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Abstract: A transfer learning approach is proposed to classify grouper species by their
courtship-associated sounds produced during spawning aggregations. Vessel sounds are also
included in order to potentially identify human interaction with spawning fish. Grouper
sounds recorded during spawning aggregations were first converted to time-frequency
representations. Two types of time frequency representations were used in this study:
spectrograms and scalograms. These were converted to images, and then fed to pretrained
deep neural network models: VGG16, VGG19, Google Net, and MobileNet. The experi-
mental results revealed that transfer learning significantly outperformed the manually iden-
tified features approach for grouper sound classification. In addition, both time-frequency
representations produced almost identical results in terms of classification accuracy.
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1. Introduction

Many fish species swim long distances and gather in high densities for mass spawning at precise
locations and times. This widespread reproductive strategy of forming spawning aggregations is
typically shared among many of the species-rich family Epinephelidae, or groupers (Ma and
Craig, 2018; Sadovy et al., 1994). Declines in grouper populations due to overfishing at such
aggregations have been documented widely (Sadovy and Domeier, 2005). Studying these spawn-
ing aggregations is vital to conservation efforts aimed at sustainable fisheries management and
reversing worldwide depletion of endangered fishes. Some of these groupers are known to pro-
duce sounds for communication specially during courtship behaviors (Rowell et al., 2012;
Sch€arer et al., 2012a, 2012b, 2014). Specifically, the acoustic characteristics and related courtship
behavior of call types of four epinephelids common in the Caribbean Sea, the Nassau grouper
(Epinephelus striatus), red hind (E. guttatus), black grouper (Mycteroperca bonaci), and yellowfin
grouper (M. venenosa), have been well studied (Mann et al., 2010; Rowell et al., 2011, 2015;
Sch€arer et al., 2012a, 2012b, 2014; Zayas, 2019). These calls can be generally characterized by
their low frequency band, which ranges between 20 and 400Hz (Rowell et al., 2012) and rela-
tively low sound levels ranging between 121 and 165 dB re 1 lPa @ 1m (Wilson et al., 2020).
The application of passive acoustic methods to locate and monitor the occurrence and abundance
of spawning aggregations is key to understanding the importance of fish communications and
developing indices of abundance that can be used in fisheries management and for the conserva-
tion of marine biodiversity (Jublier et al., 2019, Ch�erubin et al., 2020).

Passive acoustic monitoring generates large amount of data, which until recently was mostly
analyzed manually by listening to the audio and visualizing the spectrograms. In addition to being a
labor-intensive method, it is affected by differences in human perception, background noise interfer-
ence, and the validation of descriptions of new sound types produced by the same species (Zayas,
2019). With the advent of machine learning, new automatic classification methods have been
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developed. For example, several manually identified acoustic features such as Mel-frequency cepstral
coefficients (MFCC) and Multi resolution acoustic features (MRAF) were used by Ibrahim et al.
(2018a) to classify grouper sounds of four species, namely E. striatus, E. guttatus, M. bonaci, and M.
venenosa. In a following study, a deep learning method was applied by Ibrahim et al. (2018b) to clas-
sify the spectrograms of the same sounds. The latter method was shown to have over 90% accuracy
detecting calls and outperformed the one based on manually identified acoustic features. While spec-
trograms, which are computed with short-time Fourier transformation, are a fixed-time and -fre-
quency representation of signals, wavelet transform can incorporate multiple scales, and for this rea-
son can locally reach the optimal time-frequency resolution with regards to the Heisenberg
uncertainty (Daubechies, 1990). A scalogram is the time-frequency representation of a signal by
wavelet transformation, where brightness or color can be used to indicate coefficient values at corre-
sponding time-frequency locations. The effectiveness of both representations is considered herein.

Transfer learning is an active research area in machine learning that exploits the re-
usability of features learned by deep models such as GoogleNet, VGG16, VGG19, and AlexNet
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; Zhong et al.,
2020). Here the representation learned for a given input distribution or task is transferred to a
different distribution or task. This study aims to apply the concept of transfer learning to effec-
tively extract informative features from grouper sound spectrograms and scalograms. Our
approach is conducted in three phases: 1) Scalograms and spectrograms are used to represent
grouper calls. 2) Discriminative features are extracted from both types of time-frequency repre-
sentations with pretrained Convolutional Neural Networks (CNNs), which are more efficient
than manually designed CNNs. 3) An experimental study is conducted to evaluate the effective-
ness of different pretrained networks using different time-frequency representations (scalograms
versus spectrograms) for classifying grouper call types.

This paper is organized as follows. In Sec. 2, the sound transformation methods used to
create spectrograms and scalograms are briefly introduced. In Sec. 3, the concept of transfer
learning and popular pretrained Deep Neural Networks (DNNs) are introduced. Experimental
results of classifying grouper call types according to each species with the transfer learning
approach are presented in Sec. 4. Concluding remarks are provided in Sec. 5.

2. Sound transformation methods

In this study, spectrograms and scalograms were used to extract time-frequency representations
of grouper sounds, which were then converted to RGB images. In this section, the wavelet trans-
form, which is used to calculate scalograms, is introduced first, followed by scalograms and spec-
trograms of calls from different grouper species.

2.1 Wavelet transform

Wavelet transform is superior to Fourier transform and short time Fourier transform (STFT) for
numerous applications because of the time-frequency resolution versatility it provides to measure
time-frequency variations in a signal. Fourier transform contains globally averaged spectral informa-
tion. Thus, the transient spectral information is lost. The Heisenberg boxes in the time-frequency
domain illustrate the multiscale zooming property of wavelet transform, where coefficients of the
higher frequency components of the signal have a shorter time step between them than those of the
lower frequency components (Carmona et al., 1998; Mallat, 1999).

A wavelet is a linear transform that decomposes an arbitrary signal xðtÞ via basis func-
tions that are simply dilations and translations of a parent wavelet wðtÞ:

W a; tð Þ ¼
1

jaj1=2
ð1
�1

x sð Þw� t� s
a

� �
ds: (1)

Dilation by the scale factor a controls the effective duration of the wavelet as it windows
the signal, thus allowing for variations in time localization, which are accompanied by reciprocal
variations in frequency localization. By this approach, a scalogram is able to represent a high-
resolution signal in both time and frequency. This is in contrast to the use of constant duration
windows of the Fourier transform. Wða; tÞ; the scalogram at time t and scale a, represents a mea-
sure of the similitude between the signal and the dilated/shifted parent wavelet. A local time-
frequency energy density, which measures the energy of x in the Heisenberg box of each wavelet,
is known as wavelet scalogram wðtÞ:

PW x s; að Þ ¼ jWx a; sð Þj2: (2)
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2.2 Scalograms

A scalogram is therefore the absolute value of the Continuous Wavelet Transform (CWT) of a
signal, plotted as a function of time and frequency. This representation of the localized wavelet
transform is well suited for the analysis of nonstationary phenomena, revealing the frequency
content of the signal at each time step to pinpoint the occurrence of transients, while tracking
evolutionary phenomena in both time and frequency.

Scalograms can be more useful than spectrograms for identifying signals with low-frequency
components or rapidly changing frequency content. Unlike the spectrogram, which decomposes an
input signal into sinusoids of infinite duration, CWT decomposes the signal into wavelets. To create
scalograms, a CWT filter bank is pre-computed, which is a preferred method when the same

Fig. 1. (Color online) Examples of scalograms of sounds produced by four grouper species and a vessel. (a) E. guttatus, (b) E.
striatus, (c) M. venenosa, (d)M. bonaci, and (e) vessel.

Fig. 2. (Color online) Examples of spectrograms of sounds produced by four grouper species and a vessel. (a) E. guttatus, (b)
E. striatus, (c)M. venenosa, (d)M. bonaci, and (e) vessel.
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parameters are used to process different sound signals. The scalogram for each grouper sound is then
computed by taking the magnitude of the wavelet transform with frequency range 10–400Hz. Since
all pretrained deep learning models used in this study originally took color images as input type, the
magnitude spectra were converted to images using a MATLAB function ind2rgb (Fig. 1).

2.3 Spectrograms

A spectrogram is an indicator of a signal’s time-varying spectral content over a range of frequencies.
In the work reported here, spectrograms are generated by framing the grouper sounds with 0.1 s
Hanning windows, or 1000 samples at a sample rate of 10 KHz, and 80% overlap. A 4096-point Fast
Fourier transform (FFT) is applied to each frame. The spectrogram is estimated by taking the magni-
tude of each FFT frame with frequency range 10–400Hz and is converted to an image (Fig. 2).

3. Pretrained deep neural network and transfer learning

Transfer learning relies on pretrained DNN models, which were trained in advance using a large
number of images, and the trained models were distributed by their inventors for adoption. The
application concept is described in Fig. 3. When any of these models is applied to a particular prob-
lem, additional layers of neurons are added to the existing model, and these additional weights are
trained using application specific data points. In this study, the weights of these additional layers are
trained using either spectrograms or scalograms of ocean sound segments. In essence, the pretrained
DNN models serve as feature extractors of either spectrograms or scalograms of ocean sounds. The
pretrained DNN plus the additional layers constitutes a complete classifier. Popular pretrained mod-
els include “Alexnet” (Krizhevsky et al., 2012), VGG16 and VGG19 (Simonyan and Zisserman,
2014), Google Net (Szegedy et al., 2015), ResNet, MobileNet (Howard et al., 2017), and ShuffleNet.
The structures of some of these DNN models are described next.

AlexNet is a CNN, which is trained on an ImageNet dataset. A CNN consists of an
input layer, a number of hidden layers, and an output layer. Each hidden layer is usually made
up of a convolutional layer with an activation function, a pooling layer, and a normalization
layer. AlexNet has five convolutional layers. The kernel sizes of the convolutional layers are
11� 11, 5� 5, and 3� 3. This network was initially trained to classify images into one thousand
categories. AlexNet has 61 million weights.

Fig. 3. (Color online) Illustration of the concept of transfer learning.

Table 1. Number of layers and convolutional layers for each of pretrained model.

Method
Total Number

of Layers

Number
of Convolutional

Layers
Number

of Inception Layers
Number

of Parameters (Millions)

GoogleNet 144 22 9 7
VGG16 41 16 0 138
VGG19 47 19 0 144
AlexNet 25 5 0 61
Inception V3 316 7 11 23.9
MobileNet 155 10 0 3.5

J. Acoust. Soc. Am. 148 (3), September 2020 Ibrahim et al. EL263

https://doi.org/10.1121/10.0001943

E
X
P
R
E
S
S
L
E
T
T
E
R
S

https://doi.org/10.1121/10.0001943


VGG16, a type of CNN, has sixteen convolutional and five max-pooling layers. The size
of the kernel filter is 3� 3. The convolution stride is fixed to one pixel, and spatial padding is
used to ensure that the spatial resolution is preserved after convolution. Spatial pooling is carried
out by five max-pooling layers, which follow some of the convolutional layers. Max-pooling is
performed over a 2� 2 pixel window, and the stride is two.

VGG16 has 138 million weights. VGG19 has a similar structure as VGG16, except that
it has 19 convolutional layers instead of 16. GoogleNet, also a type of CNN, uses a novel ele-
ment called an inception module, which is designed to drastically reduce the number of parame-
ters by concatenating the results of four different sizes of convolution and max-pooling opera-
tions and by adding auxiliary classifiers to combat the vanishing gradient problem that exists in
a deep network. GoogleNet consists of 22 deep convolution layers with seven million parameters.
Inception V3 evolves from the GoogleNet to improve further its classification performance by
decomposing filter kernels and adding batch normalization, among other things. MobileNet, also
introduced by Google, is a type of CNN that adopts depth-wise separable convolution to facili-
tate mobile applications. It reduces the number of parameters significantly without compromising
much of the classification performance. The number of parameters for each of those pretrained
DNNs is shown in Table 1.

To use pretrained deep neural network models for classification of grouper sound types,
the last four layers of the pretrained models are replaced with four new layers that are suitable for
our application (Fig. 3). These are two fully connected layers, one drop-out layer and one
Softmax layer. The two new fully connected layers are introduced to learn the new features for
the application. The dropout layer is used to prevent overfitting. The Softmax layer is served as a
classification layer that outputs scores for each of the candidate classes.

4. Grouper call type classification with transfer learning

4.1 Dataset

The proposed classification method of grouper call types was tested with ambient acoustic recordings
from different spawning aggregation sites, namely the Red Hind Bank (Nemeth, 2005) and the
Grammanik Bank (Nemeth et al., 2020) in the United States Virgin Islands, and at Abrir La Sierra,
in Puerto Rico (Rowell et al., 2012). Each recording unit was programmed to record ambient sounds
for 20 s at 5-min intervals at a sample rate of 10kHz to optimize battery life and memory space dur-
ing six-month deployments. These recordings were made onto a SD memory card and downloaded
as one.wav file for each 20 s recording. This cycle generates 288 files per day, which are stored in
folders with 9999 files each. Each file can be heard with noise canceling headphones, and spectro-
grams can be visualized with an acoustic analysis software such as Adobe Audition or Audacity.
Two second audio segments of four grouper courtship associated sound types, one for each species
(E. guttatus, E. striatus, M. bonaci, and M. venenosa) and vessel sounds were collected from each of
the files. Table 2 shows the number of training and testing files for all pretrained models. Because

Table 2. Training and testing data for the call types of four groupers E. guttatus (EGUT), E. striatus (ESTRI), M. venenosa
(MVEN),M. bonaci (MBON) and vessels.

Sound Type Training Size Testing Size

EGUT 7220 1805
ESTRI 5495 1373
MVEN 7571 1892
MBON 4000 1000
Vessel 5000 1000

Table 3. Accuracy per call type using different pretrained models with spectrograms.

Model EGUT ESTRI MVEN MBON Vessel

GoogleNet 93.4% 79.9% 88.7% 99.4% 94.2%
VGG16 87.1% 81.6% 76.3% 94.2% 92.5%
VGG19 92.6% 89.2% 90.5% 99% 98.0%
AlexNet 95.6% 88.7% 91.2% 99.1% 95.2%
Inception V3 87.5% 84.8% 86.0% 100% 93.1%
MobileNet 89.8% 86.7% 88.6% 99% 96.8%
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M. bonaci had fewer samples, data augmentation was implemented to increase the number of these
samples to 5000 images by rotation and scaling.

4.2 Results and discussion

Training data were obtained by creating spectrograms and scalograms for each call type in the
dataset. The epoch number was set to 100 for the training phase with the same mini patch size
of 64 for all pretrained models in a NVIDIA DGX workstation. A 5-folder validation procedure
was applied to assess the performance of each classifier. In this procedure, 80% of data samples
were used to train the classifier and 20% for testing its performance. This procedure was repeated
five times to ensure that every data sample was tested once. The performance of each model with
spectrograms is presented in Table 3. Comparing the various models, AlexNet outperformed all
other pretrained DNN models in classifying E. guttatus and M. venenosa sounds with accuracies
of 95.6% and 91.2%, respectively (Table 3). VGG19 had the highest accuracy for E. striatus and
vessels. Most models performed at the same level for M. bonaci, except for VGG16, which was
the least accurate. Nonetheless, among all the call types of grouper species, M. bonaci calls
received the highest level of accuracy, and E. striatus calls received the lowest accuracy.

Scalograms were also used to train all pretrained models (Table 4). It was evident that
VGG19 outperformed all other pretrained models for classifying sound types for nearly all grouper
species but was slightly less accurate for M. bonaci and vessel sounds. For M. bonaci, both GoogleNet
and Inception V3 were the most accurate, and for vessel sounds, AlexNet was most accurate.

The comparison of spectrograms versus scalograms for sound classification suggests that
the performance difference in terms of accuracy is not significant. With the same recordings as
the ones used herein, the accuracy of the manually identified feature approach introduced in
Ibrahim et al. (2018a) was only 67% for M. bonaci, which was the lowest among all species, and
at best 82% for E. guttatus.

5. Conclusion

In this study, both the scalogram and spectrogram techniques were applied to extract time-
frequency representations of the sounds produced by four grouper species during spawning aggre-
gations. These representations were then used to train pretrained deep learning models with
transfer learning. Here pretrained models acted as feature extractors, which computed deep fea-
tures from spectrograms and scalograms. These models were then applied to classify courtship-
associated sounds recorded during spawning aggregations. Vessel sounds were also included in
this study to potentially identify sounds of anthropogenic sources interacting with fish aggregated
to spawn. Classification results demonstrated higher levels of effectiveness and accuracy of the
transfer learning approach compared to the manually identified feature approach. In addition to
classification of grouper sounds, vessel sound identification by this type of analysis provides new
opportunities to assess the use by boaters of areas designated as critical for fish spawning aggre-
gations and the potential for this vessel engine noise in disturbing courtship-associated sounds
and behaviors. This information can ultimately be used by fishery managers to estimate visitation
or transit routes through marine protected areas that could be related to fishing activities in order
to assess the impact of these activities on ocean resources.
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