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Abstract—This work studies the signal-to-interference-plus-
noise ratio (SINR) meta distribution (MD) in cellular networks
with a focus on the Poisson model. Firstly, we show that for
stationary base station point processes, arbitrary fading, and
power-law path loss with exponent α, the base station density
λ and the noise power σ2 impact the SINR MD only through
η , λα/2/σ2, termed the network signal-to-noise ratio (NSNR).
Next, we show that for Poisson cellular networks, the SINR
MD can be written as g(x)θ−2/α when the target SINR θ and
the target reliability x jointly satisfy a constraint. We derive
this constraint and the integral of g(x). Lastly, we discuss
several extensions of the results to more general models and
architectures.

Index Terms—Cellular networks, SINR meta distributions,
stochastic geometry.

I. INTRODUCTION

The meta distribution (MD) of the signal-to-interference-
plus-noise ratio (SINR) [1] is an important metric in cellular
networks. By separating the randomness over time (small-scale
fading) and randomness over space (large-scale path loss), the
MD characterizes the network performance more comprehen-
sively than traditional metrics: it gives the entire distribution of
the individual link success probability as opposed to its mean.
However, the MD is difficult to derive directly using standard
stochastic geometry tools. Instead, a common method is to first
derive the moments of the link success probability and then
calculate the MD or its approximations based on the moments
[1]–[3]. A key step in this method is the efficient calculation
of the distributions given the moments.

In contrast, this work focuses on the analytical properties
of the MD that directly show the impact of key system pa-
rameters. Recently, we have shown in [4] that in interference-
limited Poisson networks with power-law path loss with path
loss exponent α, the signal-to-interference ratio (SIR) MD for
arbitrary fading can be expressed as g(x)θ−2/α when the target
SIR threshold θ and the target reliability x jointly satisfy a
constraint. Due to the interference-limitedness assumption in
[4], noise is neglected. However, depending on the network
density and the signal propagation condition, noise can have
a significant impact on the MD. This work characterizes such
an impact by studying the SINR MD. Specifically, we show
that for power-law path loss and arbitrary fading, the noise
power σ2 and the base station (BS) density λ jointly impact the
MD only through the network signal-to-noise ratio (NSNR),
defined as follows.

Definition 1 (Network Signal-to-Noise Ratio). The network
signal-to-noise ratio for a stationary BS point process with

density λ is
η , λα/2/σ2. (1)

Next, focusing on Poisson networks, we show that the form
g(x)θ−2/α is exact for the SINR MD in the same separable
region derived in [4] for the interference-limited setting. We
further derive the integral of g(x) over [0, 1], which depends
on the NSNR and the fading statistics.

In the following section, we consider a baseline model
with arbitrary independent fading and power-law path loss. In
Section III, we discuss a few extensions of the results to more
general settings, including general path loss models, multiple
resource blocks with selection combining, the ALOHA model,
and BS silencing. Section IV concludes the paper.

II. BASELINE MODEL

A. System Model

Consider a stationary and ergodic BS point process Φ ⊂
R2 with intensity λ and the downlink receiver (user) at the
origin o. Let xi, i ∈ N, denote the ith nearest BS to o in
Φ and ri , ‖xi‖ denote the distance from o to xi. Consider
power-law path loss with exponent α > 2, independent fading
{hi}∞i=1, additive white Gaussian noise with variance σ2 and
nearest-base station association (NBA). The BS transmission
power P is set to 1. The SINR at the origin is

SINR =
h1r
−α
1∑∞

i=2 hir
−α
i + σ2

,

where Ehi = 1. The link success probability is

Ps(θ) , P (SINR > θ | Φ) , θ > 0,

which is referred to as the conditional success probability
(CSP). The SINR MD is [1]

F̄Ps
(θ, x) , P(Ps(θ) > x), x ∈ [0, 1],

which is parametrized by two variables, namely the target link
SINR threshold θ and the target link reliability threshold x.
Note that in contrast to bipolar network models [5], adding
noise does not reduce the support of the distribution of Ps(θ).
The standard success probability is EPs(θ) =

∫ 1

0
F̄Ps

(θ, x)dx.
For the Poisson point process (PPP) with iid Rayleigh fading,
EPs(θ) is calculated in [6, Proposition 7.3.1] and also available
in [7]; the moments of the CSP Mb(θ) , EPs(θ)b, b ∈ C,
are calculated in [1] for the interference-limited case (σ2 = 0)
and in [3] for σ2 > 0.
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B. General Networks

Let Φ0 be an arbitrary stationary point process of density 1.
We assume that the BS locations are modeled by Φ = Φ0/

√
λ,

where λ > 0 is the density of Φ.1

Lemma 1. For the baseline model, the SINR MD depends
on λ and σ2 only through the NSNR. Equivalently, if the
bandwidth (and thus the noise power) is doubled, the BS
density needs to be increased by a factor 22/α to maintain
the same performance.

Proof: Let us write

SINR =
h1∑∞

i=2 hir
α
1 r
−α
i + rα1 σ

2

and

Ps(θ) = P
(
h1 > θ

(
rα1

∞∑
i=2

hir
−α
i + rα1 σ

2

) ∣∣∣ Φ

)
. (2)

For any fading distribution, rα1
∑∞
i=2 hir

−α
i does not depend

on either λ or σ, since {ri}∞i=1 is scaled by the same factor
1/
√
λ. The distribution of the random variable rα1 σ

2 depends
on η = λα/2/σ2.

We observe that densifying the network has the same effect
as reducing the noise power. In the ultradense case, as η →∞,
the network becomes noise-free—as if σ2 → 0. Conversely,
when η → 0, the network is interference-free, but the SINR
decays to 0. Lemma 1 shows that two networks that differ only
in the BS density and noise power are equivalent in their SINR
MD performance if λα/21 /σ2

1 = λ
α/2
2 /σ2

2 . One may define a
crossover point of η and classify the network as interference-
limited if η > 1 (assuming unit transmission power) and noise-
limited otherwise. For α = 4, η = λ2/σ2. So if there is twice
as much noise, the BS density needs to be increased by a
factor of

√
2 to maintain the same performance.

In a practical setting, relevant network parameters include
the BS transmission power P (normalized to 1 in this work),
the BS density (estimated by the average inter-site distance),
and the noise power (estimated by noise density and channel
bandwidth). We can generalize the definition of NSNR to
include P , i.e., η = Pλα/2/σ2. For instance, a dense urban
scenario may have λ ≈ 25/km2 (λ ≈ 1/d2 for inter-site
distance d = 200 m in a square lattice) and noise power -94
dBm (for noise density -174 dBm/Hz and 100 MHz channel
bandwidth) [8], [9].

A similar observation to Lemma 1 is made in [10, Lemma
4] for the standard success probability, i.e., EPs(θ), and only
for the PPP. Note that the equivalence in the standard success
probability does not imply the equivalence in the SINR MD,
while the opposite holds trivially since EPs(θ) is obtained
by integrating the MD over the parameter x. For instance,
it is known that for Poisson networks with instantaneously-
strongest base station association (ISBA), EPs(θ) does not
depend on the fading distribution. Thus it is equivalent to the
success probability for no fading [11]. Such an equivalence
does not hold for the SINR MD: Ps(θ) ∈ {0, 1} for no fading

1This way, if Φ0 is a hard-core process with hard-core distance u, Φ has
a hard-core distance u/

√
λ.

while 0 < Ps(θ) < 1 for general fading (with continuous
distribution).

C. Poisson Networks

We now derive the separability of the SINR MD in Poisson
networks for arbitrary fading. Later, we consider two special
cases of fading: no fading and Rayleigh fading. We use the
dual interpretation of the SINR MD [12] to obtain the rate
distribution for fixed reliability. Then we discuss the impact
of the fading statistics.

1) Separability: Define R+ , [0,∞) and δ , 2/α. The
following theorem characterizes the separability of the SINR
MD in Poisson cellular networks.

Theorem 1. For Poisson networks, there exists a function g :
[0, 1]→ R+ such that the SINR MD is

F̄Ps
(θ, x) = g(x)θ−δ, (θ, x) ∈ D,

where
D , {(θ, x) : P (h1/h2 > θ) ≤ x} , (3)

and g depends on the distributions of the fading random vari-
ables {hi}i∈N and η. Further, g is monotonically decreasing
with g(1) = 0.

Proof: Let us rewrite (2) as

Ps(θ) = P
(
h1 > θ

(r1
r2

)α(
h2+

∞∑
i=3

hi

(r2
ri

)α
+rα2 σ

2

) ∣∣∣ Φ

)
.

(4)
Ps(θ) is continuous and monotonically decreases with θrα1 /r

α
2 .

Denote the inverse of Ps(θ) w.r.t. θrα1 /r
α
2 as f . f is a function

of the random variables {ri}i≥2 and depends on σ2. Then

F̄Ps
(θ, x) = P (Ps(θ) > x)

= P (θrα1 /r
α
2 < f (x, r2, . . .))

= E [P (θrα1 /r
α
2 < f (x, r2, . . .) | r2, . . .)]

= E
[
min

{
1, θ−δf (x, r2, . . .)

δ
}]

.

The last step follows from the fact that for a PPP, P(r1/r2 <
t) = t2 and r1/r2 is independent from {ri}i≥2 [4].

For (θ, x) ∈ D,

Ps(θ) > x ⇒ Ps(θ) > P (h1 > θh2) (5)

Writing Ps(θ) as (4), we conclude f(x, r2, . . .) < θ for
∀{ri}i≥2, (θ, x) ∈ D. Note that

∑∞
i=3 hi(r2/ri)

α+rα2 σ
2 > 0.

Hence

F̄Ps
(θ, x) = θ−δE

[
f (x, r2, . . .)

δ
]

(6)

= θ−δg(x), (θ, x) ∈ D.

The dependence of g on the fading distributions is obvious,
and the dependence on η follows from Lemma 1. The mono-
tonicity of g is inherited from the monotonicity of the SINR
MD with F̄Ps(θ, 1) = 0 for any θ > 0.

When (θ, x) /∈ D, (6) becomes an upper bound. Adding
noise does not change the separable region in [4]. This is
because the noise power, which appears in an extra term rα2 σ

2

in (4), does not change the regime in which f < θ.
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Remark 1. From (3), the separable region is x ≥ 0 as θ →
∞. So limθ→∞ θδEPs(θ) = limθ→∞ θδ

∫ 1

0
F̄Ps

(θ, x)dx =

limθ→∞ θδ
∫
D g(x)θ−δdx =

∫ 1

0
g(x)dx. For σ = 0,∫ 1

0
g(x)dx = sinc(δ) where sinc(x) , sin(πx)/(πx). This

follows from [13, Theorem 4] which shows that for the PPP
with arbitrary iid fading, EPs(θ) ∼ sinc(δ)θ−δ, θ → ∞.
Theorem 1 shows that EPs(θ) = Θ(θ−δ) also holds for
Poisson networks with noise, and the pre-constant depends on
the noise. To obtain the pre-constant

∫ 1

0
g(x)dx for σ > 0, we

can directly modify the statement and proof in [13, Theorem
4] to include noise. For the PPP with iid fading h,

EPs(θ) ∼ sinc(δ)θ−δ
∫ ∞
0

exp(−x−Kx1/δ)dx, θ →∞,
(7)

where K , (πE[hδ]Γ(1 − δ))−1/δ/η. Hence for σ > 0,∫ 1

0
g(x)dx depends on E[hδ]. Specifically, for δ = 1/2,∫ 1

0

g(x)dx =
1√
πK

erfc
( 1

2
√
K

)
exp

( 1

4K

)
. (8)

For no fading, K = 1/(ηπ3), and for Rayleigh fading,
K = 4/(ηπ4). Further, [13, Theorem 4] proves that EPs(θ) =
Θ(θ−δ) holds for all simple stationary BS point processes in
the noise-free scenario. A natural conjecture is that the MD
satisfies Θ(θ−δ) for all simple stationary BS point processes
with noise.

Remark 2. For iid Nakagami-m fading [4, Theorem 2],

D =
{

(θ, x) : I 1
1+θ

(m,m) ≤ x
}
,

where θ > 0, x ∈ [0, 1], and Ip(a, b) is the regularized
incomplete beta function. Let D� denote the separable region
expressed in terms of (1/(1 + θ), x) ⊂ [0, 1]2. For any
iid fading, D� always contains the point (1/2, 1/2), and
the area of D� is 1/2 [4, Corollary 1]. For independent
but non-identical fading, D� may not contain (1/2, 1/2).
For instance, for h1 ≡ 1 and h2 exponentially distributed,
D = {(θ, x) : θ ≥ −1/ log(1 − x)}, and the area of D�

is 1 + eEi(−1) ≈ 0.404. Ei(x) = −
∫∞
−x

exp(−t)
t dt is the

exponential integral.

2) No fading: Without fading, i.e., h ≡ 1, Ps(θ) ∈ {0, 1}.
F̄Ps(θ, x) = EPs(θ) = P(SINR > θ), ∀x ∈ (0, 1). Applying
Theorem 1, the separable region is D = {θ ≥ 1, 0 < x < 1},
and P(SINR > θ) = g(x)θ−δ, θ ≥ 1. For x ∈ (0, 1), g(x) ≡
g is a constant.

g = sinc(δ)

∫ ∞
0

exp(−x−Kx1/δ)dx, (9)

where K = (πΓ(1− δ))−1/δ/η. For δ = 1/2, K = 1/(ηπ3),
and g can be written in a closed-form as (8). Eq (9) simplifies
the expression derived in [10, Corollary 5] and generalizes
[11, Corollary 2] which considers the noise-free scenario.

3) Rayleigh fading: With iid Rayleigh fading, the CSP is
[3]

Ps(θ) = exp(−σ2θrα1 )
∞∏
i=2

1

1 + θ (r1/ri)
α . (10)
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Fig. 1. MD vs. x for θ = 1 and θ = 3, iid Rayleigh fading, δ = 1/2. The
solid curves are for η = ∞ and the dashed curves are for η = 1.
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Fig. 2. Simulation results of g(x) for η = ∞, 1, 1/2, 1/4, iid Rayleigh fading,
δ = 1/2.

Using the probability generating functional (PGFL) of the
PPP, its b-th moment is derived in [3]. Applying Theo-
rem 1, we know that F̄Ps(θ, x) = g(x)θ−δ for D ={

(θ, x) : 1 + θ ≥ x−1
}

. g(x) can be obtained through a quick
simulation and/or approximated by analytical expressions us-
ing the same methods as in [4]. We obtain g(x) by simulating
F̄Ps

(100, x)100δ . Fig. 1 shows the impact of η on the MD for
SINR thresholds θ = 1 and θ = 3. Fig. 2 shows the impact of
η on g.

4) Dual interpretation: Given Φ, let T (x) be the SINR
threshold such that the link achieves a target reliability x, i.e.,
Ps(T (x)) ≡ x. We have

P (Ps(θ) > x) ≡ P (T (x) > θ) . (11)

This is known as the dual interpretation of the MD [12]. Thus,
for a fixed reliability x, the link SINR threshold is Pareto
distributed when (θ, x) ∈ D. Theorem 1 provides a good
characterization for the link rate distribution over its entire
range when a reasonably high reliability is targeted. Fig. 3
shows the link SINR threshold distribution for x = 0.9 and
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Fig. 3. Link threshold SINR distribution for fixed reliability x = 0.9, x =
0.95, iid Rayleigh fading, η = 1, δ = 1/2.

x = 0.95 with iid Rayleigh fading, η = 1. g(0.9) = 0.197 and
g(0.95) = 0.137. The form g(x)θ−δ is exact for θ ≥ −9.54 dB
and θ ≥ −12.79 dB, respectively. For η = 1, 59% of the users
achieve an SINR of −9.54 dB or higher with reliability 0.9.
In contrast, 63% achieve the same performance when η =∞.

5) Impact of Fading: To show the impact of the fading
statistics on g, we compare the following four fading scenarios:
i) no fading, ii) iid Rayleigh fading, iii) h1, h2 iid Rayleigh
fading, hj ≡ 1, j ≥ 3, and iv) h1 ≡ 1, {hj}j≥2 iid
Rayleigh fading. For i), D = {θ ≥ 1}, and g(x) is a constant
for x ∈ (0, 1) as expressed in (9), which is approximately
0.6017 for δ = 1/2, η = 1. For the remaining scenarios,
g(x) is obtained through simulation. For scenarios ii) and
iii), D =

{
(θ, x) : 1 + θ ≥ x−1

}
. For iv), D = {(θ, x) : θ ≥

−1/ log(1−x)}, as noted in Remark 2. The results are plotted
in Fig. 4. g(x) for iii) is lower than that for ii) since the CSP
for iii) is smaller than that for ii) given the same BS locations.
However, the difference is minor, which shows that the fading
statistics of faraway interferers do not significantly impact g.
In contrast, g(x) for iv) is significantly larger than ii) at the
high-reliability end, and lower at the low-reliability end. Hence
combating multi-path fading from the serving BS is crucial for
the high reliability scenario and less so for the low reliability
scenario.

III. EXTENSIONS

In this section, we discuss several extensions to more
general settings.

A. General Path Loss Models

Consider a general path loss model `(r), with the only
requirement that it decreases with the distance r and has an
inverse `−1. In general, the tail distribution of the SINR MD
in terms of θ depends critically on the path loss from the
serving BS, and we can modify the proof for Theorem 1 for
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Fig. 4. g(x) for four fading scenarios. η = 1, δ = 1/2.

`. Consider the special case where h ≡ 1 (no fading). For the
PPP and θ ≥ 1,

P(SINR > θ) = P

(
`(r1) < θ

( ∞∑
i=2

`(ri) + σ2

))
(a)
= P

[
r1
r2
<
`−1

(
θ
(∑∞

i=2 `(ri) + σ2
))

r2

]
.

Step (a) follows from first inverting ` and then dividing
r2. θ ≥ 1 guarantees `−1

(
θ
(∑∞

i=2 l(ri) + σ2
))

< r2. If
`−1

(
θ
(∑∞

i=2 l(ri) + σ2
))

> 0, we can apply P(r1/r2 <
x) = x2 and the conditional independence of r1/r2 given
{ri}i≥2. The power-law path loss satisfies `−1(xy) =
`−1(x)`−1(y), so (`−1(θ))2 will be extracted from the right
hand side of (a).

B. General Path Loss With Selection Combining

Let n ∈ N be the number of resource blocks used. We
assume the fading coefficients from each BS across different
resource blocks are iid. The resource block with the maximum
SINR is chosen to decode the message. We have

P (n)
s (θ) = 1− (1− Ps(θ))

n
, (12)

and
F̄

(n)
Ps

(θ, x) = F̄Ps

(
θ, 1− (1− x)

1
n

)
. (13)

By the monotonicity of F̄Ps
(θ, x) w.r.t. x, F̄ (n)

Ps
(θ, x) ≥

F̄
(m)
Ps

(θ, x) if n ≥ m. For all links to achieve the same target
reliability of x, the number of resource blocks n assigned to
each link must adapt to the link SINR. Allowing n ∈ R to be
a link-dependent random variable for fixed target θ and x, we
obtain n = log(1− x)/ log(1− Ps(θ)).

C. Power-Law Path Loss With ALOHA

Let χi ∼ Bernoulli(p), i ∈ N, be iid denoting the
transmission status of a BS, i.e., xi is active if χi = 1 and
inactive otherwise. The CSP is

Ps(θ) = P
(

h1r
−α
1∑∞

i=2 hiχir
−α
i + σ2

> θ | Φ
)
.
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It is easy to show that Lemma 1 applies to this setting.
For the PPP, F̄Ps(θ, x) = g(x)θ−δ, (θ, x) ∈ D, where
D =

{
(θ, x) : pI 1

1+θ
(m,m) ≤ x+ p− 1

}
. This is calculated

by

P (h1/h2 > χθ) = E
[
I 1

1+θχ
(m,m)

]
= pI 1

1+θ
(m,m) + 1−p.

(14)
If 1 − x ≥ p, D = ∅. The separable region is different from
the baseline model with BS density λp, since the separable
region in the baseline model does not depend on BS density.
For σ = 0, the moments of the CSP are derived in [1].

D. Power-Law Path Loss With BS Silencing

Let n ∈ N be the number of silenced BSs. The CSP is

Ps(θ) = P

(
h1r
−α
1∑∞

i=n+2 hir
−α
i + σ2

> θ | Φ

)
. (15)

Lemma 1 applies to this scenario also. For the PPP, one
can derive the separable region via the definition in Theorem
1. P(r1/rn+2 ≤ x) = 1 − (1 − x2)n+1, x ∈ [0, 1] [14].
Thus the MD is 1 − E

[(
1− f(x, rn+2, rn+3, ...)θ

−δ)n+1
]

in the separable region. For instance, when n = 1, i.e.,
the nearest interferer is silenced, the MD can be written
as a(x)θ−δ − b(x)θ−2δ in the separable region. It satisfies
F̄Ps

(θ, x) = Θ(θ−δ), θ → ∞, and is upper bounded by
1 −

(
1− Ef(x, rn+2, rn+3, ...)θ

−δ)n+1
due to the convexity

of power functions on R+.

IV. CONCLUSIONS

This work shows that the noise power and the BS density
jointly impact the SINR MD only through the NSNR. For
Poisson networks, the SINR MD can be written in form
of g(x)θ−δ for (θ, x) ∈ D. The fading statistics of the
serving BS significantly impacts g especially in the high-
reliability regime. We also discuss a few extensions where
simple analytical results may be obtained. For future work,
one interesting question is if the NSNR can be generalized in
capturing the effects of noise and BS density in settings such
as heterogeneous networks, networks with traffic dynamics,
and other path loss models (e.g., LoS/NLoS). It is also worth
studying the distributions/variances of the CSP under the ISBA
scheme for different fading models in Poisson networks, where
the mean success probability does not depend on the fading.
Further, the asymptotics of the SINR MD for θ → 0 and x→ 1
are important, due to their relevance to ultra-reliable and low-
latency networks and massive machine-type communication.
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