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Abstract—Meta distributions (MDs) have emerged as a pow-
erful tool in the analysis of wireless networks. Compared to
standard distributions, they enable a clean separation of the
different sources of randomness, resulting in sharper, more
refined results. In particular, they capture the disparity of the
performances of individual links or users.

In this first part of a two-letter series, we start from first
principles and give the formal definition of MDs and present
several simple yet illustrative examples. Part 2 [1] explores
the properties of the MD in more depth and offers multiple
interpretations and applications.

Index Terms—Meta distributions, wireless networks, stochastic
geometry, point processes, signal fraction, interference.

I. INTRODUCTION

When making the distinction between the average (or mean)

of a random variable Z and its distribution, it is important to

note that the distribution is, in fact, also an average, namely

that of the indicator 1(Z > z)—assuming we focus on the

complementary cumulative distribution function (ccdf). So the

average is a mean with 0 parameters (a scalar function of

only the distribution), while the distribution is a mean with

one parameter. Now, if Z is an “atomic” random variable

in the sense that it does not depend on any other source of

randomness, then E1(Z > z) gives the complete information

about all statistics of Z , i.e., the probability of any event

can be expressed by adding or subtracting such elementary

probabilities.

However, if Z is a function of other sources of randomness,

then E1(Z > z) alone does not reveal how the statistics

of Z depend on the individual random elements. In general

Z may depend on many, possibly infinitely many, random

variables and random elements (e.g., point processes), such as

the signal-to-interference ratio (SIR) in a wireless network. To

obtain fine-grained statistical information on how the fading

or the point process affects the SIR, we cannot lump all

randomness together and consider just the SIR distribution.

Instead, we need to dissect the different sources of randomness

and analyze their effect on the SIR individually.

To show how this can be achieved, we first focus on the

case where Z = f(X,Y ) for two random variables X and Y .

Throughout the document, we use F for cdfs and F̄ for ccdfs.

The two-parameter expectations

F̄JZ|Y K(z, x) , E1
(

E[1(Z > z) | Y ] > x
)

= E1
(

EX1(Z > z) > x
)
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Fig. 1. The left box shows the relationships between the mean, distribution
(ccdf), and meta distribution F̄JZ|Y K of a random variable Z = f(X, Y ).
The right box shows that if U is the conditional ccdf given Y , then the ccdf
of Z is the mean of U , while the MD of Z is the ccdf of U .

F̄JZ|XK(z, x) , E1
(

E[1(Z > z) | X ] > x
)

= E1(EY 1(Z > z) > x),

where EX denotes the expectation with respect to X , are

natural extensions of the standard ccdfs. They are distributions

of conditional distributions, i.e., meta distributions. The double

brackets in the subscript JZ | Y K indicate that the function is

a meta distribution (MD), and Z | Y indicates that it is the

MD of Z where the conditional distribution is given Y .

So, going from left to right in the chain

EZ → E1(Z > z) →
{

E1(EX1(Z > z) > x)

E1(EY 1(Z > z) > x),

we have 0, 1, and 2 parameters. Parameters can be re-

eliminated by integration—by integrating the MD over x we

obtain the ccdf, and by further integrating over z, we obtain

the mean. These relationships are summarized in Fig. 1. It is

apparent that the step from the ccdf to the MD is analogous to

that from the mean to the ccdf, i.e., the MD provides refined

information compared to the ccdf in the same way the ccdf

provides refined information compared to the mean. Indeed, if

we focus on the random variables (conditional probabilities)

U = U(z, Y ) = E1(Z > z | Y ) = F̄Z|Y (z), (1)

we recognize that the ccdf of Z is the mean of U while the

MD is the ccdf of U , shown on the right in Fig. 1.

Accordingly, defining the moments of U by

Mb(z) , E(U b) = b

∫ 1

0

xb−1F̄JZ|Y K(z, x)dx, b ∈ C,



we have M1(z) = F̄Z(z); the higher moments of U are

revealed only in the MD.

What if we integrate the MD over z first? Does the resulting

function of x have any significance? This question is addressed

in the companion paper [1].

The case Z = f(X,Y ) is easily extended to Z =
f(X ,Y), where X , Y form a partition1 of a random vector

(X1, . . . , Xm), m ∈ N ∪ {∞}. We formally define the MD

for this general case.

Definition 1 (Meta distribution) Let Z = f(X ,Y), where

X and Y form a partition of all random elements that Z
depends on. The meta distribution of Z given Y is

F̄JZ|YK(z, x) , E1(E[1(Z > z) | Y] > x)

= E1(EX1(Z > z) > x), (2)

and the meta distribution of Z given X is

F̄JZ|X K(z, x) , E1(E[1(Z > z) | X ] > x)

= E1(EY1(Z > z) > x). (3)

MDs can equivalently be expressed as

F̄JZ|YK(z, x) = P(P(Z > z | Y) > x) (4)

= P(PX (Z > z) > x).

In stochastic geometry applications of the MD, we often set

Y = Φ for a point process Φ, and X = (h1, h2, . . .) is

the vector of fading random variables. This way, the MD

achieves a time scale decomposition by separating the small-

scale randomness and the spatial randomness. Time averages

(over small-scale fading) and spatial averages (averaging over

the point process) are taken in two steps. In contrast, in

standard distributions such as the SIR ccdf P(SIR > z) all

randomness is eliminated in one step, irrespective of its source

and nature, which masks any insight into the individual effects

of spatial and temporal randomness.

In the next section, we present several examples of meta

distributions. For simplicity and tractability, we focus on the

case Z = f(X,Y ), where f ≥ 0 and strictly monotone in both

arguments and X and Y are independent and non-negative.

II. EXAMPLES

In this section, we use the shortcuts U , F̄Z|Y (z) =

E1(Z > z | Y ) and V , F̄Z|X(z) = E1(Z > z | X).
These random variables are the conditional distributions of Z
given Y and X , respectively. Their distributions are the MDs

P(U > x) ≡ F̄JZ|Y K(z, x) and P(V > x) ≡ F̄JZ|XK(z, x).

A. Ratio of Exponential Random Variables

Let X and Y be independent exponential random variables

with means 1 and 1/µ, respectively. Define Z , X/Y .

The ccdf of Z is

F̄Z(z) =
µ

z + µ
.

1By a (two-element) partition of a vector in Rm, we mean that X =
(Xi)i∈P1

and Y = (Xi)i∈P2
, where {P1,P2} is a partition of [m], where

[m] = {1, . . . ,m}.

In this case, EZ does not exist. The conditional ccdf given Y
is the random variable

U , F̄Z|Y (z) = E1(Z > z | Y ) = e−Y z,

supported on [0, 1].
The distribution of U is the MD F̄JZ|Y K, obtained as

P(U > x) = P(e−Y z > x) (5)

= P(Y ≤ − log(x)/z)

= 1− xµ/z . (6)

The ccdf of Z is

EU =

∫ 1

0

(1− xµ/z)dx =
µ

µ+ z
,

and the moments are

E(U b) =
µ

µ+ bz
.

The variance follows as

varU =
µz2

(µ+ 2z)(µ+ z)2
.

Interestingly, the variance is maximized when µ and z have

the golden ratio z = (
√
5+1)µ/2 where it has the fixed value

0.09.

For the “reverse” MD F̄JZ|XK, we have

V , F̄Z|X(z) = 1− e−µX/z = E1(Z > z | X),

and the distribution of V is the MD given as

P(V > x) = P(1− e−µX/z > x)

= P(µX/z > − log(1− x))

= (1− x)z/µ. (7)

It is apparent that for fixed z, (6) and (7) are inverses. In

Part 2 [1, Cor. 2] we will present a sufficient condition for

this property to hold.

The MD F̄JZ|Y K has relevance in uplink cellular networks,

where BSs form a Poisson point process Φ of intensity λ.

Users are served by the nearest BS, and the channel is subject

to power-law path loss with exponent α = 2 and Rayleigh

fading. The received signal power from a user at an arbitrary

location is S = h/R2, where the distance R is Rayleigh

distributed with mean 1/(2
√
λ) and h is the fading random

variable. Since R2 is exponential with mean 1/(λπ), we obtain

from (6)

F̄JS|ΦK(z, x) = F̄JZ|Y K(z, x) = 1− xλπ/z . (8)

If the users form a stationary and ergodic point process and

Su is the received signal power from user u, 1 − xλπ/z is

the fraction of users for which Su > z with probability at

least x, for each realization of Φ. Fig. 2 shows a realization

of this network for λ = 1, with the individual probabilities

P(Su > 1 | Φ) for each user. The conventional signal

strength analysis P(S > z) involves a sweeping average over

all randomness and thus only reveals the global average of

these reliabilities, which is λπ/(λπ + z) = π/(π + 1). In

contrast, the MD analysis divulges the entire distribution of
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Fig. 2. Realization of cellular uplink network where BSs, marked by blue
circles ◦, form a PPP of intensity λ = 1 and users a square lattice of density
4, marked by red crosses ×. Channels are subject to Rayleigh fading and
path loss with exponent 2. The arrow indicates the nearest BS to each user
u, and the number is the reliability of the up-link P(Su > 1 | Φ).
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Fig. 3. Meta distributions F̄JS|ΦK(z, x) (blue) and F̄JS|hK(z, x) (red) for

S = h/Y where h is exponential with mean 1 and Y is exponential with
mean 1/π. For instance, for z = 1 and fixed positions and fading, the blue
circle ◦ shows that 80% of the users achieve S = 1 with probability at least
0.6. The corresponding red star ∗ shows that with high mobility and fixed
random transmit power (but no fading), 60% of the users achieve S = 1 with
probability at least 0.8.

the probabilities given in (8). A histogram of the numbers in

the figure approaches the probability density function (pdf) of

U , i.e., the derivative of the MD w.r.t. x, given by

fJZ|Y K(z, x) =
λπ

z
xλπ/z−1,

which we may refer to as the meta pdf. This density function

shows how concentrated or disparate the conditional probabil-

ities of the users are for a given threshold z.

How about the reverse MD F̄JZ|XK = F̄JS|hK? With some

imagination we can think of a scenario where each user selects

an exponentially distributed transit power h with mean 1 that

is fixed over time, and users or base stations are highly mobile,

such that the link distances from one transmission to the next

are iid. In this case, Y is varying over time while X is fixed,

hence it is natural to condition on X . V is the time-averaged

signal power distribution.

Fig. 3 shows cross-sections of the MDs for λ = 1 for several

values of z. It is apparent that F̄JS|ΦK(·, z) and F̄JS|hK(·, z) are

inverses of each other.

B. Ratio of Exponential and Weibull Random Variables

To capture path loss exponents α 6= 2 in the previous

example, we generalize the distribution of Y to the Weibull

distribution

F̄Y (x) = e−λπxδ

,

where δ = 2/α. Its mean is Γ(1 + 1/δ)/(λπ)1/δ . We obtain

F̄JZ|Y K(z, x) = P(U > x) = P(Y ≤ − log(x)/z)

= 1− exp

(

−λπ

(− log x

z

)δ
)

and

F̄JZ|XK(z, x) = P(V > x) = P(1− e−λπ(X/z)δ > x)

= exp

(

−z

(− log(1− x)

λπ

)1/δ
)

.

Considering a fractional power control scheme that results in

a received power S = hRαεR−α, ε ∈ (0, 1], we observe that

power control is not always beneficial. It yields an effective

path loss exponent α(1 − ε) but decreasing the path loss

(increasing δ = 2/(α(1− ε))) only improves F̄JZ|Y K(z, x) for

x < e−z . For higher target reliabilities or high thresholds z,

ε = 0 (no power control) is best. The reason is that for large

z or high reliabilities, the successful links are mostly those

with distances smaller than 1. Full path loss inversion, i.e.,

ǫ → 1, implies Y ≡ 1 and (5) shows that the MD approaches

the step function P(e−z > x) = 1 − u(x − e−z), where

u(x) = 1(x ≥ 0). In contrast, ε ↓ −∞ implies infinite path

loss, which means S is infinite if R < 1 and 0 if R > 1. The

resulting MD is, for all x and z, the probability that there is

a point within distance 1 in the PPP, i.e., 1− e−λπ.

C. Sum of Exponential Random Variables

As in the first example, we let X and Y be independent

exponential random variables with means 1 and 1/µ, respec-

tively. Here we consider the sum Z , X + Y . We have

F̄Z(z) =
µe−z − e−µz

µ− 1
, µ 6= 1,

and

F̄Z(z) = e−z(z + 1), µ = 1.

The conditional ccdf is

U , F̄Z|Y (z) =

{

e−(z−Y ) Y < z

1 Y ≥ z.
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If Y > z, which happens with probability e−µz , P(U > x) =
1(x < 1). If Y < z and x < 1,

P(U > x) = P(e−(z−Y ) > x)

=

{

e−µ(log x+z) = x−µe−µz, x > e−z

1, x ≤ e−z.

Integration over x yields

E(U) = e−z + e−µz

∫ 1

e−z

x−µdx = F̄Z(z).

For the “reverse” MD we consider the conditional ccdf

V , FZ|X(z) =

{

e−µ(z−X) X < z

1 X ≥ z.

If X > z, which happens with probability e−z, P(V > x) =
1(x < 1). If X < z and x < 1,

P(V > x) = P(e−µ(z−X) > x)

= P

(

X >
log x

µ
+ z

)

=

{

e−(log(x)/µ+z) = x−1/µe−z, x > e−zµ

1, x ≤ e−zµ.

The distribution of Z is recovered from

E(V ) = e−µz + e−z

∫ 1

e−µz

x−1/µdx = F̄Z(z).

D. Ratio of Exponential and Exponential+Gamma Random

Variables

Let Z , X/(X + Y ), where X is exponential with mean

1 and Y is gamma distributed as

fY (y) =
1

Γ(a)
ya−1e−y,

and independent of X . The cdf is FY (y) = γ̄(a, y), where γ̄
is the normalized lower gamma function2, and E(Y ) = a. Z
is known to be beta distributed as

fZ(z) = a(1− z)a−1 ; FZ(z) = (1− z)a

with mean 1/(1 + a). The conditional ccdf is

U , F̄Z|Y (z) = e−zY/(1−z).

Letting ζ = z/(1− z),

P(U > x) = P(e−Y ζ > x)

= P(Y ≤ − log(x)/ζ)

= γ̄(a,− log(x)/ζ). (9)

The ccdf of Z is E(U), retrieved by integration over x:

∫ 1

0

γ̄(a,− log(x)/ζ)dx =
1

(1 + ζ)a
= (1− z)a

2In Matlab, γ̄(a, z) is calculated using gammainc(z,a). In
Maple, it is 1-GAMMA(a,z)/GAMMA(a), and in Mathematica, it is
1-Gamma[a,z]/Gamma[a].
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Fig. 4. Meta distributions F̄JZ|Y K(z, x) (blue) given in (9) and F̄JZ|XK(z, x)
(red) given in (10) for a = 3/2 and various values of z.

For the “reverse” MD F̄JZ|XK,

V = E1(Z > z | X) = γ̄(a,X(1/z − 1)) = γ̄(a,X/ζ),

whose distribution of V is the MD

P(V > x) = P(γ̄(a,X/ζ) > x)

= P(X > ζγ̄−1
a (x))

= e−ζγ̄−1

a (x), (10)

where γ̄−1
a is the inverse of the lower incomplete gamma

function3 for given a, i.e., γ̄(a, y) = x ⇔ y = γ̄−1
a (x).

Hence we have proven that

∫ 1

0

e−ζγ̄−1

a (x)dx = (1 + ζ)−a,

which is an integral that standard mathematical software

cannot solve.

Fig. 4 shows cross-sections of the two MDs F̄JZ|Y K and

F̄JZ|XK for a = 3/2. F̄JZ|Y K given in (9) is the MD of the

signal fraction (SF), defined as SF = S/(S+I) = SIR/(SIR+
1) [2], if the signal power is exponential with mean 1 and the

interference power is gamma distributed (and not subject to

small-scale fading).

Comparing this example with the first two, we conclude that

the distributions of the forms Z = X/Y and Z ′ = X/(X+Y )
are related by replacing the parameter z by z/(1 − z), i.e.,

FZ(z) = FZ′(z/(z + 1)) and FZ′(z) = FZ(z/(1 − z)).
This holds more generally whenever Z ′ can be expressed by

an invertible function of Z , and also when X and Y are

dependent.

Accordingly, by replacing ζ by z in (9), we obtain the SIR

MD for the same scenario (Rayleigh fading in the desired link

and gamma distributed interference).

3In Matlab, this function is implemented as gammaincinv(x,a). In
Mathematica, it is InverseGammaRegularized[a,1-x].
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E. Ratio of Exponential and Exponential+Inverse Gamma

Random Variables

Let Z , X/(X + Y ), where X is exponential with mean

1 and Y is inverse gamma distributed as

fY (y) = b2y−3e−b/y,

independent of X . The cdf is FY (y) = 1− γ̄(2, b/y) = (y +
b)e−b/y/y, and E(Y ) = b.

As before, the conditional ccdf is U = e−zY/(1−z), and,

letting ζ = z/(1− z),

P(U > x) = P(Y ≤ − log(x)/ζ)

=

(

1− bζ

log x

)

ebζ/ log x. (11)

The ccdf of Z is E(U), obtained by integration over x, is

FZ(z) = 2cK(1, 2c) + 2c2K(0, 2c),

where K is the modified Bessel function of the second kind4

and c =
√
bζ =

√

bz/(1− z). This is an instance where the

MD is in closed-form, while the ccdf requires transcendental

functions. As before, F̄JZ|Y K can be interpreted as an SF MD,

in this case for inverse gamma distributed interference.

For F̄JZ|XK, we let

V = E1(Z > z | X) = FY (X/ζ) = (1 + bζ/X)e−bζ/X .

The distribution of V is the MD given as

P(V > x) = P

(

X >
−bζ

W−1(−x/e) + 1

)

= exp

(

bζ

W−1(−x/e) + 1

)

, x < 1, (12)

where W−1 is the −1-st branch of the Lambert W function5.

F. Ratio of Gamma Random Variables

Lastly, we generalize the result from Subs. II-A to the

case where X is gamma distributed with mean 1 and Y is

independent and gamma distributed. The cdfs are

FX(x) = γ̄(a, ax), a > 0,

FY (y) = γ̄(c, by), b, c > 0.

By independence, EZ = b/(c− 1) if c > 1.

The ccdf of U = F̄Z|Y (z) = 1− γ̄(a, aY z) is

P(U > x) = P(1− γ̄(a, aY z) > x)

= P(Y ≤ γ̄−1
a (1− x)/(az))

= γ̄(c, bγ̄−1
a (1− x)/(az)). (13)

In the reverse MD F̄JZ|XK, we have V = γ̄(c, bX/z) whose

ccdf is

P(V > x) = P(γ̄(c, bX/z) > x)

= P(X > zγ̄−1
c (x)/b)

= 1− γ̄(a, azγ̄−1
c (x)/b). (14)

4Implemented in Maple and Mathematica as BesselK(v,x) and in
Matlab as besselk(v,x).

5Implemented in Maple as LambertW(-1,x), in Mathematica as
ProductLog[-1,x], and in Matlab as lambertw(-1,x). For x ∈
[−1/e, 0), it is real-valued, with a range from −1 to −∞.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exact

beta approx.

Fig. 5. Meta distributions F̄JZ|Y K(2, x) as given in (13) (blue) and beta
approximations (red) for c = 2 and three pairs of values for a, b.

As in the previous example, it is apparent that (13) and (14)

are mutual inverses.

If z in the MDs is replaced by z/(1 − z), the MDs of

X/(X+Y ) are obtained. Hence this example also generalizes

the one in Subs. II-D. By setting a = b = 1 and c = a, we

have

P(U > x) = γ̄
(

a, γ−1
1 (1 − x)/z

)

, (15)

which corresponds to (9) with z replaced by ζ = z/(1 − z)
and noting that γ̄−1

1 (1 − x) = − log x.

The approximation of MDs using beta ccdfs is natural and

has been frequently used since it was originally proposed in

[3]. It is obtained by matching the first and second moments

of U to those of a beta distribution. Fig. 5 shows that an

excellent approximation is obtained for several qualitatively

different MDs (13). These cases where the MD has a closed-

form expression are ideal to assess the accuracy of the beta

approximation.

III. CONCLUDING REMARKS

In this first part of a two-letter series, the concept of meta

distributions is introduced and motivated as a natural extension

of distributions (ccdfs). We have calculated MDs for several

simple examples and shown that ccdfs are a special case of

MDs, obtained by integration, in exactly the same way means

are obtained by integrating ccdfs. In Part 2 [1], we will explore

the properties of the MD in more depth, formally state a suf-

ficient condition for the property that “forward” and “reverse”

MDs are inverses of each other, present two applications to

Poisson networks, and discuss different interpretations.
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