

Copper Catalyzed sp3 C-H a-Acetylation

Otome Okoromoba, Eun Sil Jang, Claire McMullin, Thomas Cundari, Timothy H. Warren

Submitted date: 19/12/2019 Posted date: 23/12/2019

Licence: CC BY-NC-ND 4.0

Citation information: Okoromoba, Otome; Jang, Eun Sil; McMullin, Claire; Cundari, Thomas; Warren, Timothy

H. (2019): Copper Catalyzed sp3 C-H α-Acetylation. ChemRxiv. Preprint.

https://doi.org/10.26434/chemrxiv.11407116.v1

α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in natural products and pharmaceuticals. We report the sp^3 C-H α-acetylation of sp^3 C-H substrates R-H with arylmethyl ketones ArC(O)Me to provide α-alkylated ketones $ArC(O)CH_2R$ at RT with $^tBuOO^tBu$ as oxidant via copper(I) β-diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates $[Cu^{II}](CH_2C(O)Ar)$ that capture alkyl radicals R• to give R-CH₂C(O)Ar under competing dimerization of the copper(II) enolate to give the 1,4-diketone $ArC(O)CH_2CH_2C(O)Ar$.

File list (2)

MS-Cu-acetylation-Warren.pdf (389.25 KiB)	view on ChemRxiv • download file
SI-Cu-acetylation-Warren.pdf (6.58 MiB)	view on ChemRxiv • download file

Copper Catalyzed sp³ C-H α-Acetylation

Otome E. Okoromoba, a,b Eun Sil Jang, Claire L. McMullin, Thomas R. Cundari, and Timothy H. Warrena,*

^aDepartment of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057 USA; ^bDepartment of Chemistry and Biochemistry, George Mason University, Manassas VA, 22030 USA; ^cDepartment of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, TX 78203 USA Supporting Information Placeholder

ABSTRACT: α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in natural products and pharmaceuticals. We report the sp³ C-H α-acetylation of sp³ C-H substrates R-H with arylmethyl ketones ArC(O)Me to provide α-alkylated ketones ArC(O)CH₂R at RT with 'BuOO'Bu as oxidant via copper(I) β-diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [Cu^{II}](CH₂C(O)Ar) that capture alkyl radicals R• to give R-CH₂C(O)Ar under competing dimerization of the copper(II) enolate to give the 1,4-diketone ArC(O)CH₂CH₂C(O)Ar.

Ketones with multiple substituents on the α -carbon represent important targets for chemical synthesis. The value of this structural motif stems from their prevalence in both natural products and pharmaceuticals as well as the ability of α-substituted ketones to participate in olefenations, stereoselective 1,2-additions and enolate reactions.²⁻⁴ While stoichiometric α-alkylation of enolates with electrophiles such as alkyl halides represents a common approach,⁵ competing side reactions such as elimination with hindered electrophiles, aldol condensations or even O-alkylations can lead to a range of byproducts.⁶ α-alkylation of ketones with alcohols have been widely investigated with a number of heterogenous and homogenous catalysts. 7-10 This approach employs a hydrogen borrowing process where the alcohol is converted to the aldehyde and is coupled with the corresponding ketone to give the alkylated product.

Transition metal-catalyzed processes may proceed through metal-enolates thought to be intermediates in coupling of aryl halides to ketones by Pd with bulky, unidentate ligands (Scheme 1a). Alternatively, ketones have been oxidatively coupled with an olefin using a bifunctional catalyst that simultaneously activates the α -C-H bonds of the ketone and olefin as described by the Dong group (Scheme 1b). Not all transition metal enolate intermediates, however, are stable. Addition of preformed enolates to copper(II) salts is a well-established method for the C-C coupling of enolates to 1,4-diones (Scheme 1c).

The direct use of substrates that possess sp 3 C-H bonds for C-C bond formation represents an attractive route for the α -functionalization of ketones. Powell reported in 2008 that 1,3-diketones may undergo C-H functionalization when catalyzed by copper with a phenanthroline ligand. As these conditions appear familiar to a family of copper-catalyzed radical relay

Scheme 1. Approaches to C-C Bond Formation via Enolates

reactions that we¹³⁻¹⁵ and others¹⁶⁻¹⁹ have recently outlined, we were eager to examine the possibility of copper(II) enolate intermediates, even if transient, in radical capture (Scheme 2). In related radical relay reactions, $^tBuOO^tBu$ reacts swiftly with the copper(I) β -diketiminate [Cl2NN]Cu to give [Cu^{II}]-O^tBu and the *t*-butoxy radical (Scheme 2a) 13 that readily reacts via H-atom abstraction with sp 3 C-H bonds in substrates R-H to generate the C-based radical R• (Scheme 2b). 20 As with facile acid-base exchange that occurs with anilines we hypothesized

Scheme 2. Catalytic C-H Functionalization via Radical Relay.

that acid-base exchange between [Cu^{II}]-O^IBu and the ketone could form [Cu^{II}]-enolate species capable of efficient capture of organic radicals R• to form a new C-C bond (Scheme 2).

Table 1. Optimization of Reaction Conditions

Entry	Variation of standard conditions	Conversion ^(a) %	Yield ^(b) %
1	None	87	73
2	Neat	85	66
3	90 °C	70	54
4	PhH as solvent	75	60
5	PhF as solvent	80	66
6	1 eq. ^t BuOO ^t Bu	70	33
7	50 eq. ethylbenzene	90	75
8	10 mol% [Cl ₂ NN]Cu	85	69
9	2.5 mol% [Cl ₂ NN]Cu	65	< 23

(a) conversion of acetophenone (b) yields determined by isolation.

We were delighted to observe that mixing acetophenone and ethylbenzene in the presence of [Cl₂NN]Cu as catalyst with $^tBuOO^tBu$ as oxidant at 90 oC afforded the $\alpha\text{-alkylated}$ ketone 3a in 54% isolated yield with ca. 30% recovered ketone (Table 1). Subsequent screening identified that the reaction is most effficient at room temperature along with 5 mol% [Cl₂NN]Cu, 2 equiv. $^tBuOO^tBu$ and chlorobenzene as solvent (Table 1). Conditions involving lower or higher concentrations of $^tBuOO^tBu$, C-H substrates, or catalyst loading did not simprove the yield of the $\alpha\text{-alkylated}$ product 3a. A modest screening of other $\beta\text{-diketiminato}$ catalyst structures did not lead to improved yields or conditions (Table 1).

Table 2. C-H Acetylation of Ethylbenzene with Various ketones

Reaction conditions: 0.5 mmol acetophenone, 10 equiv. C-H substrate, 5 mol% [Cl₂NN]Cu, 2 equiv. ¹BuOO¹Bu at RT for 16 h in 0.5 mL chlorobenzene; (NMR yield).

Following initial optimization, we investigated the scope and effectiveness of our methodology on several sp³ C-H substrates (Table 2). Substrates with benzylic sp³ C-H bonds (1a - 1h) gave good to excellent yields under our protocol (Table 2). Additionally, unactivated C-H substrates such as cyclooctane and cyclohexane (1k and 1l) gave good NMR yields of the coupling product, but isolated yields suffered due to competing C-H etherification to give R-O¹Bu by capture of the alkyl radical R• with the [Cu¹¹]-O¹Bu intermediate. Heteroaromatic C-H substrates like ethylfuran (1i) and ethylthiophene (1j) gave moderate to good yields of alkylated products.

We then examined the ketone substrate scope with (hetero)aryl methyl ketones which provide C-C coupling products as single diastereomers with prochiral 2° and 3° alkyl radicals (Table 3). Using ethylbenzene as the sp³ C-H substrate, substituted aryl ketones (2a - 2g) gave moderate to good yields of the α-alkylated products. Some substrates required heating to encourage higher yields (2g - 2k). For instance, 3-acyl pyridine (2c) gave a trace amount of product at RT, but afforded an isolable amount (22%) when the reaction was run at 90 °C. We suspect that binding of the pyridyl substrate to the [Cu¹] catalyst may hinder peroxide activation by the [Cu¹] center. 13 Ortho-disubstituted aryl methyl ketones react sluggishly at RT but gave the C-H functionalized products when the reaction was heated to 90 °C. Electron withdrawing ketones such as dichloroacetophenone (2i) and pentafluoroacetophenone (2j) gave moderate yields while the electron releasing trimethylacetophenone (2k) gave only a trace amount of product. The simple ketone acetone (21) may be used in C-H functionalization with ethylbenzene, providing the C-H α acetylation product in 41% yield.

Since quaternary carbon centers are common features in nature and biologically active small molecules, 21 we anticipated that our radical route could potentially overcome challenges inherent in constructing a crowded carbon center. 22 Radical carbon centers are generally stable to elimination or isomerization, 23 although few, there are reports that demonstrate the construction of quaternary C-C bonds from carbon radicals. 24 For instance, Murphy and co-workers recently demonstrated how the generation of carbon radical center from α,β -unsaturated ketones are trapped to form asymmetric quater-

Table 3. C-H Acetylation of Ethylbenzene with Various ketones

Reaction conditions: 10 equiv. **1a**, 0.5mmol **2**, 5 mol% $[Cl_2NN]Cu$, 2 equiv. $^tBuOO^tBu$ at RT for 16 h in 0.5 mL solvent. (*) Reactions were run at 90 oC .

nary centers from the combination of photoredox and asymmetric organic catalysis.²⁵

Quaternary carbons may be formed in the reaction of acetophenone with C-H substrates that possess 3° C-H bonds (Table 4). Cumene, *sec*-butylbenzene, cymene and 2-isopropylnaphthalene coupled effectively with acetophenone giving quaternary carbon-containing products **5a** - **5d** in 51 - 76% yield. We observed a low yield (28%), however, in the coupling of cyclohexylbenzene (**5c**) with acetophenone, perhaps due to competing side reactions that involve the cyclohexyl C-H bonds.

Based on previous radical relay catalysis by copper β-

Table 4. Quaternary C-C bond formation.

Reaction conditions: 0.5 mmol acetophenone, 10 equiv. C-H substrate, 5 mol% [Cu¹], 2 equiv. ¹BuOO¹Bu at RT for 16 h in 0.5 mL chlorobenzene. * Performed at 90 °C.

diketiminates, we believe that the copper(II) enolate [Cl₂NN]Cu(CH₂C(O)Ph) (6) serves as a key intermediate (Scheme 2). Despite a number of synthetic approaches, we have not been able to isolate such a copper(II) enolate intermediate. Indeed, we are only aware of a recently reported copper(II) enolate {[NNN]Cu(OC=C(Me)Ph)} derived from 2phenylpropionaldehyde and supported by a tridentate, dianionic pyridine dicarboxamide ligand.²⁷ Nonetheless, addition of excess acetophenone to [Cl₂NN]Cu-O^tBu results in second order decay of the otherwise stable copper(II) t-butoxide (Fgures S1-S2). GC/MS analysis of the resulting solution rehomocoupled diketone PhC(O)CH₂CH₂C(O)Ph in 82% yield. Based on these observations, it is likely K_{eq} for acid base exchange is small while the rate of bimolecular [Cu^{II}]-enolate decay is fast.

We examined putative copper(II) enolates by DFT at the ONIOM(bp86/6-311+g(d):UFF) level of theory. We considered three binding modes that reveal the $\eta^3\text{-CCO}$ bonded [Cl2NN]Cu^II($\eta^3\text{-CH}_2\text{C}(O)\text{Ph})$ (6) to be lowest in energy, with $\kappa^1\text{-O}$ and $\eta^2\text{-CC}$ binding modes 7.6 and 8.5 kcal/mol higher in free energy (Figure S3, SI). Nonetheless, reaction of [Cu^II]-O¹Bu with PhC(O)Me to give [Cu^II]($\eta^3\text{-CH}_2\text{C}(O)\text{Ph})$ and HO¹Bu is endergonic by 12.1 kcal/mol. Complexation to this copper(II) center results in delocalization of a significant amount of unpaired electron density onto the enolate ligand (Scheme 4). This enables facile bimolecular C-C coupling to the coordinated 1,4-diketone 5 which is exergonic by 19.6 kcal/mol. Importantly, capture of the ethylbenzene radical to the $\kappa^1\text{-O}$ bound substituted ketone is exergonic by 22.2 kcal/mol.

Scheme 4. Structure and Reactivity of Copper(II) Enolate Intermediate Assessed by DFT

$$[Cu^{l}]-O^{l}Bu+H \longrightarrow Ph \qquad \Delta G=12.1$$

$$[Cu^{l}]-O^{l}Bu+H \longrightarrow Ph \qquad LG^{l}B$$

$$[Cu^{l}]-O^{l}Bu+H \longrightarrow Ph \qquad Cu$$

In summary, we have developed a novel intermolecular copper catalyzed sp³ C-H $\alpha\text{-}acetylation}$ for the construction of C-C bonds via copper catalyzed C-H functionalization of unactivated C-H compounds and ketones. This approach that features readily available simple sp³ C-H substrates and a variety of ketones offers a complementary catalytic Csp³-Csp³ disconnection strategy to prepare small molecules that may be building blocks for the assembly of biologically active and/or other synthetically useful products.

ASSOCIATED CONTENT

Supporting Information. Experimental and characterization details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* thw@georgetown.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

THW is grateful to NSF for support of this work (CHE-1665348). THW also thanks the Georgetown Environment Initiative.

REFERENCES

- Prasad, P. K.; Reddi, R. N.; Arumugam, S., Recent methods for the synthesis of α-acyloxy ketones. *Org. Biomol. Chem.*, 2018, 16, 9334-9348.
- Yoshikawa, N.; Yamada, Y. M.; Das, J.; Sasai, H.; Shibasaki, M. Direct catalytic asymmetric aldol reaction. J. Am. Chem. Soc. 1999, 121, 4168-4178.
- Camacho, D. H.; Nakamura, I.; Oh, B. H.; Saito, S.; Yamamoto, Y. J. T. l., Palladium-catalyzed addition of ketones to alkylidenecyclopropanes. *Tett. Lett.* 2002, 43, 2903-2907.
- Cho, C. S.; Kim, B. T.; Kim, T.-J.; Chul Shim, S., Ruthenium-catalyzed regioselective α-alkylation of ketones with primary alcohols. *Tet. Lett.* 2002, 43, 7987-7989.
- Ibrahem, I.; Córdova, A., Direct Catalytic Intermolecular α-Allylic Alkylation of Aldehydes by Combination of Transition-Metal and Organocatalysis. Angew. Chem. Int. Ed. 2006, 45, 1952-1956.
- Bates, R. B.; Taylor, S. R. Alkylation of enolates with triflates. J. Org. Chem. 1993, 58, 4469-4470.
- Huang, F.; Liu, Z.; Yu, Z., C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. *Angew. Chem. Int. Ed.* 2016,3 55, 862-875.

- Obora, Y., Recent Advances in α-Alkylation Reactions using Alcohols with Hydrogen Borrowing Methodologies. ACS Catal. 2014, 4, 3972-3981.
- Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L., Highly Active and Selective Catalysts for the Formation of α-Aryl Ketones. J. Am. Chem. Soc. 2000, 122, 1360-1370.
- Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G., Transition metal-catalyzed ketone-directed or mediated C–H functionalization. *Chem. Soc. Rev.* 2015, 44, 7764-7786.
- Kawatsura, M.; Hartwig, J. F., Simple, Highly Active Palladium Catalysts for Ketone and Malonate Arylation: Dissecting the Importance of Chelation and Steric Hindrance. J. Am. Chem. Soc. 1999, 121, 1473-1478.
- Girard, S. A.; Knauber, T.; Li, C.-J., The Cross-Dehydrogenative Coupling of C-H Bonds: A Versatile Strategy for C-C Bond Formations. *Angew. Chem. Int. Ed.* 2014, *53*, 74-100. b) Borduas, N.; Powell, D. A., Copper-Catalyzed Oxidative Coupling of Benzylic C-H Bonds with 1,3-Dicarbonyl Compounds. *J. Org. Chem.* 2008, *73*, 7822-7825.
- Gephart, R. T.; McMullin, C. L.; Sapiezynski, N. G.; Jang, E. S.; Aguila, M. J. B.; Cundari, T. R.; Warren, T. H., Reaction of CuI with Dialkyl Peroxides: Cu^{II}-Alkoxides, Alkoxy Radicals, and Catalytic C–H Etherification. *J. Am. Chem. Soc.* 2012, 134, 17350-17353.
- 14. Jang, E. S.; McMullin, C. L.; Käß, M.; Meyer, K.; Cundari, T. R.; Warren, T. H., Copper(II) Anilides in sp³ C-H Amination. J. Am. Chem. Soc. 2014, 136, 10930-10940.
- Salvador, T. K.; Arnett, C. H.; Kundu, S.; Sapiezynski, N. G.; Bertke, J. A.; Raghibi Boroujeni, M.; Warren, T. H., Copper Catalyzed sp³ C–H Etherification with Acyl Protected Phenols. *J. Am. Chem. Soc.* 2016, 138, 16580-16583.
- Campbell, A. N.; Stahl, S. S. Overcoming the "Oxidant Problem": Strategies to use O₂ as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu). Acc. Chem. Res. 2012, 45, 851-863.
- Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G., Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. *Science* 2016, 353, 1014-1018.
- Mayoral, J. A.; Rodríguez-Rodríguez, S.; Salvatella, L. J. C. A. E. J., Theoretical insights into enantioselective catalysis: the mechanism of the Kharasch–Sosnovsky reaction. *Chem. Eur. J.* 2008, 14, 9274-9285.
- Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. *Acc. Chem. Res.* 2018, 51, 2036-2046.
- Finn, M.; Friedline, R.; Suleman, N. K.; Wohl, C. J.; Tanko, J. M., Chemistry of the t-Butoxyl Radical: Evidence that Most Hydrogen Abstractions from Carbon are Entropy-Controlled. J. Am. Chem. Soc. 2004, 126, 7578-7584.
- Douglas, C. J.; Overman, L. E., Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. *Proc. Nat. Acad. Sci. USA* 2004, 101, 5363-5367.
- Martin, S. F., Methodology for the construction of quaternary carbon centers. *Tetrahedron* 1980, 36, 419-460.
- 23. Smith, M. B., Chapter 12 Ca Disconnect Products: Electrophilic Carbon-Carbon Bond-Forming Reactions. In *Organic Synthesis (3rd Ed)*, Smith, M. B., Ed. Academic Press: Oxford, 2010; pp 1161-1255.
- 24. Pratsch, G.; Lackner, G. L.; Overman, L. E., Constructing Quaternary Carbons from N-(Acyloxy)phthalimide Precursors of Tertiary Radicals Using Visible-Light Photocatalysis. J. Org. Chem. 2015, 80, 6025-6036.
- Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. *Nature* 2016, 532, 218-222.

- Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X., Cleavage of carbon–carbon bonds by radical reactions. *Chem. Soc. Rev.*, 2019, 48, 2615-2656.
- Bailey, W. D.; Gagnon, N. L.; Elwell, C. E.; Cramblitt, A. C.; Bouchey, C. J.; Tolman, W. B., Revisiting the Synthesis and Nucleophilic Reactivity of an Anionic Copper Superoxide Complex. *Inorg. Chem.* 2019, 58, 4706-4711.