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ABSTRACT

The recent success of graph neural networks has significantly
boosted molecular property prediction, advancing activities such as
drug discovery. The existing deep neural network methods usually
require large training dataset for each property, impairing their
performance in cases (especially for new molecular properties) with
a limited amount of experimental data, which are common in real
situations. To this end, we propose Meta-MGNN, a novel model
for few-shot molecular property prediction. Meta-MGNN applies
molecular graph neural network to learn molecular representa-
tions and builds a meta-learning framework for model optimization.
To exploit unlabeled molecular information and address task het-
erogeneity of different molecular properties, Meta-MGNN further
incorporates molecular structures, attribute based self-supervised
modules and self-attentive task weights into the former framework,
strengthening the whole learning model. Extensive experiments on
two public multi-property datasets demonstrate that Meta-MGNN
outperforms a variety of state-of-the-art methods.
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selected molecules need to be tested through a complex experi-
mental process. After that, only a few or even no molecules will
be remaining as possible drug candidates to be tested further for
risk and pharmaceutical activity. Therefore, it is crucial to improve
the effectiveness of filtering the most likely drug candidates before
taking experiments via wet-lab experimentation, thus wasting less
time and resources on molecules that are unlikely to proceed to
the lead stage. This concept is generally described as "fail early-fail
cheap".

Virtual screening is a widely used approach to screen out molecules
likely to fail early, which avoids a large set of molecules to be in-
vestigated [22, 23]. Recent advances in deep learning have played
an important role in virtual screening. These deep learning tech-
niques have inspired novel approaches to a better understanding of
molecules and their properties through molecular representation
learning [7, 10, 35, 43, 45]. Deep neural networks learn more about
specific molecular properties when they are fed with more instances
during training. Thus, deep learning models require a large amount
of training data to achieve desired capability and satisfactory perfor-
mance [3]. However, it is common that there are only a few known
molecules that share the same set of properties [1, 30]. We analyzed
the datasets in MoleculeNet [33], a well-known benchmark for pre-
dicting molecular properties. We find that more than half of the
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1 INTRODUCTION

Drug discovery significantly benefits all human beings, especially
for public health during this tough and special time caused by
COVID-19 [26]. Developing and discovering new drugs is a time,
resource, and money consuming process. A key step is to test a
large number of molecules for therapeutic activity through exten-
sive biological studies [23]. Unfortunately, these discovered ones
often fail to become the approved drug candidates for various rea-
sons such as low activity or toxicity [30]. Researchers need to select
a great number of similar molecules as potential candidates. To
find the molecules which have the same efficacious property, these
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eral datasets. This is a case of the well-known problem of few-shot
available data, which seriously impairs the performances of cur-
rent approaches. Therefore, it is essential to develop a deep neural
model for predicting molecular properties effectively in few-shot
scenarios.

There are several challenges that need to be overcome to achieve
this goal. Molecules can be considered as a heterogeneous struc-
ture where each atom connects to different neighboring atoms via
different types of bonds. Previous work [29] represents molecules
as SMILES strings and leverages sequence models [21, 29] to learn
molecular embedding. This approach is not able to capture infor-
mation in each bond well [32]. This is because bonds in molecules
not only represent connected relations between different atoms
but also contain attributed information that characterizes the bond
type such as single, double, or triple. Thus, the first challenge is to
design a deep neural network that can discover effective molecular
representations from few-shot data. Because only a limited amount
of labeled molecular property data are available, the second chal-
lenge is to exploit the useful unlabeled information in molecule
data and further develop an efficient learning procedure to transfer
the knowledge from other property prediction, so that the model
can fast adapt to the novel (new) molecular properties with limited
data. Moreover, different molecular properties could represent quite
different molecular structures. Thus, their data should be treated
differently in the knowledge transfer process. The third challenge
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is to distinguish the different importance of molecular properties
when performing the efficient learning procedure.

To address the above challenges, we propose a novel model called
Meta-MGNN for few-shot molecular property prediction. First, we
leverage graph neural network with the pre-training process to
fuse heterogeneous molecular graph information as molecular em-
bedding. Then, we develop a meta-learning framework to transfer
knowledge from different property prediction tasks and obtain a
well-initialized model which could be fast adapted to a new molec-
ular property with limited data. In order to exploit and capture
unlabeled information in molecule data, we design a self-supervised
module which consists of a bond reconstruction loss and an atom
type prediction loss, accompanied by the main property prediction
loss. Moreover, considering different property prediction tasks con-
tribute differently to the few-shot learner, we further introduce a
self-attentive task weight to measure their importance. Both self-
supervised module and self-attentive task weight are incorporated
into the meta-learning procedure for strengthening the model.
Contributions. To summarize, the main contributions of this work
are as follows:

o We formulate the molecular property prediction as a few-shot
learning problem, which exploits the rich information in various
properties to address the lack of laboratory data problem for each
individual property.

o To deal with the few-shot challenge, we propose a novel model
called Meta-MGNN by exploring graph neural network, self-
supervised learning, and task weight aware meta-learning.

e We conduct extensive experiments on two public datasets and
the evaluation results demonstrate the superior performance of
Meta-MGNN over state-of-the-art methods. The effectiveness of
each model component is also verified.

2 RELATED WORK

In this section, we review existing work including graph neural
network, few-shot learning, and molecular property prediction.

Graph Neural Network (GNN). GNNs have gained increasing
popularity due to its capability of modeling graph-structured data [9,
27, 39]. Typically, a GNN model uses a neighborhood aggregation
function to iteratively update the representation of a node by aggre-
gating representations of its neighboring nodes and edges. GNNs
have showed attractive performance in various applications, such
as recommendation systems [4, 24], behavior modeling [38], and
anomaly detection [44]. Molecular property prediction is also a
popular application of GNNs since a molecule could be represented
as a topological graph by treating atoms as nodes, and bonds as
edges [7, 8, 18, 20]. We will elaborate them in the next paragraph.

Molecular Property Prediction. Methods can be categorized
into two main groups based on the input molecular type: (1) molecu-

lar graph, and (2) simplified molecular-input line-entry (SMILES) [31].

For the first group of methods, each molecule is represented as a
graph associated with different atom nodes interconnected by bond
edges. One typical way is to employ graph neural networks to
learn molecular representations [7, 8, 10, 18, 20]. For example, Lu
et al. [18] proposed a novel hierarchical GNN. It includes an em-
bedding layer, a Radial Basis Function layer, and an interaction
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layer to learn molecular representations from different levels. Hu
et al. [10] proposed several novel pre-training strategies to pre-
train GNNss at the level of individual nodes and the entire graph
to lean local and global molecular representations simultaneously.
For the second type of representation, SMILES is a sequence no-
tation for describing the structure of molecules. Researchers take
molecules as sequences and adopt language models to learn their
representations [29, 43, 45]. For example, Zhang et al. [43] pro-
posed a semi-supervised Seq2Seq fingerprint model which contains
three ends of one input, one supervised output, and one unsuper-
vised output. Zheng et al. [45] presented a new model to study
structure-property relationships through a self-attentive linear no-
tation syntax analysis. Guo et al. [8] proposed a novel graph and
sequence fusion learning model to capture information both from
the molecular graph structure and SMILES. Here, we take each mol-
ecule as a graph as it preserves the molecular inner structure better,
and employ graph neural networks to learn their representations.

Few-shot Learning. Successes of few-shot learning have been
accomplished in various application domains such as computer
vision [5, 11] and graph learning [6, 36, 37, 40, 41] . There are two
notable types of few-shot learning approaches: (1) metric-based
learning and (2) gradient-based learning. The former learns a gener-
ative metric to compare and match few-examples [2, 25, 28]. Vinyals
et al. [28] proposed a novel matching metric, named Matching Nets,
to match unlabeled examples to the class of few-shot labeled ex-
amples. Sung et al. [25] proposed relation network which learns a
deep distance metric to compute relation scores of different images
and further classify images. The latter aims to employ a specific
meta-learner to learn well-initialized parameters of the base model
for different tasks [5, 15, 42]. For instance, Finn et al. [5] proposed
MAML which designs this kind of meta-learner to effectively ini-
tialize a base-learner that could be fast adapted to new tasks. In this
work, our few-shot learning strategy is gradient-based learning.

3 PRELIMINARY

In this section, we first define the few-shot molecular property
prediction problem, then present the details of using graph neural
network (GNN) for learning molecular representations.

3.1 Problem Definition

Let G = (V, &) denote a molecular graph where V is the set of
nodes and & € V X V is the set of edges. Particularly, a node in
a molecular graph represents a chemical atom and an edge repre-
sents a chemical bond between two atoms. Given a set of molecular
graphs G = {G1,- -+ ,GN} and their labels Y = {y1,--- ,yn}, the
goal of molecular property prediction is to learn a molecular repre-
sentation vector for predicting its label (i.e., molecular property) of
each G; € G, i.e., to learn a mapping function fy : G — V.

Unlike previous studies where there are enough examples for
each new property prediction task, this work considers a more prac-
tical scenario that only few-shot samples are given. Specifically, we
aim to develop a classifier which can be fast adapted to predict new
molecular properties that are unseen during the training process,
given only a few samples of these new properties. Formally, the
problem is defined as follows.
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Figure 1: (a) The overall framework of Meta-MGNN: It first samples a batch of training tasks. For each task, there are a few
data examples in the support set. These examples are fed into a GNN parameterized by 0. Then the support loss Lsyppor: is
calculated and utilized to update the GNN parameters to §’. Next, the examples in the corresponding query set are fed into the
GNN parameterized by 0" and calculate the loss L{,,, for this task. The same process repeats for other training tasks. Later,
we compute the summation of Lqu ery Over all sampled tasks and use it to further update the GNN parameters for testing. (b)
Self-supervised module: It includes bond reconstruction and atom type prediction. The orange part shows that we sample two
atoms and use GNN to predict if there is a bond between them. The green part shows that we mask several atoms randomly
and use GNN to predict their types. (c) Task-aware attention: It calculates the average of all the molecular embedding from the
query set of the same task to represent this task. With the embedding of each task, we design a self-attentive layer to compute

the weight of each task, then incorporate it into a meta-training process for updating model parameters 6.

ProBLEM 1. Few-Shot Molecular Property Prediction Given
molecular properties Y = {y1,--- ,yn} and their corresponding few-
shot molecular graph sets {G1 € y1,- -+ , GN € YN} (training data),
the task is to design a machine learning model to predict molecular
graphs of new properties that only have few-shot examples (test data).

3.2 Molecular Graph Neural Network

By viewing molecular structure as graph data (i.e., molecular graph),
recent deep learning methods for graphs, such as graph neural net-
works (GNNs) [32, 39], can be utilized to learn molecular represen-
tations which are fed to downstream machine learning models for
molecular property prediction [17]. In this section, we will present
the details of employing GNNs to obtain molecular representations.

A GNN model is able to utilize both graph structure and node/edge
features information to learn a representation vector h,, for each
node v € V. Specifically, a GNN model uses a neighborhood aggre-
gation function to iteratively update the representation of a node
by aggregating representations of its neighboring nodes and edges.
After [ iterations, a node representation hﬁf) is able to capture the
information within its [-hop neighborhoods. In a molecular graph,
each node represents an atom and each edge represents a chemical
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bond between two atoms. As the input layer of GNN, we first initial-
ize representations of both nodes and edges using their attributes
in molecular graph. The node attributes include atom number (AN)
and chirality tag (CT), and edge attributes include bond type (BT)
and bond direction (BD). Formally, we initialize node representation
as hg?) = VAN @ ver and edge representation as hgo) =egr Pepp,
where v and e denote node/edge attributes and @ is concatenation
operator. Then, the node representation h( ) at the I-th layer of
GNN is formulated as:

h(/v)(v) = Acc;({h{"™ :vu e N@)} (b ™V s e = (v, w)}), (1)

hg,l) = U(W(l) . CONCAT(hg,l_l),hSVl)(U))), (2)
where N(v) is the neighbor set of v, o(-) is a non-linear activa-
tion function (e.g., LeakyReLU). AGG(+) is an aggregating function.
A number of architectures for Aca(-) have been proposed in re-
cent years such as graph convolutional neural network (GCN) [12]
and graph attention network (GAT) [27]. Here, we use graph iso-
morphism network (GIN) [34], which has demonstrated state-of-
the-art performance on a variety of benchmark tasks. After that,
we can learn the representation of each node in molecular graph:
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h, = h(vl) /| |hg,l) ||2. To obtain the graph-level representation hg for
a molecular graph, we calculate the average node embeddings at
the final layer:

he = Mean({h? : v € V}), 3)

The graph-level molecular representation hg can be further fed into
a classifier (e.g., a multi-layer perception) for molecular property
prediction, as we will present in the next section.

Pre-trained Molecular Graph Neural Network. Pre-trained mod-
els have been widely used in natural language processing, computer
vision, and graph analysis in recent years [3, 10]. In general, pre-
training allows a model to learn universal representations, provides
a better parameter initialization, and avoids overfitting on down-
stream tasks with small training data. Models with pre-training
have been demonstrated to obtain superior performance than mod-
els without that. Therefore, we are motivated to leverage the recent
pre-trained graph neural network technique (PreGNN) [10] to ob-
tain parameter initialization of molecular graph neural network.

4 META-MGNN

In this section, we present the details of proposed the Meta-MGNN
for few-shot molecular property prediction. Meta-MGNN is built
on MGNN and employs a meta-learning framework for model ini-
tialization and adaption. Molecular structure and feature based
self-supervised module and self-attentive task weight are further
incorporated into the former framework for model enhancement.

4.1 Meta-learning Setup

We build the meta-learning framework based on MAML [5]. Given
the model fy with learnable parameters 6 that maps molecular
graph to specific properties such as toxicity, i.e., fg : G = Y. In
meta-learning, the model is expected to adapt to a number of dif-
ferent tasks, i.e., predicting different kinds of molecular properties.
Particular, in the k-shot meta-learning, for each task 7; sampled
from distribution p(7"), the model is trained using only k data sam-
ples and further tested on remaining data samples of 77. In this
setting, we refer to the corresponding training and test sets of each
task as support set and query set, denoted as 7; = {Gr, Yr, G., Y.},
where G, Y; are support sets of input molecular graphs and prop-
erty labels, and G, Y/ are query sets of input molecular graphs
and property labels. During meta-training, the model fy is first
updated to task-specific model using support set of each task, then
further optimized to task-agnostic model using prediction loss over
the query set of all tasks in training data. After sufficient train-
ing, the learned model can be further utilized to predict new tasks
(new molecular properties) with only k data samples as support
set, which is called meta-testing. To avoid data overlapping, data of
tasks used for meta-testing are held out during meta-training. The
whole framework is illustrated in Figure 1(a).

4.2 Meta-training

In meta-training, the goal is to obtain well initialized model pa-
rameters 6 that can be generally applicable to different tasks, and
explicitly encourage the initialized parameters to perform well after
a small number of gradient descent updates on a new task with
few-shot data. When adapting to a task 77, we begin with feeding
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Algorithm 1: Meta-MGNN
Require:{G;, Y, }: support data ; {G;, Y/}: query data; a,
B: step sizes (i.e., learning rates)
1 0 < Pre-trained by PreGNN [10]
2 while not done do

3 Sample batch of tasks 77 ~ p(7")

4 for all 7; do

5 Sample k examples {Gr1,Gr2, - ,G. 1} € Gr
6 for i=1to k do

7 ‘ Yrishri = GNN(Gy4, 0)

8 end

9 HT = MEAN (hfl,hrz,'-' ,h.[k)

10 Ly — Eq. (9) with {yr1, Y2, Yok}

11 0, =0 - aVL;

12 Sample n examples {G,G.,,...Gy,} € G/
13 for j=1tondo

14 | v, h;; =GNN@G,;, 67)

15 end

16 L7 —Eq ) with {y, .y 5. . y7n}
17 end
1 | {n(T1),--- ,n(Tr)} < Eq. (11) with {Hy, - -+, Hy}
| 00— VoS pryn(T) - L]

20 end

the support set to the model and calculate the loss Lg- to update
parameters 6 to 0 through gradient descent:

0, = 0-aVe Ly (0), (4)

where « is the step size. It should be noted that Eq.(4) only shows
one-step gradient update while we can take multiple-steps gradient
update in practice.

4.2.1 Loss Function. Typically, the above loss Ly is calculated
by the supervised signals from downstream tasks [5, 46], i.e., molec-
ular property labels in this study. However, simply using supervised
signals maybe not effective since only a few samples are given for
each task. In addition, the complexity of molecules inherently bring
useful unlabeled information in both structure and attribute. There-
fore, to enhance the above meta-training process, we propose to
exploit and leverage unlabeled information in molecular graphs. In
particular, we design a self-supervised module which consists of a
bond reconstruction loss and an atom type prediction loss, accompa-
nying with the property prediction loss.

Molecular Property Prediction Loss. To predict molecular prop-
erty, we introduce a multi-layer perception (MLP) on top of the
graph-level molecular representation h ( Eq.(3)), i.e., § = MLP(h).
The loss of prediction is defined as the cross entropy loss between
the predicted labels and ground-truth labels:

k
1 .
Liabet(0) = =7 ) CrOSSENTROPY(y1. 1) (5)
i=1

where k is the number of data samples.

Bond Reconstruction Loss. To perform bond reconstruction in
molecular graphs, we first sample a set of positive edges (existing
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bonds) in the molecular graph, then sample a set of negative edges
(non-existing bonds) by choosing node pairs that do not have an
edge in the original molecular graph. We denote & as the union
set of sampled positive edges and negative edges. In practice, we
set |Es| = 10 including 5 positive samples and 5 negative samples.
The bond reconstruction score is computed by the inner product of
embeddings between the sampled pair of nodes, i.e., é,,, = h], - hy,.
The bond reconstruction loss is defined as the binary cross entropy
loss between the predicted bonds and ground-truth bonds:

1

Ledge(e) =TT

] Z BINARYCROSSENTROPY(€ey 0, €yw) (6)
S

euv €8s

Atom Type Prediction Loss. In a molecule, different atoms are
connected in a certain way (e.g., carbon-carbon bond, carbon-oxygen
bond), leading to different molecular structure. The atom type de-
termines how a node in the molecular graph connects with neigh-
boring nodes. Thus, we utilize the contextual sub-graph of a node
(atom) to predict its type. Specifically, we first sample a set of nodes
in a molecular graph, denoted as V.; C V. For each node v in
Vet, the contextual sub-graph is defined as its neighbors within
I-hops, ie., Goup = (Usyp, Esup) Where Ugy, = {v} U Nj(v),
Esub € Usyp X Usyp, and Nj(v) represents the the set of neigh-
boring nodes of node v. In practice, we choose V.; = 15% nodes
in the graph and I = 1. Later, we use a a multi-layer perception
(MLP) on the top of mean pooling of all nodes in the contextual
sub-graph excluding the central node and the atom type prediction
loss is formulated as the cross entropy loss between predicted node
type and ground-truth node type:

0; = Mrp (MEAN({hy, : u € Nj(v)})), (7)
[Vel
1 A
Lnode0) = —m Z CRrOSSENTROPY(vj, 0;), (8)

i=1
The self-supervised module (of both bond reconstruction and atom
type prediction) is illustrated in Figure 1(b).

Joint Loss. The loss for task 77 in the meta-training process is
formulated as the summation over the above three losses,

-C‘TT (0) = Lyoge(0) + )LlLedge(@) +22L1aper(0) )

where A1 and A; are trade-off parameters that control the impor-
tance of different losses. In practice, we set A; = A3 = 0.1.

4.2.2 Task-aware Attention. With the new model parameter
0; obtained from the support set data of task 77, i.e., 0, = 0 —
aVg L (0), the model is further updated as follows:

0 —0-pV9 > n(T)- L0, (10)
Te~p(T)

where f is meta-learning rate, L’T is the joint loss over query set of
7. In other words, the model parameters 0 are further updated over
losses of all sampled tasks through gradient descent. The traditional
meta-learning methods (e.g., MAML [5]) treat each task with the
same weight when optimizing the meta-leaner (i.e., n(77) are same
for all tasks), which cannot reflect how important of different prop-
erty prediction tasks are. Therefore, considering different property
prediction tasks contribute differently to the meta-learner optimiza-
tion, we further introduce a self-attentive weight to measure task
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Table 1: Details of atom and bond features.

# Atom Type ‘ 118
.. Unspecified, Tetrahedral cw,
Atom Chirality Tag Tetrahedral ccw, Other
Bond Type Single, Double, Triple, Aromatic

Bond Direction ‘ -, Endupright, Enddownright

importance. Particular, we use self-attentive mechanism [16] to
calculate importance of each task:

B exp(MLp(Hy; ))
X7 erexp(Mip(Hr,))’

Hy = Mean({hy_;}X)).
(11)

where 7 is the set of all tasks, Hy; denotes the task embedding
which is computed by averaging all molecular embeddings of 77.
Figure 1(c) illustrates the details of self-attentive task weight com-
putation. The meta-training process is described in Algorithm 1.

n(7z)

4.2.3 Meta-testing. During meta-testing, we first utilize the few-
shot support set of new tasks to update parameters 6 of Meta-MGNN
via one or a small number of gradient descent steps using Eq. (4),
then evaluate performance in query set.

5 EXPERIMENTS

In this section, we conduct extensive experiments on two public
datasets (Tox21 and Sider) to compare performances of different
models and show related analysis.

5.1 Datasets

We evaluate different methods on the Tox21 and Sider datasets.
They are collected from MoleculeNet [33], which is a large scale
benchmark dataset for molecular machine learning. Tox21 has 7,831
instances with 12 different tasks; Sider has 1,427 instances with 27
different tasks. In each task, molecules are divided into positive
instances and negative instances (i.e., binary labels). A positive
instance means that a molecule has a specific property, and a neg-
ative instance means that a molecule does not have the property.
We manually split 3 tasks from Tox21 and 6 tasks from Sider for
meta-testing. The details of these two datasets are as follows:

e Tox21': Toxicity on 12 biological targets, including nuclear re-
ceptors and stress response pathways.

o Sider: 27 system organ classes where molecules are marketed
drugs and adverse drug reactions [13].

Dataset Processing. The raw data of molecules are given as SMILES
strings. We transfer SMILES strings to molecular graphs by using
Rdkit.Chem [14]. Then we extracted a set of node and bond fea-
tures which can preserve the molecular structure best to use in the
experiments. The details about features are listed in Table 1.

5.2 Baselines

We compare our model with multiple baseline models.

!https://tripod.nih.gov/tox21/ challenge/
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Table 2: The performances of all methods on both datasets. Our proposed method Meta-MGNN can outperform all baseline
methods. The last column reports the average improvements (in percentage) of Meta-MGNN over the best baseline method in
different tasks. Bond indicates the best performance. Underline represents the best baseline performance.

GraphSAGE [9] GCN [12] MAML [5] Seq3seq [34] EGNN [11] PreGNN [10]
Dataset | Task Meta-MGNN AAUC
atase as (2017) (2017) (2017) (2018) (2019) (2020) eta
| 1-shot

SR-HS 65.97 65.00 68.56 73.18 72.51 73.09 73.81 +0.63

Toxo1 | SR-MMP 71.23 71.20 76.34 79.08 76.90 76.20 79.09 +0.01
SR-p53 58.05 66.60 71.28 75.23 78.03 76.87 77.71 -0.32

Average 65.10 67.60 72.06 75.83 75.81 75.39 76.87 +1.04

Si-T1 65.23 63.60 66.82 66.50 71.39 73.04 75.41 +2.37

Si-T2 60.47 62.01 63.62 57.03 67.87 66.06 69.39 +1.52

Si-T3 61.45 64.52 67.50 61.38 68.23 70.36 70.65 +0.29

Sider Si-T4 64.41 65.28 69.02 63.45 72.67 72.34 72.69 +0.02
Si-T5 77.85 74.95 77.07 74.83 78.88 77.99 79.95 +1.07

Si-T6 61.19 63.20 67.01 63.70 66.31 69.45 71.97 +2.52

Average 65.10 65.60 68.51 64.48 70.89 71.54 73.34 +1.80

‘ H 5-shots

SR-HS 69.09 68.13 69.02 74.07 73.23 73.39 74.80 +0.73

Toxz1 | SR-MMP 72.22 69.06 76.43 80.40 79.07 78.25 80.26 -0.14
SR-p53 61.45 72.01 73.95 77.07 78.12 78.01 79.00 +0.88

Average 67.59 69.73 73.13 77.18 76.81 76.55 78.02 +0.84

Si-T1 67.61 65.66 70.12 68.99 72.76 74.77 76.32 +1.55

Si-T2 59.86 64.62 64.46 56.53 68.13 65.69 69.34 +1.21

Si-T3 60.61 64.90 68.20 64.20 70.11 71.07 72.29 +1.22

Sider Si-T4 64.82 64.85 67.75 67.15 72.73 73.42 74.46 +1.04
Si-T5 78.33 76.93 78.61 78.55 79.61 80.67 81.79 +1.12

Si-T6 61.91 62.06 67.74 66.30 67.17 71.48 74.12 +2.64

Average 65.52 66.50 69.48 66.95 71.75 72.85 74.72 +1.87

e GraphSAGE [9]. It generates the nodes’ embedding by sam-
pling and aggregating their neighbors’ embeddings, which can
effectively capture the graph information.

e GCN [12].It is a widely used graph-based model, which contains
an effective convolutional neural network component. GCN out-
performs various models by learning both local graph structure
and features of nodes.

o MAML [5]. It builds a task-agnostic algorithm for few-shot learn-
ing, where training a model’s parameters using a small number
of gradient updates will lead to fast learning on new tasks.

e Seq3seq [43]. It is a Seq2Seq model for molecular property pre-
diction. The loss function contains both self-recovery loss and
inference task loss.

e EGNN [11]. It is an edge-labeling graph neural network for
few-shot learning which is proved a well-generalizable model
for low-data problem.

e PreGNN [10]. This model develops self-supervised learning to
pretrain GNN for molecular property prediction. It captures both
useful local and global information.
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5.3 Evaluation Metrics

We evaluate the performance of each model using ROC-AUC. We
consider each molecular property as an independent task for few-
shot learning. We use 3 and 6 tasks as test tasks of Tox21 and Sider
data, respectively. Each task is a binary label classification task.
Table 2 and Figure 3 report the result for each test task. For both
datasets, we consider 2-way classification with 1 and 5 shots.

5.4 Reproducibility Settings

We take graph isomorphism network (GIN) [34] as base graph neu-
ral network. In our experiment, we utilize the supervised-contextpred
pre-trained GIN of PreGNN [10]. The GIN layer number is set as
5. We set all embedding dimensions to 300. The same feature will
share the same initial embedding. We set the update step in training
tasks as 5 and the update step in testing tasks as 10. We set the
trade-off weight of self-supervised module as 0.1. We use Pytorch
to implement the model and run it on a GPU.

5.5 Comparisons with Baselines

Overall Performance. The overall performances of all methods
are reported in Table 2. According to this table, we can find that
Meta-MGNN outperforms all baseline models on both Tox21 and
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Figure 2: Performances of different model variants in Tox21 data (the first row) and Sider (the remaining figures) data. Different
model components (i.e., graph neural network pre-training, self-supervised module, and task-aware attention) indeed make
effect and improve the model performance. Our proposed model (M8) has better result than all other model variants.

Sider datasets. Specifically, for 1-shot learning, the average improve-
ments are +1.04% and +1.80% on Tox21 and on Sider, respectively.
The values equal +0.84% and +1.87% for 5-shot learning. In addi-
tion, we observe that PreGNN [10] and EGNN [11] perform the
best among all baseline methods on average. However, the baseline
methods do not have stable performance on different tasks. In other
words, they may perform well on one task, but perform poorly on
another task. In comparison, the performance of Meta-MGNN is
stable. It has the best performance for all tasks in both datasest.

Analyzing Meta-MGNN Structure. MAML demonstrates supe-
rior performance than the other two GNN models (GraphSage and
GCN). It makes sense since MAML trains the model through meta-
learning, making it better adapt to new tasks with few data sam-
ples. Besides taking advantage of meta-learning, Meta-MGNN also
utilizes pre-trained graph neural network model (PreGNN) [10]
to initialize model parameters. PreGNN uses a large amount of
molecules data to pre-train the graph neural network, which leads
to better parameter initialization. Therefore, by taking advantages
of both meta-learning and pre-training, Meta-MGNN demonstrates
superior performance than the other baseline methods.
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Table 3: We implemented 8 model variants for ablation
study. The abbreviations used in the table: pre-trained
model (PTM), meta-learning (ML), bond reconstruction (BR),
atom-type prediction (AP) and task-aware attention (T-At).

| PIM ML BR AP  T-At

M1 4
M2
M3
M4
M5
Me
M7
M3

v

4
v 4

AN N N N N N
S

4
v v 4

Performance on Different Datasets. From Table 2, we can ob-
serve that our proposed Meta-MGNN outperforms the best baseline
method by +1.80% for 1-shot learning and +1.87% for 5-shots learn-
ing on Sider dataset. However, the average improvements on Tox21
are +1.04% for 1-shot learning and +0.84% for 5-shots learning,
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Figure 3: Visualizations of molecular embeddings generated by our model (Meta-MGNN), PreGNN [10], and MAML [5]. The
blue dots denote negative labels in SR-MMP (a molecular property). The orange dots represent positive labels in SR-MMP. Our
model can better discriminate embeddings of these two kinds of labels than the other methods.

which are smaller than those in Sider. As we know, the major ad-
vantage of few-shot learning model is to make model predict new
tasks better by using a small number of data samples. Obviously,
training with more tasks allows the model to learn more knowl-
edge. The advantages of the few-shot learning model can be better
reflected on the dataset which contains more tasks. Since Sider has
more tasks than Tox21, Meta-MGNN can deliver greater improve-
ments on Sider than on Tox21. Additionally, we also find that the
overall performance on Tox21 is better than that on Sider for all
models. This is due to the larger size of Tox21, which improves
the generalization capabilities of these deep learning models, as
reflected by the evaluation scores.

5.6 Ablation Study

Settings. Besides comparing with baseline methods, we also imple-
ment model variants (ablation studies) to show the effectiveness of
different model components. The details of different model variants
are illustrated as follows (also shown in the Table 3):

e M1. Pre-trained graph neural network. We take GIN [34] as our
base graph neural network and pre-train it by both supervised
and unsupervised (Context Prediction) pre-training strategies.
M2. Graph neural network model (without pre-training) trained
with the meta learning process.

e M3. Our base model, which is based on GIN [34] and learned
with meta-learning algorithms. This model is also pre-trained by
supervised and unsupervised (Context Prediction) pre-training.

o M4 & M5 & M6. These models are based on M3 and augmented
with the self-supervised module. M4, M5, and M6 are augmented
with the bond reconstruction, the atom-type prediction, and both
of them, respectively. This is to analyze the effectiveness of the
self-supervised module.

e M?7.1tis based on M3 and enhanced with task-aware attention to
incorporate the importance of different tasks. This is to analyze
the effectiveness of task weight in meta-learning.

e MS8.Itisbased on M3 and augmented with both both self-supervised
module and self-attentive task weight.

Performance Comparison and Analysis. The performances of
all model variants are shown in Figure 2. The three sub-figures
in the first row are model performance on Tox21. The sub-figures
in the second row and third row are model performance on Sider.
There are several findings from these figures. First, M2 has the worst
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results in all cases, illustrating the significant impact of the pre-
training step for graph neural networks. Second, the performance
of M3 is better than M1 and M2, which indicates the effectiveness of
combining both the pre-training and few-shot learning strategies.
Third, adding different self-supervised components (bond recon-
struction and atom type prediction) can further improve model
performance, as reflected by the better performances of M4, M5,
and M6 over M3. Among these three variants, M6 has the best
performance as it adds both self-supervised tasks. Additionally, M7
outperforms M3, demonstrating the benefit of incorporating task-
attention weight into the meta-learning process. At last, M8 (the
proposed model) has the best performances in most cases, which
shows the best capability graph neural network model trained by
meta-learning process and augmented with both self-supervised
module and task-aware attention. According to these findings, we
can conclude that different model components indeed bring benefits
to model design and improve performance.

5.7 Case Study of Embedding Visualization

To better show the effectiveness of our model, we visualize the
molecular embeddings generated by our proposed Meta-MGNN,
PreGNN [10] and MAML [5] using t-SNE [19], which are shown
in Figure 3. Specifically, it shows the embedding result of testing
datasets from SR-MMP (a molecular property). The blue plots and
orange plots represent molecules without SR-MMP property and
with SR-MMP property, respectively. It can be observed that our
model achieves better performance in discriminating two kinds of
molecules than the other two models. In Figure 3(a), the bottom
left corner of the figure is mostly occupied by orange dots and the
blues ones are mostly in the upper right corner. However, most
orange plots are mixed with blue plots in Figure 3(b) and 3(c).

6 CONCLUSIONS

In this work, we proposed a few-shot learning approach for the
molecular property prediction problem, which is important and
has not been well studied. We proposed a novel model called Meta-
MGNN. Meta-MGNN utilized a graph neural network (with pre-
training) to learn molecular embeddings and further employed
a meta-learning process to learn well-initialized model parame-
ters that could be fast adapted to new molecular properties with
few-shot data samples. A self-supervised module and self-attentive
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task weight were further proposed and incorporate into the meta-
learning framework, which benefited the whole model. We eval-
uated our model on two public multi-task datasets and the com-
parison of the experimental results showed that our model can
outperform state-of-art methods. The effectiveness of each model
component was also verified. The initial success of this study sug-
gests following studies. The future work might consider better
task embedding formulation when computing task weight in meta-
learning. It is also possible to fuse both graph and sequence model
to learn molecular embeddings for the meta-learning process.
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