lose the ability
to migrate, or do they simply not
express this behavior under their local
environments?

What are the molecular bases
of magnetoreception in monarch
butterflies?

How do monarchs pinpoint their
overwintering grounds without ever
having been there and with such
precision that they often congregate
on the same trees as their great-
grandparents?
applicable to nonconventional model systems have started to unlock the potential of the monarch
butterfly as a key organism to move the genetics of migration forward. Progress has already been
made in identifying genomic regions associated with the migratory phenotype, clarifying the role of
the circadian clock in seasonal responses, and providing new insights into the molecular basis
of seasonal reproductive diapause. The application of contemporary genetic tools such as
CRISPR/Cas9 has also positioned the monarch as a benchmark migratory species for the func-
tional characterization of candidate genes and neural circuits. Despite these substantial advances,
several fundamental and fascinating questions in the field of migration genetics remain unanswered
(see Outstanding Questions). The time is ripe to address them, as an ever-growing number of
cutting-edge molecular, genetic, and genomic tools can now be combined with neurobiology
and behavioral studies in the monarch.
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