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Abstract
We consider the convergence of point-to-point partition functions for the half-space directed
polymer model in dimension 1+1 in the intermediate disorder regime as introduced for the
full space model by Alberts, Khanin and Quastel in [1]. By scaling the inverse temperature as
βn−1/4, the point-to-point partition function converges to the chaos series for the solution to
stochastic heat equation with Robin boundary condition and delta initial data. Furthermore,
the convergence result is then applied to the exact-solvable log-gamma directed polymer
model in a half-space.

1 Introduction

The directed polymerswere introduced in the statistical physics literature byHuse andHenley
[14] in 1985 and receivedfirst rigorousmathematical treatment in 1988 by Imbrie andSpencer
[15]. The monograph [6] is a great resource for the foundational work in this area. Over the
last thirty years, the directed polymers played an important role as a playground of many
fascinating problems in the probability world.

Among those different directions opened up by directed polymers, in dimension 1+1, its
connection to the KPZ universality class [7] has attracted extensive attention. The polymer
measure in dimension 1+1 is a randomprobabilitymeasure on paths in a randomenvironment,
which favors higher weighted paths. It is constructed through up / right paths onZ2 with path
measure re-weighted by an i.i.d. random environment presented at each lattice points. The
KPZ universality conjecture concerns the large scale asymptotic behavior of the polymer free
energy and there are two characteristic scalings , the 1:2:3 KPZ scaling and the weak noise
scaling, known as the strong KPZ universality conjecture and the weak KPZ universality
conjecture respectively.

In the direction of the strong KPZ universality conjecture for directed polymers, the first
rigorous verification of the 1/3 fluctuation of polymer free energywas proven for a special case
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[20], where the integrable log-gamma polymers were introduced. Among directed polymers,
the log-gamma directed polymer model was special in the same way as the last passage
percolation models with exponential or geometric weights are special among corner growth
models. Namely, both demonstrate integrable structures and permit explicit computations. [8]
computed the Laplace transform of the point-to-point partition function. [5] transformed that
formula into a Fredholm determinant and performed asymptotic analysis, with motivation
from Macdonald process formulas in [4].

Under theweak noise scaling, the convergence of polymer free energy in dimension 1+1 to
KPZ equation has been established in the remarkable work by Alberts, Khanin and Quastel
in [1], which is known to have proved the weak KPZ universality conjecture for directed
polymers.

It is natural to ask the same question for the half-space polymers. The half-space directed
polymers are constructed through up / right paths constrained to stay in the half-quadrant with
path measure re-weighted by two random environments(X present only at the boundary and
ω in the bulk). Compared to the full space case, the extra boundary environment X penalizes
or rewards the path measure every time the walker visits the origin in an i.i.d. manner. The
main Theorem 2.2 of this paper builds the connection between half-space directed polymers
and half-space stochastic heat equation(SHE) with Robin boundary condition/KPZ equation
with Neumann boundary condition.

Aside from the general half-space polymer model, recently there has also been consider-
able attention focused on the exact-solvable log-gamma polymers, see the recent work in [2]
and [10]. But presently no rigorous asymptotics have been proved. This motivates to apply
the convergence results for general half-space polymer model to the log-gamma case, see
Sect. 7. Our result was further used in [17] to obtain an equality-in-distribution for SHE on
the half space with different boundary conditions.

More generally, half-space KPZ universality is also studied by other half-space models
approached from the perspective of scaling to KPZ equation and also from the perspective of
exact solvability. On half-space asymmetric simple exclusion process (ASEP), [9] showed
that the height function converges to Hopf-Cole solution of KPZ equation with Neumann
boundary condition(Robin boundary condition for SHE).With stronger estimates developed,
[18] extended their results to negative values of the boundary condition. In the exact solvability
direction, [3] studied half-line ASEP as a scaling limit of a stochastic six-vertex model in a
half-quadrant and found exact formulas for half-space KPZ/SHE with μ = −1/2, see (2.8).
See also in [13] for the study of KPZ equation with Neumann boundary conditions in the
context of the theory of regularity structures.

Outline

In Sect. 2 we give a precise formulation of our main result Theorem 2.2 and heuristics of
the proof are provided in Sect. 3. The techniques we borrow from U-statistics are stated in
Sect. 4. Our main technical estimates are provided in Sect. 5 with proofs postponed to the
appendix. We leave the proof of our main theorem to Sect. 6. In the last Sect. 7, we discuss
the half-space log-gamma polymer model and apply our main theorem to get an analogous
convergence result for the point-to-point partition function.
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2 Definitions of theModel andMiain Results

The aim of this paper is to study the SHE limits of half-space directed polymers in a random
environment. We start with definitions of the half-space polymers.

2.1 Half-Space Polymers

Consider an n-step simple symmetric randomwalk on non-negative integersN0 with a totally
reflecting barrier at the origin. The law of this walk is equal to that of the absolute value of
a standard symmetric random walk on Z. Denote the reflecting random walk probability
measure by PR on paths starting from origin at time 0 and we also denote P

m,x
R as the

probability measure on paths starting at x ≥ 0 at time m ≥ 0. This measure Pm,x
R will serve

as our background probability measure throughout this paper and we omit the superscript
when there is no ambiguity about the starting point and time. For a path S, let Si denote its
location at time i and define transition probability for a random walk starting at x at time m
and arriving at y ≥ 0 at time n ≥ m by

p(m, n, x, y) :=
∑

S:Sn=y

P
m,x
R (S).

Such path measures will be affected by two environments and we start with the boundary
environment. Let X = {Xi } be a sequence of i.i.d. non-negative random variables and we
refer to X as the boundary random environment. Define the random transition kernel as

pX (m, n, x, y) :=
∑

S:Sn=y

⎛

⎝
∏

m≤i<n:Si=0

Xi

⎞

⎠ · Pm,x
R (S). (2.1)

Denote N as the set of positive natural numbers while N0 also includes zero and denote
[m, n]Z as the integers inside [m, n]. Given a path S : [m, n] → N0, define the corresponding
random measure PX as

PX (S) :=
⎛

⎝
∏

m≤i<n:Si=0

Xi

⎞

⎠PR(S).

PX is a measure-valued random variable with randomness inherited from X . Note that in
general PX is not a probability measure due to the “punishing” or “rewarding” effects caused
by the random environment X when paths visit the origin.

When the boundary random environment is deterministic such that Xi ≡ γ ≥ 0, γ is
denoted as the reflection rate for the barrier at origin. It follows that the barrier is absorbing
if 0 ≤ γ < 1, totally reflecting if γ = 1, and rewarding if γ > 1. Now the transition kernel
pγ (m, n, x, y) also becomes deterministic. Explicitly,

pγ (m, n, x, y) :=
n−m∑

j=0

γ j
P
m,x
R (Nm,n = j, Sn = y). (2.2)

Here Nm,n is the total visits to the origin as

Nm,n(S) := #{i ∈ [m, n − 1]Z | Si = 0}. (2.3)
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Let ω(i, x) for (i, x) ∈ N0 × N0 be an i.i.d. collection of random variables and we refer
to ω := {ω(i, x)} as the bulk random environment. The energy of an n-step nearest neighbor
walk S in the environment ω is defined as:

Hω
n (S) :=

n−1∑

i=0

ω(i, Si ).

Define the polymer probabilitymeasurewith randomness inherited fromboth the bulk random
environment ω and the boundary random environment X as:

P
ω,X
n,β (S) := 1

Zω,X (n;β)
eβHω

n (S) · PX (S)

= 1

Zω,X (n;β)
eβHω

n (S) ·
⎛

⎝
∏

0≤i<n:Si=0

Xi

⎞

⎠ · PR(S).

Here β is a parameter, called inverse temperature. The normalization term Zω,X (n;β) is a
point-to-line partition function, defined as:

Zω,X (n;β) := ER

⎡

⎣eβHω
n (S)

⎛

⎝
∏

0≤i<n:Si=0

Xi

⎞

⎠

⎤

⎦ ,

where the expectation is taken with respect to the reflecting random walk measure PR and
preserves randomness from ω and X .

Themain goal of this paper is to study the limiting behavior of the following point-to-point
partition function:

Zω,X (n, x;β) := ER

⎡

⎣eβHω
n (S)

⎛

⎝
∏

0≤i<n:Si=0

Xi

⎞

⎠ · 1{Sn = x}
⎤

⎦ , (2.4)

where 1 is the indicator function. Note that {Sn = x} is non-empty only if n and x have the
same parity, which we denote as n ↔ x . Generally, for n ∈ N and x ∈ R, denote [x]n as the
largest integer among which are smaller than x and enjoys the same parity as n, i.e.

[x]n := max{m ∈ Z | m ≤ x, m ↔ n}. (2.5)

2.2 Stochastic Heat Equation with Robin Boundary Condition

In this section we introduce the SHE with Robin boundary condition, which arises as a weak
scaling limit of the half-space directed polymers. We also provide the expression of the chaos
series for its solution, a series of multiple stochastic integrals over a Robin heat kernel with
respect to a space-time white noise.

2.2.1 1-D Heat Equation with Robin Boundary Condition

Definition 2.1 We say ρμ(t, x, y) is the fundamental solution to 1-D heat equation on R≥0

with Robin boundary condition and initial data δ(y − x) if

∂tρμ(t, x, y) = 1

2
∂xxρμ(t, x, y)

∂xρμ|x=0 = μ · ρμ|x=0, (2.6)
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and if for any function ϕ(x),

v(t, x) =
∫ ∞

0
ρμ(t, x, y)ϕ(y)dy

solves heat equation with initial condition

v(0, x) = ϕ(x).

There are a few equivalent forms of the Robin heat kernel. We will make use of the following
form which can be found in [9, Lemma 4.4].

ρμ(t, x, y) =(2π t)−1/2
(
e−(y−x)2/(2t) − e−(y+x)2/(2t)

)

+ 2(2π t3)−1/2
∫ ∞

0
(y + x + s)e−μs−(y+x+s)2/(2t)ds. (2.7)

2.2.2 Stochastic Heat Equation with Robin Boundary Condition

Consider the stochastic heat equation with multiplicative noise

∂t zβ = 1

2
∂xx zβ + βzβ · ξ (2.8)

with delta initial data and Robin boundary condition:

zβ(0, ·) = δ(0)

∂x zβ(·, x)|x=0 = μ · zβ(·, 0).
Here ξ(t, x) is a white noise on R≥0 × R≥0 with covariance structure

E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y).

For details aboutwhite noise and full spaceSHE,we refer to [1, Section 3]. Further discussions
can be found in [16].

With the help of the Robin heat kernel, the mild solution is given by

zβ(t, x) =
∞∑

k=0

∫

�k (t)

∫

R
k≥0

ρμ(t − tk, xk, x) · βk
k∏

i=1

ρμ(ti − ti−1, xi−1, xi )dξ⊗k(t, x),

(2.9)

where �k(t) = {0 = t0 < t1 < · · · < tk ≤ t} and x0 = 0.
To simply the notation, we define the k-fold operator as follows. Let k ∈ N0 and

g(t1, t2, x1, x2) be a function defined on 0 ≤ t1 < t2 and (x1, x2) ∈ R
2. Fk[g](t, x; t, x) :

(R>0 × R) × �k(t) × R
k → R is defined as

Fk[g](t, x; t, x) := g(tk, t, xk, x)
k∏

j=1

g(t j−1, t j , x j−1, x j ). (2.10)

Here the convention t0 = x0 = 0 has been used. Let

ρμ,k(t, x; t, x) = Fk[ρμ](t, x; t, x), (2.11)
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with the understanding that ρμ(s, t, ·, ·) := ρμ(t − s, ·, ·). Then

zβ(t, x) =
∞∑

k=0

∫

�k (t)

∫

R
k≥0

βkρμ,k(t, x; t, x)dξ⊗k(t, x).

Our main result below shows that by diffusively scaling the random walks, under inter-
mediate disorder scaling(βn−1/4) and critical scaling near the boundary, the point-to-point
partition function converges to z√2β(t, x), solution to SHE. The convergence takes place in

the topology of supremum norm on bounded continuous functions, denoted as
(d)−→. Denote

λ(β) = logE[eβω], our main theorem is as follows.

Theorem 2.2 Fix μ ∈ R. Let ω be i.i.d. random environment with mean zero and variance
one which satisfies λ(β0) < ∞ for some β0 > 0. For n ∈ N, let γ = 1−μ/

√
n. Assume that

X satisfies E[X ] = γ and that E [|X − E[X ]|3] ≤ Kn−ε for some ε ∈ (0, 1] and K > 0.
Then

2−1n1/2e−�∗
ntλ(βn−1/4)Zω,X (�∗
nt, [x√n]�∗
nt ;βn−1/4) (d)−→ z√2β(t, x).

Here [x√n]�∗
nt is the largest integer which is smaller than x
√
n and has the same parity as

�∗
nt. See (2.5).

Remark 2.3 Here we require the third moment assumption in order to prove tightness and we
do not believe this is the optimal case.

3 Heuristics and Ideas of Proof

In this section we attempt to explain why βn−1/4 and γ = 1 − μ/
√
n are natural scalings.

We also provide heuristics behind the proof of the Main Theorem 2.2 and comment on the
main technical ingredients. First let us summarize the setup of half-space polymers in the
following Table 1. Note that in the left picture, random walk trajectories are pictured as paths
in a half-quadrant while the partition functions are defined with respect to random walks on
non-negative integers. The equivalence between these two formulations is clear and in this
way the figure better illustrate the idea. For simplicity of notations, we omit the floor function
when it does not cause ambiguity, e.g. �∗
nt, [x√n]�∗
nt .

The tuning at boundary, γ = 1 − μ/
√
n, is clear. When the background random walk is

scaled diffusively, the total number of visits to the boundary of this random walk is of scale√
n. In the average sense, in order to see a non-trivial limit of

∏

0≤i<n:Si=0

Xi , we must have

γ − 1 = O
(

1√
n

)
.

The strategy for proving Theorem 2.2 is to first prove the convergence for a modified
partition functionZω.Zω takes the form of a discrete chaos series with randomwalk transition
probability kernel. The techniques of U-statistics in Sect. 4 provide criteria for convergence
of discrete chaos series to continuous ones. Furthermore we rewrite the unmodified partition
function Zω in the same form as Zωn with a perturbed environment ωn , still of mean zero
but with variance only asymptotically one. In addition, the same strategy will be applied in
the log-gamma polymer model, where we will need to deal with the issue that the random
environment will only be i.i.d. on the diagonal and the bulk respectively.
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Denote Dn
k as a discrete integer simplex:

Dn
k := {i = (i1 · · · , ik) ∈ N

k
0 : 0 ≤ i1 < · · · < ik < n}. (3.1)

We define a k-fold transition kernel pX ,k(n, y; i, y) for (n, y, i, y) ∈ (N × N0) × Dn
k × N

k
0

of a half-space random walk with a barrier at origin that arrives at y in n steps.

pX ,k(n, y; i, y) := pX (ik, n, yk, y)
k∏

j=1

pX (i j−1, i j , y j−1, y j ). (3.2)

Here the convention i0 = x0 = 0 has been used. The modified point-to-point partition is
defined as:

Zω,X (n, y;β) := ER

⎡

⎣
n−1∏

i=0

(
1 + βω(i, Si )

) ·
⎛

⎝
∏

0≤i<n:Si=0

Xi

⎞

⎠ · 1{Sn = y}
⎤

⎦ (3.3)

Expanding the above product in the expectation and by a direct computation, Zω,X (n, y;β)

could be written as a discrete sum of weighted chaos,

Zω,X (n, y;β) = pX (0, n, 0, y) +
n∑

k=1

βk
∑

i∈Dn
k

∑

y∈Nk
0

pX ,k(n, y; i, y)ω(i, y), (3.4)

where ω(i, y) :=
k∏

j=1

ω(i j , y j ).

Heuristically we may see why SHE (2.9) arise in the limit. Under the diffusive scaling
and boundary tuning (γ = 1 − μ/

√
n), random walk transition probabilities converge to

the Robin heat kernel. Moreover, the random environment ω approximates White noise by
scaling β to zero in a critical manner (i.e. βn1/4). To made this rigorous, we need local limit
theorem and L2 bounds on the k-fold random transition kernels pX ,k(n, y; i, y). These are
the main technical inputs of these paper and are provided in Sect. 5.

To see that βn−1/4 is the critical scaling, it is illustrative to check that the k = 1
term in the summation above has order O(

√
n). For simplicity, assume Xi ≡ 1 and

consider the point-to line case, i.e. do not fix the endpoint. Now it suffices to show that
n−1/4

∑

i

∑

x

ω(i, x)P(Si = x) stays bounded as a random variable (with randomness inher-

ited from ω). This could be easily seen from taking the second moment. In detail, we see
that

Eω

(
n−1/4

∑

i

∑

x

ω(i, x)P(Si = x)

)2

= n−1/2
Eω

⎡

⎣
∑

i

∑

x

ω(i, x)P(Si = x)
∑

j

∑

y

ω( j, y)P(S̃ j = y)

⎤

⎦

= n−1/2
∑

i, j

∑

x,y

Eω [ω(i, x)ω( j, y)]P(Si = x)P(S̃ j = y)

= n−1/2
∑

i= j

∑

x=y

P(Si = x)P(S̃ j = y)

= O(1).
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Here S, S̃ are two independent random walk paths. The third equality follows from taking
expectation with respect to ω by Fubini theorem. Only the the intersection points of S, S̃ will
contribute to the sum as ω is i.i.d. of mean zero and variance one. From general theory of 1-D
random walks, we know that S and S̃ intersect O(

√
n) times on average and this explains

the scaling βn−1/4.

4 U-Statistics

The techniques of U-statistics are convenient for obtaining convergence of partition func-
tions Zω, which take the form of discrete chaos. As the results about U-statistics are already
presented in [1, Section 4], we choose to state the results and refer the proofs to their coun-
terparts in [1]. See [11] for a more general treatment of discrete chaos expansion with more
general random environment.

We start with introducing the definition of U-statistics and then quote a technical lemma
(Lemma 4.3). In application to log-gamma polymer models, we need to allow a slightly more
general setting. See Lemma 4.4.

Recall that n ↔ x denotes n and x have the same parity. More generally, i ↔ y means
that all corresponding entries share the same parity. Let Rn

k be the collection of rectangles,
defined as:

Rn
k :=

{[
n−1i, n−1(i + 1)

)× [
n−1/2y, n−1/2(y + 2)

) : i ∈ Dn
k , y ∈ N

k
0, i ↔ y

}
.

Here Dn
k is integer simplex defined in (3.1) and 1 is the k-dimensional vector (1, 1, · · · , 1).

Also
[
n−1i, n−1(i + 1)

) := [
n−1i1, n

−1(i1 + 1)
)× · · · × [

n−1ik, n
−1(ik + 1)

)
,

and similarly,
[
n−1/2y, n−1/2(y + 2)

) := [
n−1/2y1, n

−1/2(y1 + 2)
)× · · · × [

n−1/2yk, n
−1/2(yk + 2)

)
.

For a L2 function g on [0, 1]k × R
k≥0, take n ≥ 1, the corresponding U-statistics Sn

k (g)
of g could be viewed as a weighted average of a discretization of g through the random
environmentω. We now discretize L2([0, 1]k ×R

k≥0) functions by replacing their values with

their integral mean values on rectangles in Rn
k . Consider a function g ∈ L2([0, 1]k × R

k≥0),
define gn by specifying the values of gn on every R ∈ Rn

k , more specifically we define

gn |R := 1

|R|
∫

R
g.

where |R| = 2kn−3k/2. Note that g is constant on every single R and for each n, k fixed,
each pair (i, y) ∈ Dn

k × N
k
0 (i ↔ y) corresponds to a unique R ∈ Rn

k .
For the convenience of applying U-statistics results we consider sums over unordered sets

En
k := {i ∈ [1, n]k

Z
: i j �= il for j �= l}.

Recall that ω(i, y) =
k∏

j=1

ω(i j , y j ).
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Definition 4.1 The corresponding U-statistics of g ∈ L2([0, 1]k × R
k≥0) is defined as

Sn
k (g;ω) := 2k/2

∑

i∈En
k

∑

y∈Nk
0

gn
(
n−1i, n−1/2y

)
ω(i, y) · 1{i ↔ y}. (4.1)

The following lemma, proved as [1, Lemma 4.1], bounds the second moment of Sn
k (g;ω)

from above.

Lemma 4.2 Let Sn
k (g;ω) be a U-statistics as in (4.1). For any linear combinations of func-

tions g1, · · · , gm ∈ L2([0, 1]k × R
k≥0) through α1, · · · , αk ∈ R, we have

m∑

l=1

αlSn
k (gl;ω) = Sn

k

(
m∑

l=1

αl gl;ω

)
.

Moreover, if random environment variables satisfy moment conditions E[ω(i, x)] = 0
and Var[ω(i, x)] = σ 2, then

E
[Sn

k (g)2
] ≤ σ 2kn3k/2 ‖g‖2

L2([0,1]k×R
k≥0)

.

Note that the U-statistics is invariant under permutation for (t, x) and we denote

Sym g(t, x) = 1

k!
∑

π∈σk

g(πt, πx),

where σk is the symmetric group of degree k.
For G = (g0, g1, g2, . . .) ∈ ⊕

k≥0 L
2([0, 1]k × R

k≥0), define its chaos series I (G) as
follows,

I (G) :=
∞∑

k=0

∫

[0,1]k

∫

R
k≥0

Sym gk(t, x)ξ⊗k(dt dx)

=
∞∑

k=0

∫

[0,1]k

∫

R
k≥0

gk(t, x)ξ⊗k(dt dx).

The following lemma, proved as [1, Theorem 4.5], shows that under mild conditions, the
U-statistics converges in distribution to the continuum chaos series.

Lemma 4.3 Let ωn(i, x), (i, x) ∈ N0 ×N0 be a sequence of i.i.d. random environments that
satisfy

E[ωn] = 0, and lim
n→∞E[ω2

n] = 1. (4.2)

Let G = (g0, g1, g2, . . .) ∈ ⊕
k≥0 L

2([0, 1]k × R
k≥0) with

lim
N→∞ lim sup

n→∞

∞∑

k=N

E[ω2
n]k ‖gk‖L2 = 0. (4.3)

Then as n → ∞,

Sn(G) :=
∞∑

k=0

n−3k/4Sn
k (gk;ωn)

(d)−−−−−−→ I (G).
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Moreover, supposeG1, . . . ,Gm ∈ ⊕
k≥0 L

2([0, 1]k×R
k≥0) all satisfy (4.3). Then as n → ∞,

we have the joint convergence:

(Sn(G1), . . . ,Sn(Gm)
) (d)−−−−−−→ (

I (G1), . . . , I (Gm)
)
.

For the application to log-gamma polymer model, we need the following lemma for a per-
turbed random environment ω̃.

Lemma 4.4 Let ω̃n(i, x), (i, x) ∈ N
2
0 be a sequence of random environments. Assume that

for fixed n, ω̃n(i, x), (i, x) ∈ N0 × N are i.i.d. random variables and that ω̃n(i, 0), i ∈ N0

are also i.i.d. random variables. Furthermore, assume that E[ω̃n(i, 0)] = E[ω̃n(i, 1)] = 0,
limn→∞ E[ω̃2

n(i, 1)] = 1 and that

σ 2 := sup
n∈N,x∈N0

E[ω̃2
n(i, x)] < ∞.

Then, replacing (4.3) with

lim
N→∞ lim sup

n→∞

∞∑

k=N

σ 2k ‖gk‖L2 = 0, (4.4)

the convergence results in Lemma 4.3 still hold with ωn replaced by ω̃n.

Proof The proof follows as a trivial reasoning in [1, Theorem 4.5]. ��

5 Estimates on Discrete Transition Kernel

We record in this section estimates that will be needed in proving Theorem 2.2. Their proofs
are postponed to the appendix. Recall that pγ defined in (2.2) is the deterministic transition
kernel as X ≡ γ . Lemma 5.1 concerns pointwise upper bounds for pγ . In particular, it
shows that pγ enjoys exponential decay. Lemma 5.2 proves the local limit theorem for pγ .
Lemma 5.3 bounds the variance of the random transition kernel pX in terms of pγ . Combined
with Lemma 5.1, it implies the variance of pX also decays exponentially.

Lemma 5.1 For any μ ∈ R and τ ≥ 1, there exist a constant B0(μ, τ) and a universal
constant C0 such that the following statement holds. For n ∈ N, m ∈ [1, τn]Z and (x, y) ∈
N
2
0, let γ = 1 − μ/

√
n. Then

pγ (0,m, x, y) ≤ 2B0(μ, τ)m−1/2e−(x−y)2/(C0m).

Lemma 5.2 For any μ ∈ R, 0 < ε < 1 and M, τ ≥ 1, there exists Err(n;μ, ε, M, τ ) such
that the following statement holds. Assume that n ∈ N, t ∈ [ε, τ ] and (x, y) ∈ [0, M]2 with
nt ∈ N,

√
nx,

√
ny ∈ Z and nt ↔ √

n(y − x). Let γ = 1 − μ/
√
n. Then

∣∣2−1n1/2 pγ (0, nt,
√
nx,

√
ny) − ρμ(t, x, y)

∣∣ ≤ Err(n;μ, ε, M, τ ).

Furthermore,

lim
n→∞Err(n;μ, ε, M, τ ) = 0.

See the expression for ρμ in (2.7).
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Lemma 5.3 Fix n ∈ N, τ ≥ 1, ε ∈ (0, 1] and K ≥ 1. Assume thatVar[Xi ] ≤ Kn−ε and that
E[X ] = γ = 1 − μ/

√
n. There exists c(n; τ, ε, K ) such that the following statement holds.

For any integers m ∈ [1, nτ ]Z and (x, y) ∈ N
2
0, we have

Var[pX (0,m, x, y)] ≤ c(n; τ, ε, K )p2max{1,γ 2}(0,m, x, y).

Furthermore,

lim
n→∞ c(n, τ, ε, K ) = 0.

6 Proof of theMain Theorem

For simplicity, we first treat the case t = 1 and explain how to proceed with gen-
eral t > 0. In order to prove the convergence of the point-to-point partition functions
Zω,X (n, [x√n]n;βn−1/4) as in (2.4), we begin with identifying Zω,X (n, [x√n]n;βn−1/4)

with a U-statistics of pX ,k(n, [x√n]n; i, y) as in (3.2) and then use the techniques of U-
statistics.

As pX ,k(�∗
nt, [x√n]�∗
nt ; i, y) is only defined on lattice points (i, y) ∈ D�∗
nt
k ×

N
k
0, which verify the parity condition, we will interpolate the discrete transition kernel

pX ,k(�∗
nt, [x√n]�∗
nt ; i, y) to be a L2 function on [0, t]k × R
k≥0. Given x ∈ R≥0 and

i ∈ N, recall that [x]i defined in (2.5) is the largest integer among the ones that are smaller
than x and are of the same parity as i . For a point x ∈ R

k≥0 and i ∈ D�∗
nt
k , define [x]i ∈ N

k
0

by ([x]i)k = [xk]ik .
Given (t, x) ∈ R>0 × R≥0 and (t, x) ∈ [0, t]k × R

k≥0, let m = �∗
nt , y = [√nx]m ,
i = �nt
 and y = [√nx]i. Define the scaled extension νnX ,k as

νnX ,k(t, x; t, x) := 2−(k+1)n(k+1)/2 pX ,k(m, y; i, y) · 1{i ∈ Dm
k }. (6.1)

Note that now νnX ,k also takes care of the diffusive scaling for pX ,k . Under above defi-

nitions, νnX ,k is constant on the rectangles of Rn
k . Note that for i ∈ En

k , y ∈ N
k
0 such that

i ↔ y,

νnX ,k(t, x; n−1i, n−1/2y) = 2−(k+1)n(k+1)/2 pX ,k(m, y; i, y) · 1{i ∈ Dm
k }.

Recall the definition of Sn
k as in (4.1) and note that νnX ,k is constant on the rectangles of

Rn
k and zero elsewhere, we compute the U-statistics of νnX ,k(1, x; ·, ·) as follows,
Sn
k (νnX ,k(1, x; ·, ·);ω) = 2k/2

∑

i∈En
k

∑

y∈Nk
0

νnX ,k

(
1, x; n−1i, n−1/2y

) · ω(i, y) · 1{i ↔ y}

= 2−k/2−1n(k+1)/2
∑

i∈Dn
k

∑

y∈Nk
0

pX ,k(n, y; i, y) · ω(i, y).

Here y = [x]n and the parity condition is handled by the pX ,k and summation is over i ∈ Dn
k .

We could rewrite the modified point-to-point partition function as

Zω,γ (n, [x√n]n;βn−1/4) = 2n−1/2
n∑

k=0

2k/2βkn−3k/4Sn
k (νnX ,k(1, x; ·, ·);ω). (6.2)

The following two lemmas seek to bound νnX ,k . Lemma 6.2 gives the L2 bound and L2

convergence of νnγ,k(t, x; t, x).
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Lemma 6.1 Fix μ ∈ R and τ ≥ 1. There exist a constant B1(μ, τ) and a universal constant
constant C1 such that the following statement holds. For any n ∈ N, define

�n(t1, t2, x1, x2) := B1 max{t2 − t1, 2n
−1}−1/2e−(x2−x1)2/(C1 max{t2−t1,2n−1}).

Let γ = 1− μ/
√
n. Then for all n ≥ 1, t ∈ (0, τ ], x ∈ R and (t, x) ∈ �k(t) ×R

k , we have

νnγ,k(t, x; t, x) ≤ Fk[�n](t, x; t, x).
Here the k-fold operator Fk is define in (2.10).

Proof Let m = �∗
nt y = [√nx]m , i = �∗
nt and y = [√nx]i. Without loss of generality
we may assume i ∈ Dm

k as otherwise νnγ,k(t, x; t, x) = 0. In particular, m − ik ≥ 1 and
i j − i j−1 ≥ 1. By the definition of νnγ,k(t, x; t, x), it suffices to show that

2−1n1/2 pγ (i j−1, i j , y j−1, y j ) ≤�n(t j−1, t j , x j−1, x j ),

2−1n1/2 pγ (ik,m, yk, y) ≤�n(tk, t, xk, x).

We give the proof for the first inequality. The proof for the second is identical. From
Lemma 5.1,

2−1n1/2 pγ (i j−1, i j , y j−1, y j ) ≤ Bn1/2(i j − i j−1)
−1/2e−(y j−y j−1)

2/[C(i j−i j−1)].

We assume first that t j − t j−1 ≥ 2n−1. Then

(t j − t j−1)/2 ≤ n−1(i j − i j−1) ≤ 2(t j − t j−1).

Together with

n(x j − x j−1)
2 ≤ 2(y j − y j−1)

2 + 4,

The assertion follows. The proof for t j − t j−1 < 2n−1 is similar by using

n−1 ≤ n−1(i j − i j−1) ≤ 3n−1.

The proof is finished. ��
Lemma 6.2 Fix μ ∈ R and τ ≥ 1. There exists a constant B2(μ, τ) such the the following
statement holds. For all n ∈ N, let γ = 1 − μ/

√
n. For all k ≥ 1, t ∈ (0, τ ] and x ∈ R≥0,

we have
∥∥∥νnγ,k(t, x; ·, ·)

∥∥∥
2

L2
≤ tk/2−1e−x2/[C1 max{t,2k/n}]B2(μ, τ)k/�((k + 1)/2), (6.3)

lim
n→∞

∥∥∥νnγ,k(t, x; ·, ·) − ρμ,k(t, x; ·, ·)
∥∥∥
L2

= 0. (6.4)

Proof We start with (6.3). By a direct computation,

Fk[�n](t, x; t, x)2 = Bk+1
1 (max{t − tk, 2n

−1})−1/2
k∏

j=1

(max{t j − t j−1, 2n
−1})−1/2

× Fk[�n](1,
√
2x; t,√2x).

Through change of variables, for any t ∈ �k(t),
∫

Rk
Fk[�n](t,

√
2x; t,√2x)dx ≤ Bk+1t−1/2e−x2/[C1 max{t,2k/n}].
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For simplicity, we denote t̄ = max{t, 2k/n}. Thus

sup
n∈N

∥∥∥νnγ,k(t, x; ·, ·)
∥∥∥
2

L2
≤Bkt−1/2e−x2/(C1 t̄)

∫

�k (t)
(max{t − tk, 2n

−1})−1/2

k∏

j=1

(max{t j − t j−1, 2n
−1})−1/2dt

≤Bkt−1/2e−x2/(C1 t̄)
∫

�k (t)
(t − tk)

−1/2
k∏

j=1

(t j − t j−1)
−1/2dt

≤tk/2−1e−x2/(C1 t̄)Bk/�((k + 1)/2).

Here we have used (see [1, Section 3.4])

∫

�k

(t − tk)
−1/2

k∏

j=1

(t j − t j−1)
−1/2dt = π(k+1)/2/�((k + 1)/2).

Next, we turn to showing (6.4). By the local limit theorem Lemma 5.2, νnγ,k(t, x; ·, ·)
converges to ρμ,k(t, x; ·, ·) pointwisely. By the argument above we see that Fk[�n](t, x; ·, ·)
converges to Fk[�∞](t, x; ·, ·) in L2. Here

�∞(t1, t2, x1, x2) := B1(t2 − t1)
−1/2e−(x2−x1)2/(C1(t2−t1)).

Thus (6.4) follows by the dominated convergence theorem. ��
By identifying Zω,γ (n, [x√n]n;βn−1/4) with the U-statistics as in (6.2), we are ready to

prove the main Theorem 2.2 in a few steps as follows.

Proof of Theorem 2.2 Define the environment field ωn by

eβn−1/4ω(i,x)−λ(βn−1/4) = 1 + βn−1/4ωn(i, x). (6.5)

Note that as E[eβ0ω] < ∞, λ(βn−1/2) is well-defined as βn−1/4 ≤ β0. From the definition
of λ(βn−1/4), we haveE[ωn] = 0. It is straightforward to check thatE[ω2

n] = 1+O(n−1/4).
Hence ωn satisfies (4.2). Moreover we have

2−1n1/2e−nλ(βn−1/4)Zω,X (n, [x√n]n;βn−1/4)

= 2−1n1/2ER

[
n∏

i=0

(
1 + βn−1/4ωn(i, Si )

)
1{Sn = [x√n]n}

]

= 2−1n1/2Zωn ,X
(
n, [x√n]n;βn−1/4) .

Step 1: Fix x ∈ R≥0.Wefirst prove the convergence of 2−1n1/2Zωn ,γ (n, [x√n]n;βn−1/4).
By (6.3) and (6.4),

‖ρμ,k(1, x; ·, ·)‖2L2 ≤ e−2x2/C1B2(μ, 1)2/�((k + 1)/2).

It is easy to see that (4.3) holds. Hence by Lemma 4.3 it follows that for all β > 0, as
n → ∞,

∞∑

k=0

2k/2βkn−3k/4Sn
k (ρμ,k(1, x; ·, ·);ωn)

(d)−→ z√2β(1, x). (6.6)
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See the chaos expansion of z√2β(1, x) in (2.9) . Now it suffices to show that the difference

J :=
∞∑

k=0

2k/2βkn−3k/4Sn
k (ρμ,k(1, x; ·, ·);ωn) − 2−1n1/2Zωn ,γ (n, [x√n]n;βn−1/4).

converges to 0 in L2. By splitting the above series and applying linearity of Sn
k , we have

J =
∞∑

k=0

2k/2βkn−3k/4Sn
k (ρμ,k(1, x; ·, ·);ωn) −

n∑

k=0

2k/2βkn−3k/4Sn
k (νnγ,k(1, x; ·, ·);ωn)

=
n∑

k=0

2k/2βkn−3k/4Sn
k

(
ρμ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·);ωn

)

+
∞∑

k=n+1

2k/2βkn−3k/4Sn
k (ρμ,k(1, x; ·, ·);ωn).

Because Sn
k (ρμ,k(1, x; ·, ·);ωn) are independent for different k, by Lemma 4.2 the second

moment of the second term is bounded from above by

∞∑

k=n+1

E[ω2
n]k2kβ2k‖ρμ,k(1, x; ·, ·)‖2L2 ≤

∞∑

k=n+1

E[ω2
n]k2kβ2ke−2x2/C1B2(μ)k/�((k + 1)/2).

Thus the second term converges to zero as n goes to infinity. We now turn to the first term.
By Lemma 4.2 we have

E

⎡

⎣
(

n∑

k=0

2k/2βkn−3k/4Sn
k

(
ρμ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·))

)2
⎤

⎦

≤
n∑

k=0

E[ω2
n]k2kβ2k

∥∥ρμ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·)∥∥2L2 .

Lemma 6.2 shows that for any k, as n → ∞,
∥∥ρμ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·)∥∥2L2 → 0.

Together with
∥∥ρμ,k(1, x; ·, ·)− νnγ,k(1, x; ·, ·)∥∥2L2 ≤ 4e−x2/C1 max{1,2k/n}B2(μ, 1)k/�((k +

1)/2) from Lemma 6.3, it follows by dominated convergence theorem that

lim
n→∞

n∑

k=0

E[ω2
n]k2kβ2k

∥∥ρμ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·)∥∥2L2 = 0.

We then conclude that

2−1n1/2Zωn ,γ (n, [x√n]n;βn−1/4)
(d)−→ z√2β(1, x).

Step 1 is finished.
Step 2: We now turn to demonstrating convergence of Zωn ,X (n, [x√n]n;βn−1/4) where
randomness is also present at the boundary random environment. It suffices to show

2−1n1/2
(
Zωn ,X (n, [x√n]n;βn−1/4) − Zωn ,γ (n, [x√n]n;βn−1/4)

)
(d)−→ 0.
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We have

2−1n1/2
(
Zωn ,X (n, [x√n]n;βn−1/4) − Zωn ,γ (n, [x√n]n;βn−1/4)

)

=
n∑

k=0

2k/2βkn−3k/4Sn
k

(
νnX ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·);ωn

)
.

By Lemma 4.2,

Var
[
2−1n1/2

(
Zω,X
n ([x√n]n;βn−1/4) − Z

ω,γ
n ([x√n]n;βn−1/4)

)]

≤
n∑

k=0

E[ω2
n]k2kβ2k

∫

�k×R
k≥0

E

[
νnX ,k(1, x; t, x) − νnγ,k(1, x; t, x)

]2
dtdx.

Recall the definition forνnX ,k(1, x; t, x) as in (6.1) and thedefinition for the k-fold transition
kernel pX ,k as in (3.2). Fix n ∈ N. Let y = [√nx]n , i = �nt
 and y = [x]i. Without loss of

generality we may assume i ∈ Dn
k . As E

[
νnX ,k

]
= νnγ,k , it follows that

22(k+1)nk+1
E

[
(νnX ,k − νnγ,k)(1, x; t, x)

]2

= E[p2X (ik, n, yk, y)]
k∏

j=1

E[p2X (i j−1, i j , y j−1, y j )] − p2γ (ik, n, yk, y)

k∏

j=1

p2γ (i j−1, i j , y j−1, y j )

By Lemma 5.3, under the assumption Var(Xi ) ≤ Kn−ε , Var[pX (m, n, x, y)] =
c(n; ε, K )p2

max{1,γ 2}(m, n, x, y) with limn→∞ c(n; ε, K ) = 0. Hence

0 ≤ E[p2X (m, n, x, y)] − p2γ (m, n, x, y) ≤ c(n; ε, K )p2max{1,γ 2}(m, n, x, y).

By taking n large enough, we may assume c(n; ε, K ) ≤ 1. Then

0 ≤ E[p2X (ik, n, yk, y)]
k∏

j=1

E[p2γ (i j−1, i j , y j−1, y j ] − p2γ (ik, n, yk, y)

k∏

j=1

p2γ (i j−1, i j , y j−1, y j )

≤ 2kc(n; ε, K )p2max{1,γ 2}(ik, n, yk, y)
k∏

j=1

p2max{1,γ 2}(i j−1, i j , y j−1, y j )

= 2kc(n; ε, K )νnmax{1,γ 2},k(1, x, t, x).

By (6.3), we deduce
∫

[0,1]k×R
k≥0

E

[
(νnX ,k − νnγ,k)(1, x, t, x)

]2
dtdx ≤ c(n; ε, K )Bk/�((k + 1)/2).
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Hence

Var
[
2−1n1/2

(
Zω,X (n, [x√n]n;βn−1/4) − Zω,γ (n, [x√n]n;βn−1/4)

)]

≤ c(n, ε, K )

∞∑

k=0

E[ω2
n]k Bkβ2k/�((k + 1)/2) → 0.

As a result,

2−1n1/2e−nλ(βn−1/4)Zω,X (n, [x√n]n;βn−1/4)

= 2−1n1/2Zωn ,X (n, [x√n]n;βn−1/4)
(d)−−−−→ z√2β(1, x).

This proves the one point convergence of 2−1n1/2e−nλ(βn−1/4)Zω,X
(
n, [x√n]n;βn−1/4

)
.

Note that for all t > 0, Lemma 5.3 and Lemma 6.2 hold. Hence the argument above
actually yields the convergence of 2−1n1/2e−ntλ(βn−1/4)Zω,X

(�∗
nt, [x√n]�∗
nt ;βn−1/4
)

to z√2β(t, x) for arbitrary t > 0 and x ∈ R. Furthermore, by the joint convergence in
Lemma 4.3, the finite dimensional convergence also follows.
Step 3: Now in order to show the weak convergence as a process, it suffices to show the tight-
ness of the above process, which could be done by a similar argument as in [1, Appendix B].
They first deduced an integral form in terms of the random walk transition kernel for the
modified point-to-point partition function Z(x, k) from the discrete stochastic heat equation
that Z(x, k) satisfies and then developed the modulus of continuity for the partition function
with estimates for heat kernel. In our case, for deterministic Xi ≡ γ , we could derive a simi-
lar integral form for the point-to-point partition function but in terms of transition kernel for
half-line randomwalk with a barrier at origin and then the similar estimates follow given that
Robin heat kernel has similar decay behavior as standard heat kernel as in Lemma 5.1. For
Xi under the assumption of Theorem 2.2, from Remark 7.9, we have that E[|ν1X ,1 − ν1γ,1|α]
converges to zero in L1([0, 1]×R≥0) for any 1 ≤ α < 3. Here ν1X ,1 and ν1γ,1 are interpolated
(random) transition kernel as in (6.1). This allows us to adapt the proof in [1, Appendix B]
to the current setting. ��

7 Application to Log-Gamma Polymer Models

In this section we consider the half-space log-gamma polymer model, as introduced in [20].
We apply the main Theorem 2.2 to the log-gamma polymer point-to-point partition function.
The log-gamma polymer models in dimension 1 + 1 are of significant importance among
polymer models in the sense that integral formulas are discovered and steepest descent
analysis is allowed, see [2].

We start with defining the log-gamma polymer model. We first follow notations used
in the literature and then translate it to fit our setting for the general polymers. Consider a
half-quadrant V := {(i, j)|i ≥ j, i, j ∈ N0}. Assign a log-gamma random environment
Y := {Yi, j , i ≥ j} on V as follows.

Yi,i ∼ Inv-Gamma(
√
n + μ + 1/2), Yi, j ∼ Inv-Gamma(2

√
n), for i > j . (7.1)

Here Inv-Gamma(α) is the inverse gamma distribution with shape parameter α and scale
parameter 1, and with density

1

�(α)
x−α−1e−1/x .
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These choices of parameters correspond to the diffusive scaling and critical scaling at the
origin of the general polymers.

For an endpoint (m, n) ∈ V , define the point-to-point partition function by

ZY
m,n :=

∑

S:(0,0)→(m,n)

∏

(i, j)∈S
Yi, j ,

where we sum over the up-right paths S from (0, 0) to (m, n) which always stay in the half-
quadrant V . Note that the probabilities of these paths do not sum to one since those paths
having crossed boundary x = y are not counted.

To match with the general environment setting in the half-space regime with a barrier at
origin, we need to rewrite the partition function ZY in the same form as (3.3), i.e. expectation
with respect to a reflected random walk measure. By taking

Ỹi,i = 1

2
Yi,i , Ỹi, j = Yi, j , i > j,

we have

ZY
m,n = 2m+n

∑

S:(0,0)→(m,n)

2−(m+n) · 2#S · 2−#S ·
∏

(i, j)∈S
Yi, j

= 2m+n
ER

⎡

⎣
∏

(i, j)∈S
Ỹi, j · 1{S(m + n) = (m, n)}

⎤

⎦ , (7.2)

where #S is the number of times that path S visits the boundary and ER is the expectation
with respected to the reflected random walk measure.

Once again we omit the floor function when it does not cause ambiguity, e.g.
�∗
nt, [x√n]�∗
nt . The following convergence result holds for log-gamma polymers.

Theorem 7.1 Let Y2,1, be a random variable distributed as in (7.1). The following conver-
gence results hold for the half-space log-gamma polymer model as n → ∞,

(2−1n1/2)2−�nt

E[Y2,1]−�nt
 · Z�(nt+x

√
n)/2
,�(nt−x

√
n)/2


(d)−→ z1(t, x).

Proof From (7.2), we have

2−nt
E[Y2,1]−nt · Z�(nt+x

√
n)/2
,�(nt−x

√
n)/2


= ER

⎡

⎣

⎛

⎝
∏

(i, j)∈S
E[Y2,1]−1Ỹi, j

⎞

⎠1
{
S(nt) = (�(nt + x

√
n)/2
, �(nt − x

√
n)/2
)}

⎤

⎦ .

Define ωn(i, j) for i ≥ j via

E[Y2,1]−1Ỹi, j =: 1 + 2−1/2n−1/4ωn(i, j), i > j;
E[Y2,1]−1Ỹi,i =: γn

(
1 + 2−1/2n−1/4ωn(i, i)

)
,

where γn := 2−1
E[Yi,i ]/E[Y2,1].

In these notations, it follows that

(2−1n1/2)2−nt
E[Y2,1]−nt · Z� 1

2 (nt+x
√
n)
,� 1

2 (nt−x
√
n)


= 2−1n1/2Zωn ,γn (�∗
nt, �∗
√nx; 2−1/2n−1/4).
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The shows that the log-gamma partition function is equivalent to the scaled modified point-
to-point partition function as in (3.3) with β = 1√

2
.

Furthermore, it’s clear that for i ≥ j , E[ωn(i, j)] = 0. And since

E[Inv-Gamma(α)] = (α − 1)−1, Var[Inv-Gamma(α)] = (α − 1)−2(α − 2)−1,

we deduce,

Var[ωn(i, j)] = 2n1/2 Var[Yi, j ]/E[Yi, j ]2 = 1 + O
(
n−1/2) , i > j;

Var[ωn(i, i)] = 2n1/2Var[Yi,i ]/E[Yi,i ]2 = 2 + O
(
n−1/2) .

γn = 1 − μ/
√
n + O

(
n−1) .

Note that now the weights ωi, j on the off-diagonals are i.i.d. with mean zero and variance
asymptotically one, the weights ωi,i on the diagonal are also i.i.d. with mean zero but with
variance asymptotically two. Also for γn = 1 − μ/

√
n + O

(
n−1

)
, we have the same local

limit theorem as in Theorem 5.2.
The rest of this proof follows exactly the same argument as in Theorem 2.2, with the role

of U-statistics Lemma 4.3 being replaced by Lemma 4.4. Hence the desired convergence for
log-gamma polymer model holds. ��
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Appendix A. Proofs for Section 5

In this section we prove the three lemmas in Section 5, i.e. Lemmas 5.1, 5.2 and 5.3. The
proofs rely on a few lemmas on estimates for random walks. The reader may skip these
lemmas first and proceed directly to the proofs of Lemmas 5.1, 5.2 and 5.3. It will be further
explained in the proofs that which lemmas will be applied.

Recall that γ is the reflection rate, when γ ≤ 1, pγ (m,m+n, x, y) ≤ p(m,m+n, x, y),
i.e the totally reflecting case, but when γ > 1 the systemwill havemass coming in. Therefore
we need to estimate how frequently the walker goes to the barrier in order to estimate the
discrete transition kernel.

Recall that the transition kernel pγ is defined as

pγ (m, n, x, y) =
n−m∑

j=0

γ j
P
m,x
R (Nm,n = j, Sn = y). (A.1)

Here Nm,n is the total visits to the origin as

Nm,n(S) = #{i ∈ [m, n − 1]Z | Si = 0}.
For the case m = 0, we denote N0,n as Nn to simplify the notation. The explicit form of
P
m,x
R (Nm,n = j, Sn = y), (see Lemma 7.2), can be found in [12, (27)]. We give a proof in

the appendix for the reader’s convenience. For (n, z) ∈ N0 ×Z, let T (n, z) be the probability
that a simple random walk on Z arrives at x = z after n jumps starting at origin. In other
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words,

T (n, z) := P
0,0(Sn = z).

Lemma 7.2 For any (m, n, x, y) ∈ N0 × N × N0 × N,

P
m,x
R (Nm,m+n = j, Sm+n = y) =

{
T (n, y − x) − T (n, y + x) j = 0,

2(y+x+ j−1)
n− j+1 T (n − j + 1, y + x + j − 1) j ≥ 1.

And

P
m,x
R (Nm,m+n = j, Sm+n = 0) =

{
(T (n − 1, 1 − x) − T (n − 1, 1 + x))/2 j = 0,

x+ j
n− j T (n − j, x + j) j ≥ 1.

Note that the expression takes different form for y = 0 and y �= 0.

The following two lemmas provide bounds on T (n, z) and follow from computations through
Stirling formula. The author did not find a reference for such results so proofs are provided
in the next section.

Lemma 7.3 There exists a universal constant C2 > 0 such that the following statement holds.
For any n ∈ N, z ∈ Z, z ↔ n and |z| ≤ n, let E(n, z) := |z|3/n2 + 1/n. Then

e−C2E(n,z) ≤ 2−1(2πn)1/2ez
2/(2n)T (n, z) ≤ eC2E(n,z). (A.2)

Lemma 7.4 There exists a universal constant C3 > 0 such that the following statement holds.
For any n ∈ N, z ∈ Z and z ↔ n, we have

T (n, z) ≤ C3n
−1/2e−z2/(C3n). (A.3)

The following Lemma A.4 and Lemma 7.6 seek bound for the expression in (A.1).

Lemma 7.5 There exists a universal constant C4 > 0 such that the following statement holds.
For any n ≥ 1, x, y ∈ N0 with x − y ↔ n and k ≥ 0, we have

P
0,x
R (Nn ≥ k|Sn = y) ≤ C4e

−k2/(C4n). (A.4)

Proof We first consider the case that n is even and x = y = 0. From Lemma 7.2, for any
k ≥ 1,

P
0,0
R (Nn ≥ k, Sn = 0) =

n/2∑

j≥k

j

n − j
T (n − j, j) ≤

n/2∑

j≥k

2C3( j/n)n−1/2e− j2/(2C3n)

=2C3n
−1/2

n/2∑

j≥k

( j/
√
n)e−( j/

√
n)2/(2C3) · n−1/2,

where the inequality follows from Lemma 7.4.
Let M0 > 0 be the number such that the function se−s2/(2C3) is decreasing for s ≥ M0. If

k < M0
√
n, (A.4) holds easily as the right hand side can be made larger than 1 with suitable

C4.
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Now we may assume k ≥ M0
√
n. By the integral test,

P
0,0
R (Nn ≥ k, Sn = 0) ≤C3n

−1/2
∫ ∞

k/
√
n
se−s2/(2C3)ds ≤ Cn−1/2e−k2/(Cn).

From (A.2), P0,0
R (Sn = 0) = T (n, 0) ≥ 2(2πn)−1/2e−C2/n . Hence

P
0,0
R (Nn ≥ k|Sn = 0) =P

0,0
R (Nn ≥ k, Sn = 0)

/
P
0,0
R (Sn = 0) ≤ Ce−k2/(Cn).

Thus (A.4) follows.
Next, we consider general x, y and n. Conditioning on the first and the last time the random

walk bridge returns to the origin, we have for any k ≥ 2,

P
0,x
R (Nn ≥ k|Sn = y) ≤ max

1≤ j≤n
P
0,0
R (N j ≥ k − 1|S j = 0).

The change from k to k−1 is necessary as N j ignores the zero at the end. Then (A.4) follows
by the previous special case x = y = 0. ��
Lemma 7.6 For any μ ∈ R and τ > 0, there exist a constant B3(μ, τ) and a universal
constant C5 such that the following statement holds. For any M ≥ 0, n ∈ N, m ∈ [1, τn]Z
and (x, y) ∈ N

2
0, let γ = 1 − μ/

√
n. Then

∑

k≥M
√
n

γ k
P
0,x
R (Nm(S) = k|Sm = y) ≤ B3(μ, τ)e−nM2/(C5m).

Proof As γ is decreasing in μ, we can without loss of generality assume that μ ≤ 0. By
(A.4) and γ ≤ e|μ|/√n , we obtain

∑

k≥M
√
n

γ k
P
0,x
R (Nm = k|Sm = y)

= (1 − γ −1)
∑

k≥M
√
n+1

γ k
P
0,x
R (Nm ≥ k|Sm = y) + γ M

√
n
P
0,x
R (Nm ≥ M

√
n|Sm = y)

≤ C4|μ|n−1/2
∑

k≥M
√
n

e−k2/(C4m)+k|μ|/√n + C4e
−nM2/(C4m)+M|μ|.

Here we have used summation by parts. Asm ≤ τn, k|μ|/√n ≤ k2/(2C4m)+τC4|μ|2/2
and M |μ| ≤ nM2/(2C4m) + τC4|μ|2/2. Hence the above is bounded by

C4e
τC4|μ|2/2

⎛

⎝e−nM2/(2C4m) + |μ|n−1/2
∑

k≥M
√
n

e−k2/(2C4m)

⎞

⎠ .

By the integral test,

n−1/2
∑

k≥M
√
n

e−k2/(2C4m) ≤ (m/n)1/2
∫ ∞

(n/m)1/2M
e−s2/(2C4)ds ≤ Cτ 1/2e−nM2/(2C4m).

Thus the assertion follows by putting the above together. ��
proof of Lemma 5.1 By taking M = 0 in Lemma 7.6,

pγ (0,m, x, y) =
∑

k≥0

γ k
P
0,x
R (Nm(S) = k|Sm = y)P0,x

R (Sm = y) ≤ B3(μ, τ)P
0,x
R (Sm = y).
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Together with Lemma 7.4 and

P
0,x
R (Sm = y) =

{
T (m, y − x) + T (m, y + x) y �= 0,

T (m, x) y = 0.

The upper bound for pγ (0,m, x, y) follows. ��

We are ready to prove the local limit theorem for pγ (m,m+n, x, y). Note that pγ (m,m+
n, x, y) is indeed time-homogeneous and we may without loss of generality assume m = 0.

proof of Lemma 5.2 To simplify the notation, we adapt the convention that C represents uni-
versal constants and B represents constants that depend on μ, ε, τ and M . We adapt the
notation that A1 = A2e±A3 stands for A2e−A3 ≤ A1 ≤ A2eA3 . In particular, we can rewrite
(A.2) as

T (n, z) = 2(2πn)−1/2e−z2/(2n)±C2E(m,z). (A.5)

We focus on the case that y �= 0. The proof for y = 0 is similar. Furthermore, we assume
n ≥ n0 with n0 large enough depending onμ, ε, τ andM . The exact value of n0 may increase
from line to line.

Applying Lemma 7.2, we have

pγ

(
0, nt,

√
nx,

√
ny
) = T

(
nt, (y − x)

√
n
)− T

(
nt, (y + x)

√
n
)

+ 2γ
nt∑

j=0

γ j (y + x)
√
n + j

nt − j
T (nt − j, (y + x)

√
n + j).

As E(nt, (y ± x)
√
n) ≤ M3ε−2n−1/2 + ε−1n−1 ≤ Bn−1/2, we have

|1 − e±C2E(nt,(y±x)
√
n)| ≤ Bn−1/2

provided n ≥ n0 is large enough. Therefore,

∣∣∣T (nt, (y ± x)
√
n) − 2(2πnt)−1/2e−(y±x)2/(2t)

∣∣∣ ≤ 2(2πnt)−1/2e−(y±x)2/(2t) · Bn−1/2

≤ Bn−1.

(A.6)
Fix δ = 1/12. Consider the range j ∈ [0, (nt) 2

3−δ]. Since γ = 1 − μ/
√
n =

e−μ/
√
n±Cμ2/n ,

γ j = e− jμ/
√
n±C jμ2/n = e− jμ/

√
n exp(±Bn−3δ).

By (A.5), we have

T (nt − j, (y + x)
√
n + j) × 2−1(2πnt)1/2e[(y+x)

√
n+ j]2/(2nt)

= (1 − j/(nt))−1/2 exp

( − j

2nt(nt − j)
[(y + x)

√
n + j]2 ± C2E(nt − j, (y + x)

√
n + j)

)
.
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We claim that, as n ≥ n0 large enough, the above is of the form exp(±Bn−3δ). To see the
claim holds,

e0 = 1 ≤ (1 − j/(nt))−1/2 ≤ (1 − (nε)−1/3+δ)−1/2 ≤ exp(Bn−1/3+δ) ≤ exp(Bn−3δ).

0 ≤ j

2nt(nt − j)
[(y + x)

√
n + j]2 ≤ (nt)−4/3−δ[2Mn1/2 + (nt)2/3−δ]2 ≤ Bn−3δ.

E(nt − j, (y + x)
√
n + j) = ((y + x)

√
n + j)3

(nt − j)2
+ 1

nt − j

≤ 4
(2Mn1/2 + (nt)2/3−δ)2

(nt)2
+ 2

nt

≤ Bn−2/3−2δ ≤ Bn−3δ.

Hence the claim holds and we have

T (nt − j, (y + x)
√
n + j) = 2(2πnt)−1/2e−[(y+x)

√
n+ j]2/(2nt) exp(±Bn−3δ).

Together with

(y + x)
√
n + j

nt − j
= (y + x)

√
n + j

nt
exp(±Bn−3δ),

we obtain that

2γ
(nt)

2
3 −δ

∑

j=0

γ j · (y + x)
√
n + j

nt − j
T
(
nt − j, (y + x)

√
n + j

)

= exp(±Bn−3δ)
4√

2πnt3

(nt)
2
3 −δ

∑

j=0

(y + x + j/
√
n)e− jμ/

√
n−[y+x+ j/

√
n]2/(2t) · n−1/2.

As x, y ∈ [0, M] and t ∈ [ε, τ ], we have
∫∞
0 (y + x + s)e−μs−(y+x+s)2/(2t)ds ≤ B.

Define Err′(n;μ, ε, M, τ ) to be

sup
x,y∈[0,M],t∈[ε,τ ]

∣∣∣∣
∫ ∞

0
(y + x + s)e−μs−(y+x+s)2/(2t)ds

−
(nt)

2
3 −δ

∑

j=0

(y + x + j/
√
n)e− jμ/

√
n−[y+x+ j/

√
n]2/(2t) · n−1/2

∣∣∣∣∣∣∣
.

As the function (y + x + s)e−μs−(y+x+s)2/(2t) decays exponentially, we have

lim
n→∞Err′(n;μ, ε, M, τ ) = 0.

In short,

2γ
(nt)

2
3 −δ

∑

j=0

γ j · (y + x)
√
n + j

nt − j
T
(
nt − j, (y + x)

√
n + j

)

= 4√
2πnt3

∫ ∞

0
(y + x + s)e−μs−(y+x+s)2/(2t)ds ± B(n−3δ−1/2 + n−1/2Err′(n;μ, ε, M, τ )).
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Next, we consider j ∈ [(nt) 2
3−δ, nt]. Combining Lemma 7.3 and Lemma 7.6,

∑

j≥(nt)2/3−δ

γ j+1 · 2(y + x)
√
n + j

nt − j
T
(
nt − j, (y + x)

√
n + j

)

=
∑

j≥(nt)2/3−δ

γ j+1
P
0,x
R (Snt = y, Nnt (S) = j + 1)

≤ Be−n1/3−2δ/B .

Adding the above estimates, we conclude that
∣∣∣∣pγ

(
0, nt,

√
nx,

√
ny
)− 2√

n
ρμ(t, x, y)

∣∣∣∣

≤ Bn−1/2(n−1/2 + n−3δ + n1/2e−n1/3−2δ/B + Err′(n;μ, ε, M, τ )
)
.

Thus the assertion follows. ��
To prove Lemma 5.3, we need to bound the local time for 2-D simple random walks. For

(x1, x2) ∈ Z
2, let P(x1,x2) be the law of the 2-D simple random walk starting at (S10 , S

2
0 ) =

(x1, x2). For a 2-D path (S1, S2), denoteNn as the number of visits to the origin before step
n − 1. In other words

Nn(S1, S2) := #
{
j ∈ [0, n − 1]Z | (S1j , S

2
j ) = (0, 0)

}
.

The following lemma concerns the local time of 2-D random walks. The proof follows
the argument in [19, Chapter 20]. We present the proof in the next section for the reader’s
convenience.

Lemma 7.7 There exists a universal constant C6 > 0 such that the following statement holds.
For any n ≥ 2 and k ∈ N0,

P
(0,0)(Nn ≥ k) ≤ C6e

−k/(C6 log n).

We derive the conditional version of Lemma 7.7.

Lemma 7.8 There exists a universal constant C7 > 0 such that the following statement holds.
For any n ≥ 2, k ∈ N0 and (x1, x2), (y1, y2) ∈ Z

2,

P
(x1,x2)(Nn ≥ k|(S1n , S2n ) = (y1, y2)) ≤ C7e

−k/(C7 log n)+C7 log n

Proof We first consider the case (x1, x2) = (y1, y2) = (0, 0). As

P
(0,0)(S1n = 0, S2n = 0) = T (n, 0)2 ≥ C−1n−1,

we have

P
(0,0)(Nn ≥ k|(S1n , S2n ) = (0, 0)) ≤ Ce−k/(C6 log n)+log n .

Next, we consider general (x1, x2) and (y1, y2) in Z2. By conditioning on the first and the
last time the random walk bridge touches the origin,

P
(x1,x2)(Nn ≥ k|(S1n , S2n ) = (y1, y2)) ≤ max

1≤ j≤n
P

(0,0)(N j ≥ k − 1|(S1j , S2j ) = (0, 0)).

The change from k to k −1 is necessary asNn ignores the zero at the end. Then the assertion
follows the result in the previous case. ��
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proof of Lemma 5.3 We adapt the notation that B represents constants depending τ, ε and K
and C represents universal constants. Without loss of generality, we assume n ≥ n0 with n0
depending on τ, ε and K . The exact value of n0 may increase from line to line.
We compute that

E[p2X (0,m, x, y)] = E

⎡

⎢⎣
∑

Sm=y

⎛

⎝
∏

i :Si=0

Xi

⎞

⎠P
0,x
R (S) ·

∑

S̃m=y

⎛

⎜⎝
∏

j :S̃ j=0

Xi

⎞

⎟⎠P
0,x
R (S̃)

⎤

⎥⎦

= E

⎡

⎢⎣
∑

Sm=S̃m=y

⎛

⎜⎝
∏

i, j :Si=S̃ j=0

Xi X j

⎞

⎟⎠P
0,x
R (S)P

0,x
R (S̃)

⎤

⎥⎦

=
∑

S,S̃

⎛

⎝
∏

i= j :Si=S̃i=0

E[X2
i ]
⎞

⎠

⎛

⎜⎜⎜⎜⎝

∏

i :Si=0 �=S̃i
j :S̃ j=0 �=S j

E[Xi ]E[X j ]

⎞

⎟⎟⎟⎟⎠
P
0,x
R (S)P

0,x
R (S̃).

By the independence of X , we have

E[pX (0,m, x, y)]2 =
⎡

⎢⎣
∑

Sm=y

⎛

⎝
∏

i :Si=0

E[Xi ]
⎞

⎠P
0,x
R (S) ·

∑

S̃m=y

⎛

⎜⎝
∏

j :S̃ j=0

E[X j ]
⎞

⎟⎠P
0,x
R (S̃)

⎤

⎥⎦

=
∑

Sm=S̃m=y

⎛

⎝
∏

i= j :Si=S̃i=0

(E[Xi ])2
⎞

⎠

⎛

⎜⎜⎜⎜⎝

∏

i :Si=0 �=S̃i
j :S̃ j=0 �=S j

E[Xi ]E[X j ]

⎞

⎟⎟⎟⎟⎠
P
0,x
R (S)P

0,x
R (S̃).

Recall that E[Xi ] = γ = 1 − μ/
√
n and let σ 2 = Var[Xi ]. Viewing two paths (S, S̃)

as a 2-D random walk, recall that Nm is the number of indices i ∈ [0,m − 1]Z such that
(Si , S̃i ) = (0, 0). We see that

Var[pX (0,m, x, y)] =
∑

Sm=S̃m=y

(
E[X2

i ]Nm − E[Xi ]2Nm
) ( ∏

i :Si=0 �=S̃i
j :S̃ j=0 �=S j

γ

)
P
0,x
R (S)P

0,x
R (S̃)

=
∑

Sm=S̃m=y

(
(σ 2 + γ 2)Nm − γ 2Nm

) ( ∏

i :Si=0 �=S̃i
j :S̃ j=0 �=S j

γ

)
P
0,x
R (S)P

0,x
R (S̃)

:= I1 + I2.

Here I1 consists terms withNm ≤ L and I2 contains terms withNm > L , with L = (log n)3.
Suppose Nm ≤ L . For n ≥ n0 such that |μ|/n ≤ 1/2, and Kn−ε/(1 − μ/

√
n)2 ≤ 1/2,

(σ 2 + γ 2)Nm − γ 2Nm ≤ (
(1 − μ/

√
n)2 + Kn−ε

)Nm − (
1 − μ/

√
n
)2Nm

= (
1 − μ/

√
n
)2Nm

[(
1 + Kn−ε

(1 − μ/
√
n)2

)Nm

− 1

]

≤ BeB(log n)3/
√
n(log n)3n−ε ≤ B(log n)3n−ε .
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Therefore we have

I1 ≤ B(log n)3n−ε
∑

Sm=S̃m=y

max{1, γ }Nm (S)+Nm (S̃)
P
0,x
R (S)P

0,x
R (S̃)

= B(log n)3n−ε p2max{1,γ }(0,m, x, y).

From now on we assume Nm > L . Let ξ = σ 2 + γ 2. We claim that
∑

Sm=S̃m=y,Nm≥L

ξNmP
0,x
R (S)P

0,x
R (S̃) ≤ Be−(log n)2/B p(0,m, x, y)2. (A.7)

The proof of (A.7) is postponed to the end of this section. We now bound I2 based on (A.7).
Suppose μ ≥ 0 and hence γ ≤ 1. Then from (A.7),

I2 ≤
∑

Sm=S̃m=y,Nm≥L

ξNmP
0,x
R (S)P

0,x
R (S̃) ≤ Be−(log n)2/B p(0,m, x, y)2.

Next, we considerμ < 0. LetM > 0 be a number to be determined.We further decompose
I2 into I2 = I21+I22+I23. Here I21 contains termswith Nm(S), Nm(S̃) ≤ M

√
n, I22 contains

terms with Nm(S) > M
√
n and I23 contains the rest.

If Nm(S), Nm(S̃) ≤ M
√
n,

∏

i :Si=0 �=S̃i
j :S̃ j=0 �=S j

γ ≤ γ 2M
√
n ≤ e−2μM .

Hence

I21 ≤e−2μM
∑

Nm≥L,Sm=S̃m=y

(
(σ 2 + γ 2)Nm − γ 2Nm

)
P
0,x
R (S)P

0,x
R (S̃)

≤Be−2μM−(log n)2/B p(0,m, x, y)2

provided n ≥ n0. Here we have used the bound (A.7).
If Nm(S) > M

√
n, by Cauchy-Schwarz,

2I22 ≤
∑

Nm≥L,Sm=S̃m=y

(
(σ 2 + γ 2)Nm − γ 2Nm

)2
P
0,x
R (S)P

0,x
R (S̃)

+
∑

Sm=S̃m=y,Nm (S)>M
√
n

γ 2Nm (S)+2Nm (S̃)
P
0,x
R (S)P

0,x
R (S̃).

From (A.7), the first term is bounded by Be−(log n)2/B p(0,m, x, y)2. The second term
equals

pγ 2(0,m, x, y)
∑

Sm=y,Nm (S)≥M
√
n

γ 2Nm (S)
P
0,x
R (S)

= pγ 2(0,m, x, y)p(0,m, x, y)
∑

k≥M
√
n

γ 2k
P
0,x
R (Nm = k|Sm = y)

≤ Be−M2/B p2
γ 2(0,m, x, y).
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Here we have used Lemma 7.6. By symmetry, I23 ≤ I22 has the same upper bound. Putting
the above estimates together, for μ < 0, n ≥ n0 large enough and any M > 0,

I2 ≤ (Be−2μM−(log n)2/B + Be−M2/B)p2
γ 2(0,m, x, y).

Choosing M = (log n)2/(4B|μ|), then
I2 ≤ Be−(log n)2/B p2

γ 2(0,m, x, y).

Thus the assertion follows. ��

proof of (A.7)
∑

Sm=S̃m=y,Nm≥L

ξNmP
0,x
R (S)P

0,x
R (S̃) = E

(x,x)
[
ξNm1Nm≥L |(Sm, S̃m) = (y, y)

]
p2(0,m, x, y).

Through summation by parts,

E
(x,x)

[
ξNm1Nm≥L |(Sm, S̃m) = (y, y)

]
=
∑

k≥L

ξ kP(x,x)(Nm = k|(Sm, S̃m) = (y, y))

= (1 − ξ−1)
∑

k≥L+1

ξ kP(x,x)(Nm ≥ k|(Sm, S̃m)

= (y, y)) + ξ L
P

(x,x)(Nm ≥ L|(Sm, S̃m) = (y, y)).

We require n ≥ n0 such that

2C2
7 (log(τn))2 ≤(log n)3, ξ ≤ e2Kn−ε

, 2Kn−ε − 1/(2C7 log(nτ)) ≤ −1/(4C7 log n).

Here C7 is the constant in Lemma 7.8. From Lemma 7.8, for any k ≥ L ,

P
(x,x)(Nm ≥ k|(S1m, S2m) = (y, y)) ≤ e−k/(C7 logm)+C7 logm ≤ e−k/(2C7 logm).

Hence

ξ L
P

(x,x)(Nm ≥ L|(S1m, S2m) = (y, y)) ≤ exp
(
L
(
2Kn−ε − 1/(2C7 logm)

))

≤ exp (−L/(4C7 log n)) ≤e−(log n)2/B .

Similarly,

(1 − ξ−1)
∑

k≥L+1

ξ kP(x,x)(Nm ≥ k|(S1m, S2m) = (y, y))

≤ CKn−ε
∑

k≥L+1

exp (−k/(4C7 log n)) ≤ B(log n)n−εe−(log n)2/B ≤ Be−(log n)2/B .

��

Remark 7.9 Under the assumption E[|Xi − E[Xi ]|3] ≤ Kn−ε , we can show that
E[p3X (0,m, x, y)] = p3γ (0,m, x, y)+o(1)p3

max{1,γ 2}(0,m, x, y) through a similar argument
because the local time of higher dimension randomwalks decays faster. In particular, we have
E[(pX (0,m, x, y) − pγ (0,m, x, y)α)] = o(1)p3

max{1,γ 2}(0,m, x, y) for any 0 < α ≤ 3.
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Appendix B

proof of Lemma 7.2 Form, x ≥ 0, recall that Pm,x is the law of the symmetric simple random
walk starting at Sm = x . For (n, j) ∈ N0, define

qn, j := P
0,0(Sn = j, S� �= j for all � ∈ [0, n − 1]Z).

As n = 0, [0,−1]Z is empty and q0, j = P
0,0(S0 = j) = δ0 j . For j ∈ N0, define the

generating function

Fj (s) :=
∞∑

n=0

qn, j s
n .

Note that for j ≥ 1, Fj (s) = E
0,0[sτ( j)] with τ( j) := inf{n ≥ 1 | Sn = j}. By the strong

Markov property, we have for j1, j2 ≥ 1, Fj1Fj2 = Fj1+ j2 . As F0 = 1, the equality also
holds for j1, j2 ≥ 0. In other words,

∑

k1+k2=n, k1,k2≥0

qk1, j1qk2, j2 = qn, j1+ j2 . (B.1)

Recall that for (n, z) ∈ N0 × Z, T (n, z) = P
0,0(Sn = z). From [19, Chapter 9], for any

n ≥ j ≥ 1,

qn, j = j

n
T (n, j). (B.2)

From the reflection principle, it is straightforward to derive that for any n, j ≥ 1,

P
0,0(Sn = j, S� �= 0 for all � ∈ (0, n)Z) = qn, j .

By conditioning on the value of S1, for any n ≥ 1,

P
0,0(Sn = 0, S� �= 0 for all � ∈ (0, n)Z) = qn−1,1.

Nowwe start to compute P0,x
R (Nn = 0, Sn = y). By the reflection principle, for any n ≥ 1

and x, y ≥ 0,

P
0,x
R (Nn = 0, Sn = y) =

{
T (n, y − x) − T (n, y + x) y ≥ 1

(T (n − 1, 1 − x) − T (n − 1, 1 + x))/2 y = 0.

Assume j ≥ 1. For any n ≥ 1 and x, y ≥ 0, P0,x (Nn = j, Sn = y) equals
∑

0≤k1<k2<...k j<n

P
0,x (Sn = y, Ski = 0 for i ∈ [1, j]Z,

S� �= 0 for � ∈ [0, n − 1]Z \ {k1, k2, . . . k j })
=

∑

0≤k1<k2<...k j<n

P
0,x (Sk1 = 0, S� �= 0 for � ∈ [0, k1 − 1]Z)

× P
k j ,0(Sn = y, S� �= 0 for � ∈ (k j , n)Z)

×
j−1∏

i=1

P
ki ,0(Ski+1 = 0, S� �= 0 for � ∈ (ki , ki+1)Z).
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By the reflection and translation symmetry,

P
0,x (Sk1 = 0, S� �= 0 for � ∈ [0, k1 − 1]Z) =qk1,x ,

P
ki ,0(Ski+1 = 0, S� �= 0 for � ∈ (ki , ki+1)Z) =qki−ki−1−1,1,

P
k j ,0(Sn = y, S� �= 0 for � ∈ (k j , n)Z) =

{
qn−k j ,y y �= 0,
qn−k j−1,1 y = 0.

Hence for y �= 0,

P
0,x (Nn = j, Sn = y) =

∑

0≤k1<k2<...k j<n

qk1,xqn−k j ,y

j−1∏

i=1

qki−ki−1−1,1 = qn− j+1,x+y+ j−1.

Here we have used (B.1). From (B.2),

P
0,x
R (Nn = j, Sn = y) = 2P0,x (Nn = j, Sn = y)

= 2(y + x + j − 1)

n − j + 1
T (n − j + 1, y + x + j − 1).

Similarly,

P
0,x (Nn = j, Sn = 0) =

∑

0≤k1<k2<...k j<n

qk1,xqn−k j−1,1

j−1∏

i=1

qki−ki−1−1,1 = qn− j,x+ j .

Thus

P
0,x
R (Nn = j, Sn = 0) = P

0,x (Nn = j, Sn = 0) = x + j

n − j
T (n − j, x + j).

��
proof of Lemma 7.3 During the proof we use C to denote universal constants. Recall that for
(n, z) ∈ N0 × Z, T (n, z) = P

0,0(Sn = z). We first discuss the case 1/2 ≤ |z|/n ≤ 1. Under
the assumption of the lemma we have 2−n ≤ T (n, z) ≤ 1. Hence

2−n−1(2πn)1/2en/8 ≤ 2−1(2πn)1/2ez
2/(2n)T (n, z) ≤ 2−1(2πn)1/2en/2.

From the view of E(n, z) ≥ n/8 as |z| ≥ n/2, (A.2) follows for C1 large enough.
In the rest of the proof, we assume 0 ≤ z < n/2. The case −n/2 < z ≤ 0 follows by the
symmetry of T (n, z). From the Stirling formula, for any m ≥ 1,

m! ∼ (2πm)1/2mme−m .

More precisely,

1 ≤ (2πm)−1/2m−mem · m! ≤ eC/m .

Therefore as n ≥ 1 we have
(

n

(n + z)/2

)
≤ 2n+1(2πn)−1/2

(
1 − z2

n2

)−n/2−1/2 (1 − z
n

1 + z
n

)z/2

eC/n, (B.3)

(
n

(n + z)/2

)
≥ 2n+1(2πn)−1/2

(
1 − z2

n2

)−n/2−1/2 (1 − z
n

1 + z
n

)z/2

e−C/(n−z). (B.4)
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For any x ≥ 1,

(1 + 1/x)−1e ≤ (1 + 1/x)x ≤ e, e−1 ≤ (1 − 1/x)x ≤ (1 − 1/x)−1e−1.

We deduce
(
1 − z2

n2

)z2/2n ≤ e−z2/(2n)
(
1 − z2

n2

)−n/2 ≤ 1, 1 ≤ ez
2/(2n)

(
1 − z

n

)z/2 ≤
(
1 − z

n

)−z2/2n and 1 ≤ ez
2/(2n)

(
1 + z

n

)−z/2 ≤ (
1 + z

n

)z2/2n . For any 0 ≤ y ≤ 1/2, we
have 1 + y ≤ eCy and 1 − y ≥ e−Cy . Therefore

e−Cz4/n3 ≤ e−z2/(2n)

(
1 − z2

n2

)−n/2

≤1

1 ≤ ez
2/(2n)

(
1 − z

n

)z/2
, ez

2/(2n)
(
1 + z

n

)−z/2 ≤eCz3/n2 .

Similarly, 1 ≤
(
1 − z2

n2

)−1/2 ≤ eCz2/n2 . Combining the above,

e−C(z4/n3−1/(n−z)) ≤ 2−(n+1)(2πn)1/2ez
2/(2n)

(
n

(n + z)/2

)
≤ eC(z3/n2+z2/n2+1/n).

When 0 ≤ z ≤ n/2, we have bounds z4/n3 ≤ z3/(2n2), 1/(n − z) ≤ 2/n and z2/n2 ≤
z3/n2 + 1/n. Hence for C2 large enough,

e−C2E(n,z) ≤ 2−(n+1)(2πn)1/2ez
2/(2n)

(
n

(n + z)/2

)
≤ eC2E(n,z).

Thus (7.3) follows as T (n, z) = 2−n
( n
(n+z)/2

)
. ��

proof of Lemma 7.4 From (A.2),

T (n, z) ≤ 2(2πn)−1/2e−z2/(2n)+C2|z|3/n2+C2/n .

When |z| ≤ n/(4C2), C2|z|3/n2 ≤ z2/(4n) and the assertion follows by requiring C3 ≥
max{2(2π)−1/2eC2 , 4}. Also, if |z| = n then T (n, z) = 2−n and (A.3) holds for C2 large
enough.
In the following, we assume 1/(4C2) ≤ z/n ≤ 1 − 2/n. Denote a = z/n. Rewriting (B.3)

T (n, z) ≤ 2(2πn)−1/2 (1 − a2
)−1/2

e−nI (a)+C/n,

where

I (a) = 1 + a

2
ln(1 + a) + 1 − a

2
ln(1 − a).

Since I (a) is non-decreasing, −nI (a) ≤ −nI (1/(4C2)) and e−nI (a) ≤ e−n/C . As a ≤
1 − 2/n, (1 − a2)−1/2 ≤ CeC log n . Hence

T (n, z) ≤ Ce−n/C+C log n+C1/n .

Thus (A.3) follows as we take C2 large enough. ��
proof of Lemma 7.7 Recall that

Nn(S
1, S2) = #

{
j ∈ [0, n − 1]Z | (S1j , S

2
j ) = (0, 0)

}
.
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Without loss of generality, we may assume n, k ≥ 3. Define inductively ρ0 ≡ 0 and

ρi = min{ j > ρi−1 | (S1j , S
2
j ) = (0, 0)}.

Then

{Nn ≥ k} = {ρk−1 ≤ n − 1} ⊂
k−1⋂

j=1

{ρ j − ρ j−1 ≤ n − 1}.

As ρ1, ρ2 − ρ1, . . . , ρk−1 − ρk−2 are i.i.d.

P
(0,0)(Nn ≥ k) ≤ P(ρ1 ≤ n − 1)k−1.

By [19, Lemma 20.1], there exists a universal constant C such that

P(ρ1 ≤ n − 1) ≤ 1 − 1/(C log(n − 1)) ≤ e1/(C log(n−1)).

Hence

P
0,(0,0)(Nn ≥ k) ≤ e(k−1)/(C log(n−1))

and the assertion follows. ��
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