Noname manuscript No.
(will be inserted by the editor)

Deep Learning for Procedural Content Generation

Jialin Liu! - Sam Snodgrass? - Ahmed Khalifa3

Georgios N. Yannakakis?5¢ . Julian Togelius?3

Received: date / Accepted: date

Abstract Procedural content generation in video
games has a long history. Existing procedural content
generation methods, such as search-based, solver-based,
rule-based and grammar-based methods have been ap-
plied to various content types such as levels, maps, char-
acter models, and textures. A research field centered on
content generation in games has existed for more than
a decade. More recently, deep learning has powered a
remarkable range of inventions in content production,
which are applicable to games. While some cutting-edge
deep learning methods are applied on their own, oth-
ers are applied in combination with more traditional
methods, or in an interactive setting. This article sur-
veys the various deep learning methods that have been
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applied to generate game content directly or indirectly,
discusses deep learning methods that could be used for
content generation purposes but are rarely used today,
and envisages some limitations and potential future di-
rections of deep learning for procedural content gener-
ation.
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design - Deep learning - Machine learning - Computa-
tional and artificial intelligence

1 Introduction

Deep learning has powered a remarkable range of in-
ventions in content production in recent years, includ-
ing new methods for generating audio, images, 3D ob-
jects, network layouts, and other content types across
a range of domains. It stands to reason that many of
these inventions would be applicable to games. In par-
ticular, modern video games require large quantities of
high-definition media, which could potentially be gen-
erated through deep learning approaches. For example,
promising recent methods for generating photo-realistic
faces could be used for character creation in games.
At the same time, video games have a long tradition
of procedural content generation (PCG) [132], where
some forms of game content have been generated algo-
rithmically for a long time; the history of digital PCG
in games stretches back four decades. In the last decade
and a half, we have additionally seen a research commu-
nity spring up around challenges posed by game content
generation [16] 03, 112, 129, [133, 134, [148]. This re-
search community has applied methods from core com-
puter science, such as grammar expansion [22]; AI, such
as constraint solving [I15] and evolutionary computa-
tion [7), 133]; and graphics, such as fractal noise [24].
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But only in the last few years have we seen a real ef-
fort to bring the tools of deep learning to game content
generation.

Deep learning brings new opportunities and leads
to exciting advances in PCG, such as generative ad-
versarial networks (GANs) [32], deep variational au-
toencoders (VAEs) [63] and long short-term memory
(LSTM) [34, [45]. However, those methods for other gen-
erative or creative purposes are not always applicable
to games and need certain adaptations due to the func-
tionality criteria of different game content. Methods for
generating images (e.g., generative networks) can be
used to generate image-like game content (e.g., level
maps, landscapes, and sprites). However, the generated
levels should be playable and require specific gameplay
skill-depth. The generated sprites should imply spe-
cific character or emotion, as well as coherence within
the game. Training reliable models requires a necessary
amount and quality of data, while the available data of
content and playing experience for most games is lim-
ited. Careful consideration and sophisticated design of
adaptation techniques are requisites for applying deep
learning methods to generate game content.

It is important to note that content generation has
uses outside of designing and developing games for hu-
mans to experience. In addition to creating content in
games meant for humans to play, content generation
can also play a crucial role in creating generalizable
game-based and game-like benchmarks for reinforce-
ment learning and other forms of AT [26], [136].

This article surveys the various approaches that
have been taken to generate game content with deep
learning, and also discusses methods proposed from
within deep learning research that could be used for
PCG purposes. First, we give an overview of types of
game content that could conceivably be generated by
deep learning, including the particular constraints and
affordances of each content type and examples of such
applications (if they exist), followed by an overview of
applicable deep learning methods.

2 Scope of The Review

This article discusses the use of deep learning (DL)
methods, here defined as neural networks with at least
two layers and some nonlinearity [33], for game con-
tent generation. We take an inclusive view of games as
any games a human would conceivably play, including
board games, card games, and any type of video games,
such as arcade games, role-playing games, first-person
shooters, puzzle games, and many others. Several other
surveys and overviews of PCG in games already exist.

Here, we delineate the scope of our article by compar-
ing it to existing books and surveys in Section and
Section [2:2] Section [2.3] describes our paper selection
methodology.

2.1 Related Work

A number of books and surveys of PCG with differ-
ent focuses and aims have been published in the past
two decade [16] [93] [112] [129] [133] [134] [148]. The two
textbooks for PCG [112] and Game AI [I48] cover the
search-based methods, solver-based methods, construc-
tive generation methods (such as cellular automata and
grammar-based methods), fractals, noise, and ad-hoc
methods for generating diverse game content. De Kegel
and Haahr [I6] reviewed the PCG methods for eleven
categories of puzzles, but few work based on deep learn-
ing has been reported. The article by |Togelius et al.
reviews the search-based PCG methods, defined as us-
ing meta-heuristics to search in a predefined content
space, not necessarily represented by the same format
of the content itself, and automatically generate new
content [I33]. The search is led by a fitness or eval-
uation function which measures the quality or playa-
bility of the generated content. The experience-driven
PCG framework [I47] largely adopts a search-based ap-
proach and reviews ways in which algorithms can gen-
erate content for adjusting the player experience. Most
of the reviewed search-based methods in both survey
papers rely on evolutionary algorithms. In this article,
we also cover some search-based methods which coop-
erated with deep learning methods for generating con-
tent. The most famous example may be latent variable
evolution [5]. Risi and Togelius [93] focuses on PCG
for applications in Reinforcement Learning (RL), while
the work based on RL methods reviewed in this arti-
cle mainly used RL agents to play the generated levels,
which indirectly served as content evaluators. Khalifa
et al. [62] models the level generation as an iterative
process that one needs to edit the levels to meet cer-
tain requirements or achieve some specific goals. RL
agents need to learn to generate levels through this it-
erative process. The study of Summerville et al. [129],
published in 2018, reviews the PCG via Machine Learn-
ing (PCGML) methods, building on e.g. Markov chains
(e.g., [118 119, 120} 131],[152]), n-grams (e.g., [14]), and
Bayes nets (e.g.,[37]), whereas we will focus exclusively
on deep learning in this article.
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2.2 Novelty of The Review

The differences between the current article and the
PCGML survey [129] is that (i) our article focuses on
DL-based methods, defined at the beginning of Section
(although other techniques will be mentioned for con-
trast); (ii) our article surveys more types of game con-
tent, such as narrative text and graphical textures; (iii)
we also discuss applications of deep learning to support
PCG, such as for content quality prediction; and (iv)
our survey is written more than three years after the
PCGML survey was first submitted and two years af-
ter it was published, during which time an avalanche of
new work in the field has appeared.

During the two years after the publication of [129],
PCG via deep learning has been growing quickly and
a significant number of papers and articles have been
published. The trend was mainly set by latent variable
evolution [5] in 2018. A review of the state-of-the-art
and the latest applications of deep learning to PCG is
needed.

2.3 Paper Collection Methodology

To collect the related papers published or online since
2018, till end of August 2020, we have searched with
Google Scholar and Web of Science using the following
search terms ( “game”) AND (“design”) and (“game”)
AND (“procedural content generation” OR “pcg”), sep-
arately. We systematically went through the returned
papers, most of which were publications in the IEEE
Transactions on Computational Intelligence and Al in
Games (T-CIAIG), the IEEE Transactions on Games
(ToG), in the proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG) series,
the IEEE Conference on Games (CoG) series, the In-
ternational Conference on the Foundations of Digital
Games (FDQG) series, the Artificial Intelligence for In-
teractive Digital Entertainment (AIIDE) Conference
series and their related workshops, as well as special ses-
sions at other conferences, such as the IEEE Congress
on Evolutionary Computation (IEEE CEC). We also
went through the papers that have been recently ac-
cepted in 2020 by the conferences mentioned above.
Only work that involve direct or indirect use of DL-
based methods for generating game content or evaluat-
ing content or content generators are reviewed in this
article, while the ones being returned due to citations
with the search terms but are out of our scope are not
included.

3 Content Types

Generally, game content can be distinguished from the
content meant for non-interactive media by various
forms of functionality constraints. Video, images, and
music all require coherence, and in general that aes-
thetic suffers when the coherence fails. For example,
GANSs can often create images that are locally convine-
ing but globally incoherent, such as a side-view of a car
where the front wheels have a different size and style
to the back wheels. This may be annoying to the hu-
man viewer, but the image still unmistakably depicts
a car; it doesn’t turn into a blur of random pixels just
because the wheels on the car don’t match. In contrast,
when generating a game level, if the final door has no
matching key the level is unplayable; the level’s utility
as content is not just slightly diminished, but essentially
zero (unless manually repaired). Making a neural net-
work learn to produce only functional content is often
a tall task, and is one of the core challenges of using
deep learning for PCG. Not all types of game content
have the same extent of functional constraints however,
and some offer affordances that may make content gen-
eration relatively easier. Also, not all content is nec-
essary; depending on the game’s design, there might
be artifacts that are allowed to be broken, as the user
can simply discard them and select others. Weapons in
Borderlands are a good example of optional content.

3.1 Game Levels

The most common type of content to generate in games
is levels. These are spaces in two or three dimensions
that need to be traversed. Typically, these are necessary
rather than optional, and have strong functional con-
straints that require them to be playable. For example,
there can not be impassable geometry (such as gaps or
walls) blocking traversal of the level, items needed to
finish the levels must be present, and enemies cannot
be unbeatable. 2D, side-scrolling platform games is a
genre where procedural generation is particularly com-
mon, both in entertainment-focused games (in particu-
lar indie games) and in academic research. Among the
former, the standout game Spelunky has defined a way
of building 2D platform games around PCG; among the
latter, the Mario AI Framework [I35], built around an
open-source clone of Super Mario Bros, has been used
in so many research projects that it could be called the
“drosophila of PCG research”. Another type of com-
monly attempted 2D level is the rogue-like or dungeon-
crawler level, where the objectives and constraints are
similar to the platform game level, but which are viewed
from the top down so physics works differently. Related
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to this are levels for first-person shooters. Another kind
of 2D level is the battle map, used in strategy games
such as StarCraft or player-versus-player modes of first-
person shooters. While such maps also have “hard” con-
straints, such as sufficient room for the players’ bases,
there are also the softer constraints of balancing; many
features contribute to the quality of battle maps, but
balancing is paramount.

Levels for music games, such as as Guitar Hero or
Dance Dance revolution, can be seen as 2D levels as
well. Here the player is automatically moved along the
level, and has to carry out certain actions in time with
the music, as prompted by level features. Some inter-
esting work has been done on learning to create such
music game levels from existing music (e.g., [21], [139]).

3.2 Text

Almost all games include some form of text, and typi-
cally they use text to convey narrative. This text typ-
ically has very strong constraints, as it needs to be
truthful with regards to what happens in the game. For
example, if the text says that the King lives in Stock-
holm, this must actually be the case lest it misleads
the player. Traditionally, generative text in games has
not been very ambitious and used simple text substitu-
tion or grammar-based approaches. Outside of games,
deep learning has made great strides with LSTM net-
works [34] 5] and, more recently, transformers able to
generate coherent and stylistically relevant text. How-
ever, these methods are not easy to integrate into most
games because of the lack of control over deep learning-
based text generators. However, games such as AI Dun-
geon 2 have managed to build gameplay on top of al-
most uncontrollable text generation.

3.3 Character Models

Faces and character models are examples where deep
learning has advanced content creation capabilities rad-
ically in recent years, but these methods have generally
not made their way into games. Datasets of thousands
of real human faces, such as the Celeb-A dataset [75],
have become standard benchmark for developing new
GAN variations, leading to some impressive break-
throughs in face generation. While many games have
a need for (human) faces in various roles, including for
freshly generated NPCs, the character design feature
of role-playing games is a standout application case for
controllable PCG, where machine learning-based meth-
ods have yet to make their mark. Depending on the
features of the game, these faces or models might need

to be animatable, so that they can produce believable
movements or facial expressions.

3.4 Textures

Textures are used in almost all 3D games, and is per-
haps the type of content that has the fewest function-
ality constraints. Procedural methods such as Perlin
Noise [24, [89] have been used for texture generation
in games since the birth of commercial 3D games with
DOOM. Deep learning methods for texture generation
could provide a viable alternative in this case.

3.5 Music and Sound

Most games feature a soundtrack, often composed of
both music and sound effects. The constraints on the
soundtrack tend to be relatively soft compared to other
types of content constraints; the sound effects should
be appropriate to the actions in the game at any given
moment, and the music to the emotional tone of the
moment, but inappropriate sound does not necessarily
break the game. Quite a few games involve some kind
of procedural soundtrack, and some research projects
have focused on music generation able to adapt to af-
fective shifts in real-time [I06]. At the same time, deep
learning has made impressive strides in learning to gen-
erate music with some modes of controllability [I§], but
we have yet to see the use of deep learning methods for
sound generation in games.

4 Training Methods and Neural Architectures
of DLPCG

Due to the different types and roles of content in games,
diverse deep learning methods have been adapted for
PCG. In this section we present different ways to apply
deep learning for PCG systems, the target content, and
their generality. The approaches are categorized by the
type of machine learning method used for training. Ad-
ditionally, works combining evolutionary computation
techniques to deep learning methods are also presented.
The works reviewed in this section are summarized in
Fig. |1} categorized by the content types and deep learn-
ing methods.

Generating different types of content often requires
different types of neural architectures. In the use cases
reviewed in Section and Section LSTMs are
mostly used for time-dependent sequential data (e.g.,
action sequences, agent paths, charts for rhythm) and
language models, while convolutional neural networks
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Fig. 1: This figure shows the distribution of research by methods and content types. We notice the disproportion-
ately large amount of work on 2D level and map generation compared to all other content types.

are often used for any type of image-like content. A very
popular class of architecture for content generation are
GANs [32]. A GAN consists of two networks, a gen-
erator and a discriminator that are trained iteratively
to allow the generator to create more realistic content,
while the discriminator is getting better at distinguish
generated content from real data.

4.1 Supervised Learning

Supervised learning (SL) methods have been used in a
variety of ways for content generation. Often as a pre-
dictor, SL models predict the gameplay outcomes of
games with the generated content, either for evaluating
the quality of content, or for meeting specific prefer-
ences (such as game style, image style and color) or
adapting the generated levels to desired skill-depth.
The study of Summerville et al. [I27] extracted
player paths in Mario from gameplay videos and
used them to annotate training levels. Then, separate
LSTMs are trained on levels annotated with different
players’ paths in order to generate personalized levels
based on the players’ chosen paths [127]. Then, Guzdial
et al. [40] trained a random forest on expert-labeled
design patterns from Mario levels (i.e., small sections
of levels given descriptive class labels) to classify level
structures and an autoencoder with level structures and

labels as input to generate new instances of those design
patterns.

Karavolos et al. [57] trained a CNN to predict the
outcomes of a simplified 3 versus 3 multiplayer death-
match shooter game to evaluate and determine if the
levels, represented by maps and weapon parameters, are
balanced or favor a team. Based on the outcome pre-
dictor from [57], Karavolos et al. [58] further designed
a DL surrogate model for pairing levels and character
classes for desired game outcomes.

Tsujino and Yamanishi [139] represented rhythm-
based video game levels by charts and implemented
Dance Dance Gradation (DDG), a system with LSTMs
trained on levels of different degrees of difficulty to gen-
erate new levels. DDG can tune the difficulty degree of
generated charts by changing the fractions of easy or
hard charts used to compose the training dataset [139].
Liang et al. [67] used C-BLSTM [105] to generate lev-
els of rhythm games, represented by actions and corre-
sponding timing, of different difficulties, trained on the
beatmaps collected from OSU!, a famous rhythm game.

Beside considering skill-depth required in game lev-
els, the emotion sent by content has also been studied.
Guzdial et al. [38] studied the emotion shown by the
game visuals, such as abstract texture, color of game
maps and scene, including the visual effects, and trained
a CNN to generate textures for some given target emo-
tion.
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Soares and Bulitko [123] trained a VAE [63] to clas-
sify NPC behaviors to Leaders, Followers, and Random,
in a simple artificial life environment. Sirota et al. [IT4]
trained two RNNs, a speaker and a listener, by playing
a referential game with concepts and human-generated
annotations to design communication systems for NPCs
in games.

4.2 Standard Unsupervised Learning

Most unsupervised learning (USL) techniques in PCG
focus on learning a representation of all the content and
then sample new content from this representation. For
example, using autoencoders to learn to replicate game
levels. Another direction usually taken is transforming
the data into a sequence and use unsupervised learning
to learn the relation between these elements similar to
Markov Chains relations. For example, learning from a
text corpus how to predict the next word based on the
previous ones.

Summerville and Mateas [126] trained LSTMs on
Mario levels annotated with agent paths by represent-
ing the 2D levels as one dimensional strings of tiles.
Jain et al. [54] trained autoencoders on sliding-window
segments of Super Mario Bros levels, which were rep-
resented by 2D arrays, to generate and repair levels.
Jain et al. [54] considered a tile as being empty or
occupied, but has inspired many follow-up investiga-
tions. Blending has lead to new and creative game lev-
els. Sarkar and Cooper [90] trained separate LSTMs
on two different game domains (Mario and Kid Icarus),
and generated new blended level sections with alternat-
ing generators. Sarkar et al. [99] further explored gen-
erating blended levels by training variational autoen-
coders and GANs on Mario and Kid Icarus, and gen-
erating new blended level sections that interpolate be-
tween the domains using the latent vectors. Snodgrass
and Sarkar [I21] also used VAEs to model and generate
platformer level structures which was finished by using
a search-based approach to blend details from several
other games. Sarkar et al. [L00] explored two variants of
VAEs (linear are GRU) for blending platforming game
levels and associated paths in those levels. Sarkar and
Cooper [97] trained VAEs to learn a sequential model
of level segment generation and a random forest clas-
sifier to determine the exact location of a newly gen-
erated segment to the previous segment (an ancestor).
The resulted levels are not only more coherent [97], but
also more creative [98] because of the changing altitude
of platformer and various possible heading directions.
Yang et al. [146] trained Gaussian Mixture VAE to
learn relation between game level segments from various
games (Super Mario Bros, Kid Icarus, and Megaman)

and later be able to generate level segments that follow
a certain distribution/style. Davoodi et al. [I5] trained
an autoencoder to repair manually designed levels for
different games by re-iterating it over the decoder while
using a trained discriminator from a GAN model to
determine the stopping criteria. Besides levels, autoen-
coder has also been used to generate 3D shapes [I51].

Moreover, USL methods for image generation have
also been applied to generating sprites and characters
in games. The recent work by Mordvintsev et al. [83]
learned cellular automata (CA) to imitate the develop-
ment of organism and generate images, represented by
2D grids of cells. A cell is similar to the tile considered
in the MarioGan [I40] (explained later in section [4.5)).
A cell contains a cell state (e.g., a discrete value or a
vector of RGB values), while a tile contains a discrete
value which refers to an object type or part of it.

Applications of USL methods to content generation
for card games and text adventure games have also been
investigated. An example is [130]. Summerville and
Mateas [130] trained encoding and decoding LSTMs
on Magic: The Gathering cards, represented as se-
quences of tokens corresponding to the important in-
formation on the cards (e.g., mana cost, effect, power,
etc.). The LSTMs were trained on corrupted versions
of the cards, and encoded cards were used as input
to the decoder at generation time. Another example is
the endless text adventure game Al Dungeon 2E| (ear-
lier version as AI Dungeon). Al Dungeon 2 is built on
OpenAT’s GPT-2 model [92], a 1.5B parameter Trans-
former, and fine-tuned on some text adventures ob-
tained from chooseyourstory.com, according to its
developer Nick Walton [I42]. In a game, a player can
interact with the game by inputting text commands,
then the AI dungeon master will generate content of
the game environment (updates in the game story) ac-
cording to the commands and provide text feedback.
By doing so, each player can build his/her own unique
game story. Ammanabrolu et al. [2] focused on procedu-
rally generating interactive fiction worlds and proposed
AskBERT to construct knowledge graph. AskBERT ex-
tracts objective information in the game worlds, such as
characters and objects, via question-answering model.
Ferreira et al. [27] proposed Bardo Composer, a sys-
tem that automatically composes music for tabletop
role-playing games. In Bardo Composer, a BERT model
cooperates with a stochastic bi-objective beam search
model to identify music emotion, and then generate mu-
sic pieces that reflects the identified emotion.

1 https://github.com/AIDungeon/AIDungeon
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(b) Zelda (c) Sokoban

(a) Binary

Fig. 2: Generated examples from three different prob-
lems using PCGRL environment introduced by Khalifa

et al. [62].

4.3 Reinforcement Learning

Using reinforcement learning (RL) for PCG is a very re-
cent proposition which is just beginning to be explored.
Here, the generation task is transformed into a Markov
Decision Process (MDP), where a model is trained to
iteratively select the action that would maximize ex-
pected future content quality. This transformation is
not an easy task and there is no standard way of han-
dling it.

One of the early projects that uses RL is by Chen
et al. [I0]. They used a small network of one hidden
layer to generate a hearthstone deck of cards that can
beat a specific other deck given a certain player. The
agent can modify the current deck by substituting any
of its cards with a different one. The goal is to maximize
the win rate of the playing agent using the current deck
against a predefined deck.

Earle [23] used RL to play the game of SimCity
(Maxis, 1989). They used a fractal network (convo-
lutional network with structured skip connections) as
their network architecture and optimized it towards in-
creasing the city population. At each step, the agent can
change any space on the map to any other type. This
project is a borderline example of PCG. The aim of
the project was to play the game of SimCity where the
trained agent will learn to be a city planner/generator.

As we can see, most of the RL PCG requires an
adaptation for the input to be able to be used dur-
ing generation. Khalifa et al. [62] introduced a frame-
WOI'kEl for 2D level generation using RL. The genera-
tion process is framed as an iterative process where at
every step the generator modifies the level toward cer-

2 https://github.com/amidos2006/gym-pcgrl

tain goals (based on the current generation problem).
They proposed 3 main transformation: Narrow, Turtle,
and Wide. These transformation focus on the different
ways that the generator controls where it is modifying.
Fig. [2|shows examples of the generated levels over three
different problems using trained agents in the PCGRL
framework.

4.4 Adversarial Learning

Adversarial learning (AL) models are perfect for gener-
ating content represented by pixel-based images or 2D
array of tiles, such as levels as a map, landscapes and
sprites. The most popular model among the reviewed
works would be GAN [32] and its variants.

2D levels of most arcade games can be simplified as
2D arrays of tiles, where each tile contains a type of
object or part of an object. Examples include the lev-
els designed using Video Game Description Language
(VGDL) [I01] in the General Video Game AI plat-
form [87, B8], and the tile-based levels in the Mario
AT framework [I10]. As shown in the top-left of Fig.
[ each tile contains a type of object or part of it,
such as ground, pipe, empty and enemy, represented
either by a symbol or an integer. Kuang and Luo [64]
implemented an interactive map designing system us-
ing different generative models to generate 2D maps,
which can be further extended to 3D scenes. Torrado
et al. [137] designed a new GAN architecture, Condi-
tional Embedding Self-Attention GAN (CESAGAN),
to tackle the low quality and diversity issue of gener-
ated 2D levels by traditional GANs, and increased the
amount of training data to CESAGAN with a boot-
strapping technique. They applied their technique to
Zelda, a dungeon crawler game from GVGAI []7].

To facilitate the input form for generative mod-
els, such as GANs, 3D landscapes are often converted
to 2D height map. Wulff-Jensen et al. [I45] trained
a deep convolutional GAN (DCGAN) on digital ele-
vation maps sampled from the Alps dataset to gen-
erate 2D height maps as input to Unity for creating
3D landscapes for video games. Giacomello et al. [31]
converted each 3D DOOM level to several 2D images,
among which a HeightMap was used to indicate the
3D information and other were top-down images of the
corresponding level. In [31], two GANs were trained on
human-designed levels, one of which took plain 2D im-
ages as input and the other used both the images and
some of the extracted features. Park et al. [85] trained
a multistep DCGAN, adapted from [140], to generate
levels of an educational game, ENGAGE. The levels
were represented by a 2D array of tiles, from a top-
down view, during training and creation, and then con-
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verted to 3D levels to be used in the game [85]. Volz
et al. [I41] explored the use of GANs in the context
of match-3 levels, attempting to model the local and
global structures of those levels. Awiszus et al. [3] pro-
posed token-based oneshot arbitrary dimension genera-
tive adversarial network (TOAD-GAN), adapted from
SinGan [I08§], trained on a single sample level, to gener-
ate tile-based levels. In the work using GANSs for level
generation that have been reviewed so far, game levels
are tackled as image only during training while the con-
straints for validating levels are not considered at all.
Recently, Di Liello et al. [20] presented constrained ad-
versarial networks (CANs) which encourages the gen-
erator to learn to generate valid levels by penalizing
it due to invalid structures generated during training.
But still, these methods generate individual segments
of platformer levels separately and then combine them
together randomly or according to some increasing level
difficulty [I40]. Different from above work, Fontaine
et al. [29] proposed latent space illumination (LSI),
which uses quality diversity algorithms, such as Covari-
ance Matrix Adaptation MAP-Elites (CMA-ME) [28],
to search the latent space of trained generators, aiming
at increasing the diversity of generated levels. A recent
work by focused on generating levels
in multiple distinct games. Instead of training several
GANSs for these games separately, a novel GAN archi-
tecture, composed of a branched generator and multiple
parallel discriminators, was proposed [65].

Besides generating 2D and 3D levels represented
as pixel-based or tile-based images, texture [25] and
sprite generation [48] have also been investigated.
Hong et al. [48] generated 2D image sprites using a
multi-discriminator GAN; in which two encoders were
used for bone graph, shape and color, without shar-
ing parameters. Additionally, two discriminators, one
for shape and the other for color, were used in [48]
to generate sprites’ skeletons and color, respectively.
Another potential application is GAN-based charac-
ter generation [55] for video games, such as The Sims
(Maxis, 2000). Wang and Kurabayashi [143] proposed
Sketch2Map to generate 3D terrains from sketches.
Sketch2Map used a conditional GAN (¢cGAN) to con-
vert a sketch into an elevation bitmap, which is inter-
preted to generate the practical terrain asset by a de-
terministic algorithm [143].

More recently, Bontrager and Togelius [4] proposed
a new training method similar to GANs, where the
network consists of two parts: generator and agent.
The generator is trying to generate new playable levels
adapted to the agent’s strength, while the agent plays
the game and reports how playable it is and how hard
it is to play. Similar to GANs, the agent will try to im-
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Fig. 3: The key phases of DeLeNoX for the autonomous
generation of content [69]. DeLeNox adopts the prin-
ciples of exploration (realized via constrained novelty
search), transformation (realized via deep denoising au-
toencoders) and iterative refinement (realized through
the increasing complexity of NEAT architectures). Im-
age reproduced with authors’ permission.

prove itself by playing the new generated levels, while
the generator will improve itself based on the agent per-
formance on its generated levels. In this work, RL is
used to play the generated content and not to generate
the content; an RL agent interacted with the generative
model to create levels adapted to the agent’s playing
strength.

4.5 Evolutionary Computation

There is a long tradition of using evolutionary compu-
tation (EC) approaches for training (deep) neural net-
works. While these are sometimes not regarded as DL,
the standard definition of DL does in fact not reference
gradient descent. Most evolved networks are deep, and
architectures created by evolutionary algorithms such
as NEAT [124] often have multiple layers and recurrent
components [T02].

For example, Hoover et al. [51] represented game
levels as functional scaffolding for musical composition
voices [49]. Taking Mario as an example, each level is
presented by a set of voices with the size of possible
tile types in a level. Each voice is a one dimensional
array of same length of the level, in which each element
indicates the vertical position of the tile if it presents
on the corresponding column, otherwise 0. Neural net-
works were trained and evolved through neuroevolu-
tion of augmenting topologies (NEAT) [124] to suggest
placements of tiles in Mario levels [51].
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Fig. 4: Overview process of MarioGan [140], reproduced
with authors’ permission.

Hoover et al. [50] evolved CPPNs through NEAT
for generating both audio and visual content in the
game AudiolnSpace. Risi et al. [94] evolved and trained
CPPNs with NEAT to generate flower images for a
flower-breeding video game Petalzﬁ The CPPNs of dif-
ferent flowers can be mated to generate new flowers.

Evolutionary Computation techniques have also
been combined with unsupervised DL methods for gen-
erating new content. A prominent example is the Deep
Learning Novelty Explorer (DeLeNoX) [69]. DeLeNoX
alternates phases of content exploration and content
transformation for the generation of spaceships, de-
picted as 2D black and white images (Fig. . In the ex-
ploration phase, constrained novelty search seeks max-
imally diverse artifacts and generates a training set. In
the transformation phase, a deep autoencoder learns
to compress the variation between the found artifacts
into a lower-dimensional space. The newly trained en-
coder is then used as the basis for a new fitness function,
transforming the search criteria for the next exploration
phase [69]. The process continues repeating exploration
and transformation phases thereby iteratively refining
and complexifying the generated outcomes.

Arguably one of the most popular examples of EC
for DLPCG is the aforementioned Latent Variable ap-
proach [B], which combines unsupervised learning in
the form of a GAN/VAE with evolutionary compu-
tation to search for content in the learned space of a
GAN/VAE. Originating from synthesizing new finger-
print [95], in the context of games this approach has
been employed to generate Super Mario Bros and Zelda

levels [104] [140].

3 https://www.facebook.com/Petalz-238904402867390/
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Fig. 5: Screenshot of interactive evolution interface in
[103], reproduced with authors’ permission.

In the work of Volz et al. [I40], a DCGAN [91] is
trained on a set of level segments of Super Mario Bros
represented by 2D array of tiles, and then latent vari-
able evolution (LVE) [5] is applied to search for levels
that are more playable and encourage particular be-
haviors evaluated by the games simulated by an A*
agent. The overview process is illustrated in Fig. 4] The
resulted framework, MarioGAN [140)], certainly identi-
fied a new and creative way of generating game con-
tent. However, two issues have been observed: (i) broken
pipes occur in some of the level segments generated by
GANs, and (ii) the segments were connected directly in
an arbitrary order to build complete levels, while how
to combine segments to make the resulted levels more
structured and organized was not exploited. To tackle
the former issue, Shu et al. [I13] trained a MLP model
to learn the surrounding information of tiles and de-
tect wrong tiles in the generated segments (e.g., Fig.
@. An evolutionary repairer is designed to search for
optimal replacement tiles for fixing the broken pipe
[113]. To tackle the latter issue, a graph grammar was
used to combine rooms of Zelda generated by a GAN
into dungeons [36], and Schrum et al. [I04] proposed
CPPN2GAN which used Compositional Pattern Pro-
ducing Networks (CPPNs) to organize level segments
generated by GANs into complete levels.

Inspired by [140], Irfan et al. [52] applied LVE and
trained DCGANs on randomly generated levels of 3
single player games from the GVGAI framework [87],
Freeway, Zelda and Colourescape. Based on the work
of [140], Mott et al. [84] designed a new fitness func-
tion for CMA-ES as a weighted sum of the number of
frames that an action is feasible, the fraction of agents
that completed a level and the largest fraction to con-
trol the difficulty of generated levels. The weights are
evaluated and tuned via the human playing-tests per-
formed on the levels generated using the corresponding
fitness function [84].
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Fig. 6: Top: A MLP model trained on human-designed levels labels wrong tiles (in red rectangle) and unsure tiles
(in blue rectangle) in a segment. Bottom: Segment fixed by an evolutionary repairer assisted by the trained MLP

model [IT3]. Images reproduced with authors’ permission.

Evolutionary methods for content generation can
also be combined with user feedback, such as through
interactive evolutionary computation (IEC), in which
human evaluation is used instead of the fitness eval-
uation by a simulator. For example, Hastings et al.
[44] used CPPNs to represent weapons in a multi-
player video game Galactic Arms Raceﬂ The CPPNs
are evolved during the game playing with the prefer-
ences abstracted from the past playing of players. IEC
combined with LVE can allow users to breed their own
game levels, such as Zelda and Mario [104]. Based on
[36, [140], a mixed-initiative tile-based level design tool
was implemented by Schrum et al. [103], which allows
human to interact with the evolution and exploration
within latent level-design space (interface illustrated in
Fig. , and to play the generated levels in real-time.

EC methods can also collaborate with human to
generate and evaluate or repair game content. Liapis
et al. [71] presented Sentient World tool which allows
interactions with human designers and generates game
maps using Neuroevolution via novelty search. Sentient
World can generate high resolution maps based on the
rough terrain sketches drawn by designers, as well as
the iterative refining via selection and editing options
opened to designers.

Karavolos et al. [59] generated levels of a first-person
shooter (FPS) game with targeting gameplay outcomes,
in which a genetic algorithm is used to generate levels of
specific fitness values based on the predicted outcomes
by a CNN trained on simulated matches.

4 http://gar.eecs.uct.edu/

5 Using Deep Learning to Evaluate Content
and Content Generators

Evaluating content generators is not a trivial task.
Much of the ML and DL-based PCG work has focused
their evaluations on the generated content, and used
those evaluations as proxies for evaluating the genera-
tor itself. However, the computational creativity com-
munity has identified that in order to get a full picture
of the generator (or creative program) the process by
which the output content is created should be evalu-
ated as well. Colton [I1], Jordanous [56], Pease and
Colton [86] each propose frameworks and methodolo-
gies for evaluating the creativity of the process of a gen-
erator. Smith and Whitehead [I16] (later expanded on
by Summerville [I125]) proposed methods for holistically
evaluating a content generation approach, by evaluat-
ing large swaths of generated content to get a broader
understanding of the generative space of a content gen-
erator and its biases within that generative space. Sum-
merville [125] focused on ML-based generators, and pro-
posed approaches for highlighting the shortcomings and
strengths of a generator through methodically high-
lighting generated artifacts (e.g., artifact most similar
to an artifact in the training set).

In this section we survey uses of deep learning for
content generation in an indirect fashion. In particular,
we list studies (cf. Fig. @ that consider deep learning
for testing or evaluating game content through the anal-
ysis of generated content (Section , construction
of human-like playing bots (Section , or the con-
struction of reliable models of player experience (Sec-
tion . We additionally highlight which of these ap-
proaches focus on evaluating the generator itself instead
of only the content.
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5.1 Analyzing Content

Statistical measures on the generated content and sim-
ilarity measures based on the content used in train-
ing set (e.g., [77]) can give insight into the generative
space of a content generator and its biases within that
space. Statistical measures can be used to compare the
distribution of generated content to the distribution of
the training set [125]. Similarity measures can also be
specifically designed for this task. For example, Lucas
and Volz [7] compared occurrences of small structures
in the generated set to their presence in the training set
to measure similarity.

Many similarity and statistical measures suffer from
the same drawback of only measuring what is quan-
tifiable. Recent approaches in deep learning can help
avoid this drawback by learning latent semantic fea-
tures of the content. Recent work has developed ap-
proaches to style transfer [61, [74] by traversing the
learned latent space of the model, and others have an-
alyzed the learned latent space of their models to find
semantic meaning in the features [I]. These advances
have led to the use of latent space-based distance and
similarity measures [144]. Leveraging the latent space
learned by a model to create similarity measures be-
tween pieces of content might allow us to develop more
semantically meaningful similarity measures in addition
to the statistical measures currently in use. As an in-
dicative example of such a research direction, Isaksen
et al. [53] categorized tile-based 2D game levels with se-
mantic hashing based on autoencoders. The proposed
approach [563] can be used to categorize the generated
level segments or rooms and group the ones sharing sim-
ilar styles to build a complete game level or dungeon.

5.2 Playing Content

In this section we review methods based on ANNs and
DL for reliable playtesting which can be used, in turn,
to evaluate game content generators in an indirect fash-
ion. Simulated playtesting [46] [47, [140] of generated
content can give quick insights into the features of the
content and the generative space of the content genera-
tor [I16, [125]. Guzdial et al. [42] propose the use of deep
reinforcement learning agents for simulated playtesting
as a way of creating more human-like playtraces. Guz-
dial et al. [42] specifically focus on deep RL agents for
Mario, where human-like control is simulated by giv-
ing the agent imprecise controls via stochastic effects
on actions. Similarly, Min et al. [82] designed a goal
recognition framework based on stacked denoising au-
toencoders for open-ended games, which can be used

to personalize games for different players according to
their actions.

Karavolos et al. [57] trained a CNN to predict the
outcomes of a simplified 3 versus 3 multiplayer death-
match shooter game to evaluate and determine if the
levels, represented by maps and weapon parameters, are
balanced or favoring a team. Based on the predictor for
the same deathmatch shooter game, Karavolos et al.
[68] further designed a DL surrogate model for pairing
levels and character classes for desired game outcomes.
Gudmundsson et al. [35] imitated the behavior of hu-
man through SL and performed experimental study on
non-deterministic puzzle games Candy Crush Saga and
Candy Crush Soda Saga. A CNN was trained on human
player data, and then used to predict the action that
human players most likely to select when playing levels
that were unseen during training [35]. This approach
can be used to measure metrics such as the diversity of
actions to evaluate generated new levels. Notice, each of
these methods focuses on evaluating the generated arti-
facts, but can be expanded to more broadly evaluating
the generator itself if the results of artifact evaluations
are used to stratify the generative space or further ex-
plore the biases and capabilities of the generator.

5.3 Experiencing Content

Human user trials and surveys can provide the most
useful insight into the less quantifiable (i.e. subjective)
features of the content and the generation process, such
as the human-perceived quality of the generated con-
tent over time. A large volume of studies focus on the
use of deep learning for modeling aspects of player ex-
perience which can be used, in turn, to evaluate the con-
tent that is generated and experienced by the player.
Player experience is usually provided as annotated la-
bels (ratings or ranks) or even continuous traces via
crowdsourcing. Running user evaluations and crowd-
sourcing labels of subjective aspects such as experience,
however, can be a laborious task which may not be fea-
sible if what is desired is the quick iteration on the
generative system. One approach for further leveraging
the output of a user evaluation is to treat the user eval-
uations as features to be learned. Larsson and Petri
[66] trained neural networks using NEAT to predict
the user rating of user-created StarCraft maps. This
approach [66] can be extended to evaluate generated
StarCraft maps.

Within the platformer genre, a series of studies by
Shaker et al. [109, 110, [IT1] investigate the use of
DL models of player experience for the generation of
experience-tailored Super Mario Bros levels. Camilleri
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et al. [8] view a player’s believability as a content gener-
ation problem and used various forms of deep networks
to infer the mapping between game content, gameplay
and believability in a Super Mario Bros variant. The
networks of that study predict the degree to which
a combination of gameplay behavior and a generated
level can be considered believable. Guzdial et al. [42]
trained a CNN to predict rate of the difficulty, enjoy-
ment and aesthetics of game levels and performed case
studies on Infinite Mario Bros, which was further en-
hanced by the features extracted from search history of
an A* agent. Similarly, Summerville et al. [128] used a
regression model on a large set of statistical measures
to find measures that predict those same human eval-
uations of Mario levels. More recently, Pfau et al. [90]
proposed deep player behavior modeling (DPBM) with
a multi-layer perceptron (MLP) trained on behavioral
data and game observation to map game states to ac-
tion probabilities. All aforementioned approaches can
be used, for instance, to evaluate generated levels.

The first application of CNNs for modeling player
experience is introduced by Martinez et al. [80]. CNNs
in that study consider and fuse the content of a 3D
maze prey-predator game and the in-game behavior of
the player [79] and predict reported ranks of player ex-
perience via use deep preference learning. Looking at
the challenge of player affect modeling by solely focus-
ing on gameplay, Makantasis et al. [78] used various
CNN models to predict the level of arousal of survival
shooter games directly from the pixels of gameplay in
a general player-agnostic fashion. Thus CNNs map be-
tween gameplay behavior and game content as repre-
sented by pixels—such as in-game play features and Ul
elements. In principle, such surrogate models of arousal
can be used directly and evaluate video content of any
game within the the survival shooter genre. In a similar
recent study various types of neural networks have been
trained to predict the continuous viewer engagement of
PUBG streamed games on Twitch [81]; the engagement
models obtained are highly accurate and general across
different streamers. Camilleri et al. [9] took player expe-
rience modeling to the next level and built models that
are general across many different games. The models
are build on simple 1-hidden layer networks indicating
the potential of the methodology with larger DL repre-
sentations for the general evaluation of the experience
of game content across games. Similar to the previous
section, each of these methods are predominantly used
to evaluate content. However, using these methods to
evaluate large samples of content from a generator can
enable a meta-analysis of the types of content a partic-
ular generator tends towards creating.

Analyzing content
|1, 53, 61, 74]

Playing content
[35, 42, 57, 58, 82]

Experiencing content
[8l 42, 66, 109 110} 11T]
[©1 78, [79], (80, 81 90, [128]

Fig. 7: Summary of the works that focused on analyz-
ing, playing or experiencing generated content.

6 Discussion and Outlook

The combination of deep learning and PCG in games
is beneficial for both game research—as deep learning
enhances our capacity to generate content—and deep
learning research since games pose challenging prob-
lems for deep learning to solve. Deep learning opens
new opportunities for the autonomous generation of
content of any type and has a plethora of use cases
within games. As we saw throughout this article, deep
learning may serve as a content generator, as a con-
tent evaluator, as a gameplay outcome predictor, as a
driver of search, and as a pattern recognizer for repair
and style transfer. This section surveys the areas with a
particular importance for the current and future use of
DLPCG in games with an emphasis on mixed-initiative
generation, style transfer and breeding, underexplored
content types, learning from small datasets, orchestrat-
ing different content types within a game, and general-
izing generation across games.

6.1 Mixed-initiative DLPCG

Autonomous PCG systems, including the cases where
the initiative of the human designer is limited to al-
gorithmic parameterizations [148], can hardly generate
content with target quality or features. Recently, more
and more work takes into account the preferences or in-
put of designers or players in different ways while gen-
erating content. Mixed-initiative PCG [I49], formally
defined as “the process that considers both the human
and the computer proactively making content contri-
butions to the game design task” [I48], offers a more
controllable and practical design process that may in-
volve the use of DLPCG algorithms but their use is
limited so far.

Level generation in games, as a popular application
of mixed-initiative DLPCG, requires some initial spec-
ifications (i.e. the initiative) from the designer—e.g. in
the form of sketches [43]—to assist the design process.
A popular example of the mixed-initiative paradigm
is the shallow neural network model presented in [70]
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which generates game strategy maps based on the ter-
rain sketches drawn by designers. The map generation
feature of Sentient Sketchbook features neuroevolution-
ary search which is driven by design objectives and the
novelty of the map. Moving from level to image gen-
eration, Serpa and Rodrigues [107] adapted the GAN-
based Pix2Pix architecture to generate both gray and
color pixel art sprites from sketches using a single net-
work.

Taking platform games as the domain under investi-
gation, Guzdial et al. [39] developed a mixed-initiative
Super Mario Bros level design tool that leveraged sev-
eral existing PCGML techniques, including Markov
chains [I17], LSTM [126] and Bayes Net [37], to assist
the user in creating levels. Guzdial et al. [39] gathered
data on how the users interacted with the models in
the tool, and trained a CNN on that collected data.
This CNN was then used to better predict and gener-
ate level sections along with the user. Later, Guzdial
et al. [41] used the trained CNN with active learning
based on the user current interaction to generate levels
for Super Mario in a mixed-initiative fashion [68], [149].
Recently, Schrum et al. [I03] allowed the designers to
change manually the latent vectors of the trained gen-
erative model or define the mutation strength of their
evolutionary generator for tile-based 2D levels. Delarosa
et al. [I7] presented RL Brush, a human-driven, Al-
augmented design tool also for tile-based 2D levels, in
which RL-based models have been used to enhance hu-
man design with suggestions generated by PCG meth-
ods.

6.2 Style Transfer, Breeding and Blending

Most style transfer methods and generative models for
image, music and sound [6], can be applied to gener-
ate game content. So far, only a few work focused on
the style transfer for game content (e.g., [71l, 107 [150]).
[T1] generated game maps based on the terrain sketches
and [I07] generated art sprites from sketches drawn by
human. However, a number of diverse input sketches to
these two work can also be generated using deep learn-
ing approaches based on a single human sketch [43].
Moreover, algorithms and techniques designed for im-
age generation can often be adapted to the automatic
generation of faces and sprites in games. For instance,
[150] applied a neural styling algorithm [30] to change
artistic style of graphics in a strategy game Hedgewarsﬂ
Another example is ArtBreedeﬂﬂ which contains sev-
eral generative models for creating new images by im-

5 http://www.hedgewars.org/
6 https://artbreeder.com/

age breeding, among which, the models for portraits
and anime-style faces, can be used to generate comic or
video game characters and the one for landscapes can be
used to generate background images for games. Blend-
ing levels from different games has recently gained more
attention from the research community, with much re-
cent work focusing on blending platformer levels. Sarkar
and Cooper [96] and [99] trained separate models on
two different games, and then blended new levels using
these trained models via interpolation or alternation.
Snodgrass and Sarkar [121] used VAEs to generate level
structures, and a search-based approach to blend de-
tails from various platformers, while Sarkar et al. [T00]
directly trained VAEs on levels from several platform-
ing games and interpolated the latent vectors between
domains for blending.

6.3 Underexplored Content Types

Most of the reviewed works focus on the design of con-
tent that can be represented by 2D images of tiles or
pixels, such as 2D levels, landscapes and sprites (cf. Sec-
tion . Only a few of them considered text and narra-
tive generation, music and rhythm generation, weapons
generation for FPS, etc.

In the research we have surveyed, platformer and
dungeon-like games (e.g., arcade games, FPS games and
adventure games) are clearly over-represented. In par-
ticular, Super Mario Bros and Zelda are usually used
for testing the GAN-based level generation approaches.

However, the types of games are not limited to ar-
cade games and the generation of some commonly seen
types of game content are rarely investigated. For in-
stance, the generation of characters (skills, actions, and
images) for fighting games and multi-player online bat-
tle games; the generation of cards and rules for strategy
card games (e.g., Hearthstone); event generation (sto-
ries and effects) (e.g., for The Sims); goal generation
in all kinds of games. Several approaches from other
fields can be adapted to DLPCG, such as transfer learn-
ing for image generation in games, story generation for
text-based adventure games and conversational NPCs.

6.4 Content Generation in Real-time - Personalized
Game content

Another less explored area is content generation in real-
time, such as generating level segments during game-
play, according to the actual player’s playing skill-
depth, style and preferences. Taking Super Mario Bros
as an example, several MarioGAN models can be
trained offline using a variety of fitness functions with
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different aims (e.g., encourage more jumps by putting
more pipes, put more coins for players to collect, adjust
the difficulty by controlling the number of enemies),
and then be selected to generate new level segments
during the game after determining the player’s prefer-
ences and performance according to the gameplay data
during first segments.

6.5 Learning from Small Data

One of the main limitations for most forms of PCG
based on deep learning, or PCGML in general, is the ac-
cess to training data. Some games have a large amount
of existing content, either made by developers or by
users. However, for a game in development there may
not be content to learn from, because the content may
not be made yet. In fact, not having to produce all of
that content may be a prime reason for wanting to train
a content generator in the first place. What would be
desirable here would be a way of training a generator
based on only a few pieces of hand-designed content,
such as items, levels, or characters.

One approach to doing this is bootstrapping, where
a generator is first trained on just a few examples,
and whenever it produces new content that satisfies
the functionality constraints, this content gets added
to the training set for continued training of the gener-
ator [I37]. This approach requires a reliable test of the
functionality constraints, for example the playability of
a level can be tested with game-playing agents.

Note that the amount of data required to train a re-
liable model varies greatly depending on the complexity
of the model, the complexity of the data, and the train-
ing procedures of the model. For example, the training
data limitation does not apply to PCG methods based
on reinforcement learning. Further, MarioGAN [140]
was trained on a single Mario level broken into many
sections. Snodgrass et al. [122] explored the effects of
the amount and diversity of training data on a simple
Markov chain model and an LSTM, and found that the
benefits of additional data dropped off after several lev-
els. Further studies exploring the data requirements of
DLPCG models can help illuminate the usability and
scalability of these approaches.

6.6 Generalization across Games

Another, and arguably better, approach to learning
generators for games for which you do not (yet) have
much content would be trained on content from other
games. After all, games from a particular genre have
much in common, and it should arguably be possible

to train on FPS levels from Quake, Halo and Call of
Duty to learn to generate new levels for Half-Life. It
should be even easier to train character models on exist-
ing human-designed characters from several open-world
games, as they share the same functionality constraints.
The trained generator would likely be a conditional
model, that takes some encoding of the characteristics
of a game as input. In all of these cases, the deep learn-
ing model would have to learn to represent the under-
lying similarities between content for the games it was
trained on, as well as the differences.

6.7 Orchestration for Game Generation

A key future research direction for any PCG framework
is the generation of more than one domain of compu-
tational creativity within games. The six key compu-
tational game creativity domains as defined by Liapis
et al. [72] include visuals, audio, narrative, levels, rules
and gameplay. A process that considers the output of
two or more of these domain generators up to the gener-
ation of a complete game is referred to as orchestration
[73]. In other words, orchestration can be defined as the
“harmonization of the game generation process” [73].
While orchestration is a core aim for the au-
tonomous generation of complete games Liapis et al.
[73] reported only a few game generation systems that
considered more than one generation domain. These in-
clude Angelina [12] 3], Game-O-matic [138], Sonancia
[76], AudioInSpace [50] and the FPS generator by Kar-
avolos et al. [58,[60]. Among these case studies of orches-
trated game generation only a few can be considered
early embryos of DLPCG-based game orchestration. In
particular, the work by Karavolos et al. [58, [60], So-
nancia [76], and AudiolnSpace [50] use various forms
of shallow and deep neural networks—both as surro-
gate models (indirectly) and as generative functions
(directly)—to generate content for multiple domains
within games. As deep learning is of particular impor-
tance for fusing the generation process across content
representations of dissimilar resolutions and character-
istics [148], we expect to witness an increase in DL re-
search work towards achieving game orchestration.

7 Conclusions

The work surveyed in this paper is the result of two
convergent trends from the last few years. One is the
increasing use of deep learning for generative tasks in
non-game contexts, such as GANs and VAEs used for
generating pictures of faces and RNNs used for generat-
ing voices and music. The other is the increasing use of
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machine learning in PCG, something that was unheard
of until five years or so ago. Both of these trends build
on the deep learning revolution itself, which has made
machine learning effective on completely new classes of
problems.

As a result, interest in deep learning for PCG has
exploded. Examples abound, as our survey shows. It is
very likely that we will see rapid progress in this re-
search direction in the near future. This survey paper
attempts to contribute to this progress by surveying
and systematizing this work and implicitly and explic-
itly pointing out relevant and fertile research problems.
We believe that this is a very timely effort given the
exciting pace of this field.

Deep learning methods have been applied alone or
in collaboration with other PCG methods to gener-
ate game content and to analyze, play and experience
content. Due to the characteristics of different types
of content, different types of deep neural architectures
have been used. Among the reviewed work, the widely
used neural architectures include convolutional neural
networks for supervised learning tasks, varying from
generating texture or music for target emotion to pre-
dicting game outcomes or difficulty rate; long short-
term memory for generating sequential data like charts
for rhythm and narrative or for predicting action se-
quences; deep variational autoencoders, mostly used
for generating level maps and sometimes for classifying
NPCs’ or players’ behaviors; and generative adversar-
ial networks for creating image-like content (e.g., level
maps, landscapes, faces and sprites). A part from the
direct use of deep learning methods or their alliance
with evolutionary computation to generate game con-
tent, they have also been used for evaluating content
and content generators in an indirect manner.

Although a variety of game content (e.g., levels,
text, character models, textures, music and sound) have
been investigated, the generation of content like event,
goals or character features with skill-depth can be ex-
ploited more. As a future research, evolving or training
game-playing agents and content generators in paral-
lel, such as in the recent work of Dharna et al. [19],
is of great interest, as well as the generalization across
games. Besides those, online generation of game con-
tent to adapt players’ skill and preferences in real-time
will accelerate the realization of personalized games.
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