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Abstract—Meta distributions (MDs) have emerged as a pow-
erful tool in the analysis of wireless networks. Compared to
standard distributions, they enable a clean separation of the
different sources of randomness, resulting in sharper, more
refined results. In particular, they capture the disparity of the
performances of individual links or users.

In this first part of a two-letter series, we start from first
principles and give the formal definition of MDs and present
several simple yet illustrative examples. Part 2 [1] explores
the properties of the MD in more depth and offers multiple
interpretations and applications.

Index Terms—Meta distributions, wireless networks, stochastic
geometry, point processes, signal fraction, interference.

I. INTRODUCTION

When making the distinction between the average (or mean)
of a random variable Z and its distribution, it is important to
note that the distribution is, in fact, also an average, namely
that of the indicator 1(Z > z)—assuming we focus on the
complementary cumulative distribution function (ccdf). So the
average is a mean with O parameters (a scalar function of
only the distribution), while the distribution is a mean with
one parameter. Now, if Z is an “atomic” random variable
in the sense that it does not depend on any other source of
randomness, then E1(Z > z) gives the complete information
about all statistics of Z, i.e., the probability of any event
can be expressed by adding or subtracting such elementary
probabilities.

However, if Z is a function of other sources of randomness,
then E1(Z > z) alone does not reveal how the statistics
of Z depend on the individual random elements. In general
Z may depend on many, possibly infinitely many, random
variables and random elements (e.g., point processes), such as
the signal-to-interference ratio (SIR) in a wireless network. To
obtain fine-grained statistical information on how the fading
or the point process affects the SIR, we cannot lump all
randomness together and consider just the SIR distribution.
Instead, we need to dissect the different sources of randomness
and analyze their effect on the SIR individually.

To show how this can be achieved, we first focus on the
case where Z = f(X,Y’) for two random variables X and Y.
Throughout the document, we use F' for cdfs and F for ccdfs.

The two-parameter expectations
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Fﬂz|y]](2,l') = El(E[l(Z > Z) | Y] > :C)
=E1(Ex1(Z > z) > x)
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Fig. 1. The left box shows the relationships between the mean, distribution
(cedf), and meta distribution F[[ z|y] of a random variable Z = f(X,Y).
The right box shows that if U is the conditional ccdf given Y, then the ccdf
of Z is the mean of U, while the MD of Z is the ccdf of U.

Fizix(z,2) £ E1(E[L(Z > 2) | X] > x)
=E1(Ey1(Z > z) > x),

where Ex denotes the expectation with respect to X, are
natural extensions of the standard ccdfs. They are distributions
of conditional distributions, i.e., meta distributions. The double
brackets in the subscript [Z | Y] indicate that the function is
a meta distribution (MD), and Z | Y indicates that it is the
MD of Z where the conditional distribution is given Y.

So, going from left to right in the chain

E1(Ex1(Z > z) > z)

EZ — E1(Z>2z2) — {El(Eyl(Z>Z)>I)’

we have 0, 1, and 2 parameters. Parameters can be re-
eliminated by integration—by integrating the MD over = we
obtain the ccdf, and by further integrating over z, we obtain
the mean. These relationships are summarized in Fig. 1. It is
apparent that the step from the ccdf to the MD is analogous to
that from the mean to the ccdf, i.e., the MD provides refined
information compared to the ccdf in the same way the ccdf
provides refined information compared to the mean. Indeed, if
we focus on the random variables (conditional probabilities)

U=U(zY)=EL(Z >z|Y)=Fgy(z), (1

we recognize that the ccdf of Z is the mean of U while the
MD is the ccdf of U, shown on the right in Fig. 1.
Accordingly, defining the moments of U by

1
My(z) £ E(UY) = b/ xbilﬁﬂz‘yﬂ (z,z)dz, beC,
0



we have M;(z) = Fz(z); the higher moments of U are
revealed only in the MD.

What if we integrate the MD over z first? Does the resulting
function of = have any significance? This question is addressed
in the companion paper [1].

The case Z = f(X,Y) is easily extended to Z =
f(X,Y), where X, Y form a partition! of a random vector
(X1,...,Xm), m € NU {oo}. We formally define the MD
for this general case.

Definition 1 (Meta distribution) Let Z = f(X,)), where
X and Y form a partition of all random elements that Z
depends on. The meta distribution of Z given ) is

Fiziyy(z,2) £ELE[L(Z > 2) | V] > )
=E1(Ex1(Z > z) > z), )

and the meta distribution of Z given X is

Fizixp(z,2) £ EL(E[L(Z > 2) | X] > )
= E1(Ey1(Z > z) > x). 3)

MDs can equivalently be expressed as

FHZD’]] (z,2) =PP(Z >z | Y) > x) 4)
=PPx(Z > 2) > x).

In stochastic geometry applications of the MD, we often set
Y = & for a point process ®, and X = (hy,hs,...) is
the vector of fading random variables. This way, the MD
achieves a time scale decomposition by separating the small-
scale randomness and the spatial randomness. Time averages
(over small-scale fading) and spatial averages (averaging over
the point process) are taken in two steps. In contrast, in
standard distributions such as the SIR ccdf P(SIR > z) all
randomness is eliminated in one step, irrespective of its source
and nature, which masks any insight into the individual effects
of spatial and temporal randomness.

In the next section, we present several examples of meta
distributions. For simplicity and tractability, we focus on the
case Z = f(X,Y), where f > 0 and strictly monotone in both
arguments and X and Y are independent and non-negative.

II. EXAMPLES

In this section, we use the shortcuts U £ Fyy(2) =
ELZ > 2 | Y)and V £ Fyx(z) = EL(Z > =z | X).
These random variables are the conditional distributions of Z
given Y and X, respectively. Their distributions are the MDs
P(U > z) = Fizjy(2,2) and P(V > ) = Fizx7(2, 2).

A. Ratio of Exponential Random Variables

Let X and Y be independent exponential random variables
with means 1 and 1/, respectively. Define Z £ X/Y.

The ccdf of Z is

o Iz
Fz(Z) = z—|—,u'

IBy a (two-element) partition of a vector in R™, we mean that X =
(X3)iep, and Y = (X;)iep,, Where {P1, P2} is a partition of [m], where
[m]={1,...,m}.

In this case, EZ does not exist. The conditional ccdf given Y
is the random variable

UL Fyy(2) =E1L(Z>2|Y)=e"7,

supported on [0, 1]. B
The distribution of U is the MD Fjz|y], obtained as

P(U > z) =Ple™¥* > 2) 6))
=P < —log(z)/z)
=1— M= (6)

The ccdf of Z is

1
IEU:/ (1—2"/*)dy =
0 Mtz

and the moments are

E(Ub) = —*
@) w+ bz

The variance follows as

pz?

(0 +22)(p+2)%
Interestingly, the variance is maximized when g and z have
the golden ratio z = (v/5+4 1)u/2 where it has the fixed value
0.09. )

For the “reverse” MD F|z x], we have

varU =

VA& Fyx(z)=1-e " =E1(Z > 2| X),
and the distribution of V' is the MD given as
P(V > ) =P(1 — e "X/* > 1)
=P(uX/z > —log(l —x))
=(1—a)*/* 7

It is apparent that for fixed 2, (6) and (7) are inverses. In
Part 2 [1, Cor. 2] we will present a sufficient condition for
this property to hold.

The MD F[[ z|y] has relevance in uplink cellular networks,
where BSs form a Poisson point process ® of intensity .
Users are served by the nearest BS, and the channel is subject
to power-law path loss with exponent & = 2 and Rayleigh
fading. The received signal power from a user at an arbitrary
location is S = h/R2, where the distance R is Rayleigh
distributed with mean 1/(2v/\) and % is the fading random
variable. Since R? is exponential with mean 1/(Ar), we obtain
from (6)

Fﬂsl@ﬂ (Z,ZZ?) = FHZ\Y]] (Z,:Zj) =1 I)\ﬂ'/z. (8)

If the users form a stationary and ergodic point process and
S, is the received signal power from user u, 1 — z*™/% is
the fraction of users for which S, > z with probability at
least x, for each realization of ®. Fig. 2 shows a realization
of this network for A = 1, with the individual probabilities
P(S, > 1 | @) for each user. The conventional signal
strength analysis P(S > z) involves a sweeping average over
all randomness and thus only reveals the global average of
these reliabilities, which is Ar/(Ar + 2) = 7/(w + 1). In
contrast, the MD analysis divulges the entire distribution of
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Fig. 2. Realization of cellular uplink network where BSs, marked by blue
circles O, form a PPP of intensity A = 1 and users a square lattice of density
4, marked by red crosses X. Channels are subject to Rayleigh fading and
path loss with exponent 2. The arrow indicates the nearest BS to each user
u, and the number is the reliability of the up-link P(Sy, > 1| ®@).
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Fig. 3. Meta distributions F'[[S‘q)]](z,x) (blue) and F‘[[S‘h]](z,x) (red) for
S = h/Y where h is exponential with mean 1 and Y is exponential with
mean 1/7. For instance, for z = 1 and fixed positions and fading, the blue
circle O shows that 80% of the users achieve S = 1 with probability at least
0.6. The corresponding red star > shows that with high mobility and fixed
random transmit power (but no fading), 60% of the users achieve S = 1 with
probability at least 0.8.

the probabilities given in (8). A histogram of the numbers in
the figure approaches the probability density function (pdf) of
U, i.e., the derivative of the MD w.r.t. x, given by

fizivy(z2) =

AT _
_ka/z 17
z

which we may refer to as the meta pdf. This density function
shows how concentrated or disparate the conditional probabil-
ities of the users are for a given threshold z.

How about the reverse MD Fz x] = Fs|)? With some
imagination we can think of a scenario where each user selects
an exponentially distributed transit power i with mean 1 that
is fixed over time, and users or base stations are highly mobile,
such that the link distances from one transmission to the next

are iid. In this case, Y is varying over time while X is fixed,
hence it is natural to condition on X. V is the time-averaged
signal power distribution.

Fig. 3 shows cross-sections of the MDs for A = 1 for several
values of z. It is apparent that Flg¢](-, z) and Fjgpj(-, z) are
inverses of each other.

B. Ratio of Exponential and Weibull Random Variables

To capture path loss exponents o # 2 in the previous
example, we generalize the distribution of Y to the Weibull
distribution

Fy(x) — ef)\Trmé,
where § = 2/a. Tts mean is T'(1 4+ 1/8)/(Am)'/. We obtain

Fﬂz‘yﬂ (z,2) =P(U > ) =P(Y < —log(x)/2)

—logz\’
=1—exp| —A7m <—g)
z

and
F[[Z|X]] (z,2) =P(V >2) =P(1 — e—)wr(X/z)é > )
—1 1— 1/6
=exp | —% <M)

™

Considering a fractional power control scheme that results in
a received power S = hR*R™%, ¢ € (0, 1], we observe that
power control is not always beneficial. It yields an effective
path loss exponent «(1 — €) but decreasing the path loss
(increasing § = 2/(a(1 —¢))) only improves Fjzy|(z,z) for
x < e~ *. For higher target reliabilities or high thresholds z,
€ = 0 (no power control) is best. The reason is that for large
z or high reliabilities, the successful links are mostly those
with distances smaller than 1. Full path loss inversion, i.e.,
e — 1, implies Y = 1 and (5) shows that the MD approaches
the step function P(e™* > z) = 1 — u(x — e~ ?), where
u(z) = 1(z > 0). In contrast, £ | —oo implies infinite path
loss, which means S is infinite if R < 1 and 0 if R > 1. The
resulting MD is, for all x and z, the probability that there is
a point within distance 1 in the PPP, i.e., 1 — e AT,

C. Sum of Exponential Random Variables

As in the first example, we let X and Y be independent
exponential random variables with means 1 and 1/, respec-
tively. Here we consider the sum Z £ X + Y. We have

Fz(z) = Lﬂ%w w#1,
and
Frz(z)=e*(z+1), p=1.
The conditional ccdf is
e GY) v <y

ULF =
Z\Y(Z) 1 Y >z



If Y > z, which happens with probability e #*, P(U > z) =
1z <1). fY <zand z < 1,

P(U > z) =Ple"*Y) > )

e_M(IOng"Z) = x_ue_ﬂ'z’ T > e_z
n 1, r < e *.
Integration over x yields
1
E(U)=e"*+e 1 / rtde = Fz(2).

For the “reverse” MD we consider the conditional ccdf

e~ hz=X) X <

VaiF =
Z|X(Z) {1 X >z

If X > z, which happens with probability e, P(V > z) =
1z <1).If X <zand z < 1,
P(V > z) = P(e =% > 1)
—Pp (X 5 losw +z>
I

B {eaog(m)/wz) — g ne,

T > e *H
1, xr < e *H,

The distribution of Z is recovered from

1
E(V)=e"# + e_z/ ez = Fy(2).

D. Ratio of Exponential and Exponential+Gamma Random
Variables

Let Z £ X/(X +Y), where X is exponential with mean
1 and Y is gamma distributed as

fr(y) = F(la) y* eV,

and independent of X. The cdf is Fy (y) = J(a,y), where ¥
is the normalized lower gamma function?, and E(Y) = a. Z
is known to be beta distributed as

fz(2) = a(l—2)*"";

with mean 1/(1 + a). The conditional ccdf is

Fy(z) = (1= 2)°

U = ley(Z) = esz/(lfz).
Letting ¢ = z/(1 — 2),
P(U > xz) =Ple Y > )

— B(Y < -~ log(a)/¢)
— 5(a, ~ log()/). ©)

The ccdf of Z is E(U), retrieved by integration over x:

1
1
Y(a, —log(z)/()dr = ——— = (1 —2)*
/0 (L4+¢)
’In  Matlab, #7(a,z) is calculated using gammainc(z,a). In

Maple, it is 1-GAMMA (a, z) /GAMMA (a),
1-Gamma[a, z] /Gamma [a].

and in Mathematica, it is

Fig. 4. Meta distributions Fz|y (2, x) (blue) given in (9) and Fz| x7(z, )
(red) given in (10) for a = 3/2 and various values of z.

For the “reverse” MD F|zxJ,
V=EL(Z >z | X)=7(a,X(1/z - 1)) = ¥(a, X/(),
whose distribution of V' is the MD

P(V > z) = P(7(a, X/C) > x)
=P(X > (7, (2))
— e—ﬁ;l(w), (10)

where 4, ! is the inverse of the lower incomplete gamma
function® for given a, i.e., y(a,y) = z < y = 7, (x).
Hence we have proven that

1
/efwwwx=u+oﬂ,
0

which is an integral that standard mathematical software
cannot solve.

_ Fig. 4 shows cross-sections of the two MDs FHZIY]] and
Fyzxp for a = 3/2. Fyzy] given in (9) is the MD of the
signal fraction (SF), defined as SF = S/(S+1) = SIR/(SIR+
1) [2], if the signal power is exponential with mean 1 and the
interference power is gamma distributed (and not subject to
small-scale fading).

Comparing this example with the first two, we conclude that
the distributions of the forms Z = X/Y and Z' = X /(X +Y)
are related by replacing the parameter z by z/(1 — 2), i.e.,
Fz(z) = FZ/(Z/(Z + 1)) and FZ/(Z) = Fz(z/(l — Z))
This holds more generally whenever Z’ can be expressed by
an invertible function of Z, and also when X and Y are
dependent.

Accordingly, by replacing ¢ by z in (9), we obtain the SIR
MD for the same scenario (Rayleigh fading in the desired link
and gamma distributed interference).

3In Matlab, this function is implemented as gammaincinv (x,a). In
Mathematica, it is InverseGammaRegularized[a, 1-x].



E. Ratio of Exponential and Exponential+Inverse Gamma
Random Variables

Let Z 2 X/(X +Y), where X is exponential with mean
1 and Y is inverse gamma distributed as
fY(y) = b2y—3e—b/y7

independent of X. The cdf is Fy (y) =1 —75(2,b/y) = (y +
b)e=%Y/y, and E(Y) = b.

As before, the conditional cedf is U = e~ #Y/(1=2)  and,
letting ¢ = z/(1 — z),

PU > z) =P(Y < —log(z)/¢)

— (1 _ bC )ebC/logw'
log x

The ccdf of Z is E(U), obtained by integration over z, is
Fz(2) = 2¢K(1,2¢) + 22 K(0, 2¢),

Y

where K is the modified Bessel function of the second kind*

and ¢ = /b( = \/bz/(1 — z). This is an instance where the

MD is in closed-form, while the ccdf requires transcendental
functions. As before, F]z|y] can be interpreted as an SF MD,
in this case for inverse gamma distributed interference.
For Fyz x], we let
V=E1(Z>z|X)=F(X/¢()=(1+b/X)e /X,
The distribution of V' is the MD given as

P(V>I)_P(X>ije)+l>

b¢
=exp| —+—7"——], x<I1, 12
P (wocesi) 42
where W_; is the —1-st branch of the Lambert W function®.

F. Ratio of Gamma Random Variables

Lastly, we generalize the result from Subs. II-A to the
case where X is gamma distributed with mean 1 and Y is
independent and gamma distributed. The cdfs are

Fx(z) =%(a,azx), a>0,
Fy(y) :ﬁ/(cv by)a b,C> 0.
By independence, EZ = b/(c — 1) if ¢ > 1.
The ccdf of U = Fzy(2) =1 —7(a,aYz) is

P(U > ) = P(1 - 4(a,aY z) > z)
=P(Y <7, '(1 - 2)/(az))
=3(e, by, (1 — 2)/(az)). (13)

In the reverse MD Fz|x7], we have V = 7(c,bX/z) whose
ccdf is

P(V > z) =P(H(e,bX/z) > x)
=P(X > 27, (2)/b)
=1—-7(a,az7; " (z)/b).

4Implemented in Maple and Mathematica as BesselK (v, x) and in
Matlab as besselk (v, x).

5Implemented in Maple as LambertW(-1,x), in Mathematica as
ProductLog[-1,x], and in Matlab as lambertw(-1,x). For z €
[—1/e,0), it is real-valued, with a range from —1 to —oo.

(14)

|-|=——exact
—* beta approx.
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Fig. 5. Meta distributions Fﬂz‘y]](2,1‘) as given in (13) (blue) and beta
approximations (red) for ¢ = 2 and three pairs of values for a, b.

As in the previous example, it is apparent that (13) and (14)
are mutual inverses.

If z in the MDs is replaced by z/(1 — z), the MDs of
X /(X +Y) are obtained. Hence this example also generalizes
the one in Subs. II-D. By setting a = b = 1 and ¢ = a, we
have

PU > z) =7(a,v (1 — 2)/2), 15)

which corresponds to (9) with z replaced by ¢ = z/(1 — z)
and noting that 3, '(1 — ) = — log .

The approximation of MDs using beta ccdfs is natural and
has been frequently used since it was originally proposed in
[3]. It is obtained by matching the first and second moments
of U to those of a beta distribution. Fig. 5 shows that an
excellent approximation is obtained for several qualitatively
different MDs (13). These cases where the MD has a closed-
form expression are ideal to assess the accuracy of the beta
approximation.

III. CONCLUDING REMARKS

In this first part of a two-letter series, the concept of meta
distributions is introduced and motivated as a natural extension
of distributions (ccdfs). We have calculated MDs for several
simple examples and shown that ccdfs are a special case of
MDs, obtained by integration, in exactly the same way means
are obtained by integrating ccdfs. In Part 2 [1], we will explore
the properties of the MD in more depth, formally state a suf-
ficient condition for the property that “forward” and “reverse”
MDs are inverses of each other, present two applications to
Poisson networks, and discuss different interpretations.
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