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Abstract—This paper presents a Reinforcement Learning (RL)
based energy market for a prosumer dominated microgrid. The
proposed market model facilitates a real-time and demand-
dependent dynamic pricing environment, which reduces grid
costs and improves the economic benefits for prosumers. Further-
more, this market model enables the grid operator to leverage
prosumers’ storage capacity as a dispatchable asset for grid
support applications. Simulation results based on the Deep Q-
Network (DQN) framework demonstrate significant improve-
ments of the 24-hour accumulative profit for both prosumers
and the grid operator, as well as major reductions in grid reserve
power utilization.

I. INTRODUCTION

Small-scale power generation and storage technologies, also
known as Distributed Energy Resources (DERs), are changing
the operational landscape of the power grid in a substantial
way. Many traditional power consumers adopting a DER
technology are starting to produce energy, thus morphing from
a consumer to a prosumer (produces and consumes energy) [1].
The most common prosumer installations are the residential
solar photovoltaic (PV) systems [2]. Although DER integration
has the potential to provide multiple benefits to prosumers as
well as grid operators [3], current grid operating strategies fail
to leverage DER capabilities at a large scale, mostly due to
the lack of modern and intelligent grid control strategies.

The residential PV systems likely have excess power gen-
eration during peak sun hours which usually do not coincide
with peak demand hours [4]. In other words, current residential
PV systems are likely to generate excess power during off-
peak demand hours when electricity is not a valuable grid
commodity, and this excess generation can even contribute to
grid instability. Integration of energy storage into prosumer
setups can potentially rectify this situation by allowing the
prosumers to store their excess energy during the peak sun
hours and inject it into the grid during the peak demand hours.
Furthermore, proper coordination and aggregation of this dis-
patchable prosumers’ generation capacity can be leveraged for
various grid support services/applications [5], [6] .

Nevertheless, current popular net-metering compensation
schemes do not properly incentivize the prosumers to engage
in grid support applications [7]. The electricity meter in a
net-metered household runs backwards when the prosumer
injects power into the grid [8]. At the end of a billing cycle,
the customer is billed for the “net” energy use, i.e., the
difference between the overall consumed and produced energy,
regardless of the actual schedule of injecting energy into the
grid. Moreover, prosumers are compensated for the generated
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electricity at the same fixed retail price irrespective of the time
of the day or any grid contingency at hand. Therefore, there
is little incentive for prosumers to engage in any sort of grid
support service.

In this paper, we propose a distributed energy marketplace
framework that realizes a real-time, demand-dependent, dy-
namic pricing environment for prosumers and the grid oper-
ator. The proposed marketplace framework offers a plethora
of vital properties to incentivize prosumers’ engagement in
grid support applications while providing improved economic
benefits to prosumers as well as the grid operator, resulting
in a “win-win” scenario. The contributions of the framework
proposed in this paper can be summarized as follows,

o The proposed marketplace framework enables the grid op-
erator to leverage prosumers’ storage capacity as a dis-
patchable asset, while reducing grid cost through offsetting
reserve power with prosumer generation.

« It incentivizes the prosumers to engage in grid support
applications by providing higher economic benefits when
supporting grid activities.

» Founded on a reinforcement learning (RL)-based decision-
making, our framework handles the high dimensional, non-
stationary, and stochastic nature of the problem without the
need for abstract explicit modeling and deterministic rules
used in traditional approaches.

« It models prosumers with generation, storage capacity, and
bidirectional grid injection capability. This yields in a high
degree of freedom for cost versus profit optimization and
leads to improved overall benefits for all parties.

To enable all these properties, the proposed energy market
leverages a multiagent RL framework with a single grid oper-
ator agent, and a network of distributed prosumer agents. The
grid agent’s goal is to maximize its economic benefit. To this
end, the agent makes decisions on the optimal share of power
purchased from a fleet of conventional generation facilities
versus a cohort of prosumers with dispatchable generation
capability, by considering the incremental cost of generation
facilities versus the retail price of purchasing electricity from
prosumers. In order to dispatch the prosumers’ generation,
the grid agent dynamically sets the retail electricity price to
incentivize prosumers to adjust their generation level. On the
other hand, the prosumer agents aim to maximize their own
economic benefit by deciding on the level of grid support par-
ticipation according to various factors such as electricity retail
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Fig. 1. Proposed electricity model market — The proposed energy marketplace includes several generation sources, household prosumers, and
household consumers. By leveraging a reinforcement learning (RL) framework, our system enables a dynamic buy and sell pricing scheme
handled by the grid as well as dynamic strategy for the prosumers to maximize benefits.

price, State of Charge (SoC) of storage device, PV generation
level, household consumption level, etc. We demonstrate the
efficiency of this marketplace through a simulation on a small
scale microgrid as shown in Fig. 1. The microgrid [9] is under
the management of a single grid operator entity and contains
loads, distributed energy resources and/or storage devices that
can be operated in a controlled and coordinated way.

This paper is structured as follows: Section II covers
background and related works, while Section III provides the
physical and learning system models for the proposed energy
market place. Next, the simulation results for the small scale
microgrid case study are presented in Section IV. Finally,
Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

A brief survey of traditional energy marketplace models
and dynamic pricing methods for smart grid applications
is provided in [10]-[12]. On the other hand, research has
explored RL-based energy market frameworks and dynamic
pricing schemes that bring economic benefits to both costumer
and grid operators. The authors in [13] proposed an RL
algorithm that allows service providers and customers to learn
pricing and energy consumption strategies without a priori
of knowledge, leading to reduced system costs. Furthermore,
[14] investigated an RL-based dynamic pricing scheme for
achieving an optimal “price policy” in the presence of fast
charging electric vehicles over the grid. In order to reduce
the electricity bill of the residential customers, a mathematical
model using RL for load scheduling was developed in [15],
assuming that residential loads include schedulable loads, non-
schedulable loads, and local PV generation.

More closely aligned to our paper are the works in [16] and
[17]. [16] described an RL-based dynamic pricing, demand re-
sponse algorithm using Q-learning approach for a hierarchical
electricity market that considers both service providers and
customers’ profits as well as shows improvements in profia-
bility and reduced costs. However, this work only examines

regular customers without generation or storage capacity. The
authors in [17] proposed an RL-based home energy manage-
ment (HEM) framework which considers real-time electricity
price and PV generation, and the framework achieve superior
performance and cost-effective schedules for demand response
in a HEM system. Nonetheless, the households in this work are
modeled as traditional loads unable to sell back their excess
power to the grid. Although the Electric Vehicle (EV) charging
is modeled, the storage capacity of EVs is not leveraged for
cost optimization, meaning the households do not have any
energy storage capacity.

III. SYSTEM MODEL

The proposed electricity market model is shown in Fig. 1.
As pictured, this model encompasses a grid agent (GA) and
several prosumer agents (PAs). The learning environment is a
combination of governing equations of the grid and prosumer’s
physical systems, the operational limitations of the power grid
and the prosumers, and external factors such as the time of
day or PV generation level as explained in the physical model
subsection below. Although consumers are depicted in Fig. 1,
we do not consider them as an individual agent due to their
constant consumption of energy.

Notations: We use the following notations throughout the
paper. Bold letters are used for vectors, while non-bold letters
are scalars. Sets are denoted by calligraphy fonts (e.g., S). The
grid and household variables are denoted by (.)g and (.)y.

A. Physical System Model

Grid Operation: We assume a power system with K
generators each with a power output level of Pg, such that
i €{l,...,K}, and M prosumers each with power injection
level of Py; where j € {1,...,M}. In the context of an energy
marketplace, the goal of the grid is to maximize its profit
over a time horizon of 7, which is denoted by y(T). The
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accumulative grid profit is then equal to the total grid revenue
minus the total cost of operation, i.e.,

K M
Yo(T) =g (T) - {Z QG,(1) + ) Qu, (T)} SN
i=1 j=1

In this case, Yg(-) denotes the accumulative grid revenue as a
result of selling Pp(t) of electricity to the loads at the selling
price of ps(z) $/kWh. Therefore, the accumulative revenue
over a time horizon of T is defined as:

T
T (T) = /0 Po (1) ps (1)d1. @)

Moreover, Qg,(T) denotes the accumulative cost of buy-
ing electricity from the i’ generation facility. The Qg,(T)
is typically estimated using the incremental cost curves of
the generation facilities. In addition to the cost of buying
electricity from generation facilities, the grid is able to buy
electricity from prosumers. Thus, the accumulative cost of
buying electricity from the j** prosumer is equal to:

T
Qu, (1) = [ P, 0ps e for P>0. )

where pp, (¢) (in the unit of $/kWh) is the price of purchasing
electricity from prosumers, referred to as buy price hereinafter.

The GA’s goal is to maximize (1) subject to the fundamental
grid power balance equation,

K M
Pp(0)= ) P6, (=) Pu,()=0. Y. (4
i=1 j=1

It should be noted that due to heterogeneous generation
facilities, we assume that the output of the i" facility is
constrained by practical limitations such as:

PEM < PG, (1) < PE™, fori=1,..K. ®)

Prosumer’s Operation: A typical prosumer setup with
a PV deployment and energy storage is shown in Fig.l.
According to this figure, the goal of the j* prosumer’s agent
is to maximize its own accumulative profit ¢y, (T) defined as:

Yu,(T) =

where T, (T) is the accumulative revenue of the j’ h prosumer
for selling electricity to the grid, and Qg (T) is the accumu-
lative cost of buying electricity from the grid defined by:

T
Ty, (T) = /0 P, (Dpp()d for Py (t) >0, (7)

T
Qg (T) = /0 Pu;(t)ps(t)dt  for Py,(t) <0. (8)

Assuming that for the j* prosumer, Ppy; (1) is the PV gener-
ation, Py (t) is battery charge/discharge power, and Pc; (t) is
the consumption power, the internal power balancing is then
described as follows:

Py, (1) = Ppy; (1) = Pp,; (1) = Pc; (1). )

In order to model realistic scenarios, we also pose the follow-
ing constraints on each of these parameters:

@ If Plf_‘}f_‘x is the maximum allowable power injection, then
we have: |PHJ. (t)\ < PE?X.
(ii) PmaX denotes the peak PV generation such that 0 <
PPV, () < Pmax}
(iii)) Given that Pm""‘ is the maximum allowable battery
charge/dlscharge power, then |P;, (t)| < PmX
(iv) Assuming that ¢; is the State of Charge (SoC) of
the battery, and ¢™" and ¢™* are the minimum and
maximum allowable state of charge of battery, we have
¢;’i“ < ¢; < ¢, The state of charge of battery for the
jth prosumer is calculated from,
1 t
80 =0,0)+ o~ [ Poar. a0
B; Jo
where Cp; is the battery capacity and ¢; (0) represents
the initial SoC of the battery.

Next we describe a deep reinforcement learning framework
to enable the grid and prosumers to dynamically take optimal
actions at each time slot.

B. Reinforcement Learning Model

In this work, the dynamic pricing problem is formulated as
a Markov Decision Process (MDP) such that given a state s” at
time ¢, the goal is choosing the optimal action for transitioning
to a new state s'*! at time 7+ 1, where s, s'*! € S such that S
is the set of all possible environment states. This problem can
be viewed as an instance of Reinforcement Learning (RL) that
is concerned with studying how an agent or a group of agents
learn(s) the environment by collecting observations, choosing
actions, and receiving rewards. Assuming that A is the set of
feasible actions available to each agent, as a result of taking
an action a’ € A, the agent receives an immediate reward r’,
and the environment transitions from the state s’ to s'*!.

In the proposed energy marketplace, we have a set of agents
denoted by N = {GA,PAy,...,PA)} in which GA is the grid
agent and PA; is the agent for prosumer j. Next, we provide
details on the observations, actions, and rewards for each agent
type (i.e., grid agent or prosumer agent). In this framework,
all the continuous variables are discretized using a zero-order
hold to find the values at each time slot ¢.

Grid Agent: The GA observes the following state variables:

(1) cost of buying electricity from K generation facilities at
time ¢, which is denoted by wf; = [w],...,wk],
(i) cost of grid operator for buying electricity from M
prosumers, which is denoted by w'; = [a)Hl w’HM],
(iii) the total grid demand PZ,,

We use the notation sG 4 to represent all observations of the
grid agent at time ¢. Thus, based on the observations of the grid
at time ¢, the grid agent action is to determine the electricity
buy price. As described in the physical model, the buy price
is denoted by p’b € Aga, where Agy is the finite set of
available actions to GA (i.e., all possible buy prices).
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The reward function for the grid at time 7 is defined as
the grid profit, i.e.,

K M
to_ ot t t
o = VG =) 246, QL |
i=1 j=1

where U’G denotes the grid revenue at time slot ¢ as a result
of selling Py, electricity, which is obtained by vy, = P},x pf.
In addition, w!, is the grid cost to buy PL  from the i’

generation facilitly at time slot ¢. The value of i”G is obtained

(1)

using incremental cost curve of the i’ generation facility.
Finally, the grid cost to buy Pqu from prosumer j at time
slot ¢ is denoted by qu_ that can be calculated as,

J

Wiy, = Py % p, for Py > 0. (12)

Given the definition for immediate reward ré; A0 the ultimate
goal is to maximize the agent cumulative reward over an

infinite time horizon that is also known as expected return:

T = D Y6 (13)
k=0

where 0 < y < 1 is the discount rate for the grid agent.
Prosumer Agent: The prosumer agent j observes the fol-
lowing state variables:
(i) state of charge of battery that is denoted by gb;.,
(ii) PV generation denoted by P;,Vj ,
(iii) buy price p} determined by the grid agent,
(iv) local power consumption denoted by P’Cj.
Based on this set of observations, the charge/discharge com-
mand to the energy storage in prosumer j is the action
determined by PA;, which is shown by 0']’. € Apa;- In this
case, Apa,; is the finite set of available actions to PA;. The
reward function for PA; is defined as,

(14)

t _ ! t
"pa; T VH; T “H)
where U;Ij = P;-I_,— x p, for P;—I_,— > 0 is the j* prosumer’s
revenue from selling Py, to the grid at time slot ¢ and,
J
w; = Py x pl for Py < 0 is the j'" prosumer’s cost from
buying Pl’ql_ from the grid at time slot ¢. Similar to the grid

agent, the j*" prosumer tries to maximize its infinite-horizon
accumulative reward defined as:

(o]
t _ ~k _t+k+1
k=0

where 0 < ¥; < 1 is the discount rate for PA;.

15)

C. Q-Learning Framework

In this work, the agents use Deep Q-Network (DQN) to
solve their respective MDPs and maximize their accumulative
rewards in (13) and (15). The DQN algorithm uses deep
learning for each agent using the bellman iterative equation.
In particular, for the grid agent we have,

Q(st(;A9ptb) — Q(st(;A’ptb)+
t+1 t+1  t+1

alrgy +ymax Q(sg . Py, ) = Qs - 03)] - (16)
Y%

and similarly, for the prosumer agent we have,
t t t t
Q(Sij’o'j) — Q(Sijso'j)'*'

&[rp, + 7, max (s . 07™) = Q(spy o], (I7)
: o :
where @ and @&; are the learning rates for GA and PA;,
respectively. The estimated Q-values are used to find the
optimal policy that maximizes the accumulative rewards. The
DQN framework for the grid and prosumer agents is illustrated
in Algorithms 1 and 2, respectively.

Algorithm 1 Q-learning Algorithm for the Grid Agent
1: Initialize Q(sy; ,,0(; ) to zero
2: for each Episode do

3: for each Iteration do

4: t:=t+1

5: Set buy price pz according to policy mGa
. t+1 t+1

6: Observe rev:/ard :G " gt new state s,

7: Update Q(s; 4, p),) using (16)

8- st — st+1
: GA "~ °GA

9: end for

10: end for

Algorithm 2 Q-learning Algorithm for the j* Prosumer Agent
1: Initialize Q(s?, A_,o-}’.) to zero

2. for each Episode do

3: for each Iteration do

4 ti=t+1

5: Set charge/discharge 0'1’. according to policy mpa;,
6: Observe reward r;;;}j at new state sg/ij

7: Update Q(S;JAJ_,O';) using (17)

8: st 4 = st X,

9: end for

10: end for

In this framework, to balance exploration versus exploita-
tion, the epsilon greedy strategy m is used for GA and PA as
follow [18],

{ argmax E [Q (s’,a’)]
= a'

random action
The probability of random actions & starts at 1 for the first 300
episodes, and then decays to 0.01 over the training episodes.

with probability 1 — &,
with probability &.

IV. CASE STUDY AND NUMERICAL RESULTS

The proposed energy market place model is implemented
on a small-scale microgrid system, illustrated in Fig 1, to
demonstrate the operation of the agents and their effectiveness
for improving the economic benefit of the grid operator and
the prosumers. As pictured, the system under the study is com-
prised of two generation facilities (K = 2), three prosumers
(M = 3) that host the PA| to PAj agents, the grid operator that
hosts the grid agent (GA), and one nongenerational household
(a.k.a., consumer, N = 1). The parameters of the system
are tabulated in Table I. The employed PV generation and
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Fig. 2. Generation and consumption waveform sample for prosumers and consumer

Parameter Description Value Hyperparameters Value for GA | Value for PA;
max P at1
vaj Max. PV Generation [2-2.5] kW Batch size 64 64
max a P 0 e 1Q P _ . ~
Po o, sllwalls chargeiflacharee | B2 ¥ Discount factor y=[0.95-0.99] | 7;=[0.95-0.99]
PHJ- ax. allowable power mjectmn Learning rate a=16_3 d'J=1€-3
max . .
‘/’% - Max. state of charge 0.9xCp; Soft update interpolation le-5 le-5
? E::;; *::;fdzi fﬁeﬁy &‘13]%{, ) Hidden Layer-nodes 1-[1000] 2-[1000,1000]
bj storage cap? . Activation Sigmoid Sigmoid
on (10) Initial state of charge [3-4] kWh Optimi Agd Ag
Ps Sell price [before 11am, after 11am] | [0.05, 0.095] $/kWh ptimizer am am
i B rice for agent-based scenario 0.05, 0.06, 0.07,
b e ¢ ' é.os 0.09, 0.1}$/KWh TABLE II. DQN hyperparametrs
. . . .
Py, Buy price for conventional scenario 0.05 $/kWh . . L. . . .
Pgi]", P Limitation of base generation (5. 20] kW out via episodic iterations for 10,000 CP]SOdCS. Each ep1§ode
: o ) represents a 24 hour cycle and consists of 96 iterations,
P("_“;‘Z“, P(“;“;" Limitation of reserve generation [0, 50] kW . h h . lat; . | 15 .
181,821 Incremental cost of two generators [0.03, 0.3] $/kWh meaning that the simulation timeslots are minutes.

TABLE I. Simulation parameters used for the proposed energy market
place model on a small-scale microgrid

local consumption profiles for the last episode of the three
prosumers are illustrated in Fig 2. These waveforms are
constructed to be representative of real-world data available
from California ISO website [4]. The peak value of generation
and consumption for each prosumer is listed in Table I
The demand profile for last episode for the nongenerational
household is also shown in Fig 2, and its peak value is listed
in Table 1. Each prosumer is equipped with an energy storage
system (ESS) which includes a constant charge/discharge rate
and a capacity provided in Table 1.

In order to establish a baseline for the economic benefit of
the grid operator and the households, a conventional system
with a fixed buy price and no intelligent prosumer agents is
simulated. In this scenario, the prosumers only sell electricity
to the grid when their generation is more than their local
consumption and their ESS is fully charged, which is likely
to happen during the peak sun hours [19]. The described
microgrid model for trading electricity between grid and
residential loads is shown in Fig. 1. This scenario is referred
to as the conventional scenario.

In the next scenario, we leverage the grid and prosumer
agents to help implement the proposed market model, and
these results are compared with the conventional scenario
to demonstrate the economic improvements. This scenario is
referred to as the agent-based scenario. In this work, we use
PyTorch framework (v. 1.5.0 with Python3) to implement the
DQN agents [20]. For training and testing the neural network,
we leverage an Intel Xeon processor running at 3 GHz with
16 GB of RAM. The DQN algorithm hyperparameters used
for simulations are provided in Table II. The simulations for
both the conventional and agent-based scenarios are carried

The action space for all prosumer agents (i.e., set Apa)
includes three options: charge, no charge or discharge, and
discharge. As a result, these actions command the battery
power to one of the following three levels at each time slot 7:

Plrjnf‘x Charge action,
J
P;)j =10 No charge or discharge action, (18)
—P;**  Discharge action.
J

The action space for GA (i.e., buy price) is defined as Aga=
{0.05, 0.06, 0.07, 0.08, 0.09, 0.1} in which all numbers
represent $/kWh values. The sell price (p}) is defined at
a constant rate in this work as provided in Table I. The

incremental cost of the two generators in terms of $/kWh are
defined as,

{ wg;l =g for Pgin < Pté;l < ng" (19)
— min max N
wg, = B for PG < PG2 < PG

where B, > B (see Table I). Consequently, the Pg, provides
baseline generation capacity at a lower incremental cost while
PG, provides reserve capacity at a much higher cost.

The simulation results comparing the conventional and
agent-based scenarios throughout 10,000 episodes are illus-
trated in Fig. 3 (a)-(c), where we compare the daily bill of
the three prosumers over a 24-hour period. From the results,
we note that while the daily bill resulting from a conventional
scenario remains fairly constant throughout the episodes, the
prosumer agents start converging to a lower bill as the agents
explore the environment further and learn the optimal policy.
As shown, the daily bill for households 1-3 are lowered
by 1400%, 27%, and 13%, respectively. The unusually high
daily bill reduction for household 1 is attributable to the
conventional daily bill that is close to zero since the beginning
(i.e., high PV generation), and the household’s smaller peak
consumption according to Fig. 2.
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Fig. 3. Simulation results for conventional vs. agent-based scenarios
over 10000 episodes:(a)-(c) 24-hour accumulative reward comparison
for three prosumers, (d) grid 24-hour accumulative reward compari-
son, (e) grid reserve power utilization.

Fig. 3 (d)-(e) compare the accumulative grid profit and
use of costly reserve power (PG2) over a 24-hour period.
The agent-based scenario starts with a lower profit than the
conventional scenario but converges to a much higher profit
level than the conventional scenario as the agent learns the
optimal policy. In this case, the grid profit improved around
15%. According to Fig. 3(e), the grid profit improvement is
mostly attributable to the lower usage of costly reserve power
in the agent-based scenario. In fact, in this experiment, the grid
agent learns to rely on the prosumers’ generation for balancing
the grid’s power rather than using the reserve power which is
more expensive. The use of reserve power is decreased by
10% in this experiment.

V. CONCLUSIONS

This paper proposes an RL-based distributed energy
marketplace framework that enables a real-time, demand-
dependent, dynamic pricing environment to incentivize pro-
sumers’ grid support engagement while improving the eco-
nomic benefit of both, prosumers and the grid operator. Simu-
lation results, when implementing the proposed market model,
show major economic improvements for the prosumers and the

grid (through a reduced reserve power utilization by the grid).
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