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Abstract—Deep Reinforcement Learning (DRL) has shown im-
pressive performance on domains with visual inputs, in particular
various games. However, the agent is usually trained on a fixed
environment, e.g. a fixed number of levels. A growing mass of
evidence suggests that these trained models fail to generalize to
even slight variations of the environments they were trained on.
This paper advances the hypothesis that the lack of generalization
is partly due to the input representation, and explores how
rotation, cropping and translation could increase generality. We
show that a cropped, translated and rotated observation can get
better generalization on unseen levels of two-dimensional arcade
games from the GVGAI framework. The generality of the agents
is evaluated on both human-designed and procedurally generated
levels.

Index Terms—generalization, reinforcement learning, repre-
sentation, A2C, zero-shot generalization, gvgai

I. INTRODUCTION

The way in which a problem or data is represented has a
large effect on how easy it is to be learned by a machine learn-
ing method. For example, it is common knowledge that when
trying to learn features expressed as categorical variables, it
makes all the difference in the world whether this is presented
to the algorithm as a one-hot encoding or as different values of
a single input. With a one-hot encoding, learning might work
as intended, whereas the other encoding has much less chance
of working.

This kind of knowledge, crucial as it may be, is commonly
not the subject of a paper of its own, but introduced as a detail
in papers focusing on some other method. For example, in the
recent AlphaStar paper, one of the components was the use of
a transformer architecture to process variable-length lists of
units in the game [1].

The ability to learn straight from pixels, using the same in-
formation as people, is one of the reasons deep reinforcement
learning has became so popular [2]. Yet, learning from pixels
poses a number of challenges.In some ways, these outputs are
not obvious for humans either; a human that does not know
how to play videogames need to first learn that they “are” the
character that moves around which they can control with the
joystick, and if they play a game where the player character
moves non-holonomically (such as a char) they need to learn
that a particular direction of the joystick means something
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Fig. 1: VizDoom’s first-person perspective.

different depending on which way the player agent is facing.
These conventions are largely carried over between games,
which explains why people can so rapidly pick up a new game
and start playing. However, just observe someone who does
not know the perception and control conventions of a game
genre try to play a game of that genre, to understand how
non-obvious the conventions are. Which makes it even more
surprising that deep reinforcement learning agents can learn
to play these games so well.

Over the last few years, several papers have started ques-
tioning what deep neural networks that learn to play from
pixels actually learn. In “Playing Atari with Six Neurons”,
it is shown that surprisingly small networks with a few
hundred parameters can learn to play many Atari games with
a skill that rivals that of networks with hundreds of thousands,
or even millions, of neurons [3]. This is accomplished by
separating out the preprocessing and learning a library of
sensory prototypes, allowing for an input that encodes how
similar a particular observation is to other observations. This
work questions what a giant neural network actually does if
the policy can be encoded by a tiny neural network; perhaps
most of the network is engaged in some kind of simple
transformation of the input image?

Another way to investigate what deep networks, trained
with reinforcement learning, learn from pixel data is through
studies of their generalization capacity [4, 5]. These studies
generally have rather negative results. For example, a set of
experiments showed that networks trained at one or a small set
of levels could not play other levels of the same game they



had been trained on [6]. Training using procedural content
generation, where each episode uses a new level, managed
to create networks that generalized somewhat better, but not
much better.

Anecdotal evidence suggests that this failure of generaliza-
tion extends to various environments with a static third-person
perspective'. On the other hand, games such as Doom (shown
in figure 1), which are seen from the vantage point of the
agent, do not seem to create the same generalization problem
for deep reinforcement learning.

This paper builds on the hypothesis that deep reinforcement
learning cannot easily learn generalizable policies for games
with static third-person views, but that they can do so when the
same game is seen through a more agent-centric view. It tests
this hypothesis by training deep networks with reinforcement
learning on multiple different games, with and without various
perceptual modifications, in particular rotation and translation.
For each version, we report performance on a training set of
levels and, separately, on a larger test set.

It should be pointed out that while the hypothesis advanced
here might seem obvious and the experiments somewhat
simplistic, the hypothesis runs counter to received wisdom and
implicit assumptions in the mainstream of deep reinforcement
learning research. We are saying that deep reinforcement
learning on games with static third-person representations, in
general, does not work in the sense that it does not learn
generalizable policies. This may or may not be because these
network structures cannot learn the types of input transfor-
mations that are necessary for generalizable policies. In any
case, we imply that input representation plays a much larger
role than is commonly assumed.

II. BACKGROUND

Deep Reinforcement Learning has a lot of success in
video games, especially arcade video games like the atari
environment [2]. But, as has been mentioned, these works
primarily focused on learning to play mostly deterministic
environments [7]. With the goal of teaching agents a real
understanding of an environment so that it can be robust and
useful outside of simple video game situations, there has been
a lot of research recently in improving the zero-shot and few-
shot generalization ability of RL agents.

It isn’t immediately obvious from the research that agents
are bad at generalization. Results from agents such as Al-
phaStar [1], OpenAl’s Hide and Seek [8], and agents from
the Doom competition [9] all make it appear that agents can
learn general policies that adapt very well to many situations.
Without discussing how general these learned policies are, we
note that there are key components in these environments that
would help with generalization. Both Starcraft and Hide and
Seek are environments that allow self-play between competing
teams. This provides a natural curriculum for an agent to
learn a robust and general policy. The other component is

'With a static third-person perspective, we mean one which does not change
depending on the movement of the agent, or only does so rarely (for example,
when moving between rooms in a flick-screen fashion).

the observation space provided in these environments. In
VizDoom and Hide and Seek the agent is shown an agent-
centric view of the world, making it easier to see how the
agents’ actions affect the world. Hide and Seek also provides
extra information about the global world state. For AlphaStar,
the agent is shown a minimap of the entire game but it is
also provided key summary information about the objects
in the game world, which allow the agent to once again
have immediate feedback on how its actions are affecting the
environment.

Attention has only recently been growing over the diffi-
culty most game environments provide for learning general
policies. To combat this, a number of new environments and
benchmarks have been released to provide test grounds for
how easily each algorithm can learn a general policy. Of
the many that have been introduced, several big ones are;
Coin Run [4], Obstacle Tower [10], General Video Game Al
(GVGAI) [11], and Maze Explorer [12]. These environments
focus on having lots of games and levels in order to provide
the training data for an agent to learn a general policy. With
a large number of different environments to train on, the
agent cannot simply memorize a sequence of actions to take
for every environment. These frameworks are very useful but
agents do not automatically learn general policies even in the
presence of unlimited new levels for a simple game as found
by [6]. While there have been some promising results on
these environments, it must be noted that this is not a solved
problem.

To make matters worse, there are many situations where it
is impossible to generate a large number of different versions
of an environment for training, so it is important for agents
to learn as general a policy as possible from a small set of
environments. To help with this, researchers have found ways
to inject noise into the training process. Even in the original
Atari Deep Q-Learning work, they would have the agents take
a random number of noop (no action) steps at the beginning
of a game to randomize the initial layout of the game [2].
This would prevent the agent from simply memorizing a
sequence of actions without reacting to the environment.
Another simple approach to increase noise during training
is sticky actions [13]. Sticky actions introduce a parameter
which is the probability that an agent’s action will be repeated
instead of a new action is being calculated. This introduces
randomness into training and forces the agent to learn a policy
that is not too brittle. More recently [14] experimented with
smarter ways to introduce noise for the agent’s actions. Instead
of injecting noise when an agent is taking an action, which
results in the agent collecting worse data, the agent collects
data and noise is added during the network update. This helps
the agent learn an improved policy but it still relies on lots of
training levels.

Focusing more on the visual aspect, [15] proposes adding
visual noise into the game environment. This requires them
to know which part of the frame is from the background and
which part is from objects. They then replace the background
with either gaussian noise or video frames from the natural



world. With this noise, the agent’s performance plummeted
showing that they could not learn a general policy that ignored
the background area of the screen. To further the understanding
around this, [5] examined how pixels in a state observation can
provide unnecessary information that agents use to memorize
a brittle policy.

Recent work that has come out after this work has focused
on data augmentation, in particular image translation, as a gen-
eralization technique. In two consecutive works, researchers
proposed using random augmented observations both with and
without additional loss functions during training [16, 17]. The
simple techniques they used achieved the state-of-the-art per-
formance on the majority environments on the DeepMind Con-
trol benchmarks. Kostrikov et al proposes using augmented
observations to reduce the variance of Q-function estimation,
so as to stabilize the training process [18]. Specifically, they
apply a set of data augmentation techniques K times, and then
calculate an average () value estimation to reduce the variance.
The success of these approaches along with our results suggest
there is a connection between an agent’s point-of-view and that
point-of-view’s data-augmentation characteristics.

III. GENERALIZATION APPROACH

In this work, we are looking at improving the agent’s gener-
alization through modifying the input representation and with
no data augmentation or transfer learning. We are taking a step
toward a better understanding of the optimal representation for
reinforcement learning. In environments where the agent is
embodied in the environment and shown a map of the entire
world, it really struggles with learning from a static third-
person point of view [6]. The network not only needs to learn
the consequences of its actions but also needs to track a small
blob of pixels to know its location. We propose to transform
the input representation to be more centered around the agent
as it is seeing it from its point of view. Doing that will reduce
the number of tasks the agent needs to learn during training.

We propose always giving the agent an agent-centric’ view
when possible and further propose that cropping the agent’s
view to just its immediate surroundings can greatly improve
its ability to learn in Deep Reinforcement Learning (DRL).
We propose three techniques to do this that can be applied to
any environment with a visible agent even if the only state
information available is a pixel image. We propose rotating,
translating, and cropping the observation around the agent’s
avatar. These are quick transformations that can be applied
to the observation image and they only require knowledge
of the location and the direction of the agent’s avatar. If the
location information isn’t available from the environment, a
simple object detection algorithm can be used to find the avatar
image on the screen. For the avatar’s direction, if relevant to
the environment, it can be extracted from the agent’s actions
as the agent usually need to change its direction before it

2Note that “agent-centric” is not the same as “first-person”. With an agent-
centric view, we mean any view that puts the representation of the agent
(ak.a. its avatar) at the center; in the examples here, we use a third-person
agent-centric view.

starts changing its location. Rotation keeps the agents always
facing forward, so any action it takes always happens in the
same relative direction to it. Next, translation translates the
observation around the agent so its always in the center of its
view. Finally, cropping shrinks the observation down to just
local information around the avatar.

These changes at first can appear like obvious transforma-
tions, but we did not find anywhere in the literature discussing
how observation perspective affects learning for DRL. We
not only recommend these techniques for people working
with map-like views, but also measure their effectiveness and
discuss where and when they are useful. A local, agent-centric
view, allows for better learning in our experiments and the
policies learned generalize much better to new environments
even when trained on only five environments. This implies
the agent was able to learn from the correct objects in the
environment instead of just memorizing states from pixels.

In practice we also found it was necessary to randomize
the agent’s initial orientation, and to replace the agent’s avatar
with a square. We believe the randomization is necessary to
stop the agent from memorizing an opening sequence. We
believe the agent was using the transformed avatar’s layout to
determine its global orientation, but also found that the agent
performed better in every single experiment if the avatar was
replaced.

In the following subsections, we are going to explain in
detail these three transformations. These transformations can
be used by themselves or combined together to combine their
effects.

A. Translation

Fig. 2: The left observation is being translated around the
player’s avatar (pink rectangle) to the right observation.

Translation is the process of centering the observation image
around the player’s avatar. The idea is the player’s avatar
should always be in the center of the observation image after
this transformation. Figure 2 shows the translation process
where the observation appearing on the left was padded with
black pixels and centered around the player’s avatar (pink
rectangle). We can see that the center pixel of the new
observation is the player’s avatar. Translation will restrict the
avatar to learn the relative position to other game objects such
as a key, door, or enemy in figure 2 [19] which is useful for



the agent to understand the game and take the corresponding
action. In a lot of video games, having a relative position is
enough to win the game as you usually need to move the
avatar toward a certain target to interact with it.

B. Rotation

Fig. 3: The left observation is being rotated using the player’s
avatar (pink rectangle). In the original the player is looking
right, the observation is rotated so that the agent is always
looking up.

Rotation is the process of orienting the observation to face
the same direction as the player’s avatar. Figure 3 shows the
rotation transformation on the left observation (the original
observation). The rotated observation shown on the right is
the original observation rotated towards the player direction
(which is right in that state). An important note when using
rotation transformation, the action space the agent is taking
has to be unrotated before it is returned to the framework.
For example: in figure 3 the avatar is facing right so the
observation was rotated by 90°. If the avatar wants to move up,
in the new observation this is technically right in the original
framework. To solve that problem, any action happening that
is taking place in the environment has to be rotated in the
negative direction of the rotation degree. Rotation helps the
agent to learn navigation as it simplifies the task. For example:
if you want to reach for something on the right, the agent just
rotates until that object is above and then moves up. If that
object becomes to the left, the same strategy can be applied
(rotate then move up). This is not the case without rotation
where we need to move in a different direction depending on
the location of the target object.

C. Cropping

Cropping is the process of only showing the observation
around the player and not the full observation. Cropping by
default is a translation technique as the new observation is
centered around the avatar. Figure 4 shows a 5x5 cropping
transformation being applied to the left observation (the origi-
nal game observation) to a smaller view that is centered around
the player (the center pixel is the center of the avatar).

The cropping helps to reduce the state space of what the
agent is seeing to a smaller subset which can help the agent
to learn a generalized policy. Neural Nets can be interpreted

Fig. 4: The left observation is being cropped using the player’s
avatar (pink rectangle) position to the right observation.

as behaving as Locality-sensitive hashing (LSH) functions
and they intelligently learn to recognize similar states. Larger
environments with many combinatorial arrangments of agent
and object locations make it more difficult for the agent
to understand what states are functionally the same. In a
cropped view the agent can directly see the effect of its action,
assuming its actions are local, and it can directly match actions
to states.

In many video games actions and interactions mostly hap-
pen locally, cropping focuses the agent to this area. This
helps in many games but obviously also provides a disability
in the form of missing information and lack of a global
context. Another reason is that cropping observation could
be considered as a data augmentation which is helpful for
generalization as it learns a broader set of state-action values,
also referred to as the Q-values [20].

IV. EXPERIMENTAL METHODS

In this work, we use the OpenAl Gym [21] interface of
the GVGAI Framework [11]. We test our techniques on three
different games and one game variant:

e Zelda: is a GVGAI port for the dungeon system in The
Legend of Zelda (Nintendo, 1986). The goal of the game
is to get a key and reach the exit door while avoiding
hitting enemies. The agent also can use its sword to
kill enemies for additional scores. Figure 5a shows an
example of a human-designed Zelda level.

o Simple Zelda: similar to the Zelda game but it only has
a key and the door. The agent’s goal is to get the key
and reach the door. In this game, there are no walls so
the agents don’t need to learn navigation. It just needs to
learn the goal of the game. Also, all the game levels are
designed such that the player starts in the center of the
map and the key and door are both either on the left of
the agent or the right shown in figures 5b and Sc.

o Boulderdash: is a GVGALI port for Boulder Dash (Data
East, 1984). The goal is to collect 10 different diamonds
then reach the goal while avoiding getting killed by
enemies or the falling boulders. Figure 5d shows an
example of one of the training levels in Boulder Dash.

o Discrete Solarfox: is an adapted version of a GVGAI
port for Solarfox (Midway Games, 1981). The goal of
the game is to collect all the diamonds without hitting
the borders of the map or enemy bullets. A complication



(a) human-designed
zelda level

(b) simple zelda training  (c)

level (key and door al-
ways on the left)

simple zelda test (d)
level (key and door al-
ways on the right)

human-designed
boulderdash level

(e) human-designed so-
larfox level

Fig. 5: Examples of game levels from zelda, simple zelda, boulderdash, and solarfox.

is that the avatar is always moving; if no new input is
given, it keeps moving in the same direction as the last
frame. We modified this game by increasing the avatar
speed by factor of 7 as the framework only returns the
avatar location in integer values (while actual speed was
1/7 in the original game). Figure 5¢ shows an example
of one of the training levels in Solarfox where the player
controls the spaceship.

To evaluate our methods. We employ the Advantage Actor-
Critic (A2C) algorithm. Specifically the implementation from
Open Al Baselines [22]. The neural network has the same
structure as in Mnih et al. [23] with a body consisting of three
convolutional layers followed by a single fully-connect layer.
We trained the agents until convergence (which took between
200 million frames to 400 million frames). We configured the
A2C algorithm to use a step size 5, 84 by 84 wrapped frame,
4 frames per stack and a constant learning rate of 0.007 with
the RMSProp optimizer.

(a) Original view

(b) View with replacing avatar

Fig. 6: Examples of observation with or without replacing
avatar

In preliminary experiments, we found that agents trained
on Simple Zelda levels barely won on the test set. When we
investigated the playtraces we found that the agent is simply
memorizing to go left (where the key and the door are in
the training set) instead of understanding where the key and
the door location are and trying to move toward them. This
was still happening in the cropped view with rotation and
translation, where the agent has no idea where it could find
the key and the door and doesn’t have an idea what is left
(because of rotation). we discovered that the agent uses the
avatar rotated pixels to memorize the solution for different

levels similar to Song et al’s work [5] where the agent used
the scoreboard to solve the game. To avoid that problem, we
simply replace the avatar with a square of a certain color
shown in figure 6.

For Zelda, we train the agent on the 5 human-designed
levels and test it on a different 45 human-designed levels.
While for Simple Zelda, we train the agent on levels where
the key and the door are on the left side of avatar and test
it on levels where the key and the door are on the right side
of the avatar. The idea behind that is to test generality in its
most simple form where the agent needs to understand where
to go and not just memorize the sequence of actions to win
the level. The number of levels in train and test set is the
same which is 1190 levels which reflect all the possible levels
where the key and the door are assigned on either side of the
avatar. For Boulderdash and Solarfox, the agent is trained on
the 5 human-designed levels that come with the framework and
tested on 50 different generated levels using the generator from
Justesen et al.’s work [6]. For all the experiments, the avatar
starts with a random direction uniformally sampled from all
four directions to allow the agent not to memorize the starting
direction. Similar to the noop random initialization in Mnih
et al. [2] work.

We trained 3 models for all the possible combinations
of our proposed transformations (Translation, Rotation, and
Cropping) on all the proposed problems (Simple Zelda, Zelda,
Boulderdash, and Solarfox). We end up with having 6 total
experiments instead of 8 because you can’t do Cropping
without Translation. For the avatar’s location, we extract it
from the game engine itself which will be replaced in future
work with a simple OpenCV image tracking function.

V. RESULTS

For each trained model we test it for 20 times on every
level in the training set and test set. Table I shows the results
from concatenating these data by showing the mean and the
standard deviation between the three different models. The
low standard deviation shows the model stability during the
training process where it achieves almost the same results.
Figure 7 shows the results of all the algorithms on the test set
as a relative performance with respect to the original model
performance on the test set. Positive values indicate that this
transformation is helpful to the system, while negative values
indicate that this transformation is hurting the system, and
near-zero values means they are no different.



crop | translate | rotate ] simple zelda ] zelda ] boulderdash ] dsolarfox
train test train test train test train test
0 0 0 100.0 +0.1% 0.0 £0.0% 76.7+17.6% | 044+0.8% | 19.0+£29.1% | 0.0£0.0% | 87.7+£15.1% | 49.0+£7.1%
0 0 1 100.0+0.0% | 70.5+104% | 81.0+14.8% | 1.1+1.3% | 123+11.6% | 0.1£0.4% | 29.5+17.8% 1.5+ 1.5%
0 1 0 100.0 £ 0.1% 3.8+ 1.6% 787+186% | 1.0£1.5% | 30.0+£12.6% | 0.2+0.5% | 87.0+14.5% | 86.1+3.0%
0 1 1 100.0£0.0% | 49.0+£1.0% | 75.0£192% | 09+1.4% | 283+£11.7% | 0.0. £0.3% | 74.0+£16.9% | 55.1 £ 12.2%
1 1 0 100.0 £0.0% | 149+£31% | 66.7£21.8% | 52+2.8% 8.3 £12.3% 0.8+ 1.3% 95.7 £ 9.0% 90.7 £ 6.8%
1 1 1 99.9+£0.1% 629+3.6% | 65.7£19.7% [ 22.0+£4.5% | 10.7£12.4% | 1.0£1.3% [ 85.5+14.8% | 86.4+3.8%

TABLE I: Test and train result of different combination in simple zelda, zelda, boulderdash and discrete solarfox
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(c) Boulderdash (d) Discrete Solarfox

Fig. 7: Relative performance of different transformations with respect to the original model performance on the test set

In the simple Zelda, all the experiments scored 100% win
rate on the training set which was not surprising as the
task is pretty simple and there is no navigation obstacles.
Looking on the test set, the cropped, rotated and translated
observation achieves the second highest win rate on test levels.
Surprisingly, the rotated observation achieves the best win rate
on the test set. But the first and second win rate are close due
to the high variance in the rotated observation test. Followed
by having rotation and translation in the third place. Looking
at the rest of the experiments, we find that the agent struggles
on the test levels without having the rotation.

In Zelda, we found that the overall performance on both
training set and test set are dropped, especially on the test set.
We think that this performance drop is due to the complexity
of this game as it has more tasks (navigation through walls and
avoiding randomly moving enemies) that it needs to master.
Also, the training set size is a lot smaller compared to the
simple Zelda experiment. All the trained agents are having
similar good performance on the training set with not a huge
difference but on the test set the gap is big. The cropped,
rotated and translated observation achieves the highest win rate
across all approaches. Surprisingly, all the other experiments
perform pretty badly especially if it doesn’t have cropping.
We believe the agent simply overfit to the training levels due
to the small training set and couldn’t figure a general strategy.
On the other hand, when the observation was cropped, the
new observation might be more general and more frequently
appearing in other levels which helped it to generalize better.

In Boulderdash, the agent struggles to learn to play the game
well on the training set which didn’t help it to work on the
test set with a 0% win rate. We think this bad performance is
because the agent doesn’t have any indication about how many
diamonds it has collected so far, and it might be impossible
to make sure it collects all the diamonds. (On some levels,
it is impossible to collect all the diamonds.) This can be
noticed from the slightly lower performance of the agent on

the training set when it has cropping compared to the rest of
the experiments. We think either having a visual indicator or
adding memory to the agent might improve its ability to learn
and play the game.

In Discrete Solarfox, the agent learns to play the game pretty
good on the training set in most of the cases except with having
rotation only. On testing, it is clear that translation is the key
component towards generalizing in that game. We think it is
due to the nature of that game and the need of relative locations
between the avatar and different game objects to perform well
in the game. The avatar needs to be far away from the edges
of the screen and enemy bullets, while being close to gems
to collect them. The case of having only rotation might made
it harder for the agent to extract these informations from the
running game.

Fig. 8: Obvservation with every object replaced, it did not
improve generalization.

As mentioned several times, replacing the avatar with a
square was shown to always improve testing performance sig-
nificantly. Extrapolating from this, it seems further removing
orientation information by replacing every object in the game
with a square would further assist in generalization (see Figure
8). However, the results are similar to simply replacing the
avatar. This is ideal as only replacing the avatar is much easier
than replacing every object when only pixel data is available.



VI. DISCUSSION

Cropping, rotation and translation improve the generaliza-
tion. However, the win rate is still not promising on more
complex problems (Zelda and Boulderdash). We think that
could be because of the small training set, the small capacity
of our network (3 convolutional layers and 1 fully-connected
layer), or the need for memory. From Cobbe’s work [24],
larger structures such as IMPALA-CNN [25] significantly
improve generalization comparing to the structure we used
in the project which we could adopt for future work.

The cropping, rotation and translation could be used in many
types of games, However, the techniques have some trade-offs
and limits. The cropping will throw away global information.
This problem is not affecting the performance in Zelda and
Solarfox because the actions in these 2 games only affect
relative objects with no global effect on the environment. In
other games with global effects, cropping might not work. For
instance, imagine a scenario where the avatar needs to kill an
enemy before it gets stronger, if we use the cropped view,
the avatar might not be able to see if there is an enemy to
go and kill it before it gets stronger. The rotation technique
is based on the assumption that the avatar has a direction
it’s facing. Therefore, this technique cannot be applied to the
games without this property.

The experiments also expose the weakness of the current
neural network structure that we are using. The neural network
is not always focusing on the area we want it to focus such
as the objects in the surrounding. It focuses on tiny object
details which was the reason to replacing the avatar in all
our experiments. A similar situation also happens in Song et
al’s work [5]. The agent focus on the scoreboard instead of the
object we want them to focus. By blacking out the scoreboard,
the performance on generalization is significantly improved.
However, the neural network itself should be able to figure out
how to focus on important areas like the selective filtering [26]
in human’s visual system and the attention mechanism [27,
28]. It could be a future research direction on generalization.

As mentioned above, the neural network simply could be
viewed as a LSH function. Another interest research direction
is combining LSH with feature extraction techniques such as
autoencoder to test whether it can achieve similar performance
comparing to the regular neural networks.

VII. CONCLUSION

This work demonstrates the importance of an agent’s per-
spective when learning. Our three proposed simple changes
make a big difference in the policies that the agent learns. This
highlights how little is still understood about what causes an
agent to learn brittle or robust policies in deep reinforcement
learning. This work advances the state-of-the-art for zero-shot
generalization as well as formalizes some deep learning tribal
knowledge on how to design useful state observations.

The results demonstrate the importance of all three transfor-
mations: rotation, translation, and cropping. Giving the agent
a narrow, agent-centric view, where it’s always facing forward
allows it to more accurately learn the effect of each of its

actions and the effect of the environment on it. Training on
only five levels, it is then able to beat up to 90% of the new
levels it had never seen before in a highly stochastic game.
That is a huge improvement over what has been possible with
so little data.

For future work, we would like to continue to test these
generalization effects on different games. We would like to
continue and improve our understanding of the effects of each
of these transformations. It is also important to test these
techniques on games where the actions have larger effects on
the game state and/or the global game information has more
influence on the win rate than local information does. This
would give more insight into the efficacy of these techniques
in a more diverse set of situations. Finally, since the data-
augmentation is a side-effect of our techniques, we would
like to apply random data augmentation techniques. Instead
of hard coding the augmentation techniques, we could adopt
a similar model to Ha and Schmidhuber’s World Models
[29]. Specifically, we could apply random data augmentations
to the input of the vision model so that the model could
learn a better representation, similar to the recently published
Network Randomization[30]. All of these refinements should
help everyone’s understanding of some of the real factors that
allow for robust policies in some environments and impossible
situations in others.
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