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Abstract. This paper introduces RL Brush, a level-editing tool for tile-
based games designed for mixed-initiative co-creation. The tool uses
reinforcement-learning-based models to augment manual human level-
design through the addition of Al-generated suggestions. Here, we apply
RL Brush to designing levels for the classic puzzle game Sokoban. We
put the tool online and tested it in 39 different sessions. The results show
that users using the Al suggestions stay around longer and their created
levels on average are more playable and more complex than without.

Keywords: Mixed Initiative Tools - Reinforcement Learning - Procedu-
ral Content Generation.

1 Introduction

Modern games often rely on procedural content generation (PCG) to create large
amounts of content autonomously or with limited human input. PCG methods
can achieve many different design goals as well as enable particular aesthetics.
Incorporation of PCG methods can streamline time-intensive tasks such as de-
signing thousands of unique tree assets for a forest environment. By off-loading
these tasks to AI, the time constraints put on game developers and content
creators can be relaxed freeing them up to work on other tasks for which Al
may be less-well suited. Through such blending of AI and the human touch a
system of human and AI co-creation yields not only unique game content the hu-
man designer may not have even considered alone but also enables new creative
directions [14].

In Procedural Content Generation via Reinforcement Learning, or PCGRL
[9], levels are first randomly generated and then incrementally improved. The
generated levels are initially good enough that they could—though unlikely good
enough that they would—be used by a human designer. That reluctance to use
a level could arise from a level’s misalignment with the human designer’s needs
and they would likely have to keep generating new levels until they find one that
is satisfactory. Generally speaking, the human designer exerts minimal control
over the resulting level’s features and may end up generating many just to find
one that suits their needs.
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In order to make this level generation method more compatible with a human
designer’s workflow, we leverage the incremental nature of PCGRL in building
a mixed-initiative level-editing tool. This paper presents RL Brush, a human-
AT collaborative tool that balances user-intent and AI model suggestions. RL
Brush allows a human designer to create levels as they please while continuously
suggesting incremental modifications to improve the level using an ensemble of
AT models. The human designer may choose to accept suggestions as they see fit
or reject them. The tool thereby aims to assist and empower human designers
to create levels that are good, unique, and suitable to the user’s objectives.

2 Related Work

Procedurally generated content has been used in games since the early 1980s.
Early PCG-based games like Rogue (Michael Toy, 1980) used PCG to expand
the overall depth of the game by generating dungeons as well as coping with the
hardware limitations of the day [14,21]. This section will lay out more contem-
porary applications and methods of generating game content procedurally, with
a focus on the use of reinforcement-learning-based approaches.

2.1 PCG via Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning technique where, typically,
an agent takes action in an environment at each time-step and desirable actions
are reinforced, interpreted as state and reward, from the environment [18]. Most
of the RL work in games focuses on playing. We suspect it may be due to the
direct and easy way of representing the game playing problems as Markov deci-
sion processes. On the other hand, representing content generation as a Markov
decision process poses challenges and hence could explain the disproportionally
smaller number of works using RL in game content generation problems.

Of the existing works describing RL approaches to game content generation,
a few approaches stand out and demonstrate the breadth of possibilities. Chen
et al. [5] demonstrate using Q-learning to create a card deck for collectable cards
games. Guzdail et al. [7] have shown how active learning can be used to adjust
an Al agent to adapt to user choices while creating levels for Super Mario Bros.
PCGRL[9] introduces reinforcement learning into level generation by seeing the
design process as a sequential task. Different types of games provide information
on the design task as functions: an evaluation function that assesses the quality
of the design and a function that determines whether the goal is reached. RL
agents that play out the content generation task defines the state space, action
space, and transition function. For typical 2D grid based games, the state can
be represented as a 2D array or 2D tensor. Agents of varying representation
observe and edit the map using different patterns. The work demonstrates how
three types of agents, namely narrow, turtle and wide, can respectively edit
tiles in a sequential manner, move on the map in a turtle-graphics-like way and
modify the passed tiles, or have control to select and edit any tile in the entire
map.
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2.2 PCGRL Agents

The three RL-based level-design agents introduced in PCGRL [9] [3] as nar-
row, turtle and wide have origins in search-based approaches to level-generation,
however the primary focus of the subsequent sections will be on their RL-based
implementations. This section describes these three canonical agent types.

Narrow The narrow agent observes the state of the game and a location (z,y)
on the 2D-array grid representation of the game level. Its action space consists
of a tile-change action: whether to make a change or not at location (x,y) and
what that change would be.

Turtle Inspired by turtle graphics languages such as Logo [6] [9], turtle agent
also observes the state of the grid as a 2D array and a location (x,y) on that
grid. Like narrow agent, one part of its action-space is defined as a tile-change
action. Unlike narrow, its action space also includes a movement-action in which
the agent changes the agent’s current position on the grid to (z’,y’) by applying
a 4-directional translation on its location moving it either up, down, left or right.

Wide The wide agent also observes the state of the grid as a 2D array. However,
it does not take a location parameter. Instead, its action space selects a location
on the grid (z,y) as the affected location and a tile-change action.

2.3 PCG via Other Machine Learning Methods

In addition to RL, other machine learning (ML) approaches have also been
applied to procedural content generation and mostly based on supervised or un-
supervised learning; the generic term for this is Procedural Content Generation
via Machine Learning (PCGML) [16]. Mystical Tutor [17], an iteration on the
Twitter bot @RoboRosewater, generates never-before-seen Magic: The Gathering
cards using an Long short-term memory (LSTM) neural network architecture.
While Torrado et al. [19] demonstrate that Legend of Zelda (Nintendo, 1986)
levels can be generated using generative adversarial networks (GAN). However,
one distinction that arises when comparing PCGRL with other types of PCGML:
PCGRL does not strictly require ahead-of-time training data. RL-based mod-
els utilize a system of reward functions instead, which can be either manually
designed or themselves learned. PCGRL’s system of incremental approach to
level-generation also distinguishes it from more holistic ML approaches such as
many GAN-based PCGML approaches. At each time step, the agent takes an
action such as moving to or selecting a certain position (for example, in 2D grid
space) or changing the tile at the current position. This characteristic of PCGRL
makes it well-suited for mixed-initiative design.
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2.4 PCG via Mixed-initiative Level Design

In mixed-initiative design, the human and an AI system work together to pro-
duce the final content [20,22]. Multiple mixed-initiative tools for game content
creation have been developed in recent years. Tanagra[l5] is a prototype mixed-
initiative tool for platformer level design in which AI can either generate the
entire level or fill in the gaps left by human designers. Sentient Sketchbook[10]
is a tool for designing a Starcraft-like (Blizzard, 1998) strategy game. Users
can sketch in low-resolution and create an abstraction of the map in terms of
player bases, resources, passable and impassable tiles. It uses feasible-infeasible
two population GA (FI-2pop GA) for novelty search and generates several map
suggestions as users are sketching. An example of a mixed-initiative PCG tool
that generates levels for a specific game is Ropossum, which creates levels for
the physics-based puzzle game Cut the Rope, based on a combination of gram-
matical genetic programming and logic-constrained tree search [13,12]. Another
such example is the mixed-initiative design tool for the game Refraction, which
teaches fractions; that tool is built around a constraint-solver which can create
puzzles of specific difficulty [4].

More recently, Alvarez et al.[2] introduced Interactive Constrained MAP-
Elites for dungeon design, which offers similar suggestion-based interaction sup-
ported by MAP-Elites algorithm and FI-2pop evolution. Guzdial et al.[8] pro-
posed a framework for co-creative level design with PCGML agents. This frame-
work uses a level editor for Super Mario Bros (Nintendo, 1985), which allows the
user to draw with a palette of level components or sprites. After finishing one
turn of drawing, the user clicks the button to allow the previously trained agent
to make additions sprite-by-sprite. This tool is also useful for collecting training
data and for evaluating PCGML models. In a similar vein, Machado et al. used
a recommender system trained on databases of existing games to recommend
game elements including sprites and rules across games [11].

3 Methods

This section introduces RL Brush, a mixed-initiative level-editing tool for tile-
based games that uses an ensemble of trained level-design agents to offer level-
editing suggestions to a human user. Figure 1 shows a screenshot of the tool 3.
The present version of RL Brush is tailored for building levels for the classic
puzzle game Sokoban (Thinking Rabbit, 1982) and generating suggestions inter-
actively.

3.1 Sokoban

Sokoban, or “warehouse keeper” in Japanese, is a classic 2-D puzzle game in
which the player’s goal is to push boxes to their designated locations within an
enclosed space (called goals). The player can only push boxes horizontally or

3 https://rlbrush.app/
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Fig.1: RL Brush screenshot of the Sokoban level editor.

vertically. The number of boxes is equal to the number of designated locations.
The player wins when all boxes are in the correct locations.

3.2 RL Brush

In the spirit of human-Al co-creation of tools like Evolutionary Dungeon De-
signer [1] and Sentient Sketchbook [10], RL Brush interactively presents sug-
gested edits in to a human level creator, 4 suggestions at a time. Instead of
using search-based approaches to generate the suggestions RL Brush utilizes
the reinforcement-learning-based level-design agents presented by [9]. RL Brush
builds on the work introduced by PCGRL [9] by combining user-interactions with
the level-designing narrow-, turtle- and wide-agents and an additional majority,
meta-agent into a human-in-the-loop?, interactive co-creation system.

3.3 Architecture Overview

Figure 2 shows the system architecture for our tool RL Brush. The system
consists of 4 main components:

— GridView is responsible for rendering and modifying the current level state.

— TileEditorView allows the user to select tools to edit the current level
viewed in the GridView.

— SuggestionView shows the different Al suggestions from the current level
in the GridView.

— ModelManager updates all the suggestions viewed in SuggestionView if
the current level changed in the GridView.

The user can edit the current level (G) either by selecting a suggestion
from the SuggestionView or by using a tool from the TileEditorView and

4 These are a subclass of Al-based systems that are designed around human interaction
being one of their components
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Fig.2: RL Brush System Arcihtecture.

modifying directly the map. This change emits a ChangeFEvent signal to the
ModelManager component with the new grid (G’). The ModelManager runs
all the AT models and collects their results and send the results back to the
SuggestionView. The Model Manager will be described in more details in sub-
sequent section.

3.4 Human-Driven, AI-Augmented Design

Both the TileEditorView and the SuggestionView respond only to user-interactions
in order to ultimately provide the human in the loop the final say on whether

to accept the Al suggestions or override them through manual edits. The goal is

to provide a best-of-both-worlds approach to human and Al co-creation in which

the controls of a conventional level-editor can be augmented by Al suggestions
without replacing the functionality a user would have expected from a manual

tile editor. Instead, the human drives the entire level design process while taking

on a more collaborative role with the ensemble of AT level-design agents.

3.5 ModelManager Data Flow

The ModelManager in figure 2 handles the interactions with the PCGRL agents
a = [aop a1 ... az| (where  is the number of used PCGRL agents) and meta-
agents m = [mg my ... my] (where y is the number of used meta-agents). The
ModelManager gets the current level state and sent to these agents where they
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- ot 0

turtle wide narrow majority

Fig. 3: Each suggestion in the Ul is generated by a different agent whose name
appears below its diff rendering. Clicking on the suggestion applies it to the grid
G.

edit it then it emits a stream of SuggestedGrid objects G = Gy G ... Gpqy.
The SuggestionView in turn observes the stream of G lists and uses them to
generates suggestions s from G by diffing them against the current level state
Gloriqview tO generate a list of suggestions s = [so S1 ... sz+y] for rendering and
presenting the user in the UI’s suggestion box (figure 3).

Meta-agents in m consist of agents that combine or aggregate the results of
a in some way to generate their results. In RL Brush, the majority agent is an
example of a meta-agent that aggregates one or more of the agents suggestions
([Ga, Garsy - Ga,]) to a new suggestion (G,,). The majority meta-agent is
powered by a pure, rule-based model that only makes a suggestion of a tile
mutation if the majority of the agents have the same tile mutation in their
suggestions. In our case, we are using 3 different PCGRL agents (narrow, turtle,
and wide) which means at least 2 agents have to agree on the same tile mutation.

3.6 ModelManager’s Hyper-Parameters

(a) (b)

Fig. 4: These two Ul elements a and b control the step and tile radius parameters
respectively.

Two primary hyper-parameters exist in RL Brush for tuning the performance
of ModelManager. One is the number of steps and the other is the tool radius.
These are each controlled from the Ul using the components in figure 4.

The step parameter controls how many times the Mode1lManager will call itself
recursively (figure 5). For each step the ModelManager will call itself recursively
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Fig.5: The changes in the step parameter control the number of iterations n in
the loop of recursive ChangeEvent objects that feed back into the ModelManager

n times on a self-generated stream of ChangeEvent (G’) objects. Having a higher
step value allows agents to make more than one modification to the map. This
is an important hyper-parameter because most of these agents are trained to
not be greedy and try to do modification that requires long term edits. Limiting
these agents to only see one step ahead will suffocate them and their suggestions
might not be very interesting for the users.

r=1 r=2 r=3

Fig.6: The changes in the tool radius parameter control the size of the slice of
grid G’ that is visible to the agents as input.

The tool radius parameter controls how big the window of tiles are visible to
the agent as input. Agents can’t provide suggestions outside of this window. It
focuses the suggestion to be around the area the user is modifing at the current
step. In figure 6 the white tiles are padded as empty or as walls, depending on
the agent. The red tiles represent the integer values of each tile on the grid G.
The green tile represents the pivot tile or position on the grid G that the user
last clicked on if a tile was added manually. In cases where no tile was clicked?®,
the center of the grid G is used as the pivot tile. The radius r refers to the Von-
Neuman neighborhood’s radius with respect to the pivot tile. However, note that

® Such as the case in which the user accepted an Al suggestion
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gridRadius —‘
2

for all grids G where r > [ , the entire grid is used such as in cases of

r = 3 on microbans of size 5 X 5.

4 Experiments

In this section we demonstrate through a user study conducted to study the
interactions between users and the AI suggestions. We are primarily interested
in answering the following four questions:

— Q1: Do users prefer to use the Al suggestions or not?

— Q2: Does the AT guide users to designing more playable levels?

— Q3: Which AT suggestions yield higher engagement from users?

— Q4: What is the effect of the Al suggestions on the playable levels?

Total Event Counts
Total User Sessions 75
Total Interaction Events 3165
Total Ghost Suggestions Accepted 308
Aggregations
Level Versions Per Session 10.6
Ghost Suggestions Accepted Per User Session 4.11
Total Interactions Per Session 42.2

Table 1: Interaction Event Summary

For the experiment, we published the RL Brush app © to the web, and shared
the link with university students and faculty on a shared Slack channel as well as
on social media platforms Twitter and Facebook. We then recorded anonymized
user-interaction events to the application web server. During the course of about
2 weeks, 75 unique user sessions were logged in total. Figure 7 shows the final
states of a few levels created using a combination of human and edits and Al
suggestions in RL Brush. Table 1 shows the counts of key metrics that we used to
measure the interactions of users and the RL Brush Ul. For instance, each session
resulted in an average of 10.6 level versions, defined as unique levels, throughout
each user’s total average of 42.2 interactions with the UI (i.e. button presses or
clicks) during the course of the session. For example, a user may have generated
2 level versions and 100 interactions in a session by making a single edit and just
clicking "Undo” and "Redo” over and over again. From these 10.6 level versions
4.11 were generated using the Al suggested edits or ghost suggestions.
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Fig. 7: User-generated levels

| |  Used AL | Didn’t Use AL || Total |
Playable 9 2 11
UnPlayable 8 20 28
[Total | 17 | 22 [ 39 |

Table 2: Statistics on the 39 full session

5 Results

From these 75 user sessions, 39 sessions were fully logged interaction events
during the session from start to finish. We analyzed these sessions on an event-
by-event basis and found a few trends. Table 2 shows the statistics about all
these 39 fully-logged, sessions. The amount of people that didn’t use the AT (22)
is slightly higher than the ones used the AT (17). There might be a lot of different
reasons that users never engaged with the system, but we suspect the absence of
a formal tutorial could have impacted the results here. On the other hand, users
that interacted with at least one Al suggestion yielded at more playable levels
(9 out of 17) than users did not interact with AT suggestions at all (2 out of 22).
There is multiple different factors that could reflect this higher percentage. We
think that the main factor is that the AI suggestions nudge/inspire users toward
building playable levels.

One such trend, as described in figure 8a, users working alongside AI (i.e.
users that accepted at least one Al suggestion in their workflow) generate a
higher average number of interactions when compared with the other cohort of
users working without AT and the combined average of all users. The higher rate
of interaction could be attributed to user-engagement, if interpreted positively,
or perhaps, if interpreted negatively, that Al increases the complexity of the
workflow and requires more clicks to fix any unwanted AI actions. Since the
overall average number of ghost suggestions accepted per session is 4.11, as shown
on table 2, we interpret the increase in the interactions to positive engagement
than an overwrought system, which we assume would have a higher number
of accepted suggestions overall compared to average level versions of 10.6 as
frustrated users might fight with the system and produce many more interactions

5 https://rIbrush.app/
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Fig.8: The number of interactions on average is greater in the cohort of users
that accepted at least one Al suggestion during their session.
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Fig.9: Users that used Al suggestions seemed to create levels that required more
steps in their solutions.

per level version. Of course, other external factors could explain the trend. The
small number of users that interacted with the AI at all, as seen in figure 8b,
could point to a majority of users new to level editing and without having a
formal tutorial may have quit before discovering the AT features at all.

Another trend seems to be a relationship between level complexity and and
using Al suggestions, as seen in figure 9. There the solution length is calculated
using a BFS (Breadth-First Search) solver. Each level created with the assistance
of Al is, on average, longer than levels without AI. This could indicate that Al
suggestions yield direct users toward creating more complex levels and therefore
higher quality levels. However, further studies on a larger set of users would need
to be done to further explore this trend more definitively.

Since RL Brush provides different models to choose from, we were also curi-
ous to check which suggestions were most useful for the users. Figure 10 shows a
histogram about which model saw the most usage, as measured by number of in-
teractions. We found out that the suggestions generated by the majority-voting
meta-agent received the most interactions. One interpretation for its unexpected
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Fig. 10: The majority agent seems to be the most popular across sessions and
received the most total interactions or clicks.

popularity could be that agents, in isolation, may have divergent lower-quality
suggestions but collectively tend toward higher suggestion quality. In the Discus-
sion section, we discuss plans for further investigations aggregated suggestions.
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Fig. 11: Correlation between number of Al suggestions accepted and overall so-
lution complexity.

Finally, we compute the correlation between the number of Al-accepted sug-
gestions in a session and the solution length of the created level. Figure 11 shows
a correlation (with coefficient equal to 0.279) between the number of Al sugges-
tions used during level creation and the maximum level difficulty achieved during
that session, in terms of solution length. This correlation could further make the
case that Al suggestions nudge users towards creating more complex levels with
longer solutions.

6 Discussion

The system described here can be seen as a proof of concept for the idea of
building mixed-initiative interaction on PCG methods based on sequential de-
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cisions. Most search-based PCG methods, as well as most PCGML methods,
outputs the whole level (or other type of content) as a unit. PCGRL, where
the generator has learned to design one step at a time, might afford a mode of
interaction more suited to how a human designs a level. It would be interest-
ing to investigate whether tree search approaches to level generation could be
harnessed similarly [3].

Looking back at the results, we can say that RL Brush introduces a few areas
for further exploration surrounding the relationship between user engagement
and perhaps the complexity of playable levels. We also noticed that more users
seem to interact more with meta-agent compared to other models. Comparing
these results with our questions introduced in the Experiments section:

— Q1: Based on the data we have, we can’t clearly say if the users preferred
to use the system with Al or without. However, we suspect that a further
study could answer this question.

— Q2: From the collected statistics the amount of playable levels generated by
users that incorporated Al into their workflow exceeds the number of those
that did not interact with the AI suggestions at all.

— Q3: The majority agent received the most interactions when compared to
all the rest. Further studies could explore new ideas for additional types of
meta-agents in future work.

— Q4: The results lean towards Al suggestions yielding higher quality levels,
as defined using complexity of levels and with longer solution lengths, but
more data would be needed to verify that.

In addition to the results described in the previous section, a broader test
of human users could further explore the quality of the levels generated beyond
the scope of automated solvers and through the use of human play-testing. Ad-
ditional metrics can be gathered to support this and more targeted, supervised
user research can be done here. A more supervised user research will help us
understand the different factor affecting our results. We would know if external
factor such as game literacy and familiarity with games and level editor affects
the user their engagement with AI. We believe that users with higher game lit-
eracy may find the tool less intimidating than ones with lower game literacy.
Another important study could be to understand the influence of the AI sug-
gestion on the final created levels: were the Al suggestions pivotal for the final
created levels or merely inspiration for heavily hand-made levels?

Once the broader user studies have been conducted, additional client-side
models can be added to RL Brush that learn the weights of meta-agents and
continuously optimize them through online-model training. In this way, we could
better leverage the ModelManager’s ensemble architecture’s capabilities. Fur-
thermore, the existing PCGRL models could be extended to continuously train
online using reward functions incorporating parameters based on user actions.
Similarly, novel client-side models specifically tailored to improve the UX (user
experience) could be incorporated into future versions that better leverage the
capabilities of TensorFlow.js, which RL Brush utilizes in its code already.
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Subsequent versions would also add support for additional games, level-design
agent types and N x M grids in order to increase the overall utility of RL Brush
as a functional design tool.

7 Conclusion

In the previous sections we have introduced how RL Brush provides a way to
seamlessly integrate human level editing with AI suggestions with an opt-in
paradigm. The results of the user study suggest that using the Al suggestions
in the context of level editing could impact the quality of the resulting levels.
In general, using Al suggestions seemed to result in more highly playable levels
per session and higher overall level quality, as measured by solution length.

There is clearly more work to do in this general discussion. We don’t know yet
to what types of levels and other content this method can be applied, and there
are certainly other types of interaction possible with an RL-trained incremental
PCG algorithm. RL Brush will hopefully serve as a nexus of discovery in the
space of using PCGRL in game-level design.
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