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Abstract

Polylogarithms are those multiple polylogarithms that factor through a certain quotient of
the de Rham fundamental group of the thrice punctured line known as the polylogarithmic
quotient. Building on work of Dan-Cohen, Wewers, and Brown, we push the computational
boundary of our explicit motivic version of Kim’s method in the case of the thrice punctured
line over an open subscheme of SpecZ. To do so, we develop a greatly refined version of
the algorithm of Dan-Cohen tailored specifically to this case, and we focus attention on
the polylogarithmic quotient. This allows us to restrict our calculus with motivic iterated
integrals to the so-called depth-one part of the mixed Tate Galois group studied extensively
by Goncharov. We also discover an interesting consequence of the symmetry-breaking nature
of the polylog quotient that forces us to symmetrize our polylogarithmic version of Kim’s
conjecture.

In this first part of a two-part series, we focus on a specific example, which allows us to
verify an interesting new case of Kim’s conjecture.
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1. Introduction

1.1. The Context for Our Work.

1.1.1. The S-Unit Equation and Kim’s Method. For a ring R, the unit equation asks for
solutions to x+ y = 1 for which x and y are units in the ring R. If we let X = P1 \ {0, 1,∞},
this is equivalent to finding elements of X(R). For R = OK [1/S] for a number field K and a
finite set S of finite places, this is known as the S-unit equation. The interest in the unit
equation comes from the 1929 theorem of Siegel that the S-unit equation has finitely many
solutions for fixed K and S.

In 2004, Kim ([Kim05]) reproved this theorem in the case K = Q by showing that there
were nonzero Coleman functions on X(Zp) that vanish on X(R), using a method reminiscent
of those of Chabauty ([Cha41]) and Skolem. Kim later extended this proof to totally real
fields in [Kim12b]. More specifically, for each n ∈ Z>0, Z = SpecR and p ∈ Z lying over p,
Kim’s method produces an ideal IZn,Kim in the ring of Coleman functions on X(Zp), whose
set X(Zp)

Z
n,Kim of common zeroes contains X(Z). Concretely, the functions so produced are

polynomials in p-adic polylogarithms of degree (or “half-weight”) at most n.

1.1.2. Computational Motivic Chabauty-Kim Theory. Since then, there has been work to
compute specific elements of IZn,Kim. More specifically, Dan-Cohen and Wewers ([DCW15,
DCW16]) developed a motivic framework for making computations and computed the cases
Z = SpecZ, SpecZ[1/2], both in half-weights n = 2, 4. In [DC15], Dan-Cohen formulated
these methods into an algorithm and proved that this algorithm outputs the set of solu-
tions, assuming variants on some well-known conjectures. Brown ([Bro17]) made further
contributions and put the computations of [DCW16] in a new light.

One motivation for the computations of [DCW16] is that they verified specific cases of the
following conjecture of Kim:

Conjecture 1.1 (Conjecture 3.1 of [BDCKW18]). X(Z) = X(Zp)
Z
n,Kim for sufficiently large

n.
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1.2. The Current Work. In this work, we present various simplifications to the methods
of [DCW16] and [DC15], inspired in part by [Bro17], and use them to find an element of
IZn,Kim for Z = SpecZ[1/3]. More specifically, for every positive integer n, we define an ideal
IZPL,n of elements of O(ΠPL,n × πun

1 (Z)) (defined in Section 2.6), whose elements specialize
under a p-adic realization map to elements of IZn,Kim. We then prove the following:

Theorem 1.2 (Theorem 4.8). The element

ζu(3) logu(3) Liu4−
(

18

13
Liu4(3)− 3

52
Liu4(9)

)
logu Liu3

−(logu)3 Liu1
24

(
ζu(3) logu(3)− 4

(
18

13
Liu4(3)− 3

52
Liu4(9)

))
is in IZPL,4 for Z = SpecZ[1/3].

We also let X(Zp)PL,n denote the subset of common zeroes of specializations of elements of
IZPL,n. By computing values of the corresponding Coleman function at elements of X(Zp)PL,2

already found in [BDCKW18] and using a symmetrization argument described below, we get:

Theorem 1.3 (Theorem 5.5). Conjecture 1.1 holds for Z = SpecZ[1/3] and p = 5, 7 with
n = 4.

This example exhibits a new phenomenon: while the functions we obtain cut out the set of
Z[1/3]-points, its coefficients are written in terms of periods that ramify at the prime 2.

There are two differences between the definitions of X(Zp)
Z
n,Kim and X(Zp)PL,n. The first

is a technical point, discussed in Remark 2.28, that conjecturally has no effect. The second,
a simplification already introduced in [DCW16] and [DC15], is that we work only with
polylogarithms rather than multiple polylogarithms, i.e. functions of the form Lin1,··· ,nr only
for r = 1 rather than arbitrary positive integers r. This entails a certain strengthening of
Conjecture 1.1. However, as the following theorem shows, polylogarithms in and of themselves
are insufficient for this purpose; the precise formulation requires some care.

We always have X(Zp)
Z
n,Kim ⊆ X(Zp)PL,n (c.f. Remark 2.28), and we prove:

Theorem 1.4 (Theorem 5.2). For any prime ` and positive integer n, we have

−1 ∈ X(Zp)PL,n,

where Z = SpecZ[1/`].

As X(Z[1/`]) = ∅ for ` odd, Theorem 1.4 disproves a previous hope by the authors
and others that X(Z) = X(Zp)PL,n for sufficiently large n. This seemed like a reasonable
generalization of Conjecture 1.1, since not only is IZn,Kim nonzero for sufficiently large n, but
IZPL,n is as well, and hence X(Zp)PL,n is finite for such n (more strongly, the rank of IZPL,n

goes to ∞ as n→∞). However, there is an action of S3 on the scheme X, and we may use
it to correct the problem posed by Theorem 1.4 and refine our polylogarithmic version of
Kim’s conjecture accordingly. We write

X(Zp)
S3
PL,n :=

⋂
σ∈S3

σ(X(Zp)PL,n).

Our strengthened Kim’s conjecture is the following:
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Conjecture 1.5 (Conjecture 2.32). X(Z) = X(Zp)
S3
PL,n for sufficiently large n.

As explained in Section 2.7, Conjecture 1.5 implies Conjecture 1.1. It is in fact this
strengthened conjecture that we verify in Theorem 1.3.

1.3. Background on Mixed Tate Motives and the Unit Equation. In this part of the
introduction, we assume familiarity with the basics of Kim’s program ([Kim05],[Kim09])1
and explain both the application of mixed Tate motives to the S-unit equation (as developed
in [DCW16]) and the novelty in our methods. Our setup is then repeated in full technical
detail in Section 2.

1.3.1. From Kim’s Method to Mixed Tate Motives. For a place p of K over p and a smooth
curve X over Z, Kim constructs a commutative diagram ([Kim05],[Kim09])

X(Z) � � //

κ

��

X(Zp)

κp

��

Sel(X/Z)n
locn

// Sel(X/Zp)n ,

which we refer to as Kim’s cutter, and proves for X = P1 \ {0, 1,∞} that the morphism of
schemes locn is non-dominant for sufficiently large n. The ideal

IZn,Kim

is then defined as the set of pullbacks under κp of functions on Sel(X/Zp)n vanishing on the
image of locn.

In order to compute such functions concretely, one must understand Sel(X/Z)n as well as
the morphism locn. Let Un denote the nth quotient of the pro-unipotent completion of the
étale fundamental group of XK along the descending central series as in [BDCKW18]. The
Selmer variety is defined so that its set of Qp-points is the set

H1
f (GK ;Un)

of cohomology classes of GK with coefficients in Un that are unramified at closed points of Z
and crystalline at primes over p. Both the group GK and the local conditions are hard to
understand explicitly.

An important observation is that one needs to understand only the category of continuous
p-adic representations of GK that appear in Un and its torsors. More specifically, Un and its
torsors are pro-varieties over Qp, and their coordinates rings are (ind-)objects of a certain
subcategory of the category of all continuous p-adic representations of GK .

This subcategory is the category of mixed Tate p-adic representations of Qp unramified
at closed points of Z and crystalline at places above p; being “mixed Tate” means that its
semi-simplification is a direct sum of tensor powers Qp(n) for n ∈ Z of the p-adic cyclotomic
character. The subcategory of semisimple objects is therefore equivalent to the category
of representations of Gm, so the full category is equivalent by the Tannakian formalism
to the category of representations of a group πMT

1 (Z) isomorphic to an extension of Gm

by a pro-unipotent group. The pro-unipotent group may be determined by computing the
Bloch-Kato Selmer groups H1

f (GK ,Qp(n)) for each n, and these are known ([Sou79]). In this

1See [Kim06], [Kim10], [Kim12a], and [Cor19] for introductions to Kim’s program.
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way, the Selmer variety becomes simply the group cohomology of πMT
1 (Z), with no further

local conditions (other than those encoded in the category itself).
In fact, the category of mixed Tate Galois representations with local conditions mentioned

above is just the extension of scalars from Q to Qp of the category
MT(Z,Q)

of mixed Tate motives over Z with coefficients in Q. This latter category was defined
in [DG05], and its Tannakian fundamental group is denoted πMT

1 (Z). The unipotent de
Rham fundamental group πun

1 (X) is the Tannakian fundamental group of the category of
vector bundles with unipotent integrable connection, and the theory of [DG05] (or the later
theories of [Lev10] and [DCS17]) gives it an action of πMT

1 (Z). This motivic Selmer variety, as
developed in [Had11] and [DCW16], is just the group cohomology of πMT

1 (Z), with coefficients
in (a quotient depending on n of) πun

1 (X).
More specifically, let Π denote a πMT

1 (Z)-equivariant quotient of πun
1 (X). Then there is a

motivic version of Kim’s cutter:
X(Z) � � //

κ

��

X(Zp)

κp

��

H1(πMT
1 (Z),Π)

locΠ

// Π(Qp)

.

The computability of this diagram as opposed to Kim’s original diagram comes from our
precise understanding of the abstract structure of the group πMT

1 (Z) and Goncharov’s study
of certain special functions on it.

1.3.2. Structure of the Category of Mixed Tate Motives. More specifically, every object M of
the category MT(Z,Q) has an ascending filtration W such that for all integers n,

GrW2n−1M = 0,

and
GrW2nM

is a direct sum of copies of Q(−n) = Q(1)⊗−n, where Q(1) is known as the Tate motive and
has Galois realization the cyclotomic character. We will refer to n as the half-weight.

This implies that the subcategory of semisimple objects of MT(Z,Q) is equivalent to the
category of representations of Gm, so πMT

1 is the extension of Gm by a pro-unipotent group,
which we call πun

1 (Z). By the Tannakian formalism, one may describe πun
1 (Z) in terms of the

groups Exti(Q,Q(n)). In fact, one has

Exti(Q,Q(n)) = K
(n)
2n−i(Z) =

 K2n−1(Z)Q, for i = 1, n ≥ 0
0, for n < 0
0, for i > 1

 .

The groups K2n−1(Z)Q are known by the work of Borel ([Bor74]). From now on, we restrict
to the case Z = Z[1/S]. Then K1(Z)Q has dimension S, and for n ≥ 2, K2n−1(Z)Q =
K2n−1(K)Q has dimension 0 for n even and 1 for n odd. By the formalism of pro-unipotent
groups, this implies that the Lie algebra n(Z) of πun

1 (Z) is a free graded Lie algebra with
generators we denote {τ`}`∈S and {σ2n+1}n≥1 in degrees −1 and −2n− 1, respectively (the
degree determines the action of Gm). The coordinate ring of πun

1 (Z), which we denote
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by A(Z), is then a free graded vector space on elements we denote fw, for w a word in
the generators of n(Z). The product and coproduct on A(Z) are the shuffle product and
deconcatenation coproduct, respectively, reviewed in Section 2.1.3.

This means that we have a description of πMT
1 (Z) as an abstract (pro-algebraic) group,

which allows us to determine the structure of H1(πMT
1 (Z),Π), at least when we understand

the action of πMT
1 (Z) on Π. However, we still need a concrete description that allows us to

compute κ, locΠ, and κp in coordinates.

1.3.3. Motivic Periods. It turns out that we may write concrete elements of A(Z) as motivic
polylogarithms of the form Liun(z) for n ∈ Z≥1 and z ∈ Q, as well as motivic logarithms logu(z)
and motivic zeta values ζu(n) for n ∈ Z≥1 (Section 3.2). There is also a ring homomorphism

perp : A(Z)→ Qp

sending Liun(z) to the Coleman ([Col82]) p-adic polylogarithm Lipn(z), and this is expected
to be injective (c.f. Conjecture 2.25). There is also an explicit formula for the (reduced)
coproduct of these elements in the Hopf algebra A(Z), due to Goncharov ([Gon05a]):

∆′ Liun(z) := ∆ Liun(z)− 1⊗ Liun(z)− Liun(z)⊗ 1 =
n−1∑
i=1

Liun−i(z)⊗ (logu(z))Xi

i!
.

To explicitly understand the maps in (motivic) Kim’s cutter, we must say a bit more about
H1(πMT

1 (Z),Π) and Π. To understand H1(πMT
1 (Z),Π), we define for any Q-algebra R:

Z1,Gm

Π (R) := Z1(πun
1 (Z)R,ΠR)Gm ,

the set of Gm-equivariant algebraic cocycles from πun
1 (Z)R to ΠR. By [DCW16, Proposition

5.2.1], we have
H1(πMT

1 (Z),Π) = Z1,Gm

Π (Q).

For Π, we focus on finite-dimensional quotients of the polylogarithmic fundamental group
of X, defined as follows. The group πun

1 (X) is free pro-unipotent in two generators e0 and e1.
Hence, O(πun

1 (X)) has a canonical shuffle basis parametrized by words w in e0 and e1; we
denote its elements by Liuw. We set logu = Liue0 and Lium = Liue1e0···e0 , and ΠPL,n = πPL

1 (X)≥−n
is the quotient corresponding to the subalgebra generated by logu,Liu1, · · · ,Liun.

With this terminology, it is easy to express κ, locΠ, and κp explicitly (c.f. Section 3.4). For
z ∈ X(Z), κ(z) is the cocycle whose induced map on coordinate rings is

Liun 7→ Liun(z)

logu 7→ logu(z).

For a cocycle c ∈ Z1,Gm

Π (Q), we let c] : O(πPL
1 (X)≥−n) → A(Z) denote the associated ho-

momorphism of algebras. Then locπPL
1 (X)≥−n

(c) = locPL,n(c) ∈ πPL
1 (X)≥−n(Qp) is given

by
perp ◦ c].

Finally, for z ∈ X(Zp), κp(z) ∈ πPL
1 (X)≥−n(Qp) is given by

Liun 7→ Lipn(z)

logu 7→ logp(z).

6



1.3.4. The Geometric Step. One important point, already present in [DC15] and [Bro17],
is that locn, despite its apparent p-adic origin, is actually defined over the rationals. More
specifically, we have a universal cocycle evaluation map (c.f. Definition 2.20):

evΠ : Z1,Gm

Π × πun
1 (Z)→ Π× πun

1 (Z).

Letting K denote the function field of πun
1 (Z), we also have the base change from πun

1 (Z) to
SpecK

evKΠ : (Z1,Gm

Π )K → ΠK.

We then let IZΠ denote the ideal of functions in the coordinate ring of ΠK vanishing on the
image of evKΠ. This is known as the Chabauty-Kim ideal (associated to Π). For Π = ΠPL,n,
we denote it by IZPL,n.

If Π is finite dimensional, it will turn out that evKΠ is a morphism of affine spaces over the
field K, and our “geometric step” (c.f. Section 4.2) consists in computing its scheme-theoretic
image. The convenience of this is that it can be done in an abstract basis {fw} of A(Z)
and depends only on the size of S. One particularly useful tool in the geometric step is a
description of a coordinate system on Z1,Gm

PL,n (Proposition 3.10) based on an idea communicated
to the authors by Francis Brown. This enables us to circumvent the computation of the
exponential map, as in 1.10 and 4.2.4 of [DC15].

The results of the geometric step look like:

Liu2−
1

2
logu Liu1

fσ3fτ` Liu4−fσ3τ` logu Liu3−
(logu)3 Liu1

24
(fσ3fτ` − 4fσ3τ`) ,

as elements of IZPL,4 for Z = SpecZ[1/`].

1.3.5. Computing Bases of A(Z) in Low Degrees. To find the Coleman functions associated
to elements of IZPL,n, we must apply perp to the coefficients. To do this for abstract elements
(e.g., fσ3τ`), we must write elements fw ∈ A(Z) in terms of concrete motivic periods of the
form Liun(z), ζu(n), or logu(z). This is done for Z = SpecZ[1/2] and Z = SpecZ[1/3] up to
degree 4 in Section 4.3, and we now summarize how we do it.

We first shrink Z if necessary to a smaller open subscheme Z ′, so that X(Z ′) has enough
elements to generate A(Z ′) in the degrees we want. For Z = SpecZ[1/2], this turns out to
be unnecessary, but for Z = SpecZ[1/3], we must shrink to Z ′ = SpecZ[1/6] as in done in
4.3.2.

We then study An(Z ′) inductively in n. For A1(Z ′), this is easy, since logu(`) corresponds
to fτ` . In higher degrees, we use the reduced coproduct, which we may compute using
Goncharov’s formula, to reduce to the case of lower degrees. Reduced coproducts, however,
can give relations between Liun(z)’s only modulo the kernel of ∆′, which by Proposition 4.3
is generated as a rational vector space in degree 2n + 1 by ζu(2n + 1) = fσ2n+1 and is zero
in even degree. The only general method we know for determining the rational multiple of
ζu(2n+1) is to apply perp for some prime p and approximate the rational number numerically
using [BdJ08].

The Coleman functions we want are polynomials in p-adic polylogarithms whose coefficients
are themselves polynomials with rational coefficients in special values of p-adic polylogarithms.
In general, this method gives us only p-adic approximations of these rational coefficients.

7



Nevertheless, approximations still allow us to p-adically approximate the roots and thereby
verify cases of Kim’s conjecture. Furthermore, in specific instances, one may use functional
equations to verify the desired identities between p-adic polylogarithms, as is done in the
Appendix to [DCW16] and the Appendix (Section 6) to this paper.

We note that these computations are similar to those done in the various articles of Zagier
([Zag91a], [Zag91b], [ZG00], etc.), and in one case (c.f. Remark 6.1), one of our identities
already appears in a paper of Gangl and Zagier. One important difference, however, is that
our computations take place in the Hopf algebra A(Z), rather than in the Bloch groups as in
Zagier’s works. In particular, we must worry about products of lower-degree polylogarithms.

1.4. Notation. For a scheme Y , we let O(Y ) denote its coordinate ring. If R is a ring, we
let Y ⊗R or YR denote the product (or ‘base-change’) Y × SpecR. If Y and SpecR are over
an implicit base scheme S (often SpecQ), we take the product over S. Similarly, if M is
a linear object (such as a module, an algebra, a Lie algebra, or a Hopf algebra), then MR

denotes M ⊗R (again, with the tensor product taken over an implicit base ring).
If f : Y → Z is a morphism of schemes, we denote by f# : O(Z)→ O(Y ) the corresponding

homomorphism of rings. Similarly, if α ∈ Y (R), we have a homomorphism α# : O(Y )→ R.

1.5. Acknowledgements. The first author would like to thank his thesis advisor Bjorn
Poonen for numerous comments and corrections on this paper. He would like to thank Amnon
Besser for various pieces of advice, especially for a trick for going between complex and
p-adic identities in Proposition 6.4. He would like to thank Rob de Jeu, for useful discussion,
eventually leading him to the paper [Zag91a], as well as Don Zagier, for subsequent discussions.
He would like to thank Herbert Gangl for the idea of proving Lemma 6.3 by substituting
x = −1 and y = 1/3 into the Kummer-Spence identity.

The first author was supported by NSF grants DMS-1069236 and DMS-160194, Simons
Foundation grant #402472, and NSF RTG Grant #1646385 during various parts of the
writing of this paper.

Both authors would like to thank Francis Brown for discussions about the subject and
especially for the idea behind Proposition 3.10.

2. Technical Preliminaries

This paper builds on the work of [DCW16], [DC15], and [Bro17]. We recall some of the
important objects in the theory.

2.1. Generalities on Graded Pro-Unipotent Groups.

2.1.1. Conventions for Graded Vector Spaces. Our definition of graded vector space is the
following:

Definition 2.1. A graded vector space is a collection of vector spaces Vi indexed by i ∈ Z.

Definition 2.2. A graded vector space is positive (respectively negative, strictly positive,
strictly negative) if Vi = 0 for i < 0 (respectively, for i > 0, for i ≤ 0, for i ≥ 0).

In general, we will consider only graded vector spaces satisfying one of these four conditions.
Furthermore, unless otherwise stated, we will consider only graded vector spaces {Vi} such that
each Vi is finite-dimensional, which ensures that the double dual is the identity. One must
then be careful when taking tensor constructions to ensure that the result of the construction
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still satisfies this finite-dimensionality condition, as follows. Specifically, we consider the
tensor product only between two graded vector spaces if they are either both positive or both
negative, and we consider the tensor algebra only of a strictly positive or strictly negative
graded vector space.

Remark 2.3. Traditionally, a graded vector space is thought of as an underlying vector space
with extra structure, rather than a collection of vector spaces as in Definition 2.1. For a
collection

V = {Vi}i∈Z
of (finite-dimensional) vector spaces indexed by the integers, we may take either the direct
sum

V
⊕

:=
⊕
i

Vi

or the direct product
V

∏
:=
∏
i

Vi

as our underlying vector space. In general, we use the former for coordinate rings and Lie
coalgebras and the latter for universal enveloping algebras and Lie algebras. As all of our
pro-unipotent groups will be negatively graded, we use the

⊕
notion for positively graded

vector spaces and the
∏

notion for negatively graded vector spaces.
When considering the

∏
notion, we take completed tensor product instead of tensor

product (and similarly for tensor algebras and universal enveloping algebras), and a coproduct
is a complete coproduct, i.e., a homomorphism V → V ⊗̂V . In addition, a set of homogeneous
elements is considered a basis if it generates V in each degree, and a similar remark applies to
bases of algebras and Lie algebras. When taking the dual of a negatively graded vector space,
we take the graded dual and then view the resulting (positively) graded vector space via the⊕

notion. In particular, the double dual is always the original vector space. Nonetheless, we
have the following relation between graded and ordinary (non-graded) duals:

(V
⊕

)∨ = (V ∨)
∏
.

2.1.2. Graded Pro-unipotent Groups. Let U be a pro-unipotent group over Q. Then U is a
group scheme over Q, so its coordinate ring O(U) is a Hopf algebra over Q. We recall that if
O(U) is a Hopf algebra over Q, then it is equipped with a product O(U)⊗O(U)→ O(U), a
coproduct ∆: O(U)→ O(U)⊗O(U), a unit η : Q→ O(U), and a counit ε : O(U)→ Q. The
kernel I(U) of ε is known as the augmentation ideal. We also write ∆′(x) := ∆(x)−x⊗1−1⊗x
for the reduced coproduct. Finally, we say that an element is primitive2 if it is in the kernel of
∆′.

We say that a Hopf algebra A is a graded Hopf algebra if the multiplication A⊗ A→ A,
the coproduct A→ A⊗ A, unit Q→ A, and counit A→ Q, are morphisms of graded vector
spaces, where A⊗ A has the standard grading on a tensor product, and Q is in degree zero.

Definition 2.4. By a grading on U , we mean a positive grading on O(U) as a Q-vector
space such that the degree zero part of O(U) is one-dimensional over Q.

Definition 2.5. If A is a Hopf algebra graded in the sense of Definition 2.4, we let ∆n and
∆′n denote the restrictions of ∆ and ∆′, respectively, to An, the nth graded piece.

2Note that this is unrelated to the term “primitive non-extension” in [DC15, 1.6].
9



Furthermore, ∆n and ∆′n map An into the nth graded piece of A⊗ A, which is⊕
i+j=n

Ai ⊗ Aj.

Definition 2.6. For i + j = n and i, j ≥ 0, we let ∆i,j and ∆′i,j denote the projections of
∆n and ∆′n, respectively, to Ai ⊗ Aj . One may check via the axioms defining a Hopf algebra
that ∆′i,j = 0 when either of i or j is zero.

The reduced coproduct ∆′ induces a (graded) Lie coalgebra structure on I(U)/I(U)2, and
the dual Lie algebra (I(U)/I(U)2)∨ is the Lie algebra n of U . It is a strictly negatively graded
pro-nilpotent Lie algebra. We let UU = Un denote the dual Hopf algebra of O(U), which is
the (completed) universal enveloping algebra of n. The composition

ker(∆′) ↪→ UU = O(U)∨ � I(U)∨

induces an isomorphism between the set of primitive elements of UU and the Lie algebra
n = (I(U)/I(U)2)∨ ⊆ I(U)∨.

Furthermore, for a Q-algebra R, we may identify U(R) with the group of grouplike elements
in (UU)R, i.e., x such that

∆x = x⊗ x.
Evaluation of an an element of O(U) on an element of U(R) is given by evaluation on the
corresponding grouplike element of (UU)R.

The functor sending U to n is known to be an equivalence of categories between graded
pro-unipotent groups and strictly negatively graded pro-nilpotent Lie algebras. For each
positive integer n, the set of elements n<−n is a Lie ideal, and we denote by n≥−n the quotient
n/n<−n. We denote the corresponding quotient pro-unipotent group by

U≥−n,

and it is a unipotent algebraic group. In fact, U is the inverse limit
lim←−
n

U≥−n.

Example 2.7. If n is a one-dimensional Lie algebra generated by an element x, then n is
nilpotent. We have Un = Q[[x]], and O(U) = Q[fx], with both x and fx primitive. Then
U is the group Ga, and the set of grouplike elements of Un is the set of elements of the
form exp(rx) for r ∈ Q. In particular, this demonstrates the usefulness of taking completed
universal enveloping algebras.

2.1.3. Free Pro-unipotent Groups.

Definition 2.8. If V is a strictly negative graded vector space, we may form the free pro-
nilpotent Lie algebra on V as follows. We take the graded tensor algebra TV on V and
put the unique coproduct on it such that all elements of V are primitive. The subspace
of primitive elements of TV forms a graded pro-nilpotent3 Lie algebra, denoted n(V ), with
corresponding pro-unipotent group denoted U(V ). Then n(V ), U(V ) are known as the free
pro-nilpotent Lie algebra and free pro-unipotent group, respectively, on the graded vector
space V .

3The Lie algebra is pro-nilpotent rather than free by Remark 2.3, because it is negatively graded.
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Remark 2.9. The construction V 7→ n(V ) is left adjoint to the forgetful functor from graded
pro-nilpotent Lie algebras to graded vector spaces.

Definition 2.10. If I is an index set with a degree function d : I → Z<0 with finite fibers,
then the free vector space V I on the set I naturally obtains the structure of a negatively
graded In this case, the free pro-unipotent group on the set I is just the free pro-unipotent
group on V I .

In particular, the free pro-unipotent group on a graded vector space is isomorphic to the
free pro-unipotent group on a (graded) basis of that vector space. The Lie algebra is the
pro-nilpotent completion of the usual (non-graded) free Lie algebra on the set I and as such
is generated by the elements of I.

The graded dual Hopf algebra of TV = Un(V ) is the coordinate ring O(U(V )). Let {xi} be
a graded basis of V , so that words w in the {xi} form a basis of Un(V ), and let {fw}w denote
the basis of O(U(V )) dual to {w}. Then O(U(V )) is isomorphic to the free shuffle algebra
on the graded vector space V ∨. Its coproduct is known as the deconcatenation coproduct and
is given by

∆fw :=
∑

w1w2=w

fw1 ⊗ fw2 ,

and the (commutative) product X on O(U(V )), known as the shuffle product, is given by:

fw1Xfw2
:=

∑
σ∈X(`(w1),`(w2))

σ(fw1w2),

where ` denotes the length of a word, X(`(w1), `(w2)) ⊆ S`(w1)+`(w2) denotes the group of
shuffle permutations of type (`(w1), `(w2)), and w1w2 denotes concatenation of words.

Remark 2.11. It follows from the definition of the deconcatenation coproduct that a word
consisting of a single letter is a primitive element of the free shuffle algebra.

2.1.4. Conventions for Products. Let α and β be two paths in a space X. Then in the
literature, the sybmol αβ can have two different meanings. It can either denote:
(i) The path given by going along α and then β
(ii) The path given by going along β and then α
The first is known as the ‘lexical’ order and the second as the ‘functional’ order. In this

paper, we will use the lexical order, in contrast to the convention of [DCW16] (but consistent
with [Bro17]). However, we would like to take a moment to explain how these two conventions
help clarify differing conventions in the literature for iterated integrals, multiple zeta values,
polylogarithms, and more. We will refer to these differing conventions as the lexical and
functional conventions, respectively.

In fact, either convention necessitates a particular convention for iterated integrals. In
general, one wants a “coproduct” formula to hold for iterated integrals (c.f. [Bro12b, §2.1],
[Hai94, 5.1(ii)], or [Hai05, Proposition 5]), by which we mean

(1)
∫
αβ

ω1 · · ·ωn =
n∑
i=0

∫
α

ω1 · · ·ωi
∫
β

ωi+1 · · ·ωn

11



In order for the coproduct to take this nice form (1), our convention for path composition
determines our convention for iterated integrals. More specifically, those that use the lexical
order for path composition use the formula

I(γ(0);ω1, · · · , ωn; γ(1)) :=

∫
γ

ω1 · · ·ωn =

∫
0≤t1≤···≤tn≤1

f1(t1) · · · fn(tn)dt1 · · · dtn,

where γ∗(ωi) = fi(t)dt, and those that use the functional order for path composition use the
formula

I(γ(0);ω1, · · · , ωn; γ(1)) :=

∫
γ

ω1 · · ·ωn =

∫
0≤tn≤···≤t1≤1

f1(t1) · · · fn(tn)dt1 · · · dtn.

Given that these conventions are opposite, the corresponding conventions for the iterated
integral expression for polylogarithms must be opposite. More precisely, the iterated integral
defining a multiple polylogarithm must always begin with dz

1−z in the lexical convention, while
it must always end with dz

1−z in the functional convention. More precisely, let us define

(2) Lis1,··· ,sr(z) :=
∑

0<k1<···<kr

zkr

ks11 · · · ksrr
.

Set e0 = dz
z
and e1 = dz

1−z . Then using the lexical convention for iterated integration, we have:

Lis1,··· ,sr(z) = I(0; e1, e0, · · · , e0︸ ︷︷ ︸
s1−1

, e1, e0, · · · , e0︸ ︷︷ ︸
s2−1

, · · · , e1, e0, · · · , e0︸ ︷︷ ︸
sr−1

; z).

In fact, the definition itself of Lis1,··· ,sr(z) depends on the convention. More specifically, if
we were to use the functional convention for iterated integrals in tandem with (2), we would
get:

Lis1,··· ,sr(z) = I(0; e0, · · · , e0︸ ︷︷ ︸
sr−1

, e1, e0, · · · , e0︸ ︷︷ ︸
sr−1−1

, · · · , e1, e0, · · · , e0︸ ︷︷ ︸
s1−1

, e1; z).

This is precisely the formula that appears in [BL11, (1.4)]. However, most authors prefer
the si’s to appear in the iterated integral in the same order as they do in the argument of
the function. Therefore, almost all papers that use the functional convention for iterated
integration will write:

Lis1,··· ,sr(z) :=
∑

k1>···>kr>0

zkr

ks11 · · · ksrr
.

As a result, one then writes:
Lis1,··· ,sr(z) = I(0; e0, · · · , e0︸ ︷︷ ︸

s1−1

, e1, e0, · · · , e0︸ ︷︷ ︸
s2−1

, · · · , e1, e0, · · · , e0︸ ︷︷ ︸
sr−1

, e1; z).

Thus, the convention one uses for path composition determines the convention one uses for
Lis1,··· ,sr(z) (except in [BL11]). Similarly, the two conventions for multiple zeta values follow
this paradigm. Specifically, those who use the lexical convention write

ζ(s1, · · · , sr) =
∑

k1>···>kr>0

1

ks11 · · · ksrr
,

12



and those who use the functional convention write

ζ(s1, · · · , sr) =
∑

k1>···>kr>0

1

ks11 · · · ksrr
.

Note, however, that Lin always denotes the same function (both as a multi-valued complex
analytic function, a Coleman function, and an abstract function on the de Rham fundamental
group), no matter which convention one uses. In fact, this brings us back to the two conventions
for path composition. The fact that some write Liun (c.f. Section 3.1) as e1 e0 · · · e0︸ ︷︷ ︸

n−1

and others

write it as e0 · · · e0︸ ︷︷ ︸
n−1

e1, yet both denote the exact same regular function on the unipotent

de Rham fundamental group of P1 \ {0, 1,∞}, is due to the differing conventions for path
composition.

As we use the lexical convention, one will find the coproduct formula

(3) ∆′ Liun =
n−1∑
i=1

Liun−i⊗
(logu)Xi

i!

in this paper (3.1). With the other convention, one must write

∆′ Liun =
n−1∑
i=1

(logu)Xi

i!
⊗ Liun−i .

More subtly, these conventions affect the convention one uses for the motivic coproduct.
More specifically, if we use the lexical convention, we want to also be able to write

(4) ∆′ Liun(z) =
n−1∑
i=1

Liun−i(z)⊗ (logu(z))Xi

i!

rather than its opposite. This formula is correct as long as we use the lexical order for
composition in πun

1 (Z) (which, in particular, comes out in how one writes the Goncharov
coproduct of [Gon05a]; Goncharov uses the lexical order himself). Theoretically, one could
use one convention for composition in πun

1 (X) and another for composition in πun
1 (Z), but

that would cause formulas (3) and (4) to conflict with each other.
One important implication of the difference in formulas for the motivic coproduct is:

Remark 2.12. Our fστ is actually the φ1.3 of [DCW16, 7.6.1], even though the notation would
suggest it is φ3.1.

In terms of authors and sources, one may find the lexical convention and/or the other
conventions that go along with it in [Bro14a, §1.2], [Hai94, §5], [Hai05, Definition 2], [Bro17,
(9.1)], [Hai87, Definition 1.1], [Bro12b, Definition 2.1], [Gon05a], [Che77, (1.1.1)], [Fur04,
(0.1)], [Gon05b, (2)], [Gon, (1), (2), (4), and Definition 1.2], [Gon95, §11], [Zag93], [Zag94],
[Ter02], and [Rab96]. One may also find conventions for multiple zeta values consistent with
this convention in other articles by Francis Brown, such as [Bro12a], [Bro13], [Bro14a], and
[Bro14b].

On the other hand, in [DCW16, 1.16], [DG05, 5.16.1], [Car02, (79)], [Del10, (0.1) and
5.1A], [Del13], [Hof97], [Rac02], [Sou10], [DC15, 2.2.4], and [Bro04], one finds the functional
conventions.
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2.2. The Various Fundamental Groups.

2.2.1. The Mixed Tate Fundamental Group of Z.

Definition 2.13. An open integer scheme is an open subscheme of SpecOK , where K is a
number field and OK its ring of integers.

Let Z ⊆ SpecOK be an open integer scheme, MT(Z,Q) its Tannakian category of mixed
Tate motives with Q-coefficients, which exists by [DG05]4. This is a category with realization
functors

realσ : MT(Z,Q)→ MHSQ

to mixed Hodge structures with Q-coefficients for each embedding σ : K ↪→ C and

real` : MT(Z,Q)→ RepQ`
(GK)

to `-adic representations of GK for each prime `. The image of each realization functor
consists of mixed Tate objects, i.e., objects with a composition series consisting of tensor
powers of the image of the Tate object Q(1) := h2(P1;Q).

Definition 2.14. A continuous Q`-representation of GK for a number field K is said to have
good reduction at a non-archimedean place v of K if either v - `, and the representation is
unramified at v, or if v | `, and the representation is crystalline at v.

The `-adic realizations of an object of MT(Z,Q) form a compatible system of Q`-Galois
representations with good reduction at closed points of Z (in particular, crystalline at primes
dividing `). If (X,D) is a pair of a scheme and codimension 1 subscheme, both smooth
and proper over Z and rationally connected, then the relative cohomology h∗(X,D;Q) is an
object of this category such that

realσ(h∗(X,D;Q)) = H∗Betti(X
an
σ (C), Dan

σ (C);Q),

real`(h∗(X,D;Q)) = H∗ét(XK , DK ;Q`),

with their associated mixed Hodge structure and continuous GK-action, respectively.
The only simple objects of MT(Z,Q) are the objects Q(n) := Q(1)⊗n for n ∈ Z, each

object has a finite composition series, and the extensions are determined by the fact that
Ext1(Q(0),Q(n)) = K2n−1(Z)Q

Exti = 0 ∀ i ≥ 2.

The groups K2n−1(Z)Q are known by the work of Borel ([Bor74]). For n = 1, we have
K1(Z) = O(Z)×, and for n ≥ 2, K2n−1(Z)Q = K2n−1(K)Q has dimension r2 for n even
and r1 + r2 for n odd, where r1 and r2 are the numbers of real and complex places of K,
respectively.

4It is constructed by putting a t-structure due to [Lev93] on a certain subcategory of Voevodsky’s
triangulated category DMgm(K) of [Voe00], taking the heart of that t-structure, and finally taking the
subcategory of objects with good reduction at closed points of Z. The category DMgm(K) is defined by
taking a certain localization of the category of complexes of smooth varieties over a field with correspondences
as morphisms, then taking its pseudo-abelian envelope, and finally inverting the Tate object Q(1). However,
we will need only the properties of MT(Z,Q), not its construction.
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Definition 2.15. Let M be an object of MT(Z,Q). Then M has an increasing filtration
WiM known as the weight filtration. The quotient WiM/Wi−1M is trivial when i is odd and
is isomorphic to a direct sum of copies of Q(−i/2) when i is even. We let

Can(M) :=
⊕
i∈Z

HomMT(Z,Q)(Q(−i),W2iM/W2i−1M),

and we call this the canonical fiber functor.

Then the category MT(Z,Q) is a neutral Q-linear Tannakian category with fiber functor
Can, and we let πMT

1 (Z) denote its Tannakian fundamental group, which is therefore a
pro-algebraic group over Q.

The subcategory of simple objects of MT(Z,Q) consists of direct sums of tensor powers of
Q(1) and is therefore equivalent as a Tannakian category to the category of representations
of Gm. This inclusion induces a quotient map πMT

1 (Z) � Gm, and we let πun
1 (Z) denote the

kernel of this quotient. The functor sending an object M of MT(Z,Q) to the direct sum⊕
i∈ZWiM/Wi−1M gives a splitting of this inclusion of categories, which implies that the

quotient map πMT
1 (Z) � Gm splits.

This implies that MT(Z,Q) has fundamental group

πMT
1 (Z) = πun

1 (Z) oGm,

where πun
1 (Z) is the maximal pro-unipotent subgroup of πMT

1 (Z). The action of Gm on
πun

1 (Z) by conjugation gives an action of Gm, or equivalently, a grading, on the Hopf algebra
of πun

1 (Z). This associated graded Hopf algebra is denoted
∞⊕
i=0

A(Z)i = A(Z) := O(πun
1 (Z)),

where A(Z)i denotes the nth graded piece. We refer to the degree on A(Z) as the half-weight,
since it is half the ordinary motivic weight.

In fact, the description of the Ext groups gives us the following information. It gives a
canonical embedding of graded vector spaces

∞⊕
n=1

K2n−1(Z)Q ↪→ A(Z),

with K2n−1(Z)Q in degree n, and whose image is the set of primitive elements of A(Z).
Equivalently, this gives a canonical isomorphism

πun
1 (Z)ab ∼=

(
∞⊕
n=1

K2n−1(Z)Q

)∨
.

In fact, this canonical isomorphism extends to an isomorphism between πun
1 (Z) and the free

pro-unipotent group (Definition 2.8) on the graded vector space (
⊕∞

n=1 K2n−1(Z)Q)
∨, with

(K2n−1(Z))∨ in degree −n, but this extension is not canonical. This last fact tells us that
there is a non-canonical isomorphism between A(Z) and the free shuffle algebra on the graded
vector space

⊕∞
n=1 K2n−1(Z)Q, with K2n−1(Z) in degree n. This non-canonicity is the key to

a later consideration; see Remark 4.2.
Furthermore, it is not hard to show that Ext1(Q(0),Q(n)) is isomorphic to the space of

degree n primitive elements of A(Z); see Proposition 4.3 below.
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For Z ′ ⊆ Z an open subscheme, we have an inclusion MT(Z,Q) ⊆ MT(Z ′,Q), which
gives rise to a quotient map πMT

1 (Z ′) � πMT
1 (Z) that is an isomorphism on Gm and hence

to an inclusion
A(Z) ⊆ A(Z ′)

of graded Hopf algebras. There is also a graded Hopf algebra A(SpecK), which is the union
of A(Z) for Z ⊆ SpecOK , and we may view all such A(Z) as lying inside A(SpecK). If p is
a point of SpecOK \ Z and α ∈ A(Z), we say α is unramified at p if

α ∈ A(Z ∪ {p}) ⊆ A(Z).

2.2.2. The de Rham Unipotent Fundamental Group of X. For the rest of this paper, we let
X = P1 \ {0, 1,∞} over Z.

Definition 2.16. For x an element of X(Q) or a rational tangential basepoint (as defined in
[Del89, §15]), we let

π1(X;x)

denote the unipotent de Rham fundamental group of XQ at x. It is the fundamental group
of the Tannakian category of algebraic vector bundles with nilpotent connection on XQ with
fiber functor the fiber at x. For x = ~10, the vector 1 at the point 0, we denote it simply by

πun
1 (X).

This pro-unipotent group over Q is a free pro-unipotent group on the graded vector space
consisting of HdR

1 (XQ) in degree −1 (and zero in other degrees). Dually, its coordinate ring is
generated by words in holomorphic differential forms on X, which are integrands of interated
integrals.

By the construction in [DG05, §3], πun
1 (X) is in MT(Z,Q) (in the sense that its coordinate

ring and Lie algebra are each an Ind-object and pro-object, respectively, of MT(Z,Q)). It
therefore carries an action of πMT

1 (Z), whose restriction to Gm induces the grading.
More generally, for any two rational basepoints a, b of X (tangential or ordinary), there is

an object bPa
5 in MT(Z,Q) (again by [DG05, §3]). It is a torsor on the left under π1(X; b)

and on the right under π1(X; a), and it reduces to π1(X;x) when a = b = x. There is
a canonical Q-point of the torsor bPa, known as the canonical de Rham path, defined as
the unique point in F 0

bPa. This implies that as a group, π1(X;x) does not depend on the
basepoint x. However, the canonical point is not in general fixed under the action of πMT

1 (Z),
and thus the πMT

1 (Z)-action does depend on x.

Remark 2.17. By an argument analogous to the proof of [BDCKW18, Corollary 2.9], one
may check that all of these constructions (in particular, the Chabauty-Kim locus, c.f., Section
2.5) are the same if we replace ~10 by any other Z-integral basepoint of X.

Remark 2.18. We will often consider πMT
1 (Z)-equivariant quotients πun

1 (X) � Π, especially
when Π is finite-dimensional as a scheme over Q (hence an algebraic group). Unless otherwise
stated, it is always understood that Π is such a quotient.

A standard example is Πn := πun
1 (X)≥−n. However, in most of our calculations, we will be

concerned with quotients that factor through πPL
1 (X), whose precise definition we recall in

Section 2.6.
5As [DG05] uses the functional convention for path composition, this is in fact the torsor of paths from a

to b.
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We write n(Z), n(X), and nPL(X) for the corresponding Lie algebras.

2.3. Cohomology and Cocycles. We let H1(πMT
1 (Z), πun

1 (X)) denote the (pointed) set of
πMT

1 (Z)-equivariant torsor schemes under πun
1 (X).

For b ∈ X(Z), the torsor bP~10
is a πMT

1 (Z)-equivariant torsor under ~10
P~10

= πun
1 (X), hence

an element of H1(πMT
1 (Z), πun

1 (X)).
We therefore have the Kummer map

X(Z)
κ−→ H1(πMT

1 (Z), πun
1 (X)),

and by composition with the map induced by πun
1 (X) � Π,

X(Z)
κ−→ H1(πMT

1 (Z),Π).

Definition 2.19. For any Q-algebra R, we define

Z1,Gm

Π (R) := Z1(πun
1 (Z)R,ΠR)Gm ,

which is the set of morphisms of schemes from πun
1 (Z)R to ΠR over R, equivariant with respect

to the Gm-action, and satisfying the cocycle condition on the R′-points for any R-algebra R′.

[Bro17, Proposition 6.4] ensures that this is representable by a scheme (also see Corollary
3.11). We thus write

Z1,Gm

Π = Z1,Gm

Π (Z) := Z1(πun
1 (Z),Π)Gm

for the scheme of Gm-equivariant cocycles. If Π is finite-dimensional, then this is in fact a
finite-dimensional variety over Q.

By [DCW16, Proposition 5.2.1], we have

H1(πMT
1 (Z),Π) = Z1,Gm

Π (Q).

Definition 2.20. The universal cocycle evaluation map

evΠ : Z1,Gm

Π × πun
1 (Z)→ Π× πun

1 (Z)

is defined on the functors of points as follows. For a Q-algebra R and an element (c, γ) ∈
(Z1,Gm

Π )R(R)×πun
1 (Z)R(R) = (Z1,Gm

Π ×πun
1 (Z))(R), we have c(γ) ∈ ΠR(R) = Π(R). We define

evΠ(c, γ) to be the pair (c(γ), γ).

In fact, the morphism evΠ lies over the identity morphism on πun
1 (Z), so letting K denote

the function field of πun
1 (Z), we also have the base change from πun

1 (Z) to SpecK
evKΠ : (Z1,Gm

Π )K → ΠK.

Remark 2.21. The advantage of working over K rather than πun
1 (Z) is that if Π is finite

dimensional, then evKΠ is a morphism of affine spaces over the field K, so one may use
elimination theory to compute its scheme-theoretic image. This computation is our “geometric
step” (see Section 4.2).

Definition 2.22. We let IZΠ denote the ideal of functions in the coordinate ring of ΠK
vanishing on the image of evKΠ. This is known as the Chabauty-Kim ideal (associated to Π).
For Π = Πn, we denote it by IZn .
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2.4. p-adic Realization and Kim’s Cutter. Let p be a closed point of Z. For simplicity,
we suppose that Zp

∼= SpecZp.
If ω ∈ O(πun

1 (X)), and a, b are Zp-basepoints of X (rational or tangential), then we can
extract an element of Qp known as the Coleman iterated integral

∫ b
a
ω. The Coleman iterated

integral is originally due to Coleman ([Col82]) and was reformulated by Besser [Bes02] into
the form that is used in [DCW16].

Definition 2.23. Fix a = ~10, and let b vary over X(Zp). We define the local Kummer map

X(Zp)
κp−→ πun

1 (X)(Qp)

by sending a regular function ω on πun
1 (X) to the Coleman function κ]p(ω) : X(Zp) → Qp

defined by b 7→
∫ b
a
ω. Its composition with πun

1 (X)(Qp)→ Π(Qp) is also denoted by κp.

The local Kummer map is Coleman-analytic, meaning that regular functions on πun
1 (X)

pull back to Coleman functions on X(Zp). These are locally analytic functions, and a nonzero
such function has finitely many zeroes.

Remark 2.24. The local Kummer map in this form was originally referred to in [Kim05] as
the p-adic unipotent Albanese map. It is the same as the map α of [DCW16, 1.3]. The latter
is defined by sending b to the torsor of paths from a to b (with its structure as a filtered
φ-module)

2.4.1. p-adic Period Map. In addition, there is a morphism SpecQp → πun
1 (Z) (given by the

map η of [CU13] for x = p), or equivalently a Q-algebra homomorphism
perp : A(Z)→ Qp,

known as the p-adic period map. While elements of A(Z) are represented by formal (motivic)
iterated integrals, this homomorphism takes the value of the iterated integral in the sense of
Coleman integration.

The following may be regarded as a p-adic analogue of a small piece of the Kontsevich-Zagier
period conjecture ([KZ01]). It has been in folklore for some time and appears in the literature
for K/Q abelian as [Yam10, Conjecture 4].

Conjecture 2.25 (p-adic Period Conjecture). For any open integer scheme Z, the period
map perp : A(Z)→ Qp is injective.

2.4.2. Kim’s Cutter. Viewing evΠ as a morphism of schemes over πun
1 (Z) and base-changing

along the p-adic period map SpecQp → πun
1 (Z), we get a morphism (Z1,Gm

Π )Qp → ΠQp .
The induced map on Qp-points is denoted by locΠ. Denoting the composition X(Z)

κ−→
H1(πMT

1 (Z),Π) = Z1,Gm

Π (Q) ⊆ Z1,Gm

Π (Qp) by κ as well, this fits into a diagram:

X(Z) � � //

κ
��

X(Zp)

κp

��

Z1,Gm

Π (Qp)
locΠ

// Π(Qp)

,

which we call Kim’s Cutter.
This diagram is commutative (c.f. [DCW16], 4.9). In Section 3.4, we will describe κ and

κp explicitly in terms of coordinates.
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2.5. Chabauty-Kim Locus.

Definition 2.26. Let f ∈ O(Π×πun
1 (Z)). Now perp induces a morphism ΠQp → Π×πun

1 (Z),
and f pulls back via this morphism to an element of the coordinate ring of ΠQp , hence a

function Π(Qp)
fQp−−→ Qp. The composition

fQp ◦ κp

with X(Zp)
κp−→ Π(Qp) is a Coleman function on X(Zp) and is denoted f �X(Zp).

Definition 2.27. We then define the Chabauty-Kim locus

X(Zp)Π = X(Zp)
Z
Π := {z ∈ X(Zp) : f �X(Zp) (z) = 0 ∀ f ∈ O(Π× πun

1 (Z)) ∩ IZΠ}.
While this set depends on Z, we write X(Zp)Π when there is no confusion.
Any f ∈ O(Π×πun

1 (Z))∩IZΠ vanishes on the image of evΠ : Z1,Gm

Π ×πun
1 (Z)→ Π×πun

1 (Z),
hence also on the image of locΠ. By the commutativity of Kim’s Cutter, f �X(Zp) vanishes on
X(Z), hence

X(Z) ⊂ X(Zp)Π.

We note that if Π′ dominates Π (i.e., we have πun
1 (X) � Π′

p
−−� Π), then p#(IZΠ) ⊆ IZΠ′ ,

hence X(Zp)Π′ ⊆ X(Zp)Π.
For Π = Πn, we denote X(Zp)Π by X(Zp)n. Kim ([Kim05, Kim12b]) showed that X(Zp)n

is finite for sufficiently large n when K is totally real.

Remark 2.28. The locus originally defined by Kim and used in [BDCKW18, p.371], which
we denoted X(Zp)

Z
n,Kim in the introduction, differs slightly from our own in that it uses a

version of IZΠ defined as the ideal of functions vanishing on the image of the base change of
evΠ along perp. That ideal could in principle be larger than our own, producing a possibly
smaller locus. However, as explained in [DC15, 4.2.6], Conjecture 2.25 implies that these
two are the same, so we expect the same results when doing it this way. Furthermore, our
version of Kim’s conjecture (Conjecture 2.31) is a priori stronger than the original version
(Conjecture 1.1) because

X(Zp)
Z
n,Kim ⊆ X(Zp)n,

so our theorems apply to his conjecture either way.

2.6. The Polylogarithmic Quotient. We let N denote the kernel of the homomorphism
πun

1 (X)→ πun
1 (Gm) induced by the inclusion X ↪→ Gm, where πun

1 (Gm) refers to the unipotent
de Rham fundamental group of (Gm)Q.

Definition 2.29. Following [Del89], we define the polylogarithmic quotient

πPL
1 (X) := πun

1 (X)/[N,N ].

The group πMT
1 (Z) acts on πun

1 (Gm) as well as πun
1 (X), and because πun

1 (X)→ πun
1 (Gm)

is induced by a map of schemes over Z, it is πMT
1 (Z)-equivariant. Therefore, N and hence

[N,N ] are πMT
1 (Z)-stable, so πPL

1 (X) has a structure of a motive, i.e., an action of πMT
1 (Z).

As a motive, it has the structure

πPL
1 (X) = Q(1) n

∞∏
i=1

Q(i)

(c.f.[Del89, 16] and [DG05, 6]) so in particular the action of πMT
1 (Z) factors through Gm.
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Remark 2.30. In Section 3.1, we will describe πPL
1 (X) more explicitly in coordinates.

In the specific case Π = ΠPL,n := πPL
1 (X)≥−n for a positive integer n, we write Z1,Gm

PL,n , evPL,n,
locPL,n, IZPL,n, and X(Zp)PL,n to denote Z1,Gm

Π , evΠ, locΠ, IZΠ , and X(Zp)Π, respectively.
Since πun

1 (Z) acts trivially on πPL
1 (X), a Gm-equivariant cocycle

c : πun
1 (Z)→ πPL

1 (X)

is just a Gm-equivariant homomorphism.
If Π is a quotient of ΠPL,n, then any Gm-equivariant homomorphism πun

1 (Z)→ Π must be
zero on πun

1 (Z)<−n by the Gm-equivariance, so Z1,Gm

Π is the same as

Z1(πun
1 (Z)≥−n,Π)Gm .

It follows that we can in fact view evPL,n as a morphism

Z1,Gm

PL,n × π
un
1 (Z)≥−n → ΠPL,n × πun

1 (Z)≥−n

lying over the identity on πun
1 (Z)≥−n. Letting Kn denote the function field of πun

1 (Z)≥−n, it
induces a map

evKn
PL,n : (Z1,Gm

PL,n )Kn → (ΠPL,n)Kn

of finite-dimensional affine spaces over the field Kn, and we view IZPL,n as an ideal in
O((ΠPL,n)Kn).

2.7. Kim’s Conjecture. Recall that X(Zp)n denotes the Chabauty-Kim locus associated
to the quotient Πn = πun

1 (X)≥−n, and that by Remark 2.28, it contains and is expected to be
equal to X(Zp)

Z
n,Kim. In the introduction, we stated Conjecture 1.1 from [BDCKW18], which

uses X(Zp)
Z
n,Kim, but we now state the variant of this conjecture that we will focus on:

Conjecture 2.31. X(Z) = X(Zp)n for sufficiently large n.

As explained in Remark 2.28, this variant implies Conjecture 1.1, and is implied by
Conjecture 1.1 and Conjecture 2.25 together. From now on, we focus entirely on Conjecture
2.31.

In fact, dimension counts show that IZPL,n is nonzero; hence X(Zp)PL,n is finite for sufficiently
large n. To make the conjecture more computationally accessible, one would like an analogue
of Conjecture 2.31 for the polylogarithmic quotient. As explained in the introduction, one
might therefore hope that X(Z) = X(Zp)PL,n for sufficiently large n, which would be a
strengthening of Conjecture 2.31. However, as we will show in Section 5, this is not the case
(at least for Z = SpecZ[1/`] and odd primes `). Nonetheless, we show how to get around
this difficulty while still using only polylogarithms, by using a certain S3-symmetrization.

More specifically, there is an action of S3 on the scheme X. We then write

X(Zp)
S3
PL,n :=

⋂
σ∈S3

σ(X(Zp)PL,n).

Our symmetrized conjecture is that

Conjecture 2.32. X(Z) = X(Zp)
S3
PL,n for sufficiently large n.

To relate this to Conjecture 2.31, we prove:
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Proposition 2.33. Conjecture 2.32 implies Conjecture 2.31 (and hence by Remark 2.28,
Conjecture 1.1 as well).

Proof. The S3-action on X gives a πMT
1 (Z)-equivariant isomorphism from the de Rham

fundamental group with basepoint ~10 to the de Rham fundamental group with basepoint
σ(~10), which descends to an isomorphism on πun

1 (X)≥−n. It follows by independence of
basepoint (Remark 2.17) and functoriality of all the constructions that σ(X(Zp)n) = X(Zp)n,
so by X(Zp)n ⊆ X(Zp)PL,n, we have

X(Zp)n ⊆ X(Zp)
S3
PL,n,

from which the result follows. �

In Theorem 5.5, we use our computations to verify Conjecture 2.32 for Z = SpecZ[1/3]
and p = 5, 7.

3. Coordinates

3.1. Coordinates on the Fundamental Group. Let {e0, e1} be a basis of HdR
1 (XQ) dual

to the basis
{
dz
z
, dz

1−z

}
of H1

dR(XQ). The algebra Uπun
1 (X) is the free (completed) non-

commutative algebra on the generators e0 and e1, with coproduct given by declaring that e0

and e1 are primitive and grading given by putting both in degree −1. We refer to the words
e0, e1, e1e0, e1e0e0, . . .

as the polylogarithmic words. We let the elements
logu,Liu1,Liu2, · · · ∈ O(πun

1 (X))

be the duals of these words with respect to the standard basis of Uπun
1 (X). More generally,

for a word w in e0, e1, we let Liuw denote the dual basis element of O(πun
1 (X)).

Proposition 3.1. We have
∆′ logu = 0

∆′ Liun =
n−1∑
i=1

Liun−i⊗
(logu)Xi

i!
.

Proof. The first equation follows from Remark 2.11.
By the discussion following Definition 2.8, we have the formula

∆′ Liun = ∆′ Liue1e0···e0 = Liue1 ⊗Liue0···e0 + Liue1e0 ⊗Liue0···e0 + · · ·+ Liue1e0···e0 ⊗Liue0 .

By the definition of the shuffle product, we have the formula
(logu)Xi = (Liue0)Xi = i! Liu(e0)i .

The previous two formulas together with the definition of Liun then imply the proposition.
�

Letting PPL be the subalgebra generated by logu,Liu1,Liu2, . . . , the formula above implies
that PPL is a Hopf subalgebra. It therefore corresponds to a quotient group of πun

1 (X). It
follows from [DCW16, Proposition 7.1.3] that this quotient group is the group πPL

1 (X).
Furthermore, we have

O(ΠPL,n) = Q[logu,Liu1, . . . ,Liun]
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as a Hopf subalgebra of PPL = O(πPL
1 (X)).

Given a cocycle c ∈ Z1,Gm

PL , we write c] : PPL → A(Z) for the associated homomorphism of
Q-algebras, and we write

logu(c) := c] logu,

Liun(c) := c] Liun .

Corollary 3.2. For c ∈ Z1,Gm

PL (Q), we have

∆′ logu(c) = 0

∆′ Liun(c) =
n−1∑
i=1

Liun−i(c)⊗
(logu(c))Xi

i!
.

Proof. The cocycle condition reduces to the homomorphism conditions (as we are restricting
ourselves to the polylogarithmic quotient), which means, dually, that c] respects the coproduct.
The corollary then follows immediately from Proposition 3.1. �

3.2. Generating A(Z). We take a moment to discuss coordinates for the Galois group
πun

1 (Z). On an abstract level, this is a free unipotent group, and its structure is governed
by the theory of Section 2.1. However, we need to be able to write elements of A(Z) in a
way that allows us to compute their p-adic periods. This essentially means writing them as
explicit combinations of special values of polylogarithms and zeta functions.

We introduce the notation
logu(z) := logu(κ(z)) ∈ A(Z)1

Liun(z) := Liun(κ(z)) ∈ A(Z)n
for z ∈ X(Z). It is the same as the motivic period Liun(z) mentioned in [Bro17, (9.1)] and
[DC15, 2.2.4], which justifies the notation Liun(c) in the previous section.

Because logu is pulled back from Gm, we in fact have logu(z) ∈ A(Z) whenever z ∈ Gm(Z).
We also note:

Fact 3.3. For z, w ∈ X(Z), we have
logu(zw) = logu(z) + logu(w)

and
Liu1(z) = − logu(1− z).

Letting c1 denote the cocycle corresponding to the class of the path torsor ~−11
P~10

in
H1(πMT

1 (Z), πun
1 (X)), we write

ζu(n) := Liun(c1) ∈ A(Z)n.

It is not clear a priori that the special values Liun(z) for z ∈ X(Z) span the space A(Z)
(whether we leave Z fixed or take a union over various Z, such as all Z with a fixed function
field K, or even all Z whose function field is cyclotomic). However, in the case K = Q, there
is the following conjecture of Goncharov:

Conjecture 3.4 ([Gon], Conjecture 7.4). The ring A(Q) is spanned by elements of the form
Liuw(z) for z a rational point or rational tangential basepoint of P1 \ {0, 1,∞} and w a word
in e0, e1.
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For our purposes, it is better to have a version of this conjecture with some control on
ramification. The papers [DCW16] and [DC15] observed that one might need to replace
Z by an open subscheme Z ′ and consider elements of the form Liuw(z) for z ∈ X(Z ′), even
to generate A(Z). More specifically, [DCW16, 3.5], proposed an “Archimedean condition,”
which is equivalent to the following definition:

Definition 3.5. We say that an integral scheme Z with function field Q is tapered if there
exists N ∈ Z>0 ∪ {∞} such that Z ∼= SpecZ[1/S] for S = {p prime; p ≤ N}.

[DCW16, 3.5] then expressed the following as a “Naive Hope,” a phrase we retain:

Naive Hope 3.6. If Z is tapered, then the ring A(Z) is spanned by elements of the form
Liuw(z) for z a Z-integral point or tangential basepoint of P1 \ {0, 1,∞}.

This is known in the cases N = 1 ([Bro12a]) and N = 2 ([Del10]), and the case N =∞
is Conjecture 3.4. Furthermore, [DCW16, 3.6] proves it in degrees ≤ 2. Finally, [DC15,
Conjecture 2.2.7] states a weaker version of this as a conjecture.

This history is important because the current paper is the first to put the preceding hopes
and conjectures into practice. In our work, we do not need to make a precise conjecture; we
will take all of this as expressing a principle that one may need to consider z ∈ X(Z ′) for Z ′ an
open subscheme of Z. In Section 4.3, we will demonstrate this in practice by writing elements
of A(Z[1/3]) in terms of values of polylogarithms at elements of P1 \ {0, 1,∞}(Z[1/6]).

Remark 3.7. In doing so, we will find that all of these may be written in terms of single
(rather than multiple) polylogarithms. This is in line with a conjecture of Goncharov about
the depth filtration, as we now describe. We let

nG(Z) := n(Z)/[n(Z)<−1, [n(Z)<−1, n(Z)<−1]],

πG1 (Z) the corresponding quotient group, and AG(Z) its coordinate ring. It follows by the
definition of πPL

1 (X) that
Z1,Gm

PL,n = Z1(πG1 (Z)≥n,ΠPL,n)Gm .

In particular, each Liun(z) is in AG(Z), and Goncharov’s conjecture ([Gon, Conjecture 7.6])
implies that AG(Z) is spanned by elements of the form Liun(z) when Z = SpecQ. Whenever
K is totally real, and Z is missing at most two primes, nG(Z) agrees with n(Z) in degrees
≥ −4; hence it is reasonable to look only among single polylogarithms in the examples in
this paper (but see Remark 3.8).

Remark 3.8. Formulating a precise conjecture that involves both restriction to an open
subscheme Z ′ ⊆ Z and restriction to the Goncharov quotient nG(Z) requires a lot of care; for
we expect nG(Z)n to grow with n, which by Siegel’s Theorem implies that AG(Z) cannot be
generated by single polylogarithms Liun(z) for z ∈ X(Z), regardless of Z. Therefore, we may
view Remark 3.7 as a heuristic for now, and our computations in 4.3.2 justify themselves.
[DCC18, Conjecture 3.6] gives a conjecture that takes both into account, but only in bounded
weight.

3.3. Coordinates on the Space of Cocycles. Fix an arbitrary family Σ = {σn,i} of
homogeneous free generators for n(Z) with σn,i in half-weight −n, and for each word w of
half-weight −n in the above generators, let fw denote the associated element of An = A(Z)n.
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The following proposition was communicated to the authors in an unpublished letter by
Francis Brown. It provides equivalent information to the geometric algorithm in [DC15], but
it allows one to avoid computing the logarithm in a unipotent group, making the algorithm
much more practical.

Definition 3.9. For an arbitrary cocycle c ∈ Z1,Gm

PL (R) for a Q-algebra R, a polylogarithmic
word λ of half-weight −n, and a word w in the elements of Σ of half-weight −n, let

φwλ (c) ∈ Q
denote the associated matrix entry of c], so that in the notation above, we have

Liuλ(c) =
∑
w

φwλ (c)fw.

Proposition 3.10. Let c ∈ Z1,Gm

PL (R) for a Q-algebra R. For 0 ≤ r < n, τ1, . . . , τr ∈ Σ−1,
and σ ∈ Σr−n, we have

φστ1···τre1e0 · · · e0︸ ︷︷ ︸
n

(c) = φτ1e0(c) · · ·φτre0(c)φσe1e0 · · · e0︸ ︷︷ ︸
n−r

(c),

and all other matrix entries φwλ (c) vanish.

Proof. This amounts to a straightforward verification, but we nevertheless give the details.
We begin with a formal calculation, in which Σ−1 may be an arbitrary finite set, and {aτ}τ∈Σ−1

a family of commuting coefficients. In this abstract setting, we claim that ∑
τ∈Σ−1

aτfτ

Xn

= n!
∑

τ1,...,τn∈Σ−1

aτ1 · · · aτnfτ1···τn .

Indeed, the left side of the equation

=
∑

τ1,...,τn

(aτ1fτ1)X · · ·X(aτnfτn)

=
∑

τ1,...,τn

aτ1 · · · aτn


∑

permutations p

of τ1,...,τn

fτp1 ···τ
p
n


=
∑
p

∑
τ1,...,τn

aτ1 · · · aτnfτp1 ···τpn︸ ︷︷ ︸
independent of p

,

which equals the right side of the equation.
Returning to our concrete situation, we apply the reduced coproduct ∆′ to both sides of∑

|w|=−(n+1)

φwn+1(c)fw = Liun+1(c),
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and compute:∑
w′,w′′

φw
′w′′

n+1 (c)fw′ ⊗ fw′′ =
n∑
i=1

Liun+1−i(c)⊗
(logu(c))Xi

i!
(5)

=
n∑
i=1

(
Liun+1−i(c)⊗

(
∑

τ∈Σ−1
φτe0(c)fτ )

Xi

i!

)
(6)

=
n∑
i=1

∑
τ1,...,τi∈Σ−1

∑
|w|=n+1−i

φτ1e0(c) · · ·φτie0(c)φwn+1−i(c)fw ⊗ fτ1···τi .(7)

Taking the coefficient of fv ⊗ fτ , with τ ∈ Σ−1, and v an arbitrary word of length n ≥ 1, we
obtain

φvτn+1(c) = φτe0(c) · φvn(c),

while taking the coefficient of fv ⊗ fσ, with σ ∈ Σ−i<−1, and v an arbitrary word of length
n+ 1− i ≥ 1, we obtain

φvσn+1(c) = 0. �

We have a morphism
CPL : Z1,Gm

PL × πun
1 (Z)→ πPL

1 (X)

given by
(c, γ) 7→ c(γ).

We refer to CPL as the universal polylogarithmic cocycle, and it is just the first component of
the universal cocycle evaluation morphism evΠ for Π = πPL

1 (X). We define a morphism

Ψ : Z1,Gm

PL → SpecQ
[
{Φρ

λ}wt(ρ)=wt(λ)

]
,

where ρ ranges over Σ and λ ranges over the set of polylogarithmic words, by
c 7→ (φρλ(c))ρ,λ.

We define a homomorphism of rings
θ] : Q[logu,Liu1,Liu2, . . . ]→ A(Z)[{Φρ

λ}ρ,λ]
by

logu 7→
∑
τ∈Σ−1

fτΦ
τ
e0

and
Liun 7→

∑
τ1,...,τr∈Σ−1

σ∈Σ−s
r+s=n
1≤s≤n

fστ1···τrΦ
τ1
e0
· · ·Φτr

e0
Φσ
e1e0 · · · e0︸ ︷︷ ︸

s

.
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Corollary 3.11. The morphism Ψ is an isomorphism. In particular, Z1,Gm

PL is canonically
an affine space endowed with coordinates. Moreover, the triangle

Z1,Gm

PL × πun
1 (Z) ∼

Ψ×id
//

CPL ''

(SpecQ[{Φρ
λ}ρ,λ])× π

un
1 (Z)

θuu

πPL
1 (X)

commutes.

Proof. The injectivity of Ψ, as well as the commutativity of the diagram, follow directly from
Proposition 3.10. The surjectivity of Ψ amounts to the statement that given any family aρλ of
elements of a Q-algebra R, the R-algebra homomorphism

c] : R[logu,Liu1,Liu2, . . . ]→ R⊗ A(Z)

given by
logu 7→

∑
τ∈Σ−1

aτe0fτ

and
Liun 7→

∑
τ1,...,τr∈Σ−1
σ∈Σr−n

0≤r≤n−1

aτ1e0 · · · a
τr
e0
aσe1e0 · · · e0︸ ︷︷ ︸

n−r

fστ1···τr

is compatible with the coproduct. For logu, this is because both sides are primitive. For Liun,
this follows by the computation of (5)–(7) and the fact that the terms for which r = 0 are
primitive.

�

3.3.1. Variant in Bounded Weight. Let n be a positive integer. Then there is a natural
isomorphism Z1,Gm

PL,n

Ψn−→ (SpecQ[{Φρ
λ}ρ,|λ|≤n]) such that the square

Z1,Gm

PL ∼
Ψ //

��

SpecQ[{Φρ
λ}ρ,λ]

��

Z1,Gm

PL,n ∼
Ψn // SpecQ[{Φρ

λ}ρ,|λ|≤n]

commutes, where the vertical arrows are the natural projections.

3.4. Kummer and Period Maps in Coordinates. Given z ∈ X(Z), we recall that, by
definition,

logu(z) = logu(κ(z)),

Liun(z) = Liun(κ(z)).

We describe κp in these coordinates. More precisely, for z ∈ X(Zp), the value κp is the
element of ΠPL,n(Qp) sending logu to logp(z) and Liun to Lipn(z).

Finally, we describe perp in these coordinates. More precisely, we have

perp(logu(z)) = logp(z),
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and
perp(Liun(z)) = Lipn(z),

which in particular expresses the commutativity of Kim’s cutter.

4. Computations for Z = SpecZ[1/S]

For the rest of this article, we suppose that Z has function field Q, so that p ∈ Z is just
the prime number p.

4.1. Abstract Coordinates for Z = SpecZ[1/S]. We let ` denote a prime number. We
want to fix free generators (τ`)`∈S and (σ2n+1)n≥1 for n(Z), with τ` in degree −1 and σ2n+1 in
degree −2n− 1. We first recall some notation from [DC15, §3.2].

Letting An = A(Z)n denote the degree n part of A(Z), and A>0 =
⊕∞

n=1 An, we let
En = En(Z) denote the kernel of ∆′n and Dn = Dn(Z) the subspace of decomposable
elements of degree n, i.e., the degree n elements in the image of

A>0 ⊗ A>0
mult−−→ A.

We let Pn = Pn(Z) denote a vector subspace of An complementary to En and Dn. The
symbols En, Dn, and Pn refer to bases of En, Dn, and Pn, respectively.

Proposition 4.1. One may choose free generators (τ`)`∈S and (σ2n+1)n≥1 for n(Z), with τ`
in degree −1 and σ2n+1 in degree −2n− 1, such that fτ` = logu(`) and fσ2n+1 = ζu(2n+ 1).

Furthermore a choice of P2n+1 uniquely determines σ2n+1.

Proof. A computation using Corollary 3.2 shows that logu(`) and ζu(2n + 1) are primitive
elements of the Hopf algebra A(Z) (or, in the terminology of [DC15, 1.6], they lie in the
space En of extensions). In fact, by our knowledge of the rational algebraic K-theory of Z, we
know that En is one-dimensional when n is odd and zero-dimensional otherwise. Therefore,
the elements logu(`) and ζu(2n+ 1) must span the spaces En, and we take them as our En.

By [DC15, Proposition 3.2.3], for a choice of En, Dn, and Pn, we get a set of generators
for the Lie algebra, which are dual to the elements of En. In fact, the part of the condition
of being dual that depends on Dn and Pn is that the element of the Lie algebra pairs to
zero with all of Dn ∪ Pn, so it in fact depends only on Pn and Dn. The latter is uniquely
determined, so a choice of Pn determines such a choice of generators. �

Remark 4.2. The choice of logu(`) and ζu(2n+ 1) corresponds to choosing generators for the
rational algebraic K-groups of Z. The arbitrariness in choosing Pn then corresponds precisely
to the non-canonicity discussed toward the end of Section 2.2.1.

Give such a set of generators, we get an abstract basis for A(Z). For each word w of
half-weight −n in the above generators, we have an element w ∈ Un(Z), and these form a
basis of Un(Z). We let (fw)w denote the dual basis for A(Z). With the choices above, we
have

fτ` = logu(`)

fσ2n+1 = ζu(2n+ 1).

In order to find bases of Pn and verify relations between different Liun(z)’s, we need to
apply the reduced coproduct to reduce the computation in degree n to the computation in
degrees m < n. For this, we need the exact sequence
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Proposition 4.3. The sequence

0→ En → An
∆′−→

⊕
i+j=n
i,j≥1

Ai ⊗ Aj
∆′⊗id−id⊗∆′−−−−−−−−→

⊕
i+j+k=n
i,j,k≥1

Ai ⊗ Aj ⊗ Ak

is exact, and En = Ext1
MT(Z,Q)(Q(0),Q(n)) = K2n−1(Z)Q.

Proof. We have the reduced cobar complex

A>0
∆′−→ A>0 ⊗ A>0

∆′⊗id−id⊗∆′−−−−−−−−→ A>0 ⊗ A>0 ⊗ A>0
∆′⊗id⊗id−id⊗∆′⊗id+id⊗id⊗∆′−−−−−−−−−−−−−−−−−−→ · · · ,

which is a complex of graded vector spaces. [BGSV90, §3.16] notes that the kth cohomol-
ogy of the degree n piece of this complex is ExtkGrComod(A)(Q(0),Q(n)). The result then
follows because the category of graded comodules over A is the same as the category of
representations of πMT

1 (Z), or equivalently, the category MT(Z,Q), and we know that
Ext1

MT(Z,Q)(Q(0),Q(n)) = K2n−1(Z)Q.
�

We recall Definitions 2.5 and 2.6. In those definitions, we let ∆′n denote the restriction of
∆′ to An. For i+ j = n, we let ∆′i,j denote the component of ∆′n landing in Ai ⊗ Aj.

The following corollary will be useful for computations in half-weight 4:

Corollary 4.4. If K is totally real, then ker(∆′1,2) = ker(∆′3) = E3.

Proof. Let α ∈ A3. Since ∆′1 is zero (by Remark 2.11), we have
(∆′2 ⊗ id− id⊗∆′2)(∆′3(α)) = (∆′2 ⊗ id)(∆′2,1(α))− (id⊗∆′2)(∆′1,2(α))

= 0.

As K is totally real, it has no complex places, so we have K3(Z)Q = 0. Then by Proposition
4.3, we have that E2 = 0. Therefore, ∆′2 is injective, hence ∆′2 ⊗ id is injective on A2 ⊗ A1.
By the displayed equation and the previous sentence, it follows that if ∆′1,2(α) = 0, then
∆′2,1(α) = 0 as well. Therefore, ker(∆′1,2) = ker(∆′3) = E3. �

4.1.1. Coordinates on the space of cocycles for Z = SpecZ[1/`]. Relative to the chosen
coordinates, we name coordinates for Z1,Gm

PL,n when S = {`}. Specifically, we set

w0 := φτ`e0
w1 := φτ`e1

wi := φ
σ2i−1

e1e0 · · · e0︸ ︷︷ ︸
2i−1

2 ≤ i ≤
⌈n

2

⌉
in the notation of Proposition 3.10. In fact, for i ≥ 2, wi makes sense even when |S| > 1, and
we use it in Section 4.3.3.

If z ∈ X(Z), we write wi(z) for wi(κ(z)). In this notation, w0(z) = ord` z, and w1(z) =
− ord`(1− z), both by Fact 3.3.

In this case, for n ≥ k, we have

ev#
PL,n(logu) = ev#

PL(logu) = w0fτ
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(8) ev#
PL,n(Liuk) = ev#

PL(Liuk) = w1w
k−1
0 fkτ /k! +

d k
2
e∑

i=2

wiw
k−2i+1
0 fσ2i−1τk−2i+1 .

With this notation in hand, the reader may skip to Section 5 at this point if they so choose.

4.2. The Geometric Step for Z[1/`] in Half-Weight 4.

4.2.1. Coordinates for the Galois Group. Let Z = Z[1/`]. Then n(Z)≥−4 is three-dimensional
as a vector space, generated by τ = τ`, σ = σ3, and [σ, τ ]. As P3 = 0 when |S| = 1, the
elements τ, σ are already well-defined. We choose fτ , fσ, and fστ as a set of affine coordinates
on πun

1 (Z)≥−4.

4.2.2. Coordinates for the Selmer Variety. In this case, the only nonzero coordinates are w0,
w1, and w2.

4.2.3. The Universal Cocycle Evaluation Morphism. We now write the morphism evPL,4 in
these coordinates. We have ev#

PL,4(fi) = fi for i = τ, σ, στ .
Using (8), we find that ev#

PL,4(logu) = w0fτ , ev#
PL,4(Liu1) = w1fτ , and

ev#
PL,4(Liu2) = w0w1f

2
τ /2.

At this point, we already see that the function on ΠPL,4 × πun
1 (Z)≥−4 given by

Liu2−
1

2
logu Liu1

vanishes on the image of evPL,4, i.e., is in IZPL,4.
Again, by Equation (8), we have

ev#
PL,4(Liu3) = w1w

2
0f

3
τ /6 + w2fσ,

ev#
PL,4(Liu4) = w1w

3
0f

4
τ /24 + w0w2fστ .

To construct a second element of IZPL,4, we first eliminate w2 by considering

ev#
PL,4(fσfτ Liu4−fστ logu Liu3) = w1w

3
0fσf

5
τ /24− fστw1w

3
0f

4
τ /6

=
w1w

3
0f

4
τ

24
(fσfτ − 4fστ )

=
ev#

PL,4((logu)3 Liu1)

24
(fσfτ − 4fστ )

It follows that

ev#
PL,4

(
fσfτ Liu4−fστ logu Liu3−

(logu)3 Liu1
24

(fσfτ − 4fστ )

)
= 0

In other words,

Proposition 4.5. The two functions

Liu2−
1

2
logu Liu1

fσfτ Liu4−fστ logu Liu3−
(logu)3 Liu1

24
(fσfτ − 4fστ )
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on ΠPL,4 × πun
1 (Z)≥−4 are in IZPL,4 for Z = SpecZ[1/`].

4.3. Coordinates on the Galois Group for Z = Z[1/`]. In order to evaluate the functions
of Proposition 4.5, we need to choose a prime p 6= ` and interpret fτ , fσ, and fστ in such
a way that we can take (approximate) their p-adic periods. Essentially, this means writing
them as special values of polylogarithms. As mentioned in Proposition 4.1, we have chosen
the first two to correspond to logu(`) and ζu(3), respectively. It remains to understand fστ .

This will depend on `. We start with the case ` = 2, in an effort to re-derive [DCW16,
Theorem 1.16].

4.3.1. The Case Z = Z[1/2]. We let A = A(Z) as usual. We compute using Corollary 3.2
and Fact 3.3 that

∆′1,2(Liu3(1/2)) = Liu1(1/2)⊗ (logu(1/2))2/2 = − logu(1/2)⊗ (logu(2))2/2 = fτ ⊗ f 2
τ /2.

Using the fact that ∆ is a ring homomorphism, we note that ∆′1,2(logu(2)3) = 3 logu(2) ⊗
logu(2)2. Therefore, Corollary 4.4 implies that

Liu3(1/2)− (logu(2))3

6
is in E3. As E3 = K5(Z)Q is one-dimensional, this is a rational multiple of ζu(3).

The identity in the appendix to [DCW16] says that

(9) Liu3(1/2) =
(logu(2))3

6
+

7

8
ζu(3).

By Definition 3.9, we have

ev#
PL,4(Liu4) = w1w

3
0f

4
τ /24 + w0w2fστ .

It is easy to check using the formulas at the end of Section 4.1.1 that w0(κ(1/2)) = −1
and w1(κ(1/2)) = 1, and (9) together with Definition 3.9 implies that w2(κ(1/2)) = 7/8.

We therefore get

Liu4(1/2) = −(logu(2))4/24− 7

8
fστ .

It follows that
fστ = −8

7

(
logu(2)4

24
+ Liu4(1/2)

)
.

4.3.2. Choosing P3(SpecZ[1/6]). To deal with the case Z = SpecZ[1/3], we have to consider
Z ′ = SpecZ[1/6], since X(Z) is empty. In this case, the Lie algebra n(Z ′) is generated by
τ2, τ = τ3, and σ = σ3.

In this case, P1(Z ′) is zero. As P3(Z ′) is nonzero, there is some choice in the definition of
σ as an element of n(Z ′). We therefore seek to choose a set P3(Z ′).

Before that, we deal with half-weights 1 and 2. A(Z ′)1 has basis {logu(2), logu(3)}, and we
have the following lemma for A(Z ′)2:

Lemma 4.6. The set {logu(2)2, logu(2) logu(3), logu(3)2,Liu2(−2)} is a basis of A(Z ′)2.
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Proof. As E2(Z
′) = 0, the map ∆′2 is injective. Then D2(Z

′) is determined, and a natural
basis for it is D2(Z ′) = {logu(2)2, logu(2) logu(3), logu(3)2}. Then

∆′(Liu2(−2)) = Liu1(−2)⊗ logu(−2) = − logu(3)⊗ logu(2),

which is independent from
{∆′ logu(2)2,∆′ logu(2) logu(3),∆′ logu(3)2}

in A(Z ′)1⊗A(Z ′)1 (as seen by checking via the basis of A(Z ′)1⊗A(Z ′)1 induced by the basis
{logu(2), logu(3)} of A(Z ′)1). �

In fact, Liu2(−2) = −fττ2 , since they have the same reduced coproduct.

Proposition 4.7. We may take {Liu3(−2),Liu3(3)} as P3(Z ′), and therefore

{logu(2)3, logu(3)3, logu(2)2 logu(3), logu(2) logu(3)2,

logu(2) Liu2(−2), logu(3) Liu2(−2),Liu3(−2),Liu3(3), ζu(3)}
is a basis of A(Z ′)3.

Proof. By taking all degree 3 products of basis elements of A(Z ′)1 and A(Z ′)2, we may
determine a basis for the decomposables in A(Z ′)3:

D3(Z ′) = {logu(2)3, logu(3)3, logu(2)2 logu(3), logu(2) logu(3)2, logu(2) Liu2(−2), logu(3) Liu2(−2)}.
We would like to show that

B := {logu(2)3, logu(3)3, logu(2)2 logu(3), logu(2) logu(3)2,

logu(2) Liu2(−2), logu(3) Liu2(−2),Liu3(−2),Liu3(3)}
is a basis of A(Z ′)3/E3(Z ′), which would imply that {Liu3(−2),Liu3(3)} can be taken as P3(Z ′).
To do this, we apply ∆′1,2 to each element of B and expand in the basis

{logu(2)⊗ logu(2)2, logu(2)⊗ logu(2) logu(3), logu(2)⊗ logu(3)2, logu(2)⊗ Li2(−2),

logu(3)⊗ logu(2)2, logu(3)⊗ logu(2) logu(3), logu(3)⊗ logu(3)2, logu(3)⊗ Li2(−2)}
of A(Z ′)1 ⊗ A(Z ′)2. Using Corollary 3.2, this produces the matrix

logu(2)⊗ logu(2)2 3 0 0 0 0 0 0 0
logu(2)⊗ logu(2) logu(3) 0 0 2 0 0 0 0 0

logu(2)⊗ logu(3)2 0 0 0 1 0 0 0 −1/2
logu(2)⊗ Li2(−2) 0 0 0 0 1 0 0 0
logu(3)⊗ logu(2)2 0 0 1 0 −1 0 −1/2 0

logu(3)⊗ logu(2) logu(3) 0 0 0 2 0 −1 0 0
logu(3)⊗ logu(3)2 0 3 0 0 0 0 0 0
logu(3)⊗ Li2(−2) 0 0 0 0 0 1 0 0

,

where the columns correspond to the elements of B. This matrix has determinant 9, which by
Corollary 4.4 and the fact that A(Z ′)3/E3(Z ′) is eight-dimensional (by our knowledge of the
shuffle algebra A(Z ′)) implies that B is in fact a basis of A(Z ′)3/E3(Z ′). As ζu(3) generates
E3(Z ′),

B ∪ {ζu(3)}
is a basis of A(Z ′)3, as desired. �
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From now on, we choose P3(Z ′) to be the space generated Liu3(−2) and Liu3(3), and σ such
that it pairs to 0 with this choice of P3(Z ′).

4.3.3. The Case Z = Z[1/3]. Armed with our choice of σ ∈ n(Z ′), we seek to write fστ ∈ A(Z)
as an explicit combination of motivic polylogarithms. With our choice of σ, we have
w2(−2) = w2(3) = 0 because Liu3(−2) and Liu3(−3) are elements of P3.

From the matrix above, we see that

∆′1,2 Liu3(3) = − logu(2)⊗ logu(3)2

2
.

We also compute

∆′1,2 Liu3(9) = Liu1(9)⊗ logu(9)2

2
= −6 logu(2)⊗ logu(3)2,

so Liu3(9) = 12 Liu3(3) is in E3(Z ′), hence a rational multiple of ζu(3) (because E3(Z ′) = K5(Z ′)Q
is one-dimensional). In fact, since w2(3) = 0, this rational number is the fσ-coordinate of
Liu3(9) in the basis (fw)w of A(Z ′), hence it equals w2(9) because fσ = ζu(3).

Numerical computation using the code [DCC] in the 5-adic and 7-adic realizations suggests
that

w2(9) =
Liu3(9)− 12 Liu3(3)

ζu(3)
= −26

3
.

This is proven in the Appendix (Section 6).
We may now compute using Definition 3.9 that

Liu4(3) = w2(3)φτe0(3)fστ + φτ2e1(3)φτe0(3)3fτ2τττ = −fτ2τττ
and

Liu4(9) = w2(9)φτe0(9)fστ + φτ2e1(9)φτe0(9)3fτ2τττ = 2w2(9)fστ − 24fτ2τττ
This implies that

− 12

w2(9)
Liu4(3) + (2w2(9))−1 Liu4(9) =

18

13
Liu4(3)− 3

52
Liu4(9) = fστ .

We note that this corresponds precisely to fστ in the image of O(πun
1 (Z)) ↪→ O(πun

1 (Z ′)).
Plugging this into the second equation of Proposition 4.5, we find

Theorem 4.8. The element

ζu(3) logu(3) Liu4−
(

18

13
Liu4(3)− 3

52
Liu4(9)

)
logu Liu3

−(logu)3 Liu1
24

(
ζu(3) logu(3)− 4

(
18

13
Liu4(3)− 3

52
Liu4(9)

))
of O(ΠPL,4 × πun

1 (Z)) is in IZPL,4 for Z = SpecZ[1/3].

For p 6= 2, 3, the corresponding Coleman function is

ζp(3) logp(3)Lip4(z)−
(

18

13
Lip4(3)− 3

52
Lip4(9)

)
logp(z)Lip3(z)(10)

−(logp(z))3Lip1(z)

24

(
ζp(3) logp(3)− 4

(
18

13
Lip4(3)− 3

52
Lip4(9)

))
.

32



4.4. The Chabauty-Kim Locus for Z[1/3] in Half-Weight 4. As noted in [BDCKW18,
§8.2], the function Lip2(z)− 1

2
logp(z) logp(1− z) has the zero set {2, 1

2
,−1} for p = 3, 5, 7. By

numerical evaluation of (10) at 2, 1
2
, and −1 using [DCC], we conclude that 2, 1

2
/∈ X(Zp)PL,4.

It follows that:

Theorem 4.9. For Z = SpecZ[1/3], we have X(Zp)PL,4 ⊆ {−1} for p = 5, 7.

5. Insufficiency of Polylogarithmic Quotient and S3-Symmetrization

We first recall some notation from Section 3.3. For a family Σ of generators of the Lie
algebra n(Z), we have a corresponding shuffle (vector space) basis of A(Z) denoted by fw for
w a word in Σ. As well, O(πun

1 (X)) has a basis of elements Liuλ corresponding to words λ in
{e0, e1}. We defined regular functions φwλ on the space Z1,Gm

PL,n of cocycles, for w a word in Σ

and λ a word in {e0, e1} of length at most n, such that for c ∈ Z1,Gm

PL,n (R), we have

Liuλ(c) =
∑
w

φwλ (c)fw.

We also recall some notation from Section 4.1. Letting Z = Z[1/`], we fix generators
(τ = τ`) and (σ2n+1)n≥1 for n(Z), such that fτ = logu(`), and fσ2n+1 = ζu(2n+ 1). Finally, we
set

w0 := φτ`e0
w1 := φτ`e1

wi := φ
σ2i−1

e1e0 · · · e0︸ ︷︷ ︸
2i−1

2 ≤ i ≤
⌈n

2

⌉
.

This section does not depend on the material in Sections 4.2-4.4.

5.1. Proof that −1 ∈ X(Zp)PL,n for Z = SpecZ[1/`]. We fix a set of generators as in
Section 4.1.

We first need the following lemma:

Lemma 5.1. We have Lipk(−1) = 0 for k ≥ 2 even.

Proof. This follows from the identity 2−k+1Lipk(z
2) = Lipk(z) + Lipk(−z), which is [Col82,

Proposition 6.1] for m = 2. Indeed, setting z = 1 in the identity shows Lipk(−1) = (2−k −
1)Lipk(1), and since Lipk(1) = ζp(k), which is 0 for k even, we have Lipk(−1) = 0. �

Theorem 5.2. For any prime ` and positive integer n, we have

−1 ∈ X(Zp)PL,n,

where Z = SpecZ[1/`].

Proof. We use the coordinates of Section 4.1, and we let K and IZPL,n be as defined in Section
1.3.4. We also write τ = τ`. We have fτ = logu(`).

To prove the theorem, we produce an element c−1 of Z1,Gm

PL,n (K) whose image α−1 under
evPL,n lies in ΠPL,n(A(Z)) ⊆ ΠPL,n(K) and satisfies

perp(α−1) = κp(−1) ∈ ΠPL,n(Qp).

Since any element f of O(ΠPL,n × πun
1 (Z)) ∩ IZPL,n vanishes on the image of evKPL,n, we have

that f vanishes on α−1 and therefore on κp(−1), which proves the theorem.
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We define c−1 by setting
w0(c−1) := 0,

w1(c−1) :=
Liu1(−1)

logu(`)
,

wi(c−1) :=
Liu2i−1(−1)

ζu(2i− 1)
i = 2, · · · ,

⌈n
2

⌉
.

We let α−1 := evPL,n(c−1). To show that
perp(α−1) = κp(−1) ∈ ΠPL,n(Qp),

we note that O(ΠPL,n) is generated as an algebra by {logu,Liu1, · · · ,Liun}. Therefore, it suffices
to show that

perp(logu(α−1)) = perp(logu(−1)),

and that
perp(Liuk(α−1)) = perp(Liuk(−1))

for 1 ≤ k ≤ n.
We have ev#

PL,n(Liu1) = w1fτ , so

Liu1(α−1) = w1(c−1)fτ =
Liu1(−1)

logu(`)
logu(`) = Liu1(−1).

For k ≥ 3 odd, we have by (8) that

ev#
PL,n(Liuk) = w1w

k−1
0 fkτ /k! +

k+1
2∑
i=2

wiw
k−2i+1
0 fσ2i−1τk−2i+1

= w0

w1w
k−1
0 fkτ /k! +

k−1
2∑
i=2

wiw
k−2i
0 fσ2i−1τk−2i+1

+ w k+1
2
fσk ,

so by w0(c−1) = 0, we have
Liuk(α−1) = w k+1

2
(c−1)fσk

=
Liuk(−1)

ζu(k)
ζu(k)

= Liuk(−1).

Thus for k odd, we have Liuk(α−1) = Liuk(−1), so
perp(Liuk(α−1)) = perp(Liuk(−1))

for k odd, as desired.
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For k ≥ 2 even, we have by (8) that

ev#
PL,n(Liuk) = w1w

k−1
0 fkτ /k! +

k
2∑
i=2

wiw
k−2i+1
0 fσ2i−1τk−2i+1

= w0

w1w
k−1
0 fkτ /k! +

k
2∑
i=2

wiw
k−2i
0 fσ2i−1τk−2i+1

 ,

and since w0(c−1) = 0, we have Liuk(α−1) = 0. We also have ev#
PL,n(logu) = w0fτ , so

logu(α−1) = w0(c−1)fτ = 0.

To show that perp(α−1) = κp(−1), we are hence reduced to showing that perp(Liuk(−1)) = 0
for k even, and that perp(logu(−1)) = 0. By Lemma 5.1, Lipk(−1) = 0 for k ≥ 2 even, and
since perp(Liuk(−1)) = Lipk(−1), this implies that perp(Liuk(−1)) = 0 for k ≥ 2 even. We also
have perp(logu(−1)) = logp(−1) = 0.

Finally, recall that we needed to show that α−1 ∈ ΠPL,n(A(Z)) ⊆ ΠPL,n(K). This follows
because we have shown that logu(α−1) = 0 ∈ A(Z), Liuk(α−1) = 0 ∈ A(Z) for k even, and
Liuk(α−1) = Liuk(−1) ∈ A(Z) for k odd.

�

Remark 5.3. Recall that by Remark 2.28, the p-adic period conjecture (Conjecture 2.25)
implies that our locus is the same as Kim’s locus X(Zp)

Z
n,Kim. Similarly, one may define

a polylogarithmic version X(Zp)
Z
n,PL,Kim of Kim’s locus, which is contained in our locus

X(Zp)n,PL and is equal if the p-adic period conjecture is true.
In fact, one could modify the proof of Theorem 5.2 to directly prove that −1 ∈ X(Zp)

Z
n,PL,Kim

as long as ζp(2i− 1) 6= 0 for 2 ≤ i ≤
⌈
n
2

⌉
. This latter fact is known whenever p is a regular

prime (c.f. [Fur04, Remark 2.20(i)]).

5.2. S3-Symmetrization. We recall our strengthening of Conjecture 2.31. The S3-action
on X allows us to define X(Zp)

S3
PL,n :=

⋂
σ∈S3

σ(X(Zp)PL,n). Our symmetrized conjecture is
that

Conjecture 5.4. X(Z) = X(Zp)
S3
PL,n for sufficiently large n.

As shown in Proposition 2.33, this conjecture implies Conjecture 2.31 and hence Conjecture
1.1, the latter of which appeared in [BDCKW18].

5.2.1. Verification for Z = SpecZ[1/3]. We can use our computations in Section 4 to verify
a case of this conjecture:

Theorem 5.5. For Z = SpecZ[1/3] and p = 5, 7, Conjecture 5.4 (and hence Conjecture
2.31) holds (with n = 4).

Proof. By Theorem 4.9, X(Zp)PL,4 ⊆ {−1}. But −1 is not fixed by the action of S3, so

X(Zp)
S3
PL,4 :=

⋂
σ∈S3

σ(X(Zp)PL,4) = ∅

for p = 5, 7. In particular, Conjecture 5.4 and hence Conjecture 2.31 holds in these cases.
�
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6. Appendix: Proof that w2(9) = −26
3

We use the Kummer-Spence relation for the trilogarithm to show that w2(9) = −26
3
, or

equivalently, that

Liu3(9)− 12 Liu3(3) = −26

3
ζu(3)

The reasoning is a bit indirect, involving both p-adic and complex polylogarithms. Ideally,
we would use a motivic version of the Kummer-Spence relation, which should be possible to
prove.However, this does not exist in the literature (nor does a p-adic version), and the most
direct route seemed to be to cite the Kummer-Spence relation in the single-valued complex
case and proceed from there. Furthermore, if we had a ‘single-valued’ Archimedean period
map A(Z)→ C sending Liuk(z) to Pk(z) (analogous to that in [Bro14b] for Z = SpecZ), we
could directly prove the desired identity using Lemma 6.3. However, lacking such a period
map, we found it most convenient to go via a p-adic identity and then use the map perp.

Applying perp, it suffices to prove the corresponding identity

Lip3(9)− 12Lip3(3) = −26

3
ζp(3)

for any prime p > 3 for which ζp(3) 6= 0. This is known for any regular prime, so we may
take, for example, p = 5.

By [Col82, Proposition 6.1] for k = 3 and m = 2, we have
Lip3(9) = 4Lip3(3) + 4Lip3(−3),

so one may easily check that it is equivalent to prove

Lip3(−3)− 2Lip3(3) = −13

6
ζp(3).

Remark 6.1. We note that this identity was already mentioned on p.6 of [ZG00] in the form
“L3(ξ2) = 13

6
ζ(3),” although no proof was given (and according to one of the authors, it may

have been verified only numerically).
Definition 6.2. Following [Zag91b], we set

P3(z) = Re

(
Li3(z)− Li2(z) log |z|+ 1

3
log |1− z| log2 |z|

)
.

Lemma 6.3. We have
−13

6
ζ(3) = P3(−1/3)− 2P3(1/3).

Proof. By [Zag91b], Section 7, Example 3, we have the “Kummer-Spence” functional equation

2P3(x) + 2P3(y) + 2P3

(
x(1− y)

x− 1

)
+ 2P3

(
y(1− x)

y − 1

)
+ 2P3

(
1− x
1− y

)
+2P3

(
x(1− y)

y(1− x)

)
− P3 (xy)− P3

(
x

y

)
− P3

(
x(1− y)2

y(1− x)2

)
= 2ζ(3).

Plugging in x = −1 and y = 1/3, we get
2ζ(3) = 2P3(−1) + 2P3(1/3) + 2P3(1/3) + 2P3(−1) + 2P3(3) +

2P3(−1)− P3(−1/3)− P3(−3)− P3(−1/3)

= 6P3(−1) + 4P3(1/3) + 2P3(3)− P3(−3)− 2P3(−1/3)
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Applying the inversion relation P3(x) = P3(1/x), we get
2ζ(3) = 6P3(−1) + 6P3(3)− 3P3(−3).

From the dispersion relation, we get P3(1) = P3((−1)2) = 4P3(1) + 4P3(−1), so P3(−1) =
−3

4
ζ(3), hence 6P3(−1) = −9

2
ζ(3). Therefore, we get

2ζ(3) = −9

2
ζ(3) + 6P3(1/3)− 3P3(−1/3),

or
−13

6
ζ(3) = P3(−1/3)− 2P3(1/3).

�

Proposition 6.4. We have

Lip3(−3)− 2Lip3(3) = −13

6
ζp(3).

Proof. We consider the element [−3]3−2[3]3+ 13
6

[1]3 of H1(M•
3(Z[1/6])) of [DJ95]. By Remark

5.2 of loc. cit., Lemma 6.3 implies that this element has trivial regulator. By Theorem 3.15
of loc. cit., the regulator is injective, so this element is zero in H1(M•

3(Z[1/6])).
By [BdJ03, Proposition 7.14], the syntomic regulator on H1(M•

3(Z[1/6])) is a multiple of
the “single-valued” p-adic trilogarithm L3, defined as

L3(z) := Lip3(z)− Lip2(z) logp(z) +
1

2
Lip1(z) logp(z)2.

Therefore, we get the identity

L3(−3)− 2L3(3) +
13

6
L3(1) = 0.

Next, note that ∆′(Liu2(−3)− 2 Liu2(3)) = 0 by a simple computation with Proposition 3.1,
hence Liu2(−3) = 2 Liu2(3) because E2(Z[1/6]) = K3(Z[1/6])Q = 0. Applying perp, we get

Lip3(−3) = 2Lip2(3).

Next, note that

L3(−3)− 2L3(3) =

(
Lip3(−3)− Lip2(−3) logp(−3) +

1

2
Lip1(−3) logp(−3)2

)
−2

(
Lip3(3)− Lip2(3) logp(3) +

1

2
Lip1(3) logp(3)2

)
= Lip3(−3)− 2Lip3(3) + logp 3 (2Lip2(3)− Lip2(−3)))

+
1

2
logp(3)2 (− logp(4) + 2 logp(−2))

= Lip3(−3)− 2Lip3(3).

As well, since logp(1) = 0, we find that L3(1) = ζp(3). Combining this with the above, we
get the identity

Lip3(−3)− 2Lip3(3) = −13

6
ζp(3).

�
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