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α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in
natural products and pharmaceuticals. We report the sp3 C-H α-acetylation of sp3 C-H substrates R-H with
arylmethyl ketones ArC(O)Me to provide α-alkylated ketones ArC(O)CH2R at RT with tBuOOtBu as oxidant
via copper(I) β -diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution
with bulky substituents without competing elimination that occurs in more traditional alkylation reactions
between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates
[CuII](CH2C(O)Ar) that capture alkyl radicals R• to give R-CH2C(O)Ar under competing dimerization of the
copper(II) enolate to give the 1,4-diketone ArC(O)CH2CH2C(O)Ar.
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ABSTRACT: α-substituted ketones are important chemical 
targets as synthetic intermediates as well as functionalities in 
in natural products and pharmaceuticals. We report the sp3 C-
H α-acetylation of sp3 C-H substrates R-H with arylmethyl 
ketones ArC(O)Me to provide D-alkylated ketones 
ArC(O)CH2R at RT with tBuOOtBu as oxidant via copper(I) 
β-diketiminato catalysts. Proceeding via alkyl radicals R•, this 
method enables D-substitution with bulky substituents without 
competing elimination that occurs in more traditional alkyla-
tion reactions between enolates and alkyl electrophiles. DFT 
studies suggest the intermediacy of copper(II) enolates 
[CuII](CH2C(O)Ar) that capture alkyl radicals R• to give R-
CH2C(O)Ar under competing dimerization of the copper(II) 
enolate to give the 1,4-diketone ArC(O)CH2CH2C(O)Ar. 
 
 Ketones with multiple substituents on the α-carbon 
represent important targets for chemical synthesis. The value 
of this structural motif stems from their prevalence in both 
natural products and pharmaceuticals1 as well as the ability of 
α-substituted ketones to participate in olefenations, 
stereoselective 1,2-additions and enolate reactions.2-4 While 
stoichiometric α-alkylation of enolates with electrophiles such 
as alkyl halides represents a common approach,5 competing 
side reactions such as elimination with hindered electrophiles, 
aldol condensations or even O-alkylations can lead to a range 
of byproducts.6  α-alkylation of ketones with alcohols have 
been widely investigated with a number of heterogenous and 
homogenous catalysts.7-10 This approach employs a hydrogen 
borrowing process where the alcohol is converted to the alde-
hyde and is coupled with the corresponding ketone to give the 
alkylated product. 
 Transition metal-catalyzed processes may proceed 
through metal-enolates thought to be intermediates in coupling 
of aryl halides to ketones by Pd with bulky, unidentate ligands 
(Scheme 1a).11 Alternatively, ketones have been oxidatively 
coupled with an olefin using a bifunctional catalyst that simul-
taneously activates the α-C-H bonds of the ketone and olefin 
as described by the Dong group (Scheme 1b).12 Not all 
transition metal enolate intermediates, however, are stable. 
Addition of preformed enolates to copper(II) salts is a well-
established method for the C-C coupling of enolates to 1,4-
diones (Scheme 1c).12b 
     The direct use of substrates that possess sp3 C-H bonds for 
C-C bond formation represents an attractive route for the α-
functionalization of ketones. Powell reported in 2008 that 1,3-
diketones may undergo C-H functionalization when catalyzed 
by copper with a phenanthroline ligand. As these conditions 
appear familiar to a family of copper-catalyzed radical relay 

reactions that we13-15 and others16-19 have recently outlined, we 
were eager to examine the possibility of copper(II) enolate 
intermediates, even if transient, in radical capture (Scheme 2). 
In related radical relay reactions, tBuOOtBu reacts swiftly with 
the copper(I) β-diketiminate [Cl2NN]Cu to give [CuII]-OtBu 
and the t-butoxy radical (Scheme 2a)13 that readily reacts via 
H-atom abstraction with sp3 C-H bonds in substrates R-H to 
generate the C-based radical R• (Scheme 2b).20 As with facile 
acid-base exchange that occurs with anilines we hypothesized 

Scheme	2.	Catalytic	C‐H	Functionalization	via	Radical	
Relay.	
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that acid-base exchange between [CuII]-OtBu and the ketone 
could form [CuII]-enolate species capable of efficient capture 
of organic radicals R• to form a new C-C bond (Scheme 2). 

We were delighted to observe that mixing acetophenone 
and ethylbenzene in the presence of [Cl2NN]Cu as catalyst 
with tBuOOtBu as oxidant at 90 oC afforded the D-alkylated 
ketone 3a in 54% isolated yield with ca. 30% recovered 
ketone (Table 1). Subsequent screening identified that the 
reaction is most effficient at room temperature along with 5 
mol% [Cl2NN]Cu, 2 equiv. tBuOOtBu and chlorobenzene as 
solvent (Table 1). Conditions involving lower or higher 
concentrations of tBuOOtBu, C-H substrates, or catalyst 
loading did not simprove the yield of the D-alkylated product 
3a. A modest screening of other E-diketiminato catalyst struc-
tures did not lead to improved yields or conditions (Table 1). 

 Following initial optimization, we investigated the scope 
and effectiveness of our methodology on several sp3 C-H 
substrates (Table 2). Substrates with benzylic sp3 C-H bonds 
(1a - 1h) gave good to excellent yields under our protocol 
(Table 2). Additionally, unactivated C-H substrates such as 
cyclooctane and cyclohexane (1k and 1l) gave good NMR 
yields of the coupling product, but isolated yields suffered due 
to competing C-H etherification to give R-OtBu by capture of 
the alkyl radical R• with the [CuII]-OtBu intermediate.13 
Heteroaromatic C-H substrates like ethylfuran (1i) and 
ethylthiophene (1j) gave moderate to good yields of alkylated 
products.  
 We then examined the ketone substrate scope with (het-
ero)aryl methyl ketones which provide C-C coupling products 
as single diastereomers with prochiral 2° and 3° alkyl radicals 
(Table 3). Using ethylbenzene as the sp3 C-H substrate, 
substituted aryl ketones (2a - 2g) gave moderate to good yields 
of the D-alkylated products. Some substrates required heating 
to encourage higher yields (2g - 2k).  For instance, 3-acyl 
pyridine (2c) gave a trace amount of product at RT, but af-
forded an isolable amount (22%) when the reaction was run at 
90 °C. We suspect that binding of the pyridyl substrate to the 
[CuI] catalyst may hinder peroxide activation by the [CuI] cen-
ter.13 Ortho-disubstituted aryl methyl ketones react sluggishly 
at RT but gave the C-H functionalized products when the reac-
tion was heated to 90 ˚C. Electron withdrawing ketones such 
as dichloroacetophenone (2i) and pentafluoroacetophenone 
(2j) gave moderate yields while the electron releasing 
trimethylacetophenone (2k) gave only a trace amount of prod-
uct.  The simple ketone acetone (2l) may be used in C-H func-
tionalization with ethylbenzene, providing the C-H D-
acetylation product in 41% yield. 
       Since quaternary carbon centers are common features in 
nature and biologically active small molecules,21 we anticipat-
ed that our radical route could potentially overcome challenges 
inherent in constructing a crowded carbon center.22 Radical 
carbon centers are generally stable to elimination or isomeriza-
tion,23 although few, there are reports that demonstrate the 
construction of quaternary C-C bonds from carbon radicals.24-

26 For instance, Murphy and co-workers recently demonstrated 
how the generation of carbon radical center from α,β-
unsaturated ketones are trapped to form asymmetric quater-

Table	1.	Optimization	of	Reaction	Conditions	

 
Entry Variation of standard

conditions
Conversion(a) % Yield(b) %

1 None 87 73

2 Neat 85 66

90 oC 70 543

4 PhH as solvent 75 60

5 PhF as solvent 80 66

6 1 eq. tBuOOtBu 70 33

7 50 eq. ethylbenzene 90 75

10 mol% [Cl2NN]Cu 85 69

2.5 mol% [Cl2NN]Cu 65 < 23

8

9

(a) conversion of acetophenone (b) yields determined by isolation.
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nary centers from the combination of photoredox and asym-
metric organic catalysis.25 
          Quaternary carbons may be formed in the reaction of 
acetophenone with C-H substrates that possess 3° C-H bonds 
(Table 4). Cumene, sec-butylbenzene, cymene and 2-
isopropylnaphthalene coupled effectively with acetophenone 
giving quaternary carbon-containing products 5a - 5d in 51 - 
76% yield. We observed a low yield (28%), however, in the 
coupling of cyclohexylbenzene (5c) with acetophenone, per-
haps due to competing side reactions that involve the cyclo-
hexyl C-H bonds.  
 Based on previous radical relay catalysis by copper E-

diketiminates, we believe that the copper(II) enolate 
[Cl2NN]Cu(CH2C(O)Ph) (6) serves as a key intermediate 
(Scheme 2). Despite a number of synthetic approaches, we 
have not been able to isolate such a copper(II) enolate inter-
mediate. Indeed, we are only aware of a recently reported cop-
per(II) enolate {[NNN]Cu(OC=C(Me)Ph)}- derived from 2-
phenylpropionaldehyde and supported by a tridentate, dianion-
ic pyridine dicarboxamide ligand.27 Nonetheless, addition of 
excess acetophenone to [Cl2NN]Cu-OtBu results in second 
order decay of the otherwise stable copper(II) t-butoxide 
(Fgures S1-S2). GC/MS analysis of the resulting solution re-
veals the homocoupled diketone product 
PhC(O)CH2CH2C(O)Ph in 82% yield. Based on these observa-
tions, it is likely Keq for acid base exchange is small while the 
rate of bimolecular [CuII]-enolate decay is fast.   
 We examined putative copper(II) enolates by DFT at the 
ONIOM(bp86/6-311+g(d):UFF) level of theory. We consid-
ered three binding modes that reveal the K3-CCO bonded 
[Cl2NN]CuII(K3-CH2C(O)Ph) (6) to be lowest in energy, with 
N1-O and K2-CC binding modes 7.6 and 8.5 kcal/mol higher in 
free energy (Figure S3, SI). Nonetheless, reaction of [CuII]-
OtBu with PhC(O)Me to give [CuII](K3-CH2C(O)Ph) and 
HOtBu is endergonic by 12.1 kcal/mol.  Complexation to this 
copper(II) center results in delocalization of a significant 
amount of unpaired electron density onto the enolate ligand 
(Scheme 4). This enables facile bimolecular C-C coupling to 
the coordinated 1,4-diketone 5 which is exergonic by 19.6 
kcal/mol. Importantly, capture of the ethylbenzene radical to 
the N1-O bound substituted ketone is exergonic by 22.2 
kcal/mol. 
  
 

In summary, we have developed a novel intermolecular copper 
catalyzed sp3 C-H α-acetylation for the construction of C-C 
bonds via copper catalyzed C-H functionalization of un-
activated C-H compounds and ketones. This approach that 
features readily available simple sp3 C-H substrates and a 
variety of ketones offers a complementary catalytic Csp3−Csp3 
disconnection strategy to prepare small molecules that may be 
building blocks for the assembly of biologically active and/or 
other synthetically useful products.  
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