
Mario Level Generation From Mechanics Using
Scene Stitching

Michael Cerny Green*

Game Innovation Lab
New York University

Brooklyn, USA
mike.green@nyu.edu

Luvneesh Mugrai*
Game Innovation Lab
New York University

Brooklyn, USA
lm3300@nyu.edu

Ahmed Khalifa
Game Innovation Lab
New York University

Brooklyn, USA
ahmed@akhalifa.com

Julian Togelius
Game Innovation Lab
New York University

Brooklyn, USA
julian@togelius.com

Abstract—Video game tutorials allow players to gain mastery
over game skills and mechanics. To hone players’ skills, it is
beneficial from practicing in environments that promote individ-
ual player skill sets. However, automatically generating environ-
ments which are mechanically similar to one-another is a non-
trivial problem. This paper presents a level generation method
for Super Mario by stitching together pre-generated “scenes”
that contain specific mechanics, using mechanic-sequences from
agent playthroughs as input specifications. Given a sequence of
mechanics, the proposed system uses an FI-2Pop algorithm and
a corpus of scenes to perform automated level authoring. The
proposed system outputs levels that can be beaten using a similar
mechanical sequence to the target mechanic sequence but with
a different playthrough experience. We compare the proposed
system to a greedy method that selects scenes that maximize
the number of matched mechanics. Unlike the greedy approach,
the proposed system is able to maximize the number of matched
mechanics while reducing emergent mechanics using the stitching
process.

Index Terms—Super Mario Bros, Feasible-Infeasible 2-
Population, Evolutionary Algorithms, Stitching, Design Patterns,
PCG, Experience Driven PCG

I. INTRODUCTION

Procedural Content Generation (PCG) methods are used
to create content for games and simulations algorithmically.
A large variety of PCG techniques exist, which have been
applied to a wide variety of types of game content and
styles. Sometimes developers write down the rules that a
program must abide to when generating, like a constraint-
satisfaction generative system [1]. Other methods let users
define objective functions to be optimized by for example
evolutionary algorithms [2], and yet others rely on supervised
learning [3], or reinforcement learning [4]. Experience Driven
PCG [5] is an approach to PCG that generates content so as
to attempt to enable specific player experiences. This includes
attempts to produce stylized generated content such as levels of
specific difficulty [6], for different playstyles [7], or even for a
specific player’s playing ability [5]. In the vein of Experience
Driven PCG, this paper presents a method of level generation
which attempts to create a level in which a player triggers
the same game mechanics as the target level, while being
structurally different.

* Both authors contributed equally to this research.

Evolving entire levels to be individually personalized is
not trivial. In this paper we propose a method of multi-step
evolution. Mini-level “scenes” that showcase varying subsets
of game mechanics were evolved in previous research [8] using
a Constrained Map-Elites algorithm [7] and stored within
a publicly available library*. The system uses these scenes
with an FI-2Pop [9] optimizer to evolve the best “sequence
of scenes,” with the target being to exactly match a specific
player’s mechanical playtrace.

By breaking this problem down into smaller parts, the
system is to focus more on the bigger picture of full level
creation. Our work goes a step farther than Reis et al’s [10]
generator which stitches together (human-evaluated/ human-
annotated) scenes. Khalifa et al. [8] developed a generator
which automatically creates the scene corpus with simplicity
and minimalism in mind. The levels that the system generates
reflect a type of minimalist design that can be used as a tutorial
to learn a target mechanic sequence.

Generating levels using this method would allow a game
system to provide a player with unlimited training for specific
mechanic sequences that they struggle on, to help the players
to hone on these mechanics instead of memorizing a single
level by replaying it over and over again. Furthermore, game
designers could use such a system as inspiration for level
design, perhaps modifying the level after generation without
having to start from scratch.

II. BACKGROUND

A. Search-Based Procedural Content Generation

Search-based PCG is a generative technique that uses search
methods to find good content [2]. In practice, evolutionary
algorithms are often used, as they can be applied to many do-
mains, including content and level generation in video games.
Search-based PCG has been applied in many different game
frameworks and games, such as the General Video Game AI
framework [11], PuzzleScript [12], Cut the Rope (ZeptoLab,
2010) [13], and Mazes [6]. The research in this paper drew
inspiration from several previous works [14, 15, 16] where
the authors developed evolutionary processes which divided

*https://github.com/LuvneeshM/MarioExperiments/tree/master/scenelibrary
978-1-7281-4533-4/20/$31.00 ©2020 IEEE

level generation into separate micro- and macro-evolutionary
problems in order to obtain better results for large game levels.

B. Mario AI Framework

Infinite Mario Bros. [17] is a public domain clone of Super
Mario Bros (Nintendo 1985). Just like in the original game,
the player controls Mario by moving horizontally on two-
dimensional maps towards a flag on the right hand side. Play-
ers can walk, run, and jump to traverse the level. Depending
on Mario’s mushroom consumption, the player may withstand
up to 2 collisions with an enemy before losing and even shoot
fireballs. Players may also lose if Mario falls down a gap.

The Mario AI framework [18] is an artificial intelligence
research environment built from Infinite Mario Bros. The
framework supports AI agents, level generators, and a huge set
of levels (including the original mario levels). This framework
has been used for AI competitions in the past [18, 19], as
well as research into AI gameplay [18] and level genera-
tion [20, 21].

C. Level Generation in Mario AI

Several level generators exist in the Mario AI Framework
as either artifacts of past competitions or from research
projects done independently of them. Competitions for level
generation were hosted in 2010 and 2012 [19]. A detailed
list of these generators was created by Horne et al. [22], and
includes probability generators [23], adaptive generators [20],
rhythmic grammars [24], pattern-based generators [25], and
grammatical evolution [20]. Similar to the generator in this
paper, the Occupancy-Regulated Extension generator stitches
small hand-authored level templates together to create com-
plete levels [20]. A core difference between the Occupancy-
Regulated Extension generator and the work in this paper is
that the level templates here are generated rather than hand-
made.

Outside of competition generators, Summerville et al.[26]
generates levels using Markov Chain Monte Carlo Tree
Search, which builds levels using a level-pattern representation
similar to the “scenes” in our work. Snodgrass et al. [27,
28, 29] uses Markov Chains to procedurally generated IMB
levels in a controlled manner. A Long-Short Term Memory
network has also been shown to be a successful Mario level
generator, either by training on the actual mario levels [30]
or trained on video traces [31]. Volz et al. [32] generate
playable levels by searching the latent space of a trained
Generative Adversarial Network (trained using the original
Mario levels) using Covariance Matrix Adaption Evolutionary
Strategy. Sarkar et al. [33] use Variational Autoencoders to
identify latent representations of both Mario and Kid Icarus
(Nintendo 1986), with the purpose of generating blended levels
containing characteristics of both.

D. Personalized Generation

Several research projects have attempted to generate game
levels personalized for a specific player or playstyle. The
educational game Refraction generates levels using answer set

Fig. 1: A example a scene from the system’s scene library

Name Description Frequency
Low Jump Mario performs a small hop 25.9%
High Jump Mario jumps very high 39.44%
Short Jump Mario jumps and hardly moves forward 28.33%
Long Jump Mario jumps and moves forward a large amount 19.75%
Stomp Kill Mario kills an enemy by jumping on it 78.77%
Shell Kill An enemy is killed by a koopa shell 37.85%
Fall Kill An enemy falls off the game screen 50%
Mode Mario changes his mode (small, big, and fire) 22.77%
Coin Mario collects a coin 50.5%
Brick Block Mario bumps into a brick block 41.1%
? Block Mario bumps into a ? mark block 59.79%

TABLE I: A list of the Mario game mechanics and the
percentage of evolved scenes that contain them.

programming to target particular level features [34]. Khalifa
et al. [7] evolved levels for bullet hell games via constrained
Map-Elites, a hybrid evolutionary search, using automated
playing agents that mimicked different human playstyles.
Within the Mario AI Framework, Khalifa et al. [8] gener-
ated mini-levels called “scenes” using constrained Map-Elites.
These scenes focus on requiring the player to trigger a specific
mechanic in order to win. The corpus of “scenes” that were
publicly available from Khalifa et al.’s project is the same
library used in this paper (see Section IV).

III. METHODS

Using a target mechanic playtrace, our system is able to
generate levels that are mechanically analogous to the input.
The method proposed in this paper uses a set of pre-evolved
“scenes”, which are stitched together to create a full level.
A scene is a mini-level that encapsulates a certain idea [35].
Figure 1 shows a scene in which Mario must jump the gap
and may also encounter a flying koopa.

Every scene is labelled with the mechanics that an agent
triggered while playing it. Table I shows all the game mechan-
ics in the Mario AI Framework that scenes may be labelled
with. The scene library used in this system, originally evolved
using a MAP-Elites algorithm to heavily promote the use
of sub-sets of game mechanics in a previous project [8],
encapsulates many feasible mechanic combinations (see Table
I). The table also shows the percentage of scenes from the
corpus that contains specific mechanics. Jump is the most
common mechanic which is not surprising since Mario is
a jumping platform game (jumping over gaps, jumping on
enemies, jumping to headbutt blocks, etc). In the following
subsections, we will explain each part of the FI-2Pop algo-
rithm [9] that our system uses to stitch pre-generated scenes

into playable Mario levels that an agent plays by triggering a
specific game mechanic sequence.

A. Chromosome Representation

A level consists of a number of scenes stitched together.
A chromosome is synonymous with its level representation,
and each scene within this chromosome is not limited to only
having one mechanic label. Using scenes that contain multiple
mechanics enables the generator to generate levels that are
more condensed.

B. Genetic Operators

The system uses mutation and crossover as operators. Two-
point crossover allows the system to increase and decrease
level length as well as swap-out any number of scenes, from
a single scene to the entire level. The generator uses five
mutation types:

• Delete: delete a scene.
• Add: add a random scene adjacent to a scene. The

random scene is selected with probability inversely pro-
portional to number of mechanics using rank selection.

• Split: split a scene in half and replace it with a left and
new right scene, randomly selecting half the mechanics
to go in a new left scene and the rest to go in the right.

• Merge: add the mechanics of a scene to the left or right
scene, then replace both scenes with one from the corpus
that has the combined list of mechanics.

• Change: changes a scene with another random scene.
The random scene is selected with probability inversely
proportional to number of mechanics using rank selection.

The system selects a scene to apply one of the operators, with
a higher likelihood to select scenes with higher numbers of
mechanics.

C. Constraints and Fitness Calculation

FI-2Pop uses both a feasible and an infeasible population.
The infeasible population tries to make the chromosomes
satisfy constraints (like making sure the level is playable),
while the feasible population tries to make sure that the
mechanics in the new levels are similar to the input mechanic
sequence.

To calculate the constraints, an agent plays each chromo-
some N times. The system calculates the constraint value
using the following equation:

C =

{
1
N

∑N
i=1

di

dlevel
if 1

N

∑N
i=1 wi < p

1 if 1
N

∑N
i=1 wi ≥ p

(1)

where di is the distance traveled by the A* agent on the level
on the ith iteration, dlevel is the maximum length of the level,
wi is equal to 1 if the agent reached the end of the level on
the ith run, and p is the threshold percentage.

To calculate the fitness, the system uses the playtrace in
which the agent not only won the level but also triggered
the fewest mechanics. The level is assigned an initial score
S, which is decremented based on the number of “faults”.
A fault is a mechanic sequence mismatch between the input

sequence, which is the target mechanic playtrace, and the
newly generated agent playtrace, defined either as an extra
mechanic placed between a correct subsequence of mechanics,
or else as a missing mechanic that would create an otherwise
correct subsequence. Figure 2 displays an example of both.
The system uses a sequence matching algorithm to calculate
fault counts, as shown by Algorithm 1.

Algorithm 1: Calculating fault count in a chromosome
GIVEN: generatedSeq, targetSeq
pTarget = 0; pGenerated = 0;
extraMechs = 0; missedMechs = 0;
for pTarget < len(targetSeq), pTarget += 1 do

targetMechanic = targetSeq[pTarget];
genSubList = generated-
Seq.subList(pGenerated,len(generatedSeq));

mechanicIndex =
genSubList.indexOf(targetMechanic);

if mechanicIndex == -1 then
missedMechs += 1;

else
pGenerated += mechanicIndex + 1;
extraMechs += mechanicIndex;

end
if pGenerated >= len(generatedSeq) then

pTarget += 1;
break;

end
end
return extraMechs, missedMechs

Algorithm 1 loops over the target sequence and searches for
the first occurrence of each target mechanic in a sub-array of
the generated mechanics list, from the beginning to the end of
the list. If the mechanic is not found, it increments a counter
tracking the number of missed mechanics. When the mechanic
is found, the index of the mechanic is the number of extra
mechanics between it and the previous matching mechanic.
The pointer of the generated mechanic sequence is moved to
point at this new position to continue the loop.

Based on how faults are calculated, it is possible for a
level to have a negative fitness score. The fitness function is
calculated based on the following equation:

Pmissed = Wmissed ·Mmissed

Pextra = Wextra · tanh(b ·Mextra)

F = S − (Pmissed + Pextra · (S − Pmissed))

(2)

where Pmissed is the penalty of missed mechanics, Pextra is
the penalty of extra mechanics, Mmissed is the number of
missed mechanics, Mextra is the number of extra mechanics,
S is the initial starting value, and b, Wmissed, Wextra are
predefined weights.

Fig. 2: An example of missing and extra mechanic faults. The Long jump in the input playthrough is missing in the newly
generated map’s playthrough. The generated playthrough also contains an extra high jump not included in the input.

IV. EXPERIMENTS

To test the algorithms, we generate levels using three
original Super Mario levels as targets (1-1, 4-2, 6-1 in Figures
3a, 3d, and 3g). The Robin Baumgarten A* algorithm, which
was developed for the first Mario AI competition [36], is
run once on each of the three levels. The resulting mechanic
sequences are collected and used as targets.

Our system uses population of 250 chromosomes each
generation, with 70% crossover and 20% mutation rates, and
1 elite. Chromosomes are initialized using a random scene
picker, which selects anywhere between 5 to 25 scenes with
which to populate the level. Each scene is randomly selected
from the corpus based on the assigned number of mechanics
to it. The number of mechanics for each scene is sampled
from a Gaussian distribution with a mean as the average
number of mechanics in the target and standard deviation
of 1. For the constraints calculation, we used p equal to 1,
while for the fitness calculation, we used Wmissed equal to
5.0, Wextra equal to 1.0, b equal to 0.065, and S initially
equal to 100. These values were picked based on some
preliminary experiments that proves that they lead to the better
performance.

The scene corpus is taken from the results of Intentional
Computational Level Design [8]. The corpus † contains a total
of 1691 Mario scenes, with an average of 5.45 mechanics in a
scene and a standard deviation of 1.74. The library is generated
using the Constrained MAP-Elites generator created in the
aforementioned project, with the dimensions corresponding to
the mechanics shown in Table I. The game playing agent in the
MAP-Elites generator is the same agent we use: the winning
A* agent from the 2013 Competition[19].

We compare the results from the our system against two
baselines. The random baseline generates levels with 5 to 25
scenes which are picked randomly from the corpus. The greedy
baseline generates levels with 5 to 25 scenes, selected such that
the resulting level maximizes the number of matched mechan-
ics based on each scenes labeled mechanics in the corpus. Each
generator generates levels until it creates a total of 20 levels
considering each world. Table II displays information about
the mechanic makeup of the input playtraces. We can notice
that all the playtraces have low frequency of killing enemies,
hitting blocks, or collecting coins. This was not surprising as
the used A* agent is designed to reach the furthest to the right
in the least amount of time without caring about its score.

†https://github.com/LuvneeshM/MarioExperiments/tree/master/scenelibrary

Mechanic Level 1-1 Level 4-2 Level 6-1
Low Jump 14 20 18
High Jump 4 9 4
Short Jump 6 16 14
Long Jump 11 12 7
Stomp Kill 1 2 0
Shell Kill 0 0 0
Fall Kill 0 0 0
Mode 0 0 0
Coin 1 6 1
Brick Block 0 0 0
? Block 2 2 0
Total 39 67 44

TABLE II: The frequency of each mechanic in the input
playtrace.

Experiment Playability Inter-TPKLDiv Intra-TPKLDiv
Original Levels 52% 0.715± 0.410 -
Random Levels 1-1 10.75% 0.697± 0.265 2.941± 1.005
Greedy World 1-1 28.5% 0.675± 0.228 2.636± 0.795
Evolution World 1-1 100% 0.269± 0.127 1.601± 0.573

Random Levels 4-2 10.75% 0.697± 0.265 2.941± 1.005
Greedy World 4-2 26.25% 0.648± 0.181 3.329± 0.647
Evolution World 4-2 99.5% 0.264± 0.094 1.997± 0.466

Random Levels 6-1 10.75% 0.697± 0.265 2.941± 1.005
Greedy World 6-1 25% 0.648± 0.172 2.601± 0.577
Evolution World 6-1 87.25% 0.348± 0.117 1.505± 0.404

TABLE III: Different level statistics calculated over 20 gen-
erated levels using different techniques and compared to the
original levels as a reference point.

V. RESULTS

Figure 3 shows the original levels from Super Mario Bros
(Nintendo, 1985) and its greedy and evolved counterparts.
Both greedy and evolved levels have less graphical variance,
a result of the lack of diversity in the scenes they stitched
together. However, scene containing a 3-tile-high-pipe requires
the same jump that 3 breakable brick tiles stacked on top
of each other. The fitness function used to evolve these
scenes [8] most likely negatively impacts level diversity, as
it aims to create simple and uniform spaces. Most of the
generated levels (greedy or evolution) seem flatter than their
original counterparts. The fitness function used for evolving
the scenes [8] implies a pressure for lower tile variance, and
therefore impacts levels created with the scenes in a similar
way.

(a) Level 1-1 original

(b) Level 1-1 greedy

(c) Level 1-1 evolved

(d) Level 4-2 original

(e) Level 4-2 greedy

(f) Level 4-2 evolved

(g) Level 6-1 original

(h) Level 6-1 greedy

(i) Level 6-1 evolved

Fig. 3: A random sampling of greedy-generated and system-evolved levels, compared to their original equivalents

A. Level Playability
To calculate playability for each group of levels, we run

Robin Baumgarten’s A* agent [36] 20 times per level and
average the results over the whole group of levels. Table III
shows the playability percentages of each of these groups. We
find it notable that the A* can only win 52% of the original
levels, which includes all the levels from the original Super
Mario Bros except for the underwater levels and castle levels.
This demonstrates that the A* is not a perfect algorithm and
not able to beat every level every time. The evolved 1-1, 4-2,
and 6-1 levels all have close to 100% playability. In contrast,

greedy stitching seems to make poor quality levels in terms of
playability (25−28.5%). Random stitching predictably creates
barely playable levels (10%).

B. Mechanic Similarity

Figure 4 displays the mechanic evaluation across all three
target levels for all generators. “Matches” are the number of
matched mechanics while “Extras” are the extra generated
mechanic between the input sequence and generated agent
playtrace. “Matches” and “Extras” are normalized using the
total value from Table I for each level. As fitness is impacted

Fig. 4: Tracking mechanic statistics throughout generations across all three target levels for all generators.

by matching mechanics it makes sense that the evolutionary
generated levels go up over time, just as fitness does. Across
all three levels, the evolution agent far outperforms both the
greedy and random generators. This is also true for the extra
mechanics (which are minimized) on 1-1 and 6-1. However,
on 4-2 the evolutionary generator seems to add more extra
mechanics after a brief drop ending around generation 50
which might be inevitable to increase the matched mechanics.
This stabilizes around generation 200, which is also when the
match mechanic count stabilizes.

C. Structural Diversity

We use Tile Pattern KL-Divergence (TPKLDiv) calcula-
tions [37] to measure the structural similarity between the 20
generated levels which we call Inter-TPKLDiv and between
the generated levels and the corresponding original level which
we call Intra-TPKLDiv. We use a 3x3 tile pattern window
to calculate the TPKLDiv. For the Inter-TPKLDiv, this value
reflects how different these 20 levels are to each other. In order
to calculate it, we calculate the TPKLDiv between each level
and the remaining levels and take the average of the minimum
20 values such that all the levels are present. For the Intra-
TPKlDiv, this value reflects how different the generated levels
to the original level. We compute this value by calculating the
TPKLDiv between each generated level and the original level
and then we compute the average over all these values.

Table III shows both Inter-TPKLDiv and Intra-TPKLDiv
for the 20 generated levels. From observing the values of the
Inter-TPKLDiv, it is obvious that every technique has a lower
diversity score than the original levels of Super Mario Bros.
We noticed that the random generated levels have a lower
TPKLDiv value which indicates that the evolved levels have
less diversity overall. Also, the evolutionary levels generated
for World 1-1 have low diversity relative to the others. In
the context of it being the very first level of the game with
the most basic and simple mechanics for new players, this
diversity score makes sense. This makes it harder to find more
diverse structural levels. It is surprising that World 4-2 has a
less diversity than World 1-1. The World 4-2 playtrace has

so many fired mechanics, it might be more difficult to find a
playable level with such a high amount even with 25 scenes,
especially when scenes with small numbers of mechanics are
selected more often. One last note, the greedy algorithm has a
higher diversity than all the evolution levels, but at the same
time they less likely to be playable.

By observing the Intra-TPKLDiv values, the random gen-
erator’s levels have the largest TPKLDiv except for in World
4-2 where we were surprised to find that greedy generator
has a higher value. This might be due to the greedy generator
creating longer levels in reaction to the longer length of the
input mechanic sequence for that level. The evolved levels
have nearly half the TPKLDiv value of the random generator
levels except for World 4-2, also probably in response to
that playtrace’s mechanic count. To reference the findings
presented in Table III, 4-2 levels seem to contain only small
Inter-TPKLDiv (all the 20 generated levels are structurally
similar to each other) but show an increase in the Intra-
TPKLDiv (all the 20 generated levels are structurally different
from the original level).

VI. DISCUSSION

Looking to results as shown by Figure 4, it is clear the FI-
2Pop generator outperformed the baselines in the defined terms
of matching the mechanic sequence of the input. As we allow
for the length of the levels to vary within a defined range, it is
important to observe the convergence of said level lengths. A
typical level from Super Mario is 14 scenes in length and the
levels generated for level 1-1 and level 6-1 converge toward
and hover around that length. However, the generator for level
4-2 converges to a length of roughly 23 scenes, nearly 1.64
times that of the other 2 observed levels. We presume the
reason behind this influx in scene length is due to sheer number
of mechanics present in the original level 4-2. Level 4-2 has
the most number of mechanics triggered, close to 1.7 times
the amount of level 1-1 and to 1.5 times the amount for
level 6-1. We believe, the generator could not guarantee levels
where the input mechanic sequence occurred in the given
length and thus favored levels with more scenes. Spreading the

(a) Original Sequence (b) Greedy Sequence (c) Evolved Sequence

Fig. 5: An example of a 4 jump sequence in the original 6-1 level, and how the two generators try to copy it.

mechanics allows the generator to better guarantee generating
levels with a higher likelihood of being aligned to the input
from a mechanics sequence standpoint. This is evident as the
number of matches increases as the overall length of the level
increases for level 4-2. Since the overall length of level 4-
2 increases, the likelihood of additional mechanics occurring
between the wanted mechanics also increases, explaining the
rise in extra mechanics for the generated levels for 4-2.

The evolutionary generator is influenced to ensure mechan-
ics from the input sequence are forced to happen in their
particular order in the generated levels. Evolution is driven
by the matching pressure in the fitness function to guarantee
the agent had no other choice but to perform certain mechanics
before progressing forward. Figure 5 shows an example of this
with a zoom into a subsection of 6-1 from the original level,
greedy generated level and evolved level. The original level
requires the agent to perform a 4-jump sequence in order to
progress forward in the level. A similar manner of triggered
mechanics can be seen in both the greedy and evolved levels.
The greedy generator simply places scenes next to each other
in which jumps occur. However, it cannot guarantee or force
the agent to perform the jumps outside of having a strong
likelihood of the jumps occurring. If the agent was delayed
to react it might stomp on the Koopa instead of jumping over
it, leading to a different mechanic sequence. Looking to the
evolved example, we see there is a long wall that acts as a hard
gate, blocking the agent from progressing forward, without
first performing the 4 jumps.

The corpus from Khalifa et al. [8] was built using a fitness
function that encouraged simplicity, creating a minimalized
pressure that is reflected on the levels built using the corpus.
In Figure 5, the “original” two-scene section that requires 4
jumps to overcome translates to another two scene section
with a Koopa turtle, a pipe, a gap, and a little wall in the
“greedy” level section. The evolutionary generator, driven by
matching pressure, shrinks this down into a single scene to
force the agent into having no other choice but this mechanic
sequence. In a way, the evolution method is performing a type
of minimalist level generation, creating the simplest levels
which are mechanically analogous to the original.

Based on the results of Section V-C and Table III, we
hypothesize that a mechanical sequence populated with small
amounts of relatively simple mechanics (Evolution World 1-
1) has only a small range of mechanically similar cousins. It
seems that having a large population of mechanics also makes

it difficult to curate diversity (World 4-2). It is possible that
World 6-2 represents a sweet spot in terms of diversity. In
future work, we’d like to test this theory using a more diverse
array of scenes and levels.

VII. CONCLUSION

In this paper, we explore a means to automatically gener-
ate personalized content by stitching pre-generated scenes to
construct levels for Super Mario. We compare the sequence
in which mechanics occur in the playthrough of the Robin
Baumgarten A* agent on three unique levels from the original
Super Mario (1-1, 4-2 and 6-1) to the sequences the same
A* agent would take in the generated levels from the various
methods to judge the success of the experiments. We use the
FI-2Pop evolution algorithm, with the focus of developing
winnable levels that are mechanically analogous to the original
level, and we find that it is able to match the sequence much
better than either baseline. Although both baselines and the
new method have lower diversity among themselves than the
original Mario levels, this is most likely a result of the entropy
pressure during the scene generation process.

While these results are promising, this work can be further
expanded to examine playthroughs from personified agents or
human testers to generate levels unique for their playstyles.
We would like to observe how the generated levels for various
groups of users differ in what the focus of the level becomes
based off how a user plays the initial Super Mario level. For
example, a generated level could focus on trying get coins in
hard to reach places, like areas in which the player needs to
reach both a certain height and perform a long jump. With
a user study, it would be possible to gain understanding of
player preferences between the original level and personalized
generated levels.

ACKNOWLEDGMENTS

Michael Cerny Green acknowledges the financial support of
the SOE Fellowship from NYU Tandon School of Engineer-
ing. Ahmed Khalifa acknowledges the financial support from
NSF grant (Award number 1717324 - “RI: Small: General
Intelligence through Algorithm Invention and Selection.”).

REFERENCES

[1] A. M. Smith and M. Mateas, “Answer set programming
for procedural content generation: A design space ap-
proach,” T-CIAIG, vol. 3, no. 3, 2011.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne, “Search-based procedural content generation:
A taxonomy and survey,” T-CIAIG, vol. 3, no. 3, 2011.

[3] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård,
A. K. Hoover, A. Isaksen, A. Nealen, and J. Togelius,
“Procedural content generation via machine learning
(pcgml),” ToG, vol. 10, no. 3, 2018.

[4] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius,
“Pcgrl: Procedural content generation via reinforcement
learning,” arXiv preprint arXiv:2001.09212, 2020.

[5] G. N. Yannakakis and J. Togelius, “Experience-driven
procedural content generation,” Transactions on Affective
Computing, vol. 2, no. 3, 2011.

[6] D. Ashlock, C. Lee, and C. McGuinness, “Search-based
procedural generation of maze-like levels,” T-CIAIG,
vol. 3, no. 3, 2011.

[7] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat:
Bullet hell generation through constrained map-elites,” in
GECCO. ACM, 2018.

[8] A. Khalifa, M. C. Green, G. Barros, and J. Togelius,
“Intentional computational level design,” in GECCO.
ACM, 2019.

[9] S. Kimbrough, G. Koehler, M. Lu, and D. Wood, “In-
troducing a feasible-infeasible two-population (fi-2pop)
genetic algorithm for constrained optimization: Distance
tracing and no free lunch,” European Journal of Opera-
tional Research, vol. 190, 10 2008.

[10] W. M. Reis, L. H. Lelis et al., “Human computation
for procedural content generation in platform games,” in
CIG. IEEE, 2015.

[11] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul,
and S. M. Lucas, “General video game ai: Competition,
challenges and opportunities,” in AAAI Conference on
Artificial Intelligence, 2016.

[12] A. Khalifa and M. Fayek, “Automatic puzzle level gener-
ation: A general approach using a description language,”
in CCG Workshop, 2015.

[13] N. Shaker, M. Shaker, and J. Togelius, “Evolving
playable content for cut the rope through a simulation-
based approach.” in AIIDE, 2013.

[14] C. McGuinness and D. Ashlock, “Decomposing the level
generation problem with tiles,” in CEC. IEEE, 2011.

[15] S. Dahlskog and J. Togelius, “A multi-level level gener-
ator,” in CIG. IEEE, 2014.

[16] J. Togelius and S. Dahlskog, “Patterns as objectives for
level generation,” in Proceedings of the Second Workshop
on Design Patterns in Games;. ACM, 2013.

[17] M. Persson, “Infinite mario bros,” Online Game). Last
Accessed: December, vol. 11, 2008.

[18] S. Karakovskiy and J. Togelius, “The mario ai benchmark
and competitions,” T-CIAIG, vol. 4, no. 1, 2012.

[19] J. Togelius, N. Shaker, S. Karakovskiy, and G. N. Yan-
nakakis, “The mario ai championship 2009-2012,” AI
Magazine, vol. 34, no. 3, 2013.

[20] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber,
T. Shimizu, T. Hashiyama, N. Sorenson, P. Pasquier,

P. Mawhorter, G. Takahashi et al., “The 2010 mario ai
championship: Level generation track,” T-CIAIG, vol. 3,
no. 4, 2011.

[21] N. Sorenson and P. Pasquier, “Towards a generic frame-
work for automated video game level creation,” in
EvoStar. Springer, 2010.

[22] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. To-
gelius, “A comparative evaluation of procedural level
generators in the mario ai framework.” Society for the
Advancement of the Science of Digital Games, 2014.

[23] N. Shaker, G. N. Yannakakis, and J. Togelius, “Feature
analysis for modeling game content quality,” in CIG.
IEEE, 2011.

[24] G. Smith, J. Whitehead, M. Mateas, M. Treanor,
J. March, and M. Cha, “Launchpad: A rhythm-based
level generator for 2-d platformers,” vol. 3, no. 1. IEEE,
2011.

[25] S. Dahlskog and J. Togelius, “Patterns as objectives for
level generation,” 2013.

[26] A. J. Summerville, S. Philip, and M. Mateas, “Mcmcts
pcg 4 smb: Monte carlo tree search to guide platformer
level generation,” in AIIDE, 2015.

[27] S. Snodgrass and S. Ontanon, “A hierarchical approach to
generating maps using markov chains,” in AIIDE, 2014.

[28] ——, “A hierarchical mdmc approach to 2d video game
map generation,” in AIIDE, 2015.

[29] S. Snodgrass and S. Ontanón, “Controllable procedu-
ral content generation via constrained multi-dimensional
markov chain sampling.” in IJCAI, 2016, pp. 780–786.

[30] A. Summerville and M. Mateas, “Super mario as a string:
Platformer level generation via lstms,” arXiv preprint
arXiv:1603.00930, 2016.

[31] A. Summerville, M. Guzdial, M. Mateas, and M. O.
Riedl, “Learning player tailored content from observa-
tion: Platformer level generation from video traces using
lstms,” in AIIDE, 2016.

[32] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and
S. Risi, “Evolving mario levels in the latent space of
a deep convolutional generative adversarial network,” in
GECCO, 2018.

[33] A. Sarkar, Z. Yang, and S. Cooper, “Controllable level
blending between games using variational autoencoders,”
arXiv preprint arXiv:2002.11869, 2020.

[34] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović,
“A case study of expressively constrainable level design
automation tools for a puzzle game,” in FDG. ACM,
2012.

[35] A. Anthropy and N. Clark, A Game Design Vocab-
ulary: Exploring the Foundational Principles Behind
Good Game Design, ser. Game Design Series. Pearson
Education, 2014.

[36] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The
2009 mario ai competition,” in CEC. IEEE, 2010.

[37] S. M. Lucas and V. Volz, “Tile pattern kl-divergence for
analysing and evolving game levels,” in GECCO, 2019.

