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Abstract—In coverage-oriented networks, base stations (BSs)
are deployed in a way such that users at the cell boundaries
achieve sufficient signal strength. The shape and size of cells
vary from BS to BS, since the large-scale signal propagation
conditions differ in different geographical regions. This work
proposes and studies a joint spatial-propagation (JSP) model,
which considers the correlation between cell radii and the large-
scale signal propagation (captured by shadowing).

We first introduce the notion of the directional radius of
Voronoi cells, which has applications in cellular networks and
beyond. The directional radius of a cell is defined as the distance
from the nucleus to the cell boundary at an angle relative to the
direction of a uniformly random location in the cell. We study
the distribution of the radii in two types of cells in the Poisson
Voronoi tessellations: the zero-cell, which contains the origin, and
the typical cell.

The results are applied to analyze the JSP model. We show
that, even though the Poisson point process (PPP) is often
considered as a pessimistic spatial model for BS locations,
the JSP model with the PPP achieves coverage performance
close to the most optimistic one—the standard triangular lattice
model. Further, we show that the network performance depends
critically on the variance of the large-scale path loss along the
cell boundary.

Index Terms—Poisson Voronoi tessellations, directional radius,
cellular networks, correlated shadowing, meta distribution

I. INTRODUCTION
A. Motivation

For coverage, cellular operators deploy more base stations
(BSs) in regions with severe signal decay, and vice versa, such
that users at the cell boundaries achieve a sufficient and con-
sistent signal strength. As a result, the spatial deployment of
BSs and the large-scale propagation conditions are inherently
correlated. In most works, this correlation is ignored, i.e.,
the BS deployment is assumed independent of the shadowing
coefficients.

The first and only work that considers joint spatial and
propagation modeling is [1], where the authors reverse en-
gineer the path loss exponent (PLE) of the power-law path
loss model from the BS locations. A fundamental assumption
in [1] is that the PLE inside each Voronoi cell is determined
by the BS locations such that users at the cell edge receive
an average power Py from their nearest BS. It is shown that
under this assumption, the PPP yields almost the same success
probability as the triangular lattice networks. However, there

This work has been supported in part by the US National Science Founda-
tion through Grant 2007498.

are a few drawbacks to that model. Firstly, the power-law path
loss model is inherently an end-to-end model—the total path
loss when a signal travels through multiple cells cannot be
decomposed into per-cell path loss functions. For instance, for
a signal that travels through two cells each with diameter d and
PLE «, one can not decompose the total path loss, (d+ d) ™%
into the product of per-cell path losses d~*d~“. Secondly, the
assumption that the average power (over fading) P is received
by all users along the Voronoi cell edge is overly optimistic.
In an actual deployment, this quantity is inevitably subject to
variation. And lastly, the coverage analysis in [1] is limited to
the spatial average, whereas the coverage used by operators is
better captured by the meta distribution [2].

This work proposes a joint spatial and propagation model
of cellular networks based on the directional radii of Poisson
Voronoi cells. Specifically, our work assumes that the Poisson
deployment of BSs results from the following BS placement
method: BSs are deployed more densely in regions with severe
signal attenuation and less densely in regions with more benign
propagation conditions. In other words, the shape and size of
the Voronoi cells reflect the underlying propagation conditions,
which we reverse-engineer to devise a cell-dependent corre-
lated shadowing model. To do so, it is necessary to study the
cell shape and radii in the Poisson Voronoi tessellation (PVT).
The contributions of the work are summarized as follows.

B. Contributions

1) We characterize the shape and size of the Poisson
Voronoi cells by introducing the notion of the directional
radius in Voronoi tessellations.

2) For the PVT, we derive the exact distributions of the
directional radius in the zero-cell and the uniform-
angled radius in the typical cell. The results reveal the
asymmetry of Poisson Voronoi cells and also lead to
a new approach of evaluating the mean cell areas. For
cases without an explicit expression, simulation results
and approximations are provided.

3) We introduce and study a joint spatial-propagation (JSP)
model for coverage-oriented cellular networks. We con-
sider cell-dependent shadowing where the shadowing
coefficients are conditionally log-normal random vari-
ables given the BS point process such that users at the
cell edges receive an expected power Fy. Hence the JSP
model ascribes the irregular deployment of base stations
to an intelligent design by the operators, rather than to
pure randomness, as is done in most of the literature.



4) We show that the network performance depends crit-
ically on the variance of the received power along the
cell boundary. While the PPP model (without shadowing
or with independent shadowing) has been established as
a pessimistic model for coverage-oriented deployments
[3], the SIR distribution of the JSP model for the
PPP is close to that of the standard triangular lattice
model (without shadowing) when the conditional vari-
ance (given the point process) is zero; as the variance
increases, the performance of the JSP model for the PPP
deteriorates to that of the standard PPP model.

C. Related Work

The shadowing coefficients introduced in this work are cell-
dependent and correlated. The correlation is due to the fact that
in the PVT, nearby cells are correlated in shape and size and,
in particular, in their directional radii. In addition to [1], also
relevant to this work are other models that consider correlated
shadowing.

One of the first correlated shadowing models is proposed in
[4], where for a fixed BS and a moving user with a constant
velocity, the periodically sampled shadowing is a discrete
process whose autocorrelation decays exponentially. Following
[4], the joint Gaussian distribution has been widely used
to model correlated shadowing [5]. A correlated shadowing
model with an intuitive physical interpretation is modeled and
analyzed in [6], where the “penetration loss” depends on the
number of obstacles (in this case, buildings) in the signal path.
The shadowing variance is another factor that significantly
impacts the network performance for both independent and
correlated shadowing models [7], [8]. It is derived in [8] that
for general BS processes satisfying a homogeneity constraint,
if the shadowing correlation is “moderate” (decreasing fast
enough in distance), the signal strengths converge to those in
a PPP as the shadowing variance increases. Based on [7], [8],
we obtain a Poisson convergence result for the JSP model.

To facilitate the analysis of the JSP model, we study two
types of Poisson Voronoi cells and their radii: the zero-cell,
which is the cell that contains the origin, and the typical cell.
While it is known that the zero-cell has a larger mean volume
than the typical cell [9], [10], the directional radii characterize
the shape of the two cells, which has not been studied before
to the best of our knowledge. Related, the distance from the
nucleus to a uniformly random location in the typical cell
and the distance from the nucleus of the zero-cell to the
typical location are studied in [11]. User point processes are
characterized based on the PVT in [12]. The distribution of the
distance from the typical Voronoi edge/vertex location to its
nearest Poisson point is given in [13], [14], while [15] derives
the distribution of the radius of the largest disk included within
the cells and the radius of the smallest disk containing the
cells. Some gamma-type results are given in [16], [17].

D. Layout

The rest of the paper is organized as follows. Section II
gives the definition of the directional radii of Voronoi cells
and characterizes their distribution for the PVT. Since the

directional radii have applications beyond the JSP model, we
are presenting a more comprehensive set of results than strictly
necessary for the latter parts of the paper. In Section III,
we introduce the JSP model and the performance metrics of
interest. Section IV provides the analysis of the JSP model
and its comparison with other relevant models. Section V
concludes the paper.

II. DIRECTIONAL RADII OF POISSON VORONOI CELLS
A. Definitions

Let ® C R? be a motion-invariant point process. To simplify
the definitions of the cell radii, we first introduce the displaced
typical cell and zero-cell such that the nucleus of the cells is
at the origin o.

Typical cell. Let
P°2 (®|ocd)

and denote by V(o) the Voronoi cell of ®° with nucleus o.
V(o) is the typical cell in the Palm sense [14]. Let z be
a location chosen uniformly at random from V(o) and let
(|z]l, ¢) be its polar coordinates. Next, define

d £ rot_(9°),

where rot, is a rotation around the origin by angle u, and
denote the Voronoi cell of ® with nucleus o by V(o). Let
D £ ||z|| be the distance from the nucleus of the typical cell
to the uniformly random location in the typical cell.

Zero-cell. Let xog € ® be the closest point to the origin,
i.e., To = arg min,cqe{||z|/}. Let V; be the Voronoi cell
with nucleus xo. By the definition of Voronoi tessellations,
Vo contains the origin. Letting ¢ be the angle of x(, define

éo £ rOtﬂ’*@O (q)*fﬂo)v

where @, is a translation of all points of ® by y. This way,
0 € ®g. Let [y be the Voronoi cell of &y with nucleus o. Let
Do £ |lzo]|-

Definition 1 (Directional radius). For ¢ € [0,27), we define

the directional radius R(p) to the boundary 0V (o) of the
typical cell by

(R(1), ) € 8V (o)

and the directional radius Ry() to the boundary dVy of the
0O-cell by

(Ro(), ) € OVp.

(R(¢),¥)pelo,2x) parametrizes the boundary of the typical
cell V(o) in polar coordinates, and R(0) is the distance from
the nucleus to the boundary in the direction of the randomly
chosen point. Similarly, (Ro(¥),®)ee[0,2r) Parametrizes the
boundary of the 0-cell V; in polar coordinates, and Ro(0) is
the distance from the nucleus to the boundary in the direction
of the displaced origin, now at coordinates (||zol|,0). Fig. 1
shows realizations of the typical cell, the zero-cell and their
displaced version when ® is a Poisson point process.

The areas of the two cells are obtained as

1
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Fig. 1. Illustration of the directional distances in the typical cell and the 0-

cell of a PPP. The blue circles represent Poisson points and the red lines
represent the Voronoi tessellations. In (a), the red square represents the
uniform randomly distributed point z in the typical cell. In (b), the cell is
rotated such that z resides on the positive x-axis. In (c¢) and (d), the red
square represents the origin and the displaced origin.

and | g

Vol = =
Vol 5/,

respectively, and the mean areas follow as

E|V(0)| = / "E(R(¢))dg

Ri(¢)de,

and ”
E[Tp| = / E(R2(2))de,
0

where | - | is the Lebesgue measure in two dimensions.
Integrating over [0,7) is sufficient due to the symmetry of
the distributions, i.e., ER(p) = ER(—y).

Definition 2 (Uniform-angled radius). We define the uniform-
angled radius R to the boundary 0V (o) of the typical cell
by

R 2 R(©)

and the uniform-angled radius Rq to the boundary v, of the
0-cell by -
Ry £ Ry(©)

where O is distributed as Uniform[0, 27].

_ Since @ is motion-invariant, we may equivalently define
R = |0V (0) N (RF,0)]| and Ry 2 ||oVo N (RT,0)].
R and R are related by

1

B(R) = - [ B ) m

and
_ 1 4
B(RY) =~ [ E(R()de. @
0
for b € R. Again, integrating over [0, 7) is sufficient due to
the symmetry.

Lemma 1. For all point processes where V (0) and Vj exist
and are finite almost surely, we have

P(|lz/R(0) <t) =2, te0,1], 3)

and

P(loll/Ro(0) <) =2, t € [0,1]. @
Proof. For any point process, conditioned on V(0), let z be
uniform randomly distributed in V(o). The probability that
lz|l/R(0) < t is the same as the probability that z falls into
the similar polygon of V' (o), with radius scaled by ¢ in all
directions. This probability is equal to ¢> for any realization
of V(0). The same argument holds for the zero-cell. O

Remark 1. Lemma 1 holds for non-stationary point processes
also, where the typical cell is centered at the origin.

B. The Typical Cell of the PVT
Let ® C R? be a Poisson point process of intensity .

Lemma 2. The probability density function (pdf) of R is
fr(r) = 2Amre 3)

Proof. Due to the isotropy of the Poisson process, it is
sufficient to consider R = |0V (0) N (R*,0)||. The event that
R is larger than 7 happens if b((R,0),7)! contains no point.
Thus, P(R > r) = e~ ", O

Remark 2. The mean area of the typical cell follows as

E|V (o) = nE(R?) = %

Recall that in [10], the mean area of the typical cell is
obtained by using Robbin’s formula [18] and that for any fixed
point p = (r,0), P(p € V(0)) = exp(—Arr?), E|V(o)] =
Je:P(peV(o)dp = fozﬂ IS exp (=Amr?) rdrdd = 1.
Our method and the method in [10] for calculating the mean
area are essentially the same, by observing that the event
that R is larger than r happens if and only if a fixed point
(r,0) € V(o). Its probability does not depend on 6. The result
for the mean area holds for arbitrary stationary point processes
[9].

Fig. 2 shows the first two moments of the directional radius
in the typical cell obtained via simulation. It is apparent that
the cell is significantly larger in the direction of the randomly
chosen point than in the opposite direction. R(0) is on average
about 55% larger than R(r).

IThe open ball with center (R, ¢) (in polar coordinates) and radius r > 0
is denoted by b((R, ¢), ).
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Fig. 2. First two moments of the directional distances in_the typical cell,
A = 1, via simulation. The mean and second moment of R (straight lines)
are obtained via Lemma 2.

C. The O-cell of the PVT

Recall that Dy = ||zg]| is the distance from the nucleus of
the O-cell to the origin.

Theorem 1. The joint pdf of Dg, Ro(y) for ¢ € [0,7) is

[Do,Ro() (@, y) = 2Amzexp ( — Am(2® + y°) + AS (¢, z,Y))

oS

x (2)\7Ty — A(Wc’y)) (6)
dy

for x > 0, y > 0 when ¢ # 0, and for y > = > 0 when
=0, and

2

S(p,x,y) = (m — p)z” —zysing

Y — T COS P
V2 + g2 —2zycosg

Proof. The event Ry(yp) > y given ||zo|| = x is equivalent to
there being no point in b((y, ¢),y) \ b((x,0), ). Hence

P(Ro(¢) >y | Do = z) = exp (— A(my® — S(p,z,y))).
)]
where S(gp,z,y) in (7) is the area of the intersection of
b((x,0),2) and b((y, ), y). i-e., S(@,z,y) = [b((x,0),z) N
b((y, ), y)l-
Hence the conditional pdf of Rg(y) given Dy is

+ (y* — x?) arccos

)

TRo(o) Do (Y | )

=exp (— Ay 4+ AS(p, x, v)) (2)\7Ty - AW)
! ©)
From the void probability of the PPP we know that
Iy () = 27z exp(—Ara?).
Applying the Bayesian rule fp, ro(p)D, (%5 Y) =
TRo(#) Do (U | ) fD, () We obtain (6). O

Fig. 3 illustrates the directional radius Ry(y) and the
intersection region.

Remark 3. Integrating (6) over x we obtain the distribution
Jor Ro(p), p € [0, 7]. A straightforward extension of Theorem
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Fig. 3. [Illustration of the intersection between b((x,0), z) and b((y, ¢),y)
whose area is S(p,x,y).

1 is the joint distribution of Ro(p1), Ro(w2), Do for p1 €
[0, 7], @2 € [0, 7], which involves the intersection of three open
balls. Such an extension is useful when evaluating the second
moment of \‘70| but is omitted here.

Corollary 1. The pdf of Ry(0) is

Fro(0) (y) = 200m)?y” exp (=Amy?), (10)
and the pdf of Ry(0) — Dy is
Fro(0)=Do (y) = VAT erfe (yv/Ar). (11)
The pdf of Ro(r) is
Fro(m) (y) = 20y exp (=Amy?). (12)

Further, Dy and Ro(7) are independent and identically dis-
tributed (iid).

Proof. See Appendix A. O

From Corollary 1, we obtain E(Ry(0)) = 3/(4V)),
E(Ro(m)) = 1/(2V\), and E(Ro(0) — D) = 1/(4V ).
Thus, R(0) is on average exactly 50% larger than Ry (7).

The correlation coefficient of Ry and Ry(0) — D follows
as
- 8§ —3m
V12 =37/16 — 37
AISO, E((RQ(O)—D())/D()) =1, but E(RQ(O)—D())/E(D()) =
1/2.

Corollary 2. The pdf of Ry is

~ —0.3462.

PRo,Ro(0)—Dg

1 iy
Jrow) = — /0 [ro(e) (y)dep.

Proof. Combine © ~ uniform|0, 27] and Theorem 1. O

13)

Corollary 2 immediately leads to ER, =

E[[" Ro(p)de]/m = 0.5753/v/X.
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Fig. 4. First two moments of the directional radius Ro () via Theorem 1
and the uniform-angled radius Rg in the O-cell, A = 1. The green curve,
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Remark 4. The mean area of the O-cell is

~ i 1.280176
BVl = | E(R()dp = =0,

Further,

E(RY(p) ~ 32, (14)
Am
where c¢(p) = 1 + exp(—¢>®/?), is a good approximation to
the second moment of the directional radius. It gives a mean
area of
2Tine(2/3, 3/2)
3

where Tine(a,z) = foz et 1dt is the lower incomplete
gamma function?.

1+ ~ 1.2869,

Fig. 4 shows the first two moments of Ry (), ¢ € [0, 7] and
Ry; it also shows the approximation ER2(¢) ~ c(¢)/(Ar) is
quite good. This new approach for evaluating the mean area
is easy to understand. By comparison, the existing approach
is based on the first two moments of the area of the typical
cell and the statistical relation between V;, and V (0) [9], [10],
which we discuss in the next subsection.

D. Relation of the Typical Cell and the 0-Cell

Fundamentally, the typical cell and the zero-cell are related

by [19]
E°||V (o Vo
E[f(LO)] [|Eo([)‘|’]££)|]( ))] )

15)

where f is any translation-invariant non-negative function on
compact sets, and [E° denotes the expectation with respect to
the Palm distribution [20]. In words, a translation-invariant
statistic of the O-cell is that of the typical cell weighted by
volume (area in 2D). Letting f(-) = |- |, the mean area of the
zero-cell is

E[|Vol] = AE°[|V (0)[?]. (16)

2In Matlab, Tinc(2/3,73/2) is
gammainc (pi~1.5,2/3)xgamma (2/3).

expressed as
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Fig. 5. Distribution of distances in the O-cell and the typical cell, A = 1.

Using  Robbin’s  formula,  E° (|V(0)[?) =
Jpa P (xo, 1 € V(0))daodzy [9] [10]. It is apparent
that the O-cell is not just the typical cell enlarged by 28%.
In fact, larger cells in the PVT are associated with being
more circular and having more sides [21]. To compare the
typical cell and the O-cell, we consider the number of sides
of the typical cell and the O-cell, denoted by N and Ny. We
have ENy = AE°[|V(0)|N] > EN = 6 due to the positive
correlation between the area and number of sides of Poisson
Voronoi cells [22, Chap 9]. Table I shows some mean values
related to the typical cell and the O-cell for A = 1.

E. Gamma-Type Results

We now compare our results with some known distributions.
Corollary 1 shows that 7R3(0) ~ I'(2,\); it is known that
lz1]], the distance between the origin and its second-nearest
point, satisfies ||z |? ~ T'(2, \) [23]. Hence Ry(0) and |||
are identical in distribution. The explanation is as follows: for
the PPP, a stopping set defined as the minimum disk containing
n Poisson points is I'(n,A) distributed [17]. Further, the
probability that a point is covered by a stopping set does not
depend on whether it is a point of the process or not. In our
cases, both 7R2(0) and 7||z||? are defined by two Poisson
points.

Denote the distance from the typical point on the edge to its
closest Poisson point by R, and the distance from the typical
point on the Voronoi vertex to its closest Poisson point by
R,. It is shown in [13], [14] that TR? ~ T'(3/2,)), and
7R2 ~ T'(2, ), which gives fr_(r) = 4\3/27r2¢=>7" and
fr.(r) = 2(Am)2r3e=*"" Hence Ry(0) and R, are identical
in distribution. Fig. 5 shows the complementary cumulative
distribution functions (ccdfs) of the distances given in Lemma
2, Theorems 1, 2, and the distributions of R, and R,.

F. Discussion and Impact of Cell Asymmetry

From the results on the directional radii, it is apparent
that the Poisson Voronoi cells are, quite surprisingly, rather
asymmetric around their nucleus. We summarize them in the
facts below.

Fact 1. For the zero-cell, the mean radius in the direction
of the typical user is 50% larger than the mean radius in
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EN =6
ENp = 6.41 (¥)

Typical cell
Zero-cell

E[V{o) =1
E|Vo| ~ 1.28

ER(0) = 0.67 (*), ER(7) = 0.432 (%)
ERy(0) = 0.75, ERo(w) = 0.5

ED = 0.447 (*)
EDg =0.5

TABLE I
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Fig. 6. The distribution of D and R(7), A = 1, via simulation.

the opposite direction, i.e., E (Ro(0)) /E (Ro(m)) = 3/2. The
typical user is at the same distance as an edge user in the
opposite direction, since Ro(m) and Dq are iid. Further, we
can infer from Fig. 4 that about a quarter of edge users (those
with ¢ > 3m/4) are at essentially the same distance as the
typical user.

Fact 2. For the typical cell, numerical results from Table I
suggest that ER(r) is 3% smaller than ED. The ccdf of D
and R(r) are plotted in Fig. 6, which shows that the two
curves are almost identical. In the one-dimensional case where
¢ € {0, 7}, the distribution of R(r), derived in Appendix B,
is identical to the distribution of D, derived in [11, Theorem
1]. Further, we can infer from Fig. 2 that about a quarter of
edge users (those with v > 3w /4) are at essentially the same
distance as the uniformly random user.

In addition, the distance from the typical BS to the
nearest edge location, Ry, is distributed as fg, .. ()
8Amre =4 " ag it is half the nearest-neighbor distance in
the PPP. Since E(mRZ%, ) = 1/4, 3/4 of the interior users
are farther from the nucleus than the nearest edge user. And
E(Rpmin) is only 37% of the mean distance in the direction of

the uniformly random user.

These facts may prompt us to rethink some assumptions
that are generally made, such as the claim that edge users
necessarily suffer from low signal strength. Also, care is
needed when evaluating the performance of non-orthogonal
multiple access (NOMA) schemes, especially if “cell-center”
refers to a user located uniformly at random in the cell and
“cell-edge” refers to a user located uniformly at random on the
edge of the cell. In this case, simply pairing a cell-center user
as the strong user and an edge user as the weak one may be
quite inefficient, since the edge user may be closer to the BS
than the “cell-center” user. Conversely, if “cell-center” and
“cell-edge” are defined based on relative distances between
serving and interfering base stations [24], [25], then a “cell-

Some mean values of the typical cell and the zero-cell in the PVT. Results obtained via simulations are marked by (*).

edge” user may actually be quite far from the edge of the
cell. A potential model to pair users for Poisson Voronoi cells
is to select a “cell-center” user uniformly at random inside
the cell, and select an edge user whose angle differs only
slightly from that of the “cell-center” user. This increases the
likelihood of significant channel gain difference between users
and thus increases the NOMA gain. An alternative model that
guarantees the intended ordering of strong and weak user is
to place the two randomly in the in-disk of the cell and then
order them [26].

IITI. A JOINT SPATIAL-PROPAGATION MODEL FOR
CELLULAR NETWORKS

In coverage-oriented cellular networks, it is natural to
assume that the operator uses a deployment method where
BSs are spaced more densely in regions with severe signal
attenuation and less densely in regions with more benign
propagation conditions. In this section, we assume that the
BS locations result from such a deployment procedure. Conse-
quently, we introduce the JSP model which reverse-engineers
the underlying cell-dependent shadowing characteristics from
the shape and size of the Voronoi cells. For the Poisson
deployment, the Voronoi cell radii distributions are provided
in the last section. We refer to the JSP model for the PPP as
the JSP-PPP model.

A. System Model

Let ® C R? be a stationary point process with intensity
A modeling BS locations. The typical user is located at the
origin o without loss of generality. We assume all BSs are
active and transmit with unit power. For x € &, denote by
h, and K, the power of the small-scale iid Rayleigh fading
with unit mean and the large-scale shadowing between z and
the origin, respectively. The power-law path loss model is
considered, i.e., {(x) = ||x||~®, where a > 2 is a constant.
Note that this propagation model applies to a low-density high-
power BS deployment, which is usually well-planned. The
framework can be generalized to a dense small cell networks
setting by accounting for the LoS/NLoS effect with a multi-
slope LoS/NLoS path loss model, in which case the BS density
plays a more critical role. For instance, see [27].

Let {z;}ien, be the point process ordered by the distance
to the origin: zgp £ arg min,4{[z||} and so on. Let ()
be the distance from z € ® to its Voronoi cell edge oriented
towards the typical user. Note that 7(xg) = Ro(0), which is the
zero-cell radius in the direction of the typical user in Section
II. Fig. 7 shows a realization of ® and the corresponding
r(xo),r(x1), r(x2). By the construction of the Voronoi cells,
r(wo) 2 [lzoll and r(zi) <z, i > 1.

Definition 3 (Cell-dependent shadowing). In cell-dependent
shadowing, for given ®, {K,},co are conditionally inde-
pendent log-normal random variables such that the expected
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Fig. 7. An illustration of the JSP model with cell-dependent shadowing.
Blue circles are BS locations generated from a PPP with A = 3.5 x 107°.
Red lines are the Voronoi tessellation. The typical user denoted by the red
square is located at the origin. r(x;) is the length of the black line segment,
which is the cell radius of z; oriented towards the typical user.

large-scale path loss from x to its Voronoi cell boundaries is
Po, i.e.,

E[K,r(z)" | ®] = Pp. (17

We denote by n, and o, the mean and standard deviation
of log(K,) conditioned on ®, and we fix o, = o > 0 for
Vz € P.

Remark 5. Cell-dependent shadowing introduces dependence
between shadowing and cell radius (determined by BS geom-
etry). For the Poisson deployment, the shadowing coefficients
are correlated because nearby cells in the PVT are correlated
in shape and size and, in particular, in their directional radii.
Intuitively, cells in proximity are shaped by some common
points. In cell-dependent shadowing for a point pattern ¢
(e.g., a realization of a PPP), the shadowing coefficients
are independent (usually not identical) log-normal random
variables.

Remark 6. The model in [1] assumes r(x)~**) = Py, which
captures the cell-dependent signal propagation through the
PLE. It is sensitive to Py and )\ due to the singularity of
the path loss model. Our model avoids its deficiency while
generalizing several models in the literature: if in (17), Py =
r(z)~® (instead of a constant), we retrieve the iid shadowing
model in [7]; if further o = 0, we retrieve the traditional
model without shadowing (or constant shadowing) in [28].
The log-normal model is commonly used for shadowing and
allows us to compare this work with previous models.

Remark 7. Note that the shadowing from an interfering BS
x to the typical user is assumed to only be related to the
cell radius r(x), and o, = o is fixed for all BSs. This is a
simplification® as the shadowing may occur along the signal
path outside the cell, and more remote BSs may have a larger

3Such a simplification is common in the literature, e.g., often the shadowing
coefficients from all BSs are modeled as identically distributed.

shadowing variation. Nevertheless, the assumption enables an
average minimum received power at all cell edges, which is
the primary concern for coverage. Further, it is expected that
the power-law path loss is the dominating large-scale effect
for remote BSs.

For the cell-dependent shadowing, o captures the variation
of K,||r(x)||~ around Py.

1) 0 =0: For 0 =0, {K,}scq is a deterministic function
of ®. In this case, we have

K, = Pyr(x)®. (18)

Users located at the Voronoi cell edge of x receive a constant
signal power P, (averaged over small-scale fading) from =x.
This corresponds to a scenario where operators have access
to precise terrain and propagation data and the BS layout is
optimized for coverage.

2) o > 0: For o > 0, the shadowing in the JSP model is
doubly random such that the power averaged over small-scale
fading at the cell edge fluctuates around Fy. In this case, we
have

E[K, | ®] = Pyr(z). (19)

This corresponds to a scenario where operators have imprecise
terrain and propagation data or where the BS deployment is
suboptimal for coverage. Given ®, we have exp(p, +02/2) =
Por(x)®, which yields p, = log(Pyr(x)®)—o?/2. Depending
on whether 0 = 0 or 0 > 0, { K }.cq is either a deterministic
function of ® or is a set of random variables correlated with
®. From the expression of y,, the correlation diminishes as o
increases.

We consider the strongest-BS association throughout this
paper, i.e., the typical user is served by the BS with the
strongest signal averaged over small-scale fading. Denote the
serving BS by z = arg max,c4{K,||y[|~*}. The signal-to-
interference ratio (SIR) is

S ho Kg||lx))~

SIR £ = = .
I Zy@\{x} hy Ky [yl

(20)

B. Performance Metrics

We focus on the following three performance metrics.

1) Asymptotic Gain: The success probability is defined as
ps(0) = P(SIR > 6), 6 > 0. For models with iid Rayleigh
fading, it is shown in [29] that

1—ps(f) ~MISR 6, 6 — 0, (1)

where A(t) ~ B(t) means the limit of their ratio goes to 1,

and the MISR (mean interference-to-signal ratio) is defined
4

as

MISR £ E[I/E,[S]]
- IE[ Z

yed\{z}
4Shadowing is not considered in the model and definition of the MISR in
[29]. But it is straightforward to extend the definition of the MISR to include
shadowing.

Kyllyll‘”‘]
Ko la] =



Thus, we can compare the asymptotics of the success
probabilities for different models by simply calculating the
ratio of their MISRs. Throughout this paper, we use the
standard PPP model as the baseline for comparison, where
MISRppp = 2/(cv — 2) [29]. Let G denote the asymptotic

gain. We have
MISRPPP

MISR

2) Meta Distribution: For ergodic point processes, the meta
distribution [2] gives the fraction of users that achieve an SIR 6
with a reliability higher than 2, which is a more fine-grained
performance metric than p,(6). It is defined as Fp (6, z) =
P(P(0) > ), x € [0,1], where Ps(8) = P(SIR > 0 |
@, {Ky,}yca) is the conditional success probability. In words,
P,(0) is the reliability of the typical link under small-scale
fading while the large-scale propagation (shadowing and path
loss) is given. For Rayleigh fading, the conditional success
probability is

Py(0) 2 P(SIR > 0 | @, {K, },ca)

o0 S n Sl

[e%
L2 Rl
@ 1] 1
AL TRl e KL R,
Step (a) follows from the iid exponential distribution of
hy,x € ®. The b-th moment of the conditional success
probability is

G = 22)

s ) | @ e

My(9) = E[P,(6)"], beC.

Note that ps(0) = M;(6).

3) Path Loss Point Process: We define the path loss point
process® for a general BS point process ® to be II £
{llz)|*/K+},cqe- The path loss point process, introduced in
[30], characterizes the received signal strengths (averaged over
small-scale fading) from all transmitters in the network from
the viewpoint of the typical user. This notion helps establish
equivalence between the performance of networks when their
path loss point processes have the same distribution. To avoid
a colocated BS and user, we assume no BS is located at the
origin.

(23)

C. Relevant Results

In the standard models, the shadowing is a constant, 7.e.,
K, =1, ©z € ®. The large-scale path loss depends only
on the BS locations. The nearest BS provides the strongest
signal. It is known that for the standard PPP, M,(6) =
1/9F1(b,—0;1 —0;—0) [2], b € C, where oF is the Gauss
hypergeometric function, and § £ 2/c. The asymptotic gain
G captures the SIR gap due to BS deployment. For instance,
the standard triangular lattice has an approximately 3.4 dB
asymptotic SIR gain over the standard PPP for a = 4 [29].

In the iid log-normal shadowing model [7], {K}.co are
iid, and log K, ~ N'(u,0%), p = —0?/2, sothat EK, = 1. It

31t is also referred to as the “propagation process” in [7] or the “signal
spectrum” in [8].

is shown in [31] that the path loss point process II for a PPP
with iid shadowing is an inhomogeneous PPP. Thus, under
the strongest-BS association, the iid log-normal shadowing
model for the PPP performs exactly the same as the (baseline)
PPP. Further, [7] shows that when ¢ — oo in the iid log-
normal shadowing model, the path loss point process of any
deterministic/stochastic BS point processes converges to that
of a PPP, given the point process satisfies a mild homogeneity
constraint. Remarkably, [8] proves that this conclusion also
holds for moderately correlated shadowing.

IV. PERFORMANCE ANALYSIS OF THE JOINT
SPATIAL-PROPAGATION MODEL

In this section, we analyze the performance of the JSP-PPP
model. We focus on the distribution of the serving signal,
shadowing distribution/correlation, the asymptotic SIR gain,
the SIR meta distribution, and finally the path loss point
process. We first introduce the lemma below.

Lemma 3. For a Poisson point process with intensity ), the

cedf of (i) /||

P(r(z:)/llill > ) = 1 =1*)", t€[0,1], (24
and the ccdf of r(x;) is
P(r(z;) > t) = exp(—Art?). (25)

Proof. Recall that x; is the ¢+ 1-th closest point to the origin.
Let ®(b(o,r)) denote the number of points in ® falling in the
disk of radius r centered at the origin. For ¢ € [0, 1],

P(r(zi)/ |zl > t)
= BP(r(z:) > |lwallt | ||=:]])

(
@ EP(®(b(o, ||2i][t)) = 0 | B(b(o

i
o g (el = ot
IR

=(1-t%)%

) = 2)

Step (a) holds since the probability of having no point inside
a disk only depends on the radius of the disk, not on the disk
center. Step (b) follows from the property of the PPP, where
conditioned on ||x;||, the ¢ points are distributed uniformly at
random in b(o, ||«;||). Combining (24) with the distribution of
|l || [23] we obtain the ccdf for r(x;), i > 1, in (25). O

A. The Serving Signal

For o = 0, the nearest BS z( provides the strongest signal.
Hence E,[S] = K.

zo 1ol ~%. We have
P(Ky [[zol| = > ) = P(Por (o) [[zol = > #)

= P(Ilon/r(azo) < (Po/t)"/*)

@ psts 1> P, (26)

where t > Py due to the minimum received power con-
straint. Step (a) follows from Lemma 1. The distribution of
K, |lzol| = does not depend on the intensity or distribution
of ®, and it is equal to the distribution of the signal power
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Fig. 8. The distribution of E;[S]. Pp = 0.5, a = 4.

in a disk where the received power at the cell edge is Fy. In
other words, for the serving signal, the JSP model turns any
irregular cell shape into a disk. For the standard model, (26)
can be shown to hold asymptotically [32, Lemma 7].

Fig. 8(a) shows the distribution of E,[S] for the JSP-PPP
model and (26) with 0 =0, A = 1072, Py = 0.5, and o = 4.
Fig. 8(b) shows that we can use (Py/#)~° to approximate the
distribution of the signal from the nearest BS in the standard
triangular lattice network, which is not surprising considering
that hexagonal cells and circular cells are similar in shape. The
intensity of the triangular lattice in Fig. 8(b) is scaled such
that Py = (Am)'/? for a fair comparison. Note that unlike in
Poisson networks, there is a minimum average received power
in lattices determined by the intensity of the point process.

We further obtain the tail of the ccdf of S' as follows.

Lemma 4. For the JSP model with any BS process and o = 0,

P(S > t) ~ PSRE(hO)t™°, t — oo. 27)
Proof.
P(S > t) = P(Pohyor(xo)®||zo||”* > t)
= P(||zoll/r(x0) < (Pohay/t)"/®)
~ PE(R°)t™%, t — oc.
O

In [32, Lemma 7], it is shown that for the standard model,
the tail of the ccdf of the desired signal strength for all sta-
tionary point processes is P(S > t) ~ ArE(h%)t=%, t — oo.
If we let

Py = (Am)'/?,

we obtain the same tails. Intuitively, if we could “pack”
the space with congruent disks, we would have r=¢ =
(1/Am)=/2 = (Am)1/? = P,

For o > 0, the serving BS = = arg max, ¢4 {/,[ly[[ 7%}

P(K [z~ < 1)

=P(Hylyl ™™ <tyeP) (28)
=E [ P(K, < |t | ®)
yed
1 1 1 a_ oo P o 2 /9
:EH<+erf[ogtlly og Por(y)* + o2/ D
yed 2 2 \/QU

B. Shadowing Coefficients

1) Distribution: For o = 0, the shadowing coefficient from
any BS is a deterministic function of the cell radius of that
BS oriented towards the origin. For the serving cell,

P(K,, >t) = exp (—ATt Py 0)(1+ Axt?Py%),  (29)

and

P(K,, >t) = exp (—Art° Py °), (30)

which follow from the distribution of r(z¢) and r(z;),7 > 1,
in Theorem 1 and Lemma 3, respectively.

Based on (29) and (30), E[K,,] = Po(Ar)~*/?T'(a/2+2).
E[K,,] = Py(Am)~*/?T'(a/2+1), i > 1. Denoting by VK,
the variance of K, we have VK, = PZ(Ar) (' (a+2) —
I'(a/2+2)?) and VK,, = P(Ar)"*(T(a+1) — T'(a/2 +
1)?), i > 1. Fig. 9(a) shows the ccdfs for K,, and K,,. Fig.
9(b) shows the mean and standard deviation of K, and K,
versus o based on (29) and (30). K, statistically dominates
K.,,i > 1, since r(x¢) statistically dominates r,,,7 > 1.

For o > 0, the ccdf of K, is

P(K,, >t) =EP(K,, >t]|r(x;))

_ Yo 2
_ lEerfc (1ogt log(Por(xz;)*) + o /2)7
V20

where the distribution of r(zg) is given in Theorem 1 and
the distribution of r(z;),s > 1, is given in Lemma 3. ¢
appears in both the denominator and numerator inside of the
erfc function. When o — oo, the impact of r(x;) diminishes.

2) Correlation: We consider two types of shadowing corre-
lation. The first type is the correlation between the shadowing
coefficients from two BSs to the typical user. The second
type is the correlation between the shadowing coefficient and
the directional radius of a cell. In the proposed JSP model,
these two types of correlation are inherently related, :.e., the
correlation between shadowing is induced by the correlation
between cell radius. If the BS deployment is modeled by
a point pattern (z.e., deterministic point process), only the
second type of correlation exists.




Lo
[m]
[©]
(©]
0 5 10 15 20 25 30
(a) Ccdfs of the shadowing per (29) and (30).
10
-6 EK,, D
-+ EK,,
8 |- V(Ky,)

I
e — = X
* _x__g——x——*"”' L
- — % — % —

0 L L
25 3 3.5 4

[0
(b) Mean and standard deviation. Py = (Am)*/2.
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Let Py = 1 for simplicity. The correlation coefficient be-
tween the shadowing coefficients K, K, (from BS z,y € ®)
is

E[K,K,] - EK,EK,
VVK,\/VK,

where E[K,K,| = E[r(z)*r(y)?], EK, = E[r(z)*], and
VK, = exp(c?)Er(z)** — (Er(x)®)2. As the distance be-
tween two BSs z, y increases, the correlation between r () and
r(y) vanishes. Hence the locality of the shadowing correlation
is preserved. Obviously, px, k, < Pr(z)ar(y)e, and the
equality holds when o = 0. Further, pg, k, decreases with
o. For 0 — o0, pg, x, — 0 for any x # y.

The correlation between K, and r(x)® is

PKy Ky =

PK,,r(z)e =

where again, VK, = exp(c?)Er(z)?® — (Er(z)*)2.
PK,r(x)> = 1 for 0 = 0. For 0 — 00, px, r(z)« — 0.

C. Asymptotic Gain

The MISR of the JSP-PPP model is MISR =
E yea\ (o Kyllyll™*/Kzllz]| 7], which is independent

2.6

247

= Tri. 1
—6—JSP-PPP, =0

161
141

121

3 3.2 3.4 3.6 3.8 4
o

(a) The asymptotic gain for triangular lattices and the JSP-PPP with
o=0.

2.6

0 0.5 1 1.5 2 2.5 3

o
(b) The asymptotic gain for the JSP-PPP with ¢ = 0,1, 2, 3, for
a = 4.

Fig. 10. The asymptotic gain of the JSP-PPP model relative to the standard
PPP model. Note that by definition, the standard PPP model yields G = 1.

of P and A. For ¢ = 0, we have MISR =
E ooy 7@yl = /r(2)*||z[|~*]. The correlation be-
tween r(z),r(y), ||z||, ||y|| makes the calculation of the MISR
involved. Hence we use simulations to study the impact of «
and 0. Fig. 10(a) shows the asymptotic gain (relative to the
standard PPP model) for the standard triangular lattice model
and the JSP-PPP with ¢ = 0, which increases with «. Fig.
10(b) shows the asymptotic gain G for the JSP-PPP decreases
with 0. As discussed in the last subsection, increasing o
decreases the correlation between shadowing and cell radius
as well as the correlation between the shadowing coefficients.
Eventually, as ¢ — oo the JSP-PPP model reverts to the PPP
with iid log-normal shadowing.

D. SIR Meta Distribution

Fig. 11 shows how the conditional success probabilities
with a fixed # = 1 are distributed for the PPP with iid log-
normal shadowing and the JSP-PPP model with the strongest-
BS association. For ¢ = 0, the region where P;(6) > 0.8
appears elliptical around the nucleus for the PPP; in contrast,
for the JSP-PPP, the region where Py(6) > 0.8 is enlarged
and adapts to the cell shape almost perfectly. For o = 1, both
regions are blurred due to the shadowing variance.
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Fig. 11. TIllustration of the conditional success probabilities for & = 1 for
the PPP with iid log-normal shadowing and the JSP-PPP with ¢ = 0, 1 under
the strongest-BS association, A = 1, o = 4.

Fig. 12 shows the simulation results for the SIR meta
distribution of the JSP-PPP model with fixed reliabilities. The
meta distribution for the (standard) triangular lattice and the
(standard) PPP model are plotted for comparison. Under the
strongest-signal association, the meta distribution decreases
with o, shifting the curve towards that of the PPP.

Fig. 13 plots the first two moments of the conditional
success probability for the JSP-PPP model and the triangular
lattice with iid log-normal shadowing. Both moments are
approximately the same for a set of different values of o.
Hence the meta distribution for the JSP-PPP model is close
to that of the triangular lattice, since the first two moments
generally lead to a good approximation of the meta distribution

[2].

E. Convergence of the Path Loss Point Process

The path loss point process of the JSP model for a point
pattern ¢ is IT = {{|z[|*/K.},c 4. In this subsection, we show
that the path loss point process of the JSP model for any
realization of the PPP converges to that of a PPP as 0 — oc.
First we recall a result from [7].

Proposition 1. [7] For any deterministic and locally finite
collection of points ¢ C R? without a point at the origin,
let the shadowing coefficients, {K}zeq4, be iid log-normal
random variables with EK, = 1 and V(log(K,)) = o> If
there is a constant 0 < \ < oo such that as t — oo

¢ (b(o,t))
mt?
then the path loss point process 11 after rescaling by
(EKS)Y® = exp (—a?(1 — 6)/2) converges weakly as o —
00 to that of the PPP on R™ with intensity measure A([0,t)) =
A2

= A, 31
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Fig. 12. The meta distribution for the JSP-PPP model with ¢ = 0,1,2,3
and x = 0.9,0.99, o = 4. The black dashed and dotted curves denote the

meta distribution for the PPP and the triangular lattice (without shadowing),
respectively.

The rescaling of TT by (EK?)'/9 is necessary to obtain a
non-zero intensity measure as ¢ — co. Now, when ¢ be a
realization of the PPP, we have the convergence of the path
loss point process for the JSP model as follows.

Lemma 5. The path loss point process of the JSP
model for any realization of the PPP after rescaling by
Pyexp (—o?(1 —4)/2) converges weakly as o — oo to that
of the PPP on R™ with intensity measure A([0,t)) = t2.

Proof. We first show that the JSP model for a point pattern
¢ can be viewed as the iid log-normal shadowing model in
Proposition 1 with a modified point pattern qAb Then we show
that Whep ¢ is a realization of the PPP, its modified BS point
pattern ¢ satisfies the convergence criterion.

For the JSP model, {K,};cs are independent but not
necessarily identically distributed log-normal random variables
such that EK,, = Pyr(x)® and V(log(K,)) = 0. We have

j-fres )

where ¢ £ {z € ¢:a/r(x)} and K, & K,/r(z)*.
Now {K }zece are iid log-normal with EK, = P, and

™ 1
r(@)® Ky [r(z)*

H:{xE(b:
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V(log(K,)) = o2 After rescaling of II by (EK?)Y/9 =
Pyexp (—o?(1 —4)/2), we retrieve the iid shadowing model
in [7]. Now it suffices to show that q@ satisfies the homogeneity
condition (31).

For the PPP,
B (b(o, 1) = EY_ 1ol /() <1
i>0
= P(r(z:)/|l > 1/¢)
i>0
@2,

Step (a) follows from the ccdf of r(x;)/||z;|| given in Lemma
1 and Lemma 3. 1(-) is the indicator function. Hence we have
E®(b(o,t))/nt? = 1/7. By the ergodicity of the PVT [33],
limy_ 00 4(b(0, 1)) /7t = 1/7. O

V. CONCLUSIONS

This paper provides new results on the directional radii
of the typical and the zero cell in the Poisson Voronoi
tessellations, which characterize the cell shape and unveil the
cell asymmetry. Based on the directional radii, a joint spatial-
propagation model for coverage-oriented cellular networks is
studied. In contrast to virtually all prior models, the JSP

model ascribes the Poisson deployment of base stations to
an intelligent design by the operators, rather than to pure
randomness as it would result from a blind placement, ignorant
of propagation conditions. As a result, the JSP model with the
seemingly pessimistic Poisson deployment performs as well
as the standard triangular lattice model. For instance, with
a = 4, there is a 3.4 dB SIR gap between the standard Poisson
model and the standard triangular lattice model. Such a gap is
eliminated with the JSP model when o = 0. This work also
highlights the effect of the variance of the large-scale path loss
along the cell edge. In the limiting case of ¢ — oo, the path
loss point process for the JSP-PPP converges to that of a PPP.

For future work, the effects of shadowing correlation be-
yond that derived from the cell radius correlation can be
analyzed. For instance, the variance of shadowing is usually
correlated with distance, and/or the shadowing coefficients
from nearby BSs are correlated even for deterministic BS
locations. Another interesting direction is the modeling and
analysis of capacity-oriented networks, where one may ascribe
the Poisson deployment to the local user density. In this case,
the typical user has a higher chance of being in close proximity
to its serving BS.

APPENDIX
A. Proof of Corollary 1
Letting ¢ = 0, the joint distribution of Dy, Ro(0) is

y>x=>0.
(32)

FRo(0),00 (2, 9) = (2A7)%zy exp (—Amy?),

So the pdf of Ry (0) is

y
£0,00) = [ Tnoy (e, 0)ds = 2007 exp (~Amy?).
' (33)
The ccdf of Ry(0) — Dy given Dy can be written as

P(Ro(0) = Do >y | Do =z) =P(Ro(0) >z +y | Do =)

exp(—)wr(y2 + 2zy)),

(34)

and

FRo(0)=Do Do (Y | ®) = 227 (2 + y) exp(—Am(y® + 2zy)).
(35
The joint distribution of Ry(0), Ro(0) — Dy is

FRo(0),Ro(0)~ Do () = (227) 2z (2 + y) exp (=A7(z +y)?),
(36)
which gives the pdf of Ry(0) — Dy as

Fro0)—o () = (2Am)? / " oo+ y)exp (—n(a +y)2)da

= Vrerfe (yVAr). 37)

For ¢ = m, we obtain S(m z,y) = 0, w =
Y
0. fpo,ro(my(,y) = 2Amax2myexp(—An(z® + ¢?)) =
IDo (%) fRo(x)(y). Thus, Doy and Ro(r) are iid.



B. R(y) in One-Dimensional PPPs

Let ® be a one-dimensional PPP with intensity A. Let
X1,X_1 be the distances from the origin (the typical
point) to the first right and first left point. Let R; =
min{Xl/Q,X,l/Z} and R2 = maX{X1/2,X,1/2}. Rl, R2
has the joint pdf

fRi Ry (T1,72) = 8) 2 exp (=2\ (r1 +712)), 0<7 <ro.
Now,

P(R(r) <r)

=E[P(R(r) <71 | Ry =71,Ry = 13))] (38)

:]E{i

T2
1 <r< 1(r > }
. (ri<r<ry)+1(r>ry)

= / / L8exp(—2(rl + 79))dridry + P(ra <)
r o + 72

=1 —exp (=2)\r) + 2 r exp(—2Ar) — 4\*r? E; (2)r),

where Ei(z) =

o0 ex (_t) . . .
[, B —=dt is the exponential integral

function. We have ER(7) = ED = 1/3, and ER(0) = 2/3.
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