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REVIEW AND

SYNTHESIS

How long do population level field experiments need to be?
Utilising data from the 40-year-old LTER network

Abstract

We utilise the wealth of data accessible through the 40-year-old Long-Term Ecological Research
(LTER) network to ask if aspects of the study environment or taxa alter the duration of research
necessary to detect consistent results. To do this, we use a moving-window algorithm. We limit
our analysis to long-term (> 10 year) press experiments recording organismal abundance. We find
that studies conducted in dynamic abiotic environments need longer periods of study to reach
consistent results, as compared to those conducted in more moderated environments. Studies of
plants were more often characterised by spurious results than those on animals. Nearly half of the
studies we investigated required 10 years or longer to become consistent, where all significant
trends agreed in direction, and four studies (of 100) required longer than 20 years. Here, we
champion the importance of long-term data and bolster the value of multi-decadal experiments in
understanding, explaining and predicting long-term trends.
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INTRODUCTION

Long-term experiments are essential in the study of ecology:
critical in isolating and understanding the ecological conse-
quences of global land use and climate change (Likens et al.
1996; Del-Val & Crawley 2005; Haddad ef al. 2015; Gonzalez
et al. 2016; Hughes et al. 2017; Van Klink et al. 2020). Long-
term data, collected over at least 10 years, are especially
important in evaluating ecosystem properties and processes
that require evaluation over a full range of regional climatic
extremes or are slow to develop over time (Tilman et al. 1994,
Rasmussen et al. 1998; Knapp et al. 2012). However, for a
variety of reasons, short-term experiments lasting 1-5 years
are the benchmark in ecology. Short-term experiments, which
are more consistent with typical grant cycles and graduate
programs, are essential in identifying ecosystem-related
changes in a timely and cost-effective manner. Despite their
importance, conceptual problems have occurred because ecol-
ogists use short-term experiments to address long-term ques-
tions (Tilman 1989). Temporally restricted research may
merely capture a snapshot of ecosystem properties as they
gradually respond to manipulation (Hanski & Ovaskainen
2002; Helm et al. 2006; Knapp et al. 2012; Jarvis & Williams
2016; Voelkl & Wiirbel 2016). As such, research conducted at
constrained time scales has the potential to be misleading,
either capturing short-term trends or failing to detect trends
at all (Bahlai ez al. 2020; Cusser et al. 2020). While the argu-
ment for long-term data collection is not new (Callahan 1984;

Tilman 1989; Tilman 1997; Rees et al. 2001; Estes et al. 2018,
among others), rarely have multiple datasets been amassed at
decadal timescales appropriate to instill confidence in pro-
posed long-term trends. One place where this is possible, and
is the focus of our study, is in the 40-year-old Long-term Eco-
logical Research (LTER) network.

Developed in direct response to arguments for the impor-
tance of long-term experimental studies (Callahan 1984), the
LTER network not only provides a ‘sandbox’ in which to
examine long-term responses to experimental manipulation, it
also allows us to contextualise hypothetical shorter term stud-
ies by parsing apart ephemeral, lagged or spurious responses
from those that are genuine changes in system behaviour.
While previous research has suggested the importance of long-
term data, never before has the spatial or temporal extent and
quality of long-term data been available to examine its impor-
tance, until now.

Ecological systems are inherently dynamic, and variation is
driven by a variety of stochastic and deterministic processes
(Folke 2006; Suding & Gross 2006; Hastings 2010; Beckage
et al. 2011; McCann et al. 2020). Confident experimental out-
comes in highly dynamic abiotic environments are likely to
require evaluation over an appropriately variable climate. Ide-
ally, a study should capture the full range of abiotic extremes
representative of that system (Ives & Carpenter 2007). The
longer that an experiment proceeds, the more likely its results
will reflect both the average and extreme climatic conditions
that characterise a particular geographic region (Tilman
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1989). Beyond environmental variables, specific taxa under
investigation may respond slowly to experimental manipula-
tion, only reaching a delayed response after some temporal
threshold is met (Krauss et al. 2010). These temporal thresh-
olds are likely to be closely linked to taxa-specific life-history
traits, including generation time, dispersal and colonisation
ability, and dormancy periods, among others. For example if
long-lived plants can survive initial experimental disruption,
changes in plant population abundance may take many gener-
ations to become apparent, even if the immediate results are
measurable in reduced individual fitness (Tilman et al. 1994;
Cousins et al. 2007; Ellis & Coppins 2007; Gustavsson et al.
2007; Jackson et al. 2009; Haddad et al. 2015). Also, a plant’s
seed bank may further prolong the lag in response, replacing
individuals lost in the adult population following disturbance
(Plie et al. 2017). Some animals, due to their relatively short
generation time, high mobility, and potential to track
resources in novel environments, may respond more rapidly
to manipulation (Kuussaari er al. 2009; Krauss er al. 2010),
and may consequently not require long experiments to confi-
dently determine consistent results from manipulation.

We focus our quantitative synthesis on a single response
type in experimental studies: population level organismal
abundance. While patterns of abundance are themselves a
fundamental topic in ecology, they also underlie some of the
most basic questions in the field and have been used to
develop hypotheses concerning species response to climate
change, identify probable locations of pest outbreaks, and
choose the location of natural reserves (Elton & Nicholson
1942; Altieri et al. 1984; Pounds et al. 1999; Sagarin et al.
2006). Given that measures of organismal abundance are rela-
tively quick to execute, consistently apparent between obser-
vers and years, and an intuitive measure of population
condition in some systems, abundance is a regularly collected
and relatively comparable metric between studies.

Here we make two hypotheses concerning the importance of
long-term studies (> 10 years) in documenting organismal
abundance: (H1) If studies take place in highly variable envi-
ronments, with increased system-specific abiotic variation,
then studies of those systems will require longer periods to
detect consistent results than those studies in environments
with more consistent abiotic variables. (H2) If taxa have long
generation times or low dispersal and colonisation abilities,
then studies of those taxa will result in a higher proportion of
spurious short-term trends than taxa with shorter generation
times, high mobility and potential to track resources in novel
environments. To test these hypotheses, we use a moving win-
dow algorithm and utilise the wealth of data across studies of
organismal abundance mined from the 40-year-old Long-
Term Ecological Research (LTER) network. We posit that
long-term experiments may be needed to understand, explain
and predict long-term trends.

METHODS
Data mining

We searched the 40-year-old Long-term Ecological Research
database network portal (https://portal.edirepository.org/nis/
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home.jsp) to identify and repurpose relevant long-term experi-
mental datasets. We systematically explored each of the 6957
unique datasets, from 30 locations that were available as of
December 2018. Only datasets that met five requirements were
included in our analysis: (1) research spanned ten years or
longer; (2) research recorded data in ten distinct years and
data could be expressed as a summary metric for each year of
research (i.e. average organismal abundance by treatment); (3)
research documented a press experiment in which the treat-
ment was repeatedly applied throughout the experimental per-
iod (Bender et al. 1984) and treatments could be divided into
a ‘control’ and ‘treatment’ category; (4) treatment response
was recorded as a measure of organismal abundance and (5)
research showed evidence of change in treatment effect over
time (i.e. included at least one statistically significant linear
relationship between the effect size and time, discussed below).
Some study sites recorded multiple datasets documenting
organismal abundance, and some datasets quantified multiple
taxa responses to the same experimental manipulation. Time
series were divided into the finest taxonomic resolution avail-
able for analysis (i.e. order, genera, species, or morphos-
pecies). Whenever possible, each taxon within each dataset at
each site was analysed separately. A few of the datasets were
resampled multiple years after a continuous sampling effort,
resulting in a single, temporally disconnected, sampling point.
To ensure continuity with other, consistently sampled studies,
these single ‘late-breaking’ datapoints were removed from
analysis.

Our search identified 100 datasets from 28 distinct studies
and 12 LTER sites that met our five requirements (Fig. I,
ESM Table 1). Another 22 datasets met our first four require-
ments, but lacked any significant linear relationship between
the effect size and time. In these datasets, the effect size did
not change significantly over the course of study regardless of
the study duration. As such, they were not likely to be of
interest for long-term analysis. Before the removal of these 22
datasets, we analysed all 122 time-series that met the first four
requirements. The results followed similar patterns with and
without the 22 datasets, thus we felt confident in our decision
to remove them from the analysis.

The experimental scope of the 100 datasets used for analy-
sis ranged from studies on the exclusion of herbivores [Sevil-
leta (Lightfoot, 2010, 2016a, 2016b, 2016c) and Short Grass
Steppe (Milchunas 2014)], to manipulating moisture [Konza
Prairie (Smith ez al. 2020; Blair 2020; Joern 2020) and Sevil-
leta (Pockman 2013; Collins 2016b)], nutrients [Arctic (Sha-
ver 2016), Cedar Creek (Tilman 2018c), Hubbard Creek
(Hamburg 2016), and Plum Island (Deegan 2012; Deegan &
Warren 2012)], pH [North Temperate Lakes (Kratz 2019)]
and temperature [McMurdo Dry Valleys (Wall & Virginia
2016)], as well as deliberately altering species diversity [Cedar
Creek (Tilman 2018a, 2018b)], or removing plants by fire,
grazing [Konza Prairie (Boyle 2020)], trimming [Luquillo
(Sharpe 2017), Santa Barbara (Reed & Harrer 2017; Santa
Barbara LTER & Reed 2020a, 2020b)], mechanical tillage
[Kellogg (Landis 2018)] or some combination thereof [Sevil-
leta (Collins et al. 2016; Collins 2016a)]. For a full list of
LTER sites and experiments involved in our analyses see
ESM Table 1.
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Figure 1 Map showing 12 LTER sites with data in our study across North America and in Antarctica (inset). Colours represent climate variability as
determined by isothermality. (BIOCLIM Variable 3). Lower isothermality (cooler colours) indicate higher annual climate variability. Higher isothermality

(warmer colours) indicate lower annual climate variability.

Effect size and moving window algorithm

To determine the study duration needed to identify long-term
trends, we first calculated the effect size of the press treatment
for each year of each of the 100 datasets as Hedges’ g. As
such, effect size was calculated as: [x; — X.]/SD,, where x, is
the average treatment population size in that year, X, is the
average control population size in that year and SD,, is the
pooled standard deviation of that year (Rosenthal er al.
1994).

Next, to understand the study duration needed to identify
changes in effect size over time for each dataset, we applied a
moving window algorithm developed in R (Bahlai er al
2020). We fit linear regression models to defined subsets of
each dataset. Datasets were divided into every possible subset
of three consecutive year periods or longer. For example a
dataset of 10 years would include analysis of a total of 36
window subsets: 8 distinct three-year windows, 7 four-year
windows, 6 five-year windows and so on, with the final win-
dow encompassing the full dataset, or single 10-year window.
From each window subset, we separately analysed a linear
regression and compiled summary statistics of interest (i.e.
slope of the relationship between Hedges’ g and time,

standard error of this relationship and p-value). See Bahlai
et al. 2020 for an in-depth description of the process and
github (https://github.com/cbahlai/broken_window) for the
appropriate R code.

We defined the significance and direction of the longest
time series (i.e. the slope of the linear regression of the
whole dataset) as a proxy for the ‘true’ trajectory of the
data, as it represents the best information available. Signifi-
cance was determined at the alpha = 0.05 level. Compar-
isons of the data subsets are based on comparison to these
‘true’ trends and were consequently sorted into two groups:
those with long-term trends (i.e. those with a significant
relationship between change in effect size and time for the
entire dataset, Fig. 2a) and those without (i.e. those with no
significant relationship between change in effect size and
time for the entire dataset, Fig. 2b). Conceptually, we were
interested in the trajectory of the relationship between
Hedges’ g and time, and how linear regression model out-
puts vary with sample period duration: our focus was deter-
mining the probability of patterns being observed. Thus, our
methods are not to form specific ecological conclusions con-
cerning experiments and we make no claims about the eco-
logical implications of the trends we found. Rather, we

© 2021 John Wiley & Sons Ltd.
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Table 1 (a) Parameter estimates of generalised linear mixed models
(GLMMs) to determine the relationship between isothermality, the cate-
gorical variables (plant or animal), as well as any interactions between the
two with critical temporal threshold. We use ‘isothermality’ and ‘plant/an-
imal’ as fixed effects and ‘LTER dataset’ nested within ‘LTER Site’ as a
random intercept. The continuous climatic variable was scaled to account
for differences in magnitude. We tested for overdispersion, of which we
found no evidence. (b) Linear regression model to test for significant dif-
ferences in percent spurious trends between studies focused on plants and
those on animals

(a) Critical temporal threshold

Fixed effects Estimate SE z value P value
Intercept (Animal) 2.06 0.12 17.75 <0.001
Isothermality 0.06 0.11 0.52 0.6
Plant/Animal 0.48 0.15 3.24 0.001
Isothermality x Plant —0.44 0.144 -3.21 0.001
(b) Percent spurious results

Fixed effects d.f. Sum Sq Mean Sq F value P value
Plant/Animal 1 0.0626 0.06265 4.875 0.029
Residuals 98 1.2594 0.01285

encourage that any dataset-specific results be interpreted
with a degree of caution.

No adjustments were made for multiple statistical comparisons
in our analysis as each linear regression was considered in isola-
tion, as a hypothetical observation period which an experimenter
would use to reach conclusions regarding system behaviour,
from non-independent but still separate experimental durations.

Extracting temporal thresholds and percent spurious trends

To quantify the necessary study duration for each dataset, we
plotted window length (i.e. number of years) in each subset of
the moving window algorithm against the value of the slope
for that window’s linear regression. The result was 100 dis-
tinct ‘pyramid plots’ (Bahlai ez al. 2020; Cusser et al. 2020).
From each plot, we extracted a value for ‘critical temporal
threshold’. For studies with long-term trends (Fig 2a), a criti-
cal temporal threshold is determined as the minimum number
of years until all trends agreed with the long-term trend (i.e.
all trends of that window length are significant and in the
same direction as the long-term trend). For each dataset lack-
ing a long-term trend (Fig 2b), the critical temporal threshold
is the minimum number of years to avoid all spurious results
(i.e. all trends of that duration are not significant thus avoid-
ing misleading significant results). As such, we recorded a
value for critical temporal threshold for both datasets with
and without long-term trends.

We also calculated the percent of spurious results found in
each of the 100 datasets. For datasets with ‘true’ long-term
trends, spurious trends were those periods with significant
slopes in the direction opposite to the long-term (Fig 2a). For
datasets which lacked long-term trends, any significant results
were considered spurious (Fig 2b). Percent spurious trends
were determined for each study as the number of spurious
trends/total number of trends.

© 2021 John Wiley & Sons Ltd.
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Figure 2 Example moving window plots showing critical temporal thresholds
and spurious results from a dataset with a long-term trend (a) and dataset
without a long-term trend (b). Each plot represents a single experimental
study tracking organismal abundance. Red dots show significant trends at the
alpha = 0.05 level. Black dots represent non-significant trends. Positive
regression slopes indicate that organismal abundance increased in the control
relative to treatment, whereas negative slopes indicate the opposite. Panel (a)
shows data from the Konza Prairie LTER (knz.72.8) Andropogon gerardii
response to moisture manipulation. The percent spurious trends are the
number of red dots with positive slope by the total number of dots. Panel (b)
also shows data from the Konza Prairie LTER (knz.26.10) Dickcissel
response to plant removal by fire. The percent spurious trends are the
number of red dots divided by the total number of total dots.
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Continuous and categorical explanatory variables

To address our first hypothesis, concerning the influence of
abiotic variation on study duration, we extracted the World-
Clim v2 Bioclim variable of Isothermality for each of the 12
LTER locations (Busby 1991). Initially, we had explored mul-
tiple Bioclim variables, including precipitation seasonality and
annual precipitation, but variables were determined to be
either collinear or uninformative and were consequently
removed from further analysis. As a result, we use the BIO-
CLIM variable of isothermality as a single measure of intra-
annual temperature fluctuation at each of our sites. Isother-
mality quantifies how large the day-to-night temperatures
oscillate relative to the summer- to-winter (annual) oscillations
(Isothermality = (Mean Diurnal Temperature range/Tempera-
ture annual range) x 100). As such, sites with low isothermal-
ity are located in the most variable abiotic environments.
Across datasets, isothermality averaged 37.65% (SE: 1.22%)
and ranged from 21.44% (McMurdo Dry Valleys) to 71.52%
(Luquillo).

To address our second hypothesis, concerning the extent of
spurious results surrounding slow to change taxa, we coarsely
divided datasets based on taxa specific life-history traits,
including generation time, dispersal and colonisation ability
and dormancy periods. As a proxy for these difficult to mea-
sure life-history traits, we divided datasets into two categories:
those focused on plants and those focused on animals. Of the
100 time-series, 56 focused on animal abundance and 44 on
plant abundance.

Analysis

To address our first prediction, that studies taking place in
highly variable abiotic environments will require longer study
periods to reach consistent results than more abiotically stable
systems, we use generalised linear mixed models (GLMMs) to
determine the relationship between isothermality and our cate-
gorical explanatory variable (i.e. plant or animal), as well as
any interactions between the two with our response (i.e. criti-
cal temporal threshold) using the ‘glmer’ function in the pack-
age ‘lmed4’ (Bates et al. 2014). We used ‘isothermality’ and
‘plant/animal’ as fixed effects and ‘LTER dataset’ nested
within ‘LTER Site’ as a random intercept. We scaled continu-
ous climatic variables to account for differences in magnitude.
We tested for overdispersion, of which we found no evidence.

To address our second prediction, that experiments investi-
gating slow to change (i.e. plant) taxa will be more often char-
acterised by high proportions of misleading short-term trends
than experimental studies focused on quick to respond (i.e.
animal) taxa, we used linear regression to test for significant
differences in percent spurious results between studies that
focused on plants and those on animals.

RESULTS

Of the 100 datasets, we found 24 studies with a significant
trend for the full dataset (change in effect size over the full
study period), and 76 studies without a significant trend for
the full dataset. It took 9.66 years on average (SE: 0.52, range

3-32 years) to reach a critical temporal threshold and achieve
consistent significant results. On average, 11.7% (SE: 1.1%,
range 0.7-47%) of significant trends derived from subsets of
sampling years were spurious, not agreeing with the long-term
pattern of the data.

We found support for our predictions, finding that both
isothermality and the plant/animal distinction contributed to
the length of the critical temporal threshold necessary for con-
sistent results. We found that studies taking place in highly
variable abiotic environments required the longest periods of
study to reach consistent results. As such, those sites located
in the most dynamic abiotic environments (those with low
isothermality) required the longest periods of evaluation. On
average, we see that for every 1% increase in abiotic variation
(1% decrease in isothermality), we saw approximately a 0.1-
year (1.2 months) extension of the critical temporal threshold
across taxa (Fig. 3a). We also found an interaction between
isothermality and our taxa variable (plant or animal) in
explaining the length of time needed to reach consistent
results (Estimate: —0.44, SE =0.14, z = -3.20, P =0.001,
Fig. 3a, Table 1). Plant studies required longer periods of
time to become consistent in highly dynamic environments.
For example studies undertaken at the Cedar Creek and Arc-
tic LTERs, which are plant studies characterised by the stron-
gest seasonal extremes in our study, also had the longest
critical temporal thresholds (32 and 16 years respectively).

We also found that studies focused on plants were charac-
terised by significantly more spurious results than those that
focused on animals (7 = 2.2, P = 0.03, Fig 3b). On average,
15% of significant plant trends were spurious, compared to
only 9% of animal trends. We also show that every study
investigated contained at least one spurious trend, and most
studies (63%) had more than the expected number of false
positives, or type I error, expected at the traditional 0.05
alpha threshold.

DISCUSSION

We found support for both of our predictions: experimental
studies in dynamic abiotic environments generally needed
longer periods of study than those in more stable environ-
ments. We also found that experiments investigating poten-
tially slow to change taxa, such as plants, were more often
characterised by misleading short-term trends than those stud-
ies focused on animals. Most importantly, we underscore the
importance of using long-term data to address long-term
questions. We see that nearly half (46/100) of the studies we
investigated require 10 years or longer to reach stable and
consistent results, and four studies required longer than
20 years.

While our unprecedented access to long-term data broadens
both the scope and magnitude of our findings, the themes we
posit are by no means revolutionary. Ecologists have long
recognised that while short-term experiments offer important
insights into transient dynamics, transient dynamics may not
reflect long-term trends (Callahan 1984; Tilman 1989). For
example the Park Grass Experiments of Rothamsted, England
underscore the importance of long-term data. As one of the
longest of all ecological experiments to date, Park Grass

© 2021 John Wiley & Sons Ltd.
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investigates how research conclusions may vary depending on
study length (Lawes & Gilbert 1880; Brenchley & Warington
1958; Tilman 1982). The Park Grass plots, which were sub-
jected to a repeated pattern of nutrient addition for over
130 years, show that nutrient dynamics are extremely slow to
develop, especially in direct comparison to studies on resource
competition. Authors conclude that 5-year studies are likely
too short to understand long-term dynamics. While similar in
motivation and outcome to our work, the Park Grass Experi-
ments investigate a single experimental manipulation within
one region. Our analysis incorporates a large spatial scale,
transcending biogeographic regions, and includes multiple
treatment types and a range of response taxa to show that
patterns found in the Park Grass Experiment are more univer-
sal than initially claimed.

Beyond the population level press experiments that we study
here, the LTER boasts a range of observational and experi-
mental research. Pulsed experimental treatments, which mimic
one-time disturbance events or single catastrophic environ-
mental changes, may be a natural extension of our methods.
While pulsed manipulations can result in short periods of high
productivity following disturbance, they can also generate
long-lasting, complex, or lagged impacts (Haddad er al. 2002).
For example the Hubbard Brook experiment offers an inter-
esting case (Likens et al. 1996). During the long monitoring
period following a pulse treatment, decades passed before
researchers could uncover genuine long-term changes in
stream chemistry (Rosi-Marshall et al. 2016; Marinos et al.
2018). Researchers hypothesise that the slow to emerge effects
were related to gradual changes in forest community composi-
tion. The Hubbard Brook experiment offers evidence that
ecosystem dynamics can be impacted long beyond the occur-
rence of a major disturbance event. Determining how and
when systems respond to pulsed treatments may be an inter-
esting extension of our moving window analysis.

While the focus of this study is on the population level met-
ric of organismal abundance, our technique is readily

© 2021 John Wiley & Sons Ltd.

applicable to higher level community or ecosystem processes.
This is particularly important for the LTER network, as the
five guiding criteria of the network are at the community
(trophic structure) and ecosystem (productivity, organic mat-
ter accumulation, nutrients, disturbance) levels. Given their
complexity, there is reason to hypothesise that higher-level
properties which define community or biogeochemical pro-
cesses may take even longer to become consistent, and be
defined by more spurious trends, than the studies of popula-
tion level organismal abundance that we investigate here.
Establishing temporal trajectory in ecological systems is prone
to other pitfalls and biases, including site selection biases,
transient dynamics upon the establishment of a study, and
sampling effects, and these issues can be magnified in popula-
tion studies due to density-dependent nonlinear dynamics
inherent to these systems (Fournier et al 2019; Wauchope
et al. 2019; Didham et al 2020).

Owing to high temporal variability in community dynamics
and lags in biodiversity response, changes in trophic structure
may take decades or longer to be described and explained
(Tilman et al. 1994; Kuussaari et al. 2009; Magurran et al.
2010; Record et al. 2020). The rate of community response
following experimental disturbance is likely to depend on taxa
specific traits within that community and consequently likely
to play out over longer time periods than any individual spe-
cies considered in isolation. For example longer-lived species
may be lost more slowly than shorter-lived species; lower
trophic levels lost more slowly than higher trophic levels (Bor-
rvall & Ebenman 2006; Staddon et al. 2010); and generalist
species may decline more slowly than specialist species (Watts
et al. 2020). Furthermore, extinction debt predicts that the
most abundant species (i.e. the best competitors) are likely to
go extinct first following disturbance (Tilman et al. 1994),
leaving less competitive (e.g. Tilman 1997) or longer-lived spe-
cies remaining in the community long after the habitat can no
longer support them. Given that the focus of our study is
often on the most common species in a community, extending
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our methods to include less common species may increase the
prevalence of extinction debt and lagged responses at the
community level. Indeed, models created by Tilman et al.
(1994) suggest that extinction debt can play out over scores of
decades and resulting species interactions (i.e. trophic cas-
cades), affected by order and timing of changes in species
abundance and presence, will take decades to develop (Stad-
don et al. 2010).

The order of species loss may affect not only community dis-
assembly, but also the magnitude and trajectory of changes in
ecosystem properties (Lawton 1994; Grime 1998; Gonzalez &
Chaneton 2002). We expect biodiversity ecosystem function
(BEF) relationships to span multiple spatial and temporal
scales (Gonzalez et al. 2020). With cross-scale feedbacks, the
strength and form of ecosystem response to disturbance is
likely to vary across the distribution of individuals within and
among species (Gonzalez et al. 2020). Thus, variation in ecosys-
tem function will respond not just to variation in species pres-
ence, community composition and trophic structure; but also,
on effects on carbon and nitrogen availability, soil moisture,
productivity and other ecosystem characteristics (Staddon et al.
2010; Haddad et al. 2015; Cusser et al. 2020). The likely conse-
quence is a further lag in ecosystem level response.

Given the extent of ongoing global land use and climate
change, long-term experiments are more necessary than ever
to understand, explain and predict long-term trends. With glo-
bal climate change increasing abiotic variability worldwide,
results from short-term studies may become increasingly unre-
liable. While long-term experiments are expensive, both in
their cost to operate and in the career-long devotion needed
to see trends emerge, new efforts should work in parallel,
coordinating network-wide experiments and syntheses across
ecosystems and climates. Understanding the relationship
between transient and long-term dynamics is a significant
challenge that ecologists must tackle, and long-term experi-
ments will be essential for relating observation to theory now,
as well as in the future.
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