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ABSTRACT

This paper introduces a new system to design constructive level
generators by searching the space of constructive level generators
defined by Marahel language. We use NSGA-II, a multi-objective
optimization algorithm, to search for generators for three different
problems (Binary, Zelda, and Sokoban). We restrict the represen-
tation to a subset of Marahel language to push the evolution to
find more efficient generators. The results show that the generated
generators were able to achieve good performance on most of the
fitness functions over these three problems. However, on Zelda and
Sokoban they tend to depend on the initial state than modifying
the map.
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1 INTRODUCTION

Designing good levels is hard, but designing good level generators
is arguably harder. The requirements on a level generator vary, but
in general it is expected to produce levels that not only meet certain
quality criteria, but do it consistently and with a certain degree of
diversity so as to not bore the player (or designer). Faced with such
a design problem, the generatively minded thinker might consider
solving it by creating a level generator generator [13].

In a search-based framework, this is not in principle much harder
than creating a search-based generator. If one can formulate useful
quality criteria for levels, these could be used for evolving a level
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generator itself. In other words, the fitness function for the genera-
tor measures the quality of its generated levels as a proxy for (or
measure of) the quality of the generator.

The most obvious advantage of evolving a level generator, com-
pared to simply evolving the individual levels, is generation speed:
search-based PCG is quite slow, but an evolved generator can be
much faster, in particular if it is a constructive generator. In this
sense, time can be invested in evolving a generator and the invest-
ment later pays off when an arbitrarily large number of new levels
can be generated in very little time. Another advantage is that find-
ing a high-quality generator able to generate levels for a particular
game can help us understand the design of the game itself, as it in
some sense forms an abstraction of a space of good levels for the
game. This, however, requires that the generator representation is
such that a human can understand the evolved generator.

This paper describes a system for evolving level generators for
2D games. The system is based on Marahel, a previously introduced
language for constructive level generators. (The version used in
this paper is somewhat expanded compared to the earlier published
version.) Grammatical evolution, a form of genetic programming,
is used to evolve Marahel programs, and these programs are then
evaluated by letting them generate a number of levels and testing
the levels. As there are multiple quality criteria, a multiobjective
evolutionary algorithm is applied within the grammatical evolution
framework. This system is applied to three different level genera-
tion problems: generating long paths and connected segments in a
binary tilemap, generating levels for a simple version of the Legend
of Zelda dungeon system, and generating Sokoban levels.

2 BACKGROUND

Procedural content generation (PCG) is the process of creating
a game content using a computer program with limited human
input. PCG has been used for many different aspects of games
such as textures [4, 18], rules [3, 20], patterns [10, 15], etc. PCG is
usually divided based on the used methods. Each method has its
own advantages and disadvantages. Three main types of PCG are:
Constructive, Search-Based, and Machine Learning. Constructive
approaches [25] applies a set of rules to generate a content. These
rules are designed by the game designer to follow and find a certain
content. It is usually used in the game industry due to its generation
speed and direct control on the generated content. Search-based
approaches [31] uses a search algorithm to find the required con-
tent. These approaches are guided using a fitness function which
measures how close the current content to an ideal content. These
approaches are mainly used in research and rarely in the industry
due to the longer time needed to generate content and the indi-
rect control of the generated content. Finally, Machine learning
approaches [29] uses machine learning techniques to generate the
content. Similarly to search-based approaches, machine learning
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approaches are used more in research than in industry. This is due
to the need for training time and training data.

2.1 Procedural Procedural Level Generation
Generation

Procedural Procedural Level Generation Generation is the problem
of using a procedural generation method to find a level generator.
A key requirement of most procedural generators is a reasonable
and workable representation of the generated content. For exam-
ple: Browne and Maire [3] represented board games using Game
Description Language (GDL) to be able to evolve new board games
like Yavalath [33]. Finding a representation for a level generator
is arguably a harder problem as the representation should be able
to encode many different types of generators that can produce
different content.

One of the early attempts to create procedural level generator
generators [30] searched the parameter space of ASP programs to
generate dungeon crawler level generators that are challenging
for an automated agent. Later, Kerssemakers et al. [13] designed a
meta-generator for Super Mario Bros (Nintendo, 1985) and used an
evolutionary algorithm to search the space for diverse generators.
On a similar note, Drageset et al [7] defined a meta-generator space
where each generator is defined as a set of parameters for a con-
structive level generator for general video game framework [23].
They used an optimization algorithm to search the generator space
by sampling different levels from each generator. In the end, the
algorithm returns the best found level from all the evolved genera-
tors.

Cellular Automata can be considered as level generators as they
can modify the input to an new output that follow certain rules.
These rules can be designed in a way to generate organic like
levels [12]. Ashlock [2] evolved cellular automata rules to find
different generators that generate black and white maps with full
connectivity. Similarly, Pech et al [22] and Adams and Louis [1]
generate cellular automata rules to generate mazes with certain
features.

We can also see Procedural Content Generation through Machine
Learning (PCGML) [29] as Procedural Procedural Level Generator
Generation. PCGML uses machine learning techniques to train
models that can efficiently sample from the learned distribution the
content it was trained on. Many different methods were used to
generate game levels such as Generative Adverisal Networks [32],
AutoEncoder [11], MarkovChains [27], LSTM [28], Bayesian Net-
works [9], etc.

Another way is to represent the generator in form of neural
network. Earle [8] trained fractal neural networks using A2C [19]
to play SimCity (Will Wright, 1989). This might not look like level
generation but if you look at SimCity as city planning problem, then
the agent is generating cities. Khalifa et al. [14] explored another
neural network level generator space similar to Earle’s work. They
represented level generation as an iterative process where at each
step the agent is taking an action to improve the overall level.
They used reinforcement learning to train the neural network on
3 different problems with different reward function. The trained
networks were able to do learn how to modify the map from random
initialization state to playable level in all the 3 problems.
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2.2 Marahel Framework

Marahel [16] is a constructive level generator description language?.
Each Marahel script constitutes a level generator. The script defines
the generator from a bottom up approach, instead of identifying
the requirement of the content, you specify the steps to reach
that goal. The language was introduced to help unify the different
constructive technique approaches the game designer and developer
uses [26] during game development. Marahel levels are expressed
as 2D matrix of integers where each integer reflect a certain game
entity that is defined in the Marahel script.

A Marahel script consists of 5 different parts (Metadata, Entities,
Regions, Neighborhoods, and Explorers) which will be explained
later. Marahel starts by reading the whole script and then creates
a NxM 2D matrix of “undefined” entities such that N and M are
defined in the Metadata. Then, it divides the map into several re-
gions using the information in the Regions section. Finally, Marahel
applies the explorers one by one where each explore modifies the
2D matrix based on the provided rules in each explorer.

2.2.1 Metadata: contains the allowed sizes of the generated maps.

2.2.2  Entities: is a list of different game entities that can be placed
in the generated level.

2.2.3  Regions: divides the full map using an algorithm (such Binary
Space Partitioning [25]) into several areas where each area is a
group of tiles that can be addressed by itself in the explorers later.

2.24 Neighborhoods: is a list of relative locations that the explor-
ers can use during generating the map. Relative locations can be
used to check certain areas around a certain tile. This is similar to
the Cellular Automata neighborhoods used in cave generation [12]
or convolution filters in Convolutional Neural Networks [17].

2.2.5 Explorers: is the core part of the generation. Explorers visits
different tiles in the map/region in a certain order where each
visited tile can be modified using a set of input rules. The order of the
visited tiles can be defined using some keywords such as “horizontal”
where it visits all the tiles one by one like scan-lines or “random”
where it visits tiles in a random order. At each visited tiles, the
explorer go over all the rules one by one and stop whenever a rule
is satisfied. The rules consists of two parts conditions and executers.
Conditions check certain constrains at the visited tiles. For example,
“self(empty)” checks if the current tile (“self” neighborhood) is of
entity type “empty”. Executers specify what change should happen
to the map relative to that location if the condition is satisfied. For
example, “all(solid)” will modify a 3x3 grid (“all” neighborhood)
around the current location (including the current location) to be
all “solid” entity.

3 METHODS

We use Grammatical Evolution [21, 24] to evolve our Marahel
scripts. We restricted our evolution to only evolve five different ex-
plorers. The reason is to force the evolution to find interesting small
scripts than allowing for big ones. We also introduce an explorer
before these five to initialize the map with random tiles instead
of starting from “undefined” map. This step allows the evolution

!https://github.com/amidos2006/marahel
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Figure 1: Number of Pareto fronts at each generation for all the three problems.

to focus on achieving the target results instead of making sure
that the final output doesn’t have “undefined” entities. There is no
regions, so all the explorers are applied on the full map. For neigh-
borhoods, we fixed them to a predefined set of 18 different ones.
These neighborhoods covers different local configurations that can
be used such as Moore neighborhood, Von Neumann neighborhood,
diagonal neighborhood, etc. These neighborhoods are defined using
3 different sizes 1x1, 3x3, and 5x5.

We are going to search for generators for the same three prob-
lems introduced in the PCGRL Framework [14]. The goal of gener-
ation is to find a playable level.

e Binary: is a 2D maze and it is the simplest problem. A good
level is a level where all the empty tiles are connected using
using only cardinal directions (up/down/left/right) and the
length longest shortest path in that maze increased by X tiles
from the starting state. For example: if we have random map
with longest shortest path equal to 10, then the generator
has to modify that initial map such that the longest shortest
path is equal to 10 +X where X is any positive integer value.

e Zelda: is a GVGAI [23] port of the dungeon system of The
Legend of Zelda (Nintendo, 1986). The goal of the game is to
get a key and get to the door without dying from the moving
monsters. A good level is a level where there is one player,
one key, one door, and the path length between the player
and the key plus the path length between the key and the
door is at least X steps.

o Sokoban: is a port of a Japanese puzzle game by the same
name. The goal of the game is to push every crate onto a
target location. A good level is a level where there is one
player, a number of crates equal to number of targets, and it
can be solved with minimum number of steps equal to X.

The initialization explorer that we added is adjusted similarly to
the one used in the PCGRL framework where it is biased to have a
good starting state. In Binary, the empty is equal to solid equal to
50%. In Zelda, Empty is 50%, Solid is 25%, Enemies is 10%, Player
is 5%, Key is 5%, and Door is 5%. Lastly in Sokoban, Solid is 40%,
Empty is 45%, Player is 5%, Crate is 5%, and Target is 5%. The reason
is to have same starting point similar to the PCGRL framework
which allows us to compare our results. Also, these probabilities
generates levels that requires small amount of changes to make it
playable therefore helping the evolution.

We decided on using multi-objective Evolution instead of using
normal single-objective evolution such as a GA as we found from
preliminary experiments that GA doesn’t improve much in all the
different requirements. We think the reason is that our constrained
search space makes it hard to optimize all these values at the same
time. An increase in one value will cause a decrease in another one
which can be seen in later in section 4.

3.1 Representation

The chromosome consists of 102 integer numbers; each number
has a value between 0 and 49. The first number identify the number
of explorers used with maximum of five, the second number is the
seed for random number generator, and each 20 integers after that
correspond to an explorer. The transformation from integers to
the corresponding Marahel script is done using Tracery [5]. We
defined the explorer part as a context free grammar and feed this
grammar to the Tracery engine, then we use each integer in the
array to guide each non-terminal expansion till all the non-terminal
symbols are expanded.

3.2 Genetic Operators

We are using two genetic operators: Crossover and Mutation. The
crossover operator allows for bigger yet meaningful changes. It can
swap either the seed number, number of explorers, or one of the
explorers (all the 20 numbers). On the other hand, the mutation
operator performs a very small change. It picks a random location
from the array and replace it with another random value.

3.3 Fitness Functions

In this work, we want to find generators that can produce playable
levels for all the three problems. The problem of using solely playa-
bility as our fitness is its rough fitness landscape. All the randomly
initialized generators for most of the problems will produce 100%
unplayable levels. Having additional fitness functions allow the
space to be smoother or optimized toward these ones till reach the
goal.

All our fitness function are designed to reflect how close the
actual value to the desired value. For example: if we want to have
one player, so our fitness function will be 1 if the number of player
is 1 and less than one otherwise. The value is calculate using the
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following equation.
rangemin—x
rangemin
flx) =41
X—rangemax
max—rangemax

if x < rangemin
if rangemin < x > rangemax (1)

if x > rangemax

where x is the input value to be scaled, rangepmin is the minimal
acceptable value, rangepmqx is the maximum acceptable value, and
max is the maximum possible value. The f(x) is clamped to be
always between 0 and 1.

In this work, we evaluate generators instead of single levels, so
we need to scale equation 1 to work on multiple levels. We solved
that by sampling a batch of levels from the generator needed to be
evaluated. We calculate the fitness values using equation 1 for each
level. Finally, we combine these values by taking the average over
the sampled levels.

3.3.1 Binary.

e Number of Regions: the number of regions in the gener-
ated map. The goal is to have one region so rangemin equals
to rangemax equals to 1 and max is 10.

e Path Length Improvement: the amount of increase in the
shortest longest path after the random initialization explorer.
The goal is to have an increase of at least 20. To achieve that,
rangemin is equal to 20 and rangemqy is infinity.

3.3.2 Zelda.

e Number of Players: the number of players in the gener-
ated map. The goal is to have one player. To achieve that,
rangemin equal to rangemax equal to 1, and max is equal to
10.

e Number of Keys: the number of keys in the generated map.
Similar to the number of players, the goal is to have one key.

e Number of Doors: the number of doors in the generated
map. Similar to the number of players, the goal is to have
one door.

e Number of Enemies: the number of keys in the generated
map. The goal is to have not many enemies and not too few
enemies. To achieve that, the rangemin is 2, rangemax is 4,
and max is equal to 10.

e Solution Length: the number of steps the player needs to
reach the key then the door. The goal is to have at least 20
steps to finish the level. Similar to path length improvement,
we set rangemin to 20 and rangemqyx to infinity.

3.3.3  Sokoban.

e Number of Players: the number of players in the gener-
ated map. The goal is to have one player. To achieve that,
rangemin equal to rangemax equal to 1, and max is equal to
10.

o Number of Crates: the number of crates in the generated
map. The goal is to have not too many crates and not too
few so we set rangemin to 2, rangemqax to 4, and max to 10.

o Absolute Difference: the absolute difference between the
number of crates and targets in the generated map. The goal
is to have number of crates equal to number of target so
the level can be won. To achieve that, we set range;;i, and
rangemax to 0, and max to 10.

Khalifa and Togelius
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Figure 2: The Pareto front for the Binary Problem for both
fitness functions.

o Solution Length: the number of steps the player need to
win a Sokoban level (all crates are on targets). The goal is
to have at least 20 steps to finish the level. Similar to path
length improvement, we set rangemin to 20 and rangemax
to infinity.

4 RESULTS

For the evolution, we used the NSGA-II algorithm [6]. We used
tournament selection of size 2, population size of 500, number of
generation equal to 2000, crossover rate equal to 70%, and muta-
tion rate equal to 30%. For each problem, we have different size
map similar to the same sizes from PCGRL framework. For Binary,
the map size is 14x14, while Zelda is 11x7, and finally Sokoban is
5x5. The fitness value is calculate by averaging the fitness over 50
sampled maps from the evaluated generator.

Figure 1 shows the number of Pareto fronts at each generation. At
generation 2000, we can see that for Zelda and Sokoban there is only
one front where all the 500 chromosomes are in it. This suggests
that there might be more interesting generators that the generator
was not able to find. On the other hand, the binary problem ends
with having 10 fronts where the first front have 36 chromosomes.
We think the reason for that is the number of fitness functions used
for Zelda and Sokoban compared to Binary.

4.1 Binary

As discussed before in section 3, the current representation and
restrictions don’t allow us to find a generator that satisfies both
fitness functions. Having a high path length leads to having more
than one region, while having one region leads to having less than
20 path length improvement. Figure 2 shows the Pareto front of the
Binary problem after 2000 generation. The Pareto front contains 36
chromosomes out of the 500 while the rest are distributed on the
other 8 fronts.

The figure also shows 500 random sampled generators. We can
notice that achieving connectivity (number of regions is equal to
1) is not a hard constraint to satisfy as 11% (59 out of 500) of the
random sampled generators can achieve that. On the other hand,
having long path length with connectivity is not an easy task with
a maximum of 0.6 for random sampled generators.

Figure 3 shows one of the Pareto front generators that have the
highest path length improvement 0.92 (an average of 18 increase)
and connectivity of 0.8 (an average of 2 regions). Looking at the
generator, the generator has 3 explorers. The first explorer connect
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{"explorers": [
{
"type": "connect",
"parameters": {
"repeats": "1",
"replace": "buffer",
"directions": "plus",
"entities": "empty"
¥
"rules": [
"self(any) -> vert(empty)"
]
3,

"type": "connect",

"parameters": {
"repeats": "1",
"replace": "same",
"directions": "plus",
"entities": "empty"

3,

"rules": [
"self(out) -> plusnc(solid|empty)"
]

3,

{

"type": "horz",

"parameters": {
"repeats": "1",
"replace": "buffer"

3,

"rules": [

"plusfive(empty) -> down(solid)"
]
313
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Figure 3: The evolved binary generator and several different generated examples. On the left, the evolved explorers are shown.
On the right, several different examples produced by the generator. The black tiles are solid, while the white tiles are empty.
This generator has number of regions fitness value equal to 0.8 and path length improvement fitness value equal to 0.92

the empty tiles of the random initialized level using 3 empty tiles in
aform of a vertical line. This explorer leads to a fully connected level
with big open space as the connection uses vertical lines instead of
just placing a single tile. The second explorer is another connecting
one but since the first one connected everything then it won’t be
executed. Finally, the last explorer goes on every tile in the map and
check if it is empty and surrounded by empty tiles using 5x5 Moore
neighborhood, it will convert the tile below the current location
to solid. This last explorer is the reason for having more than 1
region as it could isolate an area by accident but at the same time,
it is what guarantees the long path as it doesn’t allow big open
areas. Looking at the examples in figure 3, we can see that the long
vertical connections leaded to having a circular layouts and we can
see a small few disconnected areas due to the last explorer.

4.2 Zelda

For the Zelda problem, at the last generation all the chromosomes
(500) exists in one front which reflects that there is more chromo-
somes that can be explored. We decided to show all the Pareto Front
for the couple of the fitness function combinations. Figure 4a shows
the Pareto front between number of player and number of enemies
fitness functions. It is interesting to see that it is inversely propor-
tional as it means that having more enemies means less chance of
having a single player. This makes sense as having more enemies
means less tiles for the player avatar.

Figure 4b shows the Pareto front between number of doors and
number of keys fitness function. Interesting enough, the graph is
directly proportional everywhere except at the beginning where
there is a group of generators that have high fitness for the number
of doors but zero fitness for the number of keys. These could be
appearing due to other non dominated dimensions such as number
of enemies which might be overwriting the keys in the levels.

Figure 4c shows the Pareto front between the number of players
and solution length. The solution length fitness is pretty low overall
with maximum of 0.14. This doesn’t mean it is unplayable, it also
could mean very short length. Looking at the figure, it is obvious
when we have a low number of player fitness, we also have a low
solution length as you can’t play a level if you don’t have one player.
On the other hand, with high number of players, the solution length
is bouncing between almost 0 and 0.14. This noise is due to the
other two fitness function: number of keys and number of doors as
the only way to have a solution length is to have one player, one
key, and one door. This makes it a very hard fitness function to
satisfy causing these low fitness values.

Looking at the 500 random sampled generator, we can notice
that it can cover huge parts of the space but we think it is not able
to satisfy all of these constraints at the same time because solution
length fitness for all these ones doesn’t increase than 0.06.

Figure 5 shows a Marahel Zelda generator evolved after 2000
generation. We picked this generator as it has the highest solution
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Figure 4: The Pareto front for the Zelda Problem for different combination of the fitness functions.

{"explorers": [
{
"type": "greedy",
"parameters": {
"repeats": "3",
"replace": "buffer",

"all",
"dist(empty)"

"directions":
"heuristics":

3,
"rules": [
"diagfive(key) -> down(door)"
]
3,
{
"type": "connect",
"parameters": {
"repeats": "1",
"replace": "buffer",
"directions": "all",
"entities": "empty"
3,
"rules": [
"noise>=-0.5 -> left(solid)"
]
313

Figure 5: The evolved zelda generator and several different generated examples. On the left, the evolved explorers are shown.
On the right, several different examples produced by the generator. Black tiles are solid, white tiles are empty, green tiles are
player, red tiles are enemies, yellow are keys, and cyan are doors. This generator has number of players fitness value equals to
0.79, number of keys fitness value equals to 0.67, number of doors fitness value equals to 0.7, number of enemies fitness value
equals to 0.59, and solution length fitness value equal to 0.14

length fitness (0.14). Looking on the 10 generated examples, we can
notice that non of them are playable but some can be easily fixed
to be playable. The interesting thing about this generator example
is it have small number of players and keys and doors which make
it have a high chance to generate playable levels. Looking into the
generator itself, we can see it is more of an eraser. It depends on
the starting noise and it tries to substitute some of the tiles by solid
using a noise function while moving on the path to connect entities
which cause it to have high fitness values.

4.3 Sokoban

Similar to Zelda, all the 500 chromosomes appear in the first front.
Figure 6 shows the Pareto front for the four different fitness func-
tions. Figure 6a shows the Pareto front between number of player
fitness value and solution length fitness value. It is obvious that hav-
ing higher number of players will cause the solution length value
to increase (you can’t play a level if you don’t have one player). The
solution length value is very noisy and with peak of 4.5% around 0.6
number of player value. Similar to Zelda, the low solution length
fitness value due to the cascaded fitness as a level is only playable
if it has one player, number of crates more than 0 and equal to
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Figure 6: The Pareto front for the Sokoban Problem for dif-
ferent combination of the fitness functions.

number of targets. Even when all this happens, the level have a
higher chance to be unplayable compared to Zelda levels as crates
can start in a locked position not allowing them to move even when
all the constraints are satisfied. For example: the top left level on in
figure 7 satisfies all the playability constraints but you can’t win it
as the crate (red tile) can’t be moved.

Figure 6b shows the Pareto front between number of crate fitness
value and absolute difference fitness value. The relation is inversely
proportional as having higher number of crates fitness value causes
the absolute difference value decrease. This is due to having more
crates will increase the risk of having more errors in the generated
levels (the number of crates are not equal to the number of targets).
On the other hand, having a generator that produces no crates and
no targets is a very easy task (a generator that erase everything).
This generator will always be in the front as it will always have
absolute difference fitness value equal to 1 which no other generator
achieved it.

Similar to Zelda, the 500 random sample generator can satisfy
many of the constraints for playability but is not able to find many
playable levels (0.02). We think that it was not able to find generators
that satisfy all the different constraints at the same time.

Figure 7 shows the evolved Sokoban generator with 8 different
generated levels using that generator. Similarly, we picked this
generator as it has the highest solution length fitness value (0.045).
The generator is a bit simple and it starts by trying to connect
between isolated empty areas in the map. The explorer uses a noise
function with some constraints on the surrounding tiles to either
add empty or target tiles along the connecting path. The second
explorer will only work if the first explorer failed to connect all the
empty tiles. In that case, the second generator will move along the
connecting path and add solid tiles if there is too big of empty space.
Similar to Zelda, this generator depends highly on the starting level
as most of the conditions are only valid in certain cases and not all
the time. For example, if all the empty tiles are connected, neither
of these explorers will run.

5 CONCLUSION

This paper introduced a multi-objective optimization method to
evolve constructive level generators. The generators used Mara-
hel [16] as their space representation. We restricted the evolution
to a small size Marahel scripts to force the evolution to find under-
standable and efficient generators. The results shows that our re-
strictions might have caused having a Pareto front and not become
able to find a generator that can achieve all the fitness functions
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100%. We also see that only the binary problem was able to explore
most of its Pareto front while for Zelda and Sokoban the results
are a subset of the full front. The final generator for the Binary
problem is interesting as it resulted into these long loopy dungeons.
On the other hand, the Zelda generator act as an eraser which erase
extra objects from the random initialization, while the Sokoban
generator just resampled the level from a different distribution that
have higher chance to be playable levels.

The evolution of Marahel resulted into a more understandable
generator compared to other techniques [14]. The interpretabil-
ity of Marahel language is a big advantage as we can debug these
generators or edit them easily. Our representation and restrictions
helped the evolution to find small concise generator that can be
understood easily but at the same time it was harder to search the
space. It would be interesting to experiment with less restricted evo-
lution and try to see if this will change the results. We also noticed
that having an initialization explorer that initializes the map before
the evolved explorers starts, helped to find generators that react to
the current initialization by erasing instead of adding (as most of
the fitness functions need less number of entities than the starting
state). It would be interesting to remove that initialization generator
and see if we can achieve different results. For example, generators
that try to add more entities than erasing. Another idea, we would
like in the future to try to change the fitness function to be more
about improvement (similar to path length improvement) instead
of optimizing towards a certain value (like number of players, num-
ber of regions, etc). We think the improvement fitness functions
help the evolution to find more interesting layouts and levels as it
doesn’t depend on the starting state. One last thing, the average op-
erator (used to aggregate the fitness of the generated sample maps)
sometimes biases the generation towards mediocre generators. We
think that using different type of operator like mixmin operator
(mixing the average value and the minimum value) might forces
the generator to move away from these mediocre generators.
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