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Abstract

We consider the convergence of point-to-point partition functions for the half-space directed
polymer model in dimension 1+1 in the intermediate disorder regime as introduced for the
full space model by Alberts, Khanin and Quastel in [1]. By scaling the inverse temperature as
Bn~1/4, the point-to-point partition function converges to the chaos series for the solution to
stochastic heat equation with Robin boundary condition and delta initial data. Furthermore,
the convergence result is then applied to the exact-solvable log-gamma directed polymer
model in a half-space.

1 Introduction

The directed polymers were introduced in the statistical physics literature by Huse and Henley
[14]in 1985 and received firstrigorous mathematical treatment in 1988 by Imbrie and Spencer
[15]. The monograph [6] is a great resource for the foundational work in this area. Over the
last thirty years, the directed polymers played an important role as a playground of many
fascinating problems in the probability world.

Among those different directions opened up by directed polymers, in dimension 1+1, its
connection to the KPZ universality class [7] has attracted extensive attention. The polymer
measure in dimension 1+1 is arandom probability measure on paths in arandom environment,
which favors higher weighted paths. It is constructed through up / right paths on 72 with path
measure re-weighted by an i.i.d. random environment presented at each lattice points. The
KPZ universality conjecture concerns the large scale asymptotic behavior of the polymer free
energy and there are two characteristic scalings , the 1:2:3 KPZ scaling and the weak noise
scaling, known as the strong KPZ universality conjecture and the weak KPZ universality
conjecture respectively.

In the direction of the strong KPZ universality conjecture for directed polymers, the first
rigorous verification of the 1/3 fluctuation of polymer free energy was proven for a special case
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[20], where the integrable log-gamma polymers were introduced. Among directed polymers,
the log-gamma directed polymer model was special in the same way as the last passage
percolation models with exponential or geometric weights are special among corner growth
models. Namely, both demonstrate integrable structures and permit explicit computations. [8]
computed the Laplace transform of the point-to-point partition function. [5] transformed that
formula into a Fredholm determinant and performed asymptotic analysis, with motivation
from Macdonald process formulas in [4].

Under the weak noise scaling, the convergence of polymer free energy in dimension 1+1 to
KPZ equation has been established in the remarkable work by Alberts, Khanin and Quastel
in [1], which is known to have proved the weak KPZ universality conjecture for directed
polymers.

It is natural to ask the same question for the half-space polymers. The half-space directed
polymers are constructed through up / right paths constrained to stay in the half-quadrant with
path measure re-weighted by two random environments(X present only at the boundary and
o in the bulk). Compared to the full space case, the extra boundary environment X penalizes
or rewards the path measure every time the walker visits the origin in an i.i.d. manner. The
main Theorem 2.2 of this paper builds the connection between half-space directed polymers
and half-space stochastic heat equation(SHE) with Robin boundary condition/KPZ equation
with Neumann boundary condition.

Aside from the general half-space polymer model, recently there has also been consider-
able attention focused on the exact-solvable log-gamma polymers, see the recent work in [2]
and [10]. But presently no rigorous asymptotics have been proved. This motivates to apply
the convergence results for general half-space polymer model to the log-gamma case, see
Sect. 7. Our result was further used in [17] to obtain an equality-in-distribution for SHE on
the half space with different boundary conditions.

More generally, half-space KPZ universality is also studied by other half-space models
approached from the perspective of scaling to KPZ equation and also from the perspective of
exact solvability. On half-space asymmetric simple exclusion process (ASEP), [9] showed
that the height function converges to Hopf-Cole solution of KPZ equation with Neumann
boundary condition(Robin boundary condition for SHE). With stronger estimates developed,
[18] extended their results to negative values of the boundary condition. In the exact solvability
direction, [3] studied half-line ASEP as a scaling limit of a stochastic six-vertex model in a
half-quadrant and found exact formulas for half-space KPZ/SHE with u = —1/2, see (2.8).
See also in [13] for the study of KPZ equation with Neumann boundary conditions in the
context of the theory of regularity structures.

Outline

In Sect. 2 we give a precise formulation of our main result Theorem 2.2 and heuristics of
the proof are provided in Sect. 3. The techniques we borrow from U-statistics are stated in
Sect. 4. Our main technical estimates are provided in Sect. 5 with proofs postponed to the
appendix. We leave the proof of our main theorem to Sect. 6. In the last Sect. 7, we discuss
the half-space log-gamma polymer model and apply our main theorem to get an analogous
convergence result for the point-to-point partition function.
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2 Definitions of the Model and Miain Results

The aim of this paper is to study the SHE limits of half-space directed polymers in a random
environment. We start with definitions of the half-space polymers.

2.1 Half-Space Polymers

Consider an n-step simple symmetric random walk on non-negative integers Ny with a totally
reflecting barrier at the origin. The law of this walk is equal to that of the absolute value of
a standard symmetric random walk on Z. Denote the reflecting random walk probability
measure by Pr on paths starting from origin at time 0 and we also denote Py as the
probability measure on paths starting at x > 0 at time m > 0. This measure P will serve
as our background probability measure throughout this paper and we omit the superscript
when there is no ambiguity about the starting point and time. For a path S, let S; denote its
location at time i and define transition probability for a random walk starting at x at time m
and arriving at y > 0 at time n > m by

pim,n, x,y) = Z IF’%’X(S).
S:Sp=y

Such path measures will be affected by two environments and we start with the boundary
environment. Let X = {X;} be a sequence of i.i.d. non-negative random variables and we
refer to X as the boundary random environment. Define the random transition kernel as

px(m.n x,y)= Y [T x| -Pr. @2.1)

S:Sp=y \m<i<n:$;=0

Denote N as the set of positive natural numbers while Ny also includes zero and denote
[m, n]z as the integers inside [m, n]. Given a path S : [m, n] — Ny, define the corresponding
random measure Py as

Px):==[ ] Xi|Pr(S).

m<i<n:S;=0

Px is a measure-valued random variable with randomness inherited from X. Note that in
general Py is not a probability measure due to the “punishing” or “rewarding” effects caused
by the random environment X when paths visit the origin.

When the boundary random environment is deterministic such that X; = y > 0, y is
denoted as the reflection rate for the barrier at origin. It follows that the barrier is absorbing
if 0 < y < 1, totally reflecting if y = 1, and rewarding if y > 1. Now the transition kernel
py(m,n,x,y) also becomes deterministic. Explicitly,

n—m

pym,n,x,y) =Y yIPRI Nown = j, S = y). (2.2)
j=0

Here N, , is the total visits to the origin as

Npun(S) :=#{i € [m.n— 11z | S; = 0}. 2.3)
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Let w(i, x) for (i, x) € Ng x Np be an i.i.d. collection of random variables and we refer
tow = {w(i, x)} as the bulk random environment. The energy of an n-step nearest neighbor
walk § in the environment o is defined as:

n—1
HY(S) =) wi.S$).
i=0
Define the polymer probability measure with randomness inherited from both the bulk random
environment  and the boundary random environment X as:

@, X ._ BHP(S) |
]P’nﬁ (S) := me Px(S)
l (o
= PHY) . X; | - Pr(S).
Zo% i B I w

0<i<n:$;=0

Here B is a parameter, called inverse temperature. The normalization term Z% X (n; 8) is a
point-to-line partition function, defined as:

zXm: p) =B | LI T X )|

0<i<n:$;=0

where the expectation is taken with respect to the reflecting random walk measure Pr and
preserves randomness from w and X.

The main goal of this paper is to study the limiting behavior of the following point-to-point
partition function:

Z9X (n, x; B) :=Eg | LHS [ x| uSi=x}]. (2.4)
0<i<n:S;=0

where 1 is the indicator function. Note that {S,, = x} is non-empty only if #n and x have the
same parity, which we denote as n <> x. Generally, for n € N and x € R, denote [x], as the
largest integer among which are smaller than x and enjoys the same parity as n, i.e.

[x]; ;=max{m € Z | m < x, m < n}. 2.5)
2.2 Stochastic Heat Equation with Robin Boundary Condition
In this section we introduce the SHE with Robin boundary condition, which arises as a weak
scaling limit of the half-space directed polymers. We also provide the expression of the chaos
series for its solution, a series of multiple stochastic integrals over a Robin heat kernel with
respect to a space-time white noise.

2.2.1 1-D Heat Equation with Robin Boundary Condition

Definition 2.1 We say p, (¢, x, y) is the fundamental solution to 1-D heat equation on Rx¢
with Robin boundary condition and initial data 6 (y — x) if

1
8tpﬂ(t7x’ )’) = Eaxxpu(t,xv y)

OxPplx=0 = 1+ Pulx=0, (2.6)
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and if for any function ¢(x),

o0
v = [ puttx ey
0
solves heat equation with initial condition
v(0, x) = ¢(x).

There are a few equivalent forms of the Robin heat kernel. We will make use of the following
form which can be found in [9, Lemma 4.4].

pu(t,x,y) =Qut) 12 (e—<y—x)2/(2t> _ e—<y+x)2/<2r))

(o)
+2Qmt3H~1? / (V4 x + 5)e B~ OFx+0%/ @ g (2.7)
0

2.2.2 Stochastic Heat Equation with Robin Boundary Condition

Consider the stochastic heat equation with multiplicative noise

0rzp = %3xe,3 +Bzp- & (2.8)
with delta initial data and Robin boundary condition:
z4(0, ) = 8(0)
0xz2p(, X)|x=0 = p - z(:, 0).
Here &(t, x) is a white noise on R~ x Rx( with covariance structure
E[5@, x)§(s, )] =08 —5)6(x — ).

For details about white noise and full space SHE, we refer to [ 1, Section 3]. Further discussions
can be found in [16].
With the help of the Robin heat kernel, the mild solution is given by

oo k
2p(t, x) = Z/ / put = ti, xp %) - B[ ot = tim1, ximr, x)d€®K(t, %),
k=07 Ak () JRY, i=1
(2.9)

where A (1)) ={0=1t9y<t)] <--- <ty <t}and xg = 0.

To simply the notation, we define the k-fold operator as follows. Let k € Ny and
g(t1, 12, X1, x2) be a function defined on 0 < f; < 1 and (x1, x2) € R2. Fr[g](r, x; t,X) :
(Rop X R) x Ar(f) x R¥ — R is defined as

k
Frlgl(r, x: t.%) = gt .36, ) [ [ @10 17, %521, x)). (2.10)
j=1

Here the convention fy = xo = 0 has been used. Let

Puk(t, x5, X) = Fi[p,](2, x: t, ), (2.11)
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with the understanding that p, (s, ¢, -, -) := p,(t — s, -, -). Then

zp(t, x) = Z/
k=0"Y4

Our main result below shows that by diffusively scaling the random walks, under inter-
mediate disorder scaling(8n~'/#) and critical scaling near the boundary, the point-to-point
partition function converges to z 4 (, x), solution to SHE. The convergence takes place in

/ BXpur(t, x; t, x)de®k (¢, x).
w0 JRE

. . d
the topology of supremum norm on bounded continuous functions, denoted as Q> Denote
A(B) = log E[¢f®], our main theorem is as follows.

Theorem 2.2 Fix v € R. Let w be i.i.d. random environment with mean zero and variance
one which satisfies M(Bo) < oo forsome By > 0. Forn € N, let y = 1 — u//n. Assume that
X satisfies E[X] = y and that E[| X — E[X]’] < Kn~¢ for some € € (0,1] and K > 0.
Then .,
_ _ —1/4 - (d)
27 n!2em B 70X (L It [e /] g B~ Y) == 2 1, ).

Here [x/n] |« nt is the largest integer which is smaller than x \/n and has the same parity as
|*|nt. See (2.5).

Remark 2.3 Here we require the third moment assumption in order to prove tightness and we
do not believe this is the optimal case.

3 Heuristics and Ideas of Proof

In this section we attempt to explain why Sn~!/* and y = 1 — u//n are natural scalings.
We also provide heuristics behind the proof of the Main Theorem 2.2 and comment on the
main technical ingredients. First let us summarize the setup of half-space polymers in the
following Table 1. Note that in the left picture, random walk trajectories are pictured as paths
in a half-quadrant while the partition functions are defined with respect to random walks on
non-negative integers. The equivalence between these two formulations is clear and in this
way the figure better illustrate the idea. For simplicity of notations, we omit the floor function
when it does not cause ambiguity, e.g. |x]nt, [x /1] |x|ns-

The tuning at boundary, y = 1 — u/+/n, is clear. When the background random walk is
scaled diffusively, the total number of visits to the boundary of this random walk is of scale
J/n. In the average sense, in order to see a non-trivial limit of l_[ X;, we must have

0<i<n:S;=0
-1=0(f)

The strategy for proving Theorem 2.2 is to first prove the convergence for a modified
partition function 3. 3¢ takes the form of a discrete chaos series with random walk transition
probability kernel. The techniques of U-statistics in Sect. 4 provide criteria for convergence
of discrete chaos series to continuous ones. Furthermore we rewrite the unmodified partition
function Z“ in the same form as 3*» with a perturbed environment wj, still of mean zero
but with variance only asymptotically one. In addition, the same strategy will be applied in
the log-gamma polymer model, where we will need to deal with the issue that the random
environment will only be i.i.d. on the diagonal and the bulk respectively.
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Intermediate Disorder Regime for Half-Space Directed Polymers 2379

Denote D} as a discrete integer simplex:
D} ={i=(-,ix) eNS:0<i] <---<ip <n). (3.1)

We define a k-fold transition kernel py (n, y;1i,y) for (n, y,i,y) € (N x Np) x D,’{l X Né‘)
of a half-space random walk with a barrier at origin that arrives at y in n steps.

k
pxx(n, yiiy) = px G n, yio ) [ [ pxGimisij yim1.v))- (3.2)
j=1
Here the convention ig = x¢9 = 0 has been used. The modified point-to-point partition is
defined as:

n—1

3%y ) =B | [ [0+ B )| [ Xi| -USi=y{ 33

i=0 0<i<n:S;=0

Expanding the above product in the expectation and by a direct computation, 3 (n, y; 8)
could be written as a discrete sum of weighted chaos,

n
3%, y; B) = px©0.n, 0, )+ Y B D" D" pxaln yiiyoly, (34
k=1 ieD} yeNg
k
where w(i, y) := 1_[ w(ij, yj).
=1
Heuristically vée may see why SHE (2.9) arise in the limit. Under the diffusive scaling
and boundary tuning (y = 1 — u/+/n), random walk transition probabilities converge to
the Robin heat kernel. Moreover, the random environment @ approximates White noise by
scaling $ to zero in a critical manner (i.e. Bn'/*). To made this rigorous, we need local limit
theorem and L2 bounds on the k-fold random transition kernels px.k(n, y;i,y). These are
the main technical inputs of these paper and are provided in Sect. 5.
To see that ,Bn’]/4 is the critical scaling, it is illustrative to check that the k = 1
term in the summation above has order O(y/n). For simplicity, assume X; = 1 and
consider the point-to line case, i.e. do not fix the endpoint. Now it suffices to show that

n=1/ 42 Z w (i, x)P(S; = x) stays bounded as a random variable (with randomness inher-

iox
ited from w). This could be easily seen from taking the second moment. In detail, we see
that

2
E, <n1/4 3 0. 0Ps; = x))
=n"PEy | )Y 0 0PSi =0 ) Y o WG =)
X j y

=023 N B, [0, D, NIBS; = OB, = v)
ij Xy

=n"123 3PS = 0PS; = y)
i=j x=y

o).
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2380 X. Wu

Here S, S are two independent random walk paths. The third equality follows from taking
expectation with respect to by Fubini theorem. Only the the intersection points of S, S will
contribute to the sum as w is i.i.d. of mean zero and variance one. From general theory of 1-D
random walks, we know that S and § intersect O(4/n) times on average and this explains
the scaling gn~1/%.

4 U-Statistics

The techniques of U-statistics are convenient for obtaining convergence of partition func-
tions 3%, which take the form of discrete chaos. As the results about U-statistics are already
presented in [1, Section 4], we choose to state the results and refer the proofs to their coun-
terparts in [1]. See [11] for a more general treatment of discrete chaos expansion with more
general random environment.

We start with introducing the definition of U-statistics and then quote a technical lemma
(Lemma 4.3). In application to log-gamma polymer models, we need to allow a slightly more
general setting. See Lemma 4.4.

Recall that n <> x denotes n and x have the same parity. More generally, i <> y means
that all corresponding entries share the same parity. Let R} be the collection of rectangles,
defined as:

"= {[n—li, n i+ D) x [0y, n 72y +2)) tie DYy e NG i < y}.

Here D} is integer simplex defined in (3.1) and 1 is the k-dimensional vector (1, 1, -, 1).
Also

[n i i+ D) = [ i G+ D) X x [T i n T G+ D),
and similarly,
[n 2y, n 7 2y +2) = [0 Py n T 20 4+ 2) x o x [0 Py T (i +2) .

For a L? function gon [0, l]k X szo’ take n > 1, the corresponding U-statistics S,’f (2)
of g could be viewed as a weighted average of a discretization of g through the random

environment . We now discretize L2 ([0, 11% x R];O) functions by replacing their values with

k

their integral mean values on rectangles in R}. Consider a function g € L2([0, 11 x RZp)s

define g,, by specifying the values of g, on every R € R, more specifically we define

_ 1
gIR:=ffg'
" IR Jr

where |R| = 2kp=3k/2 Note that g is constant on every single R and for each n, k fixed,
each pair (i,y) € D} x N’é (i < y) corresponds to a unique R € R}.
For the convenience of applying U-statistics results we consider sums over unordered sets

Ep =fie[l,nl ij #i for j #1}.

k
Recall that w (i, y) = l_[ w(ij,yj).
j=1
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Intermediate Disorder Regime for Half-Space Directed Polymers 2381

Definition 4.1 The corresponding U-statistics of g € L2([0, 17 x R’;O) is defined as
Silgrw) =223 3 g, (7 'in Pyl y) - Ui < ). .1
iEEZ,‘ yeNlé
The following lemma, proved as [1, Lemma 4.1], bounds the second moment of S,Z’ (g; w)

from above.

Lemma 4.2 Let S} (g; w) be a U-statistics as in (4.1). For any linear combinations of func-
tions g1, , 8m € L2([O, 1% x ]R];O) through ay, - -+ , o € R, we have

m m
Zazsﬁ(gl; w) =S8} (Z gl w) .
=1

=1

Moreover, if random environment variables satisfy moment conditions Elw (i, x)] = 0
and Var[w (i, x)] = o2, then

2 2k 3k/2 |1 512
E[S{ @] = o*n ™1l T 00 e,

Note that the U-statistics is invariant under permutation for (t, x) and we denote

1
Sym g(t, x) = o Z g(mt, wx),

T EOK

where oy, is the symmetric group of degree k.
For G = (go, g1, 82,...) € @kzo L2([0, 1% % ]R’;O), define its chaos series 1(G) as
follows, -

I G = S t, ot dtd
“ §~/[0,1]k/Rk20 ym g (t, X)E¥* (dt dx)

= Z/ / gk (t, )% (dt dx).
k=0 [0, 1]¥ ]R;O

The following lemma, proved as [1, Theorem 4.5], shows that under mild conditions, the
U-statistics converges in distribution to the continuum chaos series.

Lemma4.3 Let wy,(i, x), (i, x) € Ng x Ng be a sequence of i.i.d. random environments that

satisfy
Elw,] =0, and lim E[w] = 1. 4.2)
n— o0

Let G = (g0. 81. 82 - --) € @z L*([0. 11* x RE ) with

o0
lim i 2k =0. .
Jim tim sup 3 7 Elwy ] flgell 2 = 0 43)
k=N
Then as n — oo,
- )
S"(G) = Zn—3’</48,3(gk; wp) —— 1(G).
k=0
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2382 X. Wu

Moreover, suppose G1, ..., Gy € @kzo L2([0, 11* Xszo) all satisfy (4.3). Thenasn — 00,
we have the joint convergence:

("G, ... 8"(Gw) — s (1(G), ... 1(G)).

For the application to log-gamma polymer model, we need the following lemma for a per-
turbed random environment &.

Lemma4.4 Let w,(i, x), (i,x) € N(Z) be a sequence of random environments. Assume that
for fixed n, »,(i, x), (i, x) € Ng x N are i.i.d. random variables and that ®,(i,0),i € Ny
are also i.i.d. random variables. Furthermore, assume that E[@, (i, 0)] = E[®, (i, 1)] = 0,
lim,,— 0 E[@2(i, 1)] = 1 and that

o= sup E[(Z)ﬁ(i,x)] < 00.
neN,xeNy
Then, replacing (4.3) with
oo
lim lim sup Z o llgkll;2 =0, (4.4)

N—o00
n—o0 Ty

the convergence results in Lemma 4.3 still hold with w, replaced by @,.

Proof The proof follows as a trivial reasoning in [1, Theorem 4.5]. O

5 Estimates on Discrete Transition Kernel

We record in this section estimates that will be needed in proving Theorem 2.2. Their proofs
are postponed to the appendix. Recall that p,, defined in (2.2) is the deterministic transition
kernel as X = y. Lemma 5.1 concerns pointwise upper bounds for p,. In particular, it
shows that p,, enjoys exponential decay. Lemma 5.2 proves the local limit theorem for p,, .
Lemma 5.3 bounds the variance of the random transition kernel py in terms of p,,. Combined
with Lemma 5.1, it implies the variance of px also decays exponentially.

Lemma5.1 For any pn € R and t > 1, there exist a constant Bo(u, t) and a universal
constant Cq such that the following statement holds. Forn € N, m € [1, tn]z and (x,y) €
N2, lety =1 — pu//n. Then

Py (O, m.x,y) < 2By, Tym~/2em 63/ Com),

Lemma5.2 Forany u € R, 0 <€ < 1 and M, t > 1, there exists Err(n; u, €, M, t) such
that the following statement holds. Assume thatn € N, t € [€, ] and (x, y) € [0, M1? with

nt € N, /nx, /ny € Zandnt <> /n(y —x). Let y = 1 — u//n. Then
|2_1n]/217y(0, nt, /nx, /ny) — pu(t, x, y)| < Err(n; u, e, M, 7).
Furthermore,

lim Err(n; u,e, M, t) =0.

n— 00

See the expression for p,, in (2.7).
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Lemma5.3 FixneN,t > 1,e € (0, 1]and K > 1. Assume that Var[X;] < Kn™¢ and that
E[X] =y = 1 — u//n. There exists c(n; T, €, K) such that the following statement holds.
For any integers m € [1,nt]z and (x,y) € N(z), we have

Var[px (0, m, x, y)] < c(n; 1, €, K)p 0, m, x,y).

max{1,y?}

Furthermore,

lim c(n,t,¢, K) =0.
n—oo

6 Proof of the Main Theorem

For simplicity, we first treat the case + = 1 and explain how to proceed with gen-
eral + > 0. In order to prove the convergence of the point-to-point partition functions
Z2X (n, [x/n]a; Bn~/%) as in (2.4), we begin with identifying Z® X (n, [x/n],; Bn=1/*)
with a U-statistics of px x(n, [x/n]s;1,y) as in (3.2) and then use the techniques of U-
statistics.

As px i (Ix]nt, [x/n]|xjn; 1, y) is only defined on lattice points (i,y) € Dy
NO, which verify the parity condition, we will 1nterp01ate the discrete transition kernel
px.x(Lx]nt, [x/n] 1isjnr; i, y) to be a L? function on [0, ]¥ x Rk>0 Given x € R>¢ and
i € N, recall that [x]; defined in (2.5) is the largest integer among the ones that are smaller
than x and are of the same parity as i. For a point x € R Soandi € DL*JM define [x]; € N’é
by ([x])k = [xxliy-

Given (f,x) € R.g x R>¢ and (t,x) € [0, 1F x ]R’;O, let m = |x]nt, y = [/nx]n
i = [nt] and y = [\/nx];. Define the scaled extension v;'(’ s

\_*jnt

Vi xstx) = 27 EF DR EEDR2 5y Gnyriy) - 1fi € DY) (6.1)

Note that now vY , also takes care of the diffusive scaling for px . Under above defi-
nitions, vy , is constant on the rectangles of R}. Note that fori € E},y € N](‘) such that
iy,

—1/2 2—(k+1)n(k+1)/2

Vit xin™ i 2y) = px.k(m,y;iy) - I{i € Di'}.

Recall the definition of S as in (4.1) and note that v§ & is constant on the rectangles of
R} and zero elsewhere, we compute the U-statistics of vy (1 x; -, -) as follows,

SEWE (xi )i 0) =223 N v (Lxsn e Py) o y) - 1i < y)
ieE,’: yeN{j
= 27BN TN ek, yiiy) - 0, y).
iEDZ yeNg

Here y = [x], and the parity condition is handled by the py ; and summation is overi € Dj.
We could rewrite the modified point-to-point partition function as

n
397 (n, [x/nly; pn= ) = 20712 TR TS VR L (1, x5 )5 @), (6.2)
k=0

The following two lemmas seek to bound vy ;. Lemma 6.2 gives the L? bound and L
convergence of v}”,’k(t, x; t, X).
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Lemma 6.1 Fix u € R and t > 1. There exist a constant By (u, t) and a universal constant
constant Cy such that the following statement holds. For any n € N, define

Ou(t1. 12, X1, x3) := By max{ty — 1, 2n 1} 1/2m(2mx)*/(Crmaxii =, 207 1)

Lety =1 —p//n. Thenforalln > 1,1 € (0,7], x € Rand (t,x) € Ax(t) x R¥, we have
vy (8, x5 6, x) < Fe[O©,](2, x5 £, X).

Here the k-fold operator ¥y is define in (2.10).

Proof Letm = |x|nt y = [/nx]m, 1 = [*|nt and y = [\/nx];. Without loss of generality
we may assume i € D,’(” as otherwise v}”,’k(t, x;t,x) = 0. In particular, m — iy > 1 and
ij —ij—1 > 1. By the definition of v}f’k(t, x; t, x), it suffices to show that

2*1n1/2py(ij71, i, Yji—1,Yj) <Ou(tj-1,tj, Xj—1, X)),
zilnl/Zp}/(ika m, Yk, y) §®n(tka ta Xk,.x).

We give the proof for the first inequality. The proof for the second is identical. From
Lemma 5.1,

2 2 p iy y) < Bn'2(ij — i) im0 ICG 0]
We assume first that ; — #;_; > 2n~!. Then
(tj —tji—1)/2 <n7VGj —ij_1) <2(tj —tj-1).
Together with
n(x; — Xjel)2 <2(y; — yjfl)z +4,
The assertion follows. The proof for t; —t; | < 2n~! is similar by using
n! < n_l(ij —ij-1) =< 3nL

The proof is finished. O

Lemma 6.2 Fix u € R and v > 1. There exists a constant By(u, t) such the the following
statement holds. Foralln € N, lety =1 — u//n. Forallk > 1,1t € (0,t] and x € R>o,
we have

2
v x|, = 2t em G2kl )b T+ D/2), (63)
Tim |V ki) = ot x| L =0, (6.4)

Proof We start with (6.3). By a direct computation,

k
Fi[©,1(t, x; t, x)? = B T (max{r — ., 2n~ ') ~1/2 n(max{tj —tjy, 2071712
j=1

x Fi[0©,1(1, v2x; t, V/2x).
Through change of variables, for any t € Ay (¢),

/ Fi[©,]1(t, \/Ex; t, \/Ex)dx < Bkﬂlﬁl/ze*xz/[c1 max{z,2k/n}]
Rk N
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For simplicity, we denote 7 = max{t, 2k /n}. Thus

2 _
sup HV}’f,k(t,x; “ -)HL2 gBkz—l/Ze—xz/(Cut)/ (max{r — t, 2n~ 1)1/

neN Ag (1)
k
n(max{tj —tj_1, 2n~ )14t
j=1
k
SBkrl/zeﬂ(z/(clf)/ (t — )12 H(ti — ot
Ag (1)

j=l
<tk/2=1,=2 /€D gk 1k + 1)/2).

Here we have used (see [1, Section 3.4])

k

t —t) 2T — ;- 2at = %D Tk + 1)/2).
Ak i
j=1

Next, we turn to showing (6.4). By the local limit theorem Lemma 5.2, v" x50
converges to oy, x(t, x; -, -) pointwisely. By the argument above we see that Fi[®,](, x; -, -)
converges to Fy[@so](f, x; -, ) in L%, Here

Ooo(11. 12, X1, X2) = B (12 — 1)~ /2~ 2/ Crlt2mt),
Thus (6.4) follows by the dominated convergence theorem. O

By identifying 3% (n, [x/n],; Bn~"/*) with the U-statistics as in (6.2), we are ready to
prove the main Theorem 2.2 in a few steps as follows.

Proof of Theorem 2.2 Define the environment field w, by
e I ()] 6.5)

Note that as E[ef?] < oo, A(Bn~1/2) is well-defined as Sn~'/* < By. From the definition
of A(Bn~1/%), we have E[w,] = 0. Itis straightforward to check that E[w?] = 1+ O (n~/%).
Hence w, satisfies (4.2). Moreover we have

271n1/267”’\(5"_1/4)2“”x (n X1l ,anl/“)

=27"1n12Eg []—[ (1+ Bn~ Yo, (i, $)) 1S, = [xﬁ]n}:|

i=0
= 27023 X (n, [xi/nl; pn V%)

Step 1: Fixx € ]RZ().Weﬁrstprovetheconvergence0f2_1n1/23“’"*y(n, [xa/1]n; ,Bn_]/4).
By (6.3) and (6.4),

—2x2
o k(L x: - )72 < e 2/ By(u, 1)*/ T ((k + 1)/2).

It is easy to see that (4.3) holds. Hence by Lemma 4.3 it follows that for all § > 0, as
n— 0o,

o0

- n (d)
D 2B TS (i (1, x5, s 0a) = 2 (1, ). (6.6)
k=0
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See the chaos expansion of z ﬁﬁ(l ,x) in (2.9) . Now it suffices to show that the difference

oo

J = Y 2P RS (o k(1 x5, ) ) = 27 0 230 ([l B,
k=0

converges to 0 in L2. By splitting the above series and applying linearity of S}, we have

o0 n
J =Y 2P NS (o k(1 ki, s @) = Y 2B TSI (1 x5 ) )
k=0 k=0

n
=Y 2k RS (p (L xs ) = V(L) )
k=0

o0
+ Y 2B TS (o k(1 x ); w).
k=n+1

Because S (py.k (1, x; -, -); w,) are independent for different k, by Lemma 4.2 the second
moment of the second term is bounded from above by

o0 o0

3 B2 2 B o (Loxs - 2 < Y Bl 2k e 2 /CBy () / T ((k + 1)/2).
k=n+1 k=n+1

Thus the second term converges to zero as n goes to infinity. We now turn to the first term.
By Lemma 4.2 we have

2
n
E (Z 2k/2 kn73k/48]? (P;}.,k(lv X5 ) - V;’k(la X5 ')))

k=0

n
< 3 B2 25 8% | g (1 xs - ) = v (1xi ) 2
k=0

Lemma 6.2 shows that for any k, as n — o0,

2
Pruge(1, x5+ ) = v (1L,xs -, )| — 0.
Together with || p,, (1, x5 -, ) — vy (L x5 9| iz < 4e=**/Comax(1.26/m} By (1) 1Yk /T ((k +
1)/2) from Lemma 6.3, it follows by dominated convergence theorem that

n
. 21k nk a2k . . 2
nlgroloZE[wn] 2B ok (1, x4, ) =V (1, x5+, )| 2 = 0.
k=0
We then conclude that

B _ (d)
271123907 (0 [ /nln: B4 — 2 /5p(1, X).
Step 1 is finished.

Step 2: We now turn to demonstrating convergence of 3on:X (p, [x/7]n; ,Bn’l/“) where
randomness is also present at the boundary random environment. It suffices to show

2702 (390X n, Lemls ™) = 390, Ll 1) 2 o0,
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We have

27012 (390X, L/l B ) = 37, L/l ')

n
=Y 2B TS (W f (L xs e ) = 0 (1, x5, )5 ).
k=0

By Lemma 4.2,
Var [27 02 (30X (Lo /s ™) = 377 e/l =) |

n
2
< ZE[a)z]kzle%f . E [Vﬁ,k(l’ x;t,X) — v;,k(l’ x; t, x)] dtdx.
k=0 Ay XRZU
Recall the definition for vg’(’ «(L, x; t, x) asin (6.1) and the definition for the k-fold transition
kernel py x asin (3.2). Fixn € N. Let y = [/nx],, 1 = |nt] and y = [x];. Without loss of
generality we may assume i € Dy. AsE [V;,k] = v;,k, it follows that

2
22(k+1)nk+lE I:(V;qk _ U;l,k)(l, x:t, X)]
k

= Elpx (it . ye. W [ [ELpx Gj-10 . yj—1. v = P3G m. e, y)
j=1

k
2 .. .
1_[ Py Uj—1,0j,¥j-1,))
j=1

By Lemma 5.3, under the assumption Var(X;) < Kn~¢, Var[px(m,n,x,y)] =

c(n; e, K)pﬁlax{l’yz}(m, n, x, y) with lim,,_, » c(n; €, K) = 0. Hence

0< E[p%(m, n,x,y)] — pjz/(m, n,x,y) <cn;e, K)prznax{l’yz}(m, n,x,y).

By taking n large enough, we may assume c(n; €, K) < 1. Then

0 < Elpx G- n. ye. W[ [ Elpy Gjor.ije yj—1. v71 = ph (k. . i y)

j=1
k
2. .
pr(lj—l,lj,yj—l,yj)
Jj=1
k
= 2kc(n; €, K)Prznax{l,yz}(ik’ n, Yk, Y) 1_[ pfnax{l,VZ}(ij—lv l/? Yji—1, yj)
Jj=1
=2Kcn; e, KW 2}k(l,x,t, X).

max{l,y

By (6.3), we deduce

2
/{0 - E[(v;‘(’k—v)",‘k)(l,x,t,x)] dtdx < c(n: e, K)BX/ T ((k + 1)/2).
ATRxRE
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Hence

Var [271’11/2 (BM’X(n, [en/nln; Bn= V%) = 397 (n, [x/nly; ﬂn71/4))]

<c(n.e. K) Y Elwp'B** /T ((k +1)/2) — 0.
k=0

As a result,
2_]n1/2e_")‘(ﬂ”71/4)2w’x (n, [x /1l ﬁn_]/4)
_ - €l
=2""n'23 X (n, e y/mls B V) = 2 5,1, ).

This proves the one point convergence of 2~ ! 1/2¢=m+Bn~"%) zw.X (n, [x/nly; n=1%).
Note that for all # > 0, Lemma 5.3 and Lemma 6.2 hold. Hence the argument above
actually yields the convergence of 2= 1p1/2e=nth (B~ zo.X (L*Jnt, [x /7] )t ﬁn_1/4)
0 2 ;34 (t, x) for arbitrary ¢+ > 0 and x € R. Furthermore, by the joint convergence in
Lemma 4.3, the finite dimensional convergence also follows.

Step 3: Now in order to show the weak convergence as a process, it suffices to show the tight-
ness of the above process, which could be done by a similar argument as in [1, Appendix B].
They first deduced an integral form in terms of the random walk transition kernel for the
modified point-to-point partition function 3(x, k) from the discrete stochastic heat equation
that 3(x, k) satisfies and then developed the modulus of continuity for the partition function
with estimates for heat kernel. In our case, for deterministic X; = y, we could derive a simi-
lar integral form for the point-to-point partition function but in terms of transition kernel for
half-line random walk with a barrier at origin and then the similar estimates follow given that
Robin heat kernel has similar decay behavior as standard heat kernel as in Lemma 5.1. For
X; under the assumption of Theorem 2.2, from Remark 7.9, we have that IE[|\))1(V1 — v}l/’l |]

converges to zero in Ll([O, 1] xR>) forany 1 < o < 3. Here v;“ and ”;1/,1 are interpolated
(random) transition kernel as in (6.1). This allows us to adapt the proof in [1, Appendix B]
to the current setting. O

7 Application to Log-Gamma Polymer Models

In this section we consider the half-space log-gamma polymer model, as introduced in [20].
We apply the main Theorem 2.2 to the log-gamma polymer point-to-point partition function.
The log-gamma polymer models in dimension 1 4 1 are of significant importance among
polymer models in the sense that integral formulas are discovered and steepest descent
analysis is allowed, see [2].

We start with defining the log-gamma polymer model. We first follow notations used
in the literature and then translate it to fit our setting for the general polymers. Consider a
half-quadrant V := {(i, j)|i > j,i,j € Np}. Assign a log-gamma random environment
Y :={Y;;,i > j}onV asfollows.

Yii ~ Inv-Gamma(y/n + p + 1/2), Yij~ Inv-Gamma(2+/n), fori > j. (7.1)

Here Inv-Gamma(x) is the inverse gamma distribution with shape parameter « and scale
parameter 1, and with density

1 x—a—le—l/x.
INCY)
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These choices of parameters correspond to the diffusive scaling and critical scaling at the
origin of the general polymers.
For an endpoint (m, n) € V, define the point-to-point partition function by

Zrlr/l,n = Z 1_[ Y,',j,

§:(0,0)—(m,n) (i,j)€S

where we sum over the up-right paths S from (0, 0) to (m, n) which always stay in the half-
quadrant V. Note that the probabilities of these paths do not sum to one since those paths
having crossed boundary x = y are not counted.

To match with the general environment setting in the half-space regime with a barrier at
origin, we need to rewrite the partition function Z¥ in the same form as (3.3), i.e. expectation
with respect to a reflected random walk measure. By taking

= 1 - L
Yii= §Yi,i7 Yij=Yij,i>],

we have
zh =2mn N i s ot Ty
5:(0,0)— (m,n) (i,j)es
=2""Eg | [] Yij USGm+n)=@mn)|, (7.2)
@i, j)es

where #g is the number of times that path S visits the boundary and Ep, is the expectation
with respected to the reflected random walk measure.

Once again we omit the floor function when it does not cause ambiguity, e.g.
Lx]nt, [x /]| The following convergence result holds for log-gamma polymers.

Theorem 7.1 Let Y3 1, be a random variable distributed as in (7.1). The following conver-
gence results hold for the half-space log-gamma polymer model as n — 00,

1 _1/2y5— - @)
@' 2B T Z iy 2 i = 21 X).
Proof From (7.2), we have

2MEWATT - Z e iy 21 Lt - ) 2]

=Eg || [] Eaal™'Yi; | 1{Smn) = (Lot + x/n)/2), Lt — x+/n)/2])}

(i,j)es

Define wy, (i, j) fori > j via

E[Y2 17"V = 1+ 2720 V0, G, )i > s
E(Yo1] Vi =y (1427207 V0, (i, 1)),

where y, := 27 'E[Y; ;]/E[Y2.1].
In these notations, it follows that
—1_1/2\~— -
Q2B T - Z) 1 e i )
= 21012390 (x|t |x)/nx; 27 20~ 14.
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The shows that the log-gamma partition function is equivalent to the scaled modified point-

to-point partition function as in (3.3) with g = %

Furthermore, it’s clear that for i > j, E[w, (i, j)] = 0. And since
E[Inv-Gamma(a)] = (¢ — 1)~",  Var[Inv-Gamma(a)] = (« — 1) > (e — 2) ",
we deduce,
Var[w, (i, )] = 2n"? Varl¥; j1/E[Y; j1* =1+ 0 (n7"/?),i > j;
Var[w, (i, i)] = 2n'/?Var[¥; ;)/E[Y; ;1> = 24 0 (n=/?).
Yn=1—p/n+0{n").

Note that now the weights w; ; on the off-diagonals are i.i.d. with mean zero and variance
asymptotically one, the weights w; ; on the diagonal are also i.i.d. with mean zero but with
variance asymptotically two. Also for y, = 1 — u/s/n + O (n’l), we have the same local
limit theorem as in Theorem 5.2.

The rest of this proof follows exactly the same argument as in Theorem 2.2, with the role
of U-statistics Lemma 4.3 being replaced by Lemma 4.4. Hence the desired convergence for
log-gamma polymer model holds. O
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Appendix A. Proofs for Section 5

In this section we prove the three lemmas in Section 5, i.e. Lemmas 5.1, 5.2 and 5.3. The
proofs rely on a few lemmas on estimates for random walks. The reader may skip these
lemmas first and proceed directly to the proofs of Lemmas 5.1, 5.2 and 5.3. It will be further
explained in the proofs that which lemmas will be applied.

Recall that y is the reflection rate, when y < 1, p,(m,m+n,x,y) < p(m,m+n, x, y),
i.e the totally reflecting case, but when y > 1 the system will have mass coming in. Therefore
we need to estimate how frequently the walker goes to the barrier in order to estimate the
discrete transition kernel.

Recall that the transition kernel p,, is defined as

n—m

pym.n.x.y) =Y yIPR (Nyw = j. Su = ). (A.1)
j=0

Here N, , is the total visits to the origin as
Npn(S)=#{i e [m,n—1]z7| S; =0}

For the case m = 0, we denote Ny , as N, to simplify the notation. The explicit form of
PR (Nmn = j, Sn = y), (see Lemma 7.2), can be found in [12, (27)]. We give a proof in
the appendix for the reader’s convenience. For (n, z) € Ng x Z, let T (n, z) be the probability
that a simple random walk on 7Z arrives at x = z after n jumps starting at origin. In other
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words,

T(n,z):= ]PO’O(Sn =2).

Lemma7.2 Forany (m,n,x,y) € Ng x N x Ny x N,

P (N, —i S —y) = ]_"(n,y—x)—T(n,y—i—x) J=0,
R =0 S =)= 20D T — Ly x4 = 1) = L.
And
Tnh—1,1—x)—Tn—-1,1+x))/2 j =0,
M, X R _ _ i
Fr (Nm’m+”_J’Sm+”_0)_[ T (= jx+ ) j=L

Note that the expression takes different form for y = 0 and y # 0.

The following two lemmas provide bounds on 7 (n, z) and follow from computations through
Stirling formula. The author did not find a reference for such results so proofs are provided
in the next section.

Lemma 7.3 There exists a universal constant Co» > 0 such that the following statement holds.
Foranyn €N,z € Z, z <> nand |z| <n, let E(n, z) := |z|*/n* + 1/n. Then

o~ C2E(n.2) < 2_](27Tn)1/26z2/(2n)T(n,Z) < eC2EMm.2). (A.2)

Lemma 7.4 There exists a universal constant C3 > 0 such that the following statement holds.
Foranyn € N, z € Z and 7 <> n, we have

T(n,2) < Cyn~ 2 /0, (A3)
The following Lemma A.4 and Lemma 7.6 seek bound for the expression in (A.1).

Lemma 7.5 There exists a universal constant C4 > 0 such that the following statement holds.
Foranyn >1,x,y € Nowithx —y <> nand k > 0, we have

PO (N > kIS, = y) < Cae %/ Cm), (A4)

Proof We first consider the case that  is even and x = y = 0. From Lemma 7.2, for any
k Z 17

n/2 . n)2
]P)%O(Nﬂ = k, Sn = 0) :Z ¢T(}’l _ j, ]) < Z2C3(j/n)n71/2e’j2/(zc3”)
—~'n—j ¢
i=zk Jjzk
n/2
=2C3n~ V2 (j /e INIHRC) =12,
Jj=k

where the inequality follows from Lemma 7.4.

Let My > 0 be the number such that the function se=3/2C3) g decreasing for s > M. If
k < Mo+/n, (A.4) holds easily as the right hand side can be made larger than 1 with suitable
Cy.
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Now we may assume k > Mg./n. By the integral test,

o0
[P%O(Nn >k, S, =0) §C3n71/2/ sefsz/(zcﬁds < Cnfl/zesz/(c”).
k//n

From (A.2), P%°(S, = 0) = T'(n,0) > 2Qwn)~"/2e=C>/". Hence
PYO(N, = kIS, = 0) =PRO(N, = k. S, = 0)/PYO(S, = 0) < Ce™*/€m,

Thus (A.4) follows.
Next, we consider general x, y and n. Conditioning on the first and the last time the random
walk bridge returns to the origin, we have for any k > 2,

Py*(Ny = KIS, = y) < max PYON; >k — 1S, = 0).

The change from k to k — 1 is necessary as N; ignores the zero at the end. Then (A.4) follows
by the previous special case x = y = 0. O

Lemma7.6 For any u € R and t > 0, there exist a constant B3(u, t) and a universal
constant Cs such that the following statement holds. For any M > 0, n € N, m € [1, tn]z
and (x,y) € N%, lety =1— u//n. Then
S VY (N (S) = kISw = ¥) < Bs(u, 1)e "M Cm),
k>Mn

Proof As y is decreasing in p, we can without loss of generality assume that 4 < 0. By
(Ad)and y < e|”|/\/’7, we obtain

Y VP N = kIS, =)

k>M./n
=U—y ) Y PN = kIS =)+ VB (N = MYy = y)
k>M/n+1
< Calpln™2 30 e RHCmKI L ¢y M?/(Cam) Ml
k>M.n

Here we have used summation by parts. Asm < tn, k|u|//n < k2/(2C4m)+tC4|M|2/2
and M|u| < an/(2C4m) + 7.'C4|/L|2/2. Hence the above is bounded by

C4erc4|u|2/2 6711M2/(2C4m)+|ﬂ|n71/2 Z esz/(2C4m)
k>M/n
By the integral test,
o0
172 Z esz/(ZCAm) < (m/n)1/2/ e,sz/(2c4)ds < Crl/zeanz/(zcm).
YN (n/m)\/2M

Thus the assertion follows by putting the above together. O
proof of Lemma 5.1 By taking M = 0 in Lemma 7.6,

Py O.m,x.y) = Y P (Nu(S) = kI Sy = Y)PF (S = ¥) < B3 DPF (S = ).
k>0
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Together with Lemma 7.4 and

0x,0 _ n_ JTmy—x)+T(m,y+x)y#0,
PR (S —y)—{ T(m. %) Sy

The upper bound for p, (0, m, x, y) follows. O

We are ready to prove the local limit theorem for p,, (m, m+n, x, y). Note that p,, (m, m+
n, x,y) is indeed time-homogeneous and we may without loss of generality assume m = 0.

proof of Lemma 5.2 To simplify the notation, we adapt the convention that C represents uni-
versal constants and B represents constants that depend on u, €, 7 and M. We adapt the
notation that A; = Are™43 stands for Aze 43 < A| < Are4?.In particular, we can rewrite
(A.2) as

T(n,z) = 22mn) V22 /@MECEm.2), (A.5)

We focus on the case that y # 0. The proof for y = 0 is similar. Furthermore, we assume
n > no with ng large enough depending on , €, T and M. The exact value of ng may increase
from line to line.

Applying Lemma 7.2, we have

Py (O, nt, /nx, \/ﬁy) =T (nt (y — x)\/ﬁ) -T (nt (y -I-x)\/ﬁ)

+2y Z /(y+x)[+]T(nt—j,(y+x)ﬁ+j).

As E(nt, (y £x)/n) < MPe 2012 4 ¢~ 1n=1 < Bn=1/2, we have

In— engE(nt,(yix)ﬁ)| < Bn— 12
provided n > ny is large enough. Therefore,

T(nt, (y £ x)/n) — 2Qunt)~Y2e=0E /| < 227 pp)~1/2=0E0%/C1) | gy—1/2

< Bn~!
(A.6)
2
Fix § = 1/12. Consider the range j € [0, (n)37°]. Since y = 1 — p/J/n =

e~ HINnECH2
yi = o IMINTECHP I _ = jn/Nn exp(£Bn~ ).

By (A.5), we have

T(nt — j, (y +x)/n+ j) x 2—1(2nm)1/2 Ox)y/ntj 17/ @ne)

:(1_,-/<m))—1/2exp( [(y + x)v/n + j1> £ CoE(nt — |, <y+x>f+1>)

21(1 )
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We claim that, as n > ng large enough, the above is of the form exp(ﬂ:Bn’%). To see the
claim holds,

A =1<U—-j/m))? <0 —ne) VP=12 < exp(Bn~13+%) < exp(Bn™).
J

< ——— [+ 0+ P < )3 02Mr? 4+ (n)?37°? < Bn ¥,
2nt(nt — j)
E(m—j,(y+x>ﬁ+j>=((y“)ﬁ.j’) ,
(nt —j) nt — j
@Mn'/% 4 (n1)?/37%)?
N (n1)? nt

< Bn 23 < g,
Hence the claim holds and we have

Tt — j, (y +x)v/n + j) = 2Qrnt)~ V2 10OV /@) gy o4 gy =38,
Together with

G+t  GH+xVnt
nt

- exp(£Bn~%),
nt—j

we obtain that
2
(n)37°

2y 3 W‘.MT(

- nt — j, (y + x)v/n + j)
nt — j

2.5
(nt)3
4 ) i .
= exp(:I:Bn_%)iz = Y +x F /e TNV @D =172,
vV imnt- .
j=0

As x,y € [0,M] and ¢t € [e, T], we have fooo(y +x+ s)e*#-Y*(Hers)z/(z’)ds < B.
Define Ert’(n; i, €, M, T) to be

/ (y+x +s)e s — (y+x+r) /(Zt)d

P
x,y€l0,M].z
2
3

(nt)

Z (6 x4 [/ mye IR ROy =12

As the function (y + x + 5)e~#S~0Fx+9%/21) decays exponentially, we have
nl;n;o Err'(n; e, M, ) = 0.

In short,

(m)%*ﬁ

2y Z yj.(}"f'x)«/z‘f'jT(

: nt — j, (v +x)v/n+ j)
nt — j

2
(y + x +5)e W=OTFIV@ gg + B2 4 nm V2B (n; s €, M, T)).
2mnt3 /
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3

Next, we consider j € [(nt)%_ , nt]. Combining Lemma 7.3 and Lemma 7.6,

y,-+1.2(y+x)ﬁ+jT

pra (nt — j, (v +x)v/n + j)

jz(nt)2/3—§

= Y P S =y Nu(S) =+ 1)
j= 00233

o 1/3-25
< Be n /B.

Adding the above estimates, we conclude that

2
py (0.nt, V/nx, V/ny) — N LGN

< Bn—l/Z(n—l/Z 43 +n1/26—n1/3*2‘3/3 + Bt (n; p, €, M, T)).

Thus the assertion follows. m]

To prove Lemma 5.3, we need to bound the local time for 2-D simple random walks. For
(x1, x2) € Z2, let PO1-¥2) be the law of the 2-D simple random walk starting at (st Sg) =
(x1, x2). For a 2-D path (S 1.52) denote N, as the number of visits to the origin before step
n — 1. In other words

Nu(S1, 82 = #{j € 10.n = 11z | (8}, 53 = ©0,0].

The following lemma concerns the local time of 2-D random walks. The proof follows
the argument in [19, Chapter 20]. We present the proof in the next section for the reader’s
convenience.

Lemma 7.7 There exists a universal constant C¢ > 0 such that the following statement holds.
Foranyn > 2 and k € Ny,

P©.0) N, > k) < C6e—/</(C6 logn)
We derive the conditional version of Lemma 7.7.

Lemma 7.8 There exists a universal constant C7 > 0 such that the following statement holds.
Foranyn > 2, k € Ng and (x1, x2), (y1, y2) € Z?,

PUT (N > KI(S,. 57) = (1, 32)) < Cre /(CTloemrCrloen
Proof We first consider the case (x1, x2) = (y1, y2) = (0, 0). As

POOS) =0,8,=0=Tn0>>C'n"",
we have

POON, = KI(S;, ) = (0,0) < CeH/(Colormtioen,

Next, we consider general (x1, x2) and (y1, y2) in 72, By conditioning on the first and the
last time the random walk bridge touches the origin,

PUN (N, 2 KIS, S7) = (1, 32) = max POOW; > k—1((5], 57) = (0,0)).
=j=n

The change from k to k — 1 is necessary as V,, ignores the zero at the end. Then the assertion
follows the result in the previous case. O

@ Springer



2396 X. Wu

proof of Lemma 5.3 We adapt the notation that B represents constants depending 7, € and K
and C represents universal constants. Without loss of generality, we assume n > ng with ng
depending on 7, € and K. The exact value of ny may increase from line to line.

We compute that

ElpxO.m.x. »1=E| Y | ] X |Px - > | T X [P
_Sm=y i:8;=0 S‘m:y j:s/.:()

=E| Y ]‘[ X X; | PR (P (S)

| Sn=Sm=y \i.j:5:=5;=0

=31 [] ExA [] EXIEX,]| PR SPE ).

$,§ \i=j:85=8=0 i:8;=0%£S;
Jj:8;=0#£S;

By the independence of X, we have

Elpx©,m,x, ) =| Y (]‘[ E[x,q) P - Y | T ExX0 | PR
0

Sm=y \i:Si= Su=y \Jj:8;=0

= > ( I (E[Xibz) [T EXIEX) [ PRSP S).
irS;

i=j:8;=8;=0 =0+£8;
Jj:8;=0#S;

Sw=Sm=y

Recall that E[X;] = ¥ = 1 — u/+/n and let o2 = Var[X;]. Viewing two paths (S, S’)
as a g—D random walk, recall that \V,, is the number of indices i € [0, m — 1]z such that
(S;, Si) = (0, 0). We see that

Var[px (0. m.x. y)l = Y (EX7V —EX V) (] y)P%x(SﬂP%X(S)

Sm=S8m=y i:8;=0#5;
j:Sj=0#Sj
_ Z ((02+y2)N’" _ysz) 1‘[ )/)P%x(s)lp%x(g)
Spu=Sm=y i:8;=0#5;
J:S;=07#S;
=1 + L.

Here I; consists terms with AV;, < L and I, contains terms with \V;, > L, with L = (logn)>.
Suppose N;, < L. Forn > ng such that [;|/n < 1/2,and Kn=¢ /(1 — u//n)* < 1/2,

(0_2 + y2)Nm _ )/2./\/"1 < ((1 _ M/ﬁ)2 + Kn—e)/\/;n _ (1 _ M/«/E)ZNW

N Kn—e  \M
= (L= wim) [(H(l—u/ﬁﬂ) 1}

< BeBUem IV (160 n)3n=€ < B(logn)3n~.
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Therefore we have
I < Blogm®n™ 3 max{l, y}Vn SN R ()P (8)
Sm :Sm =y
= B(log n)3n_€pr2nax{l’y}(0, m,x,y).
From now on we assume N, > L. Let& = o+ 2. We claim that
> B OPYS) < B CE Ep0,mx, 2 (AT
Sm:§m=y»-/v;n >L
The proof of (A.7) is postponed to the end of this section. We now bound I, based on (A.7).
Suppose ;> 0 and hence y < 1. Then from (A.7),
L< Y #BRES)PY(S) < Be 2B p0, m, x, ).
szgm =y,~/\/m >L

Next, we consider u < 0.Let M > 0 be anumber to be determineq. We further decompose
Iy into I, = Ip; +1p, +1Ip3. Here Ip; contains terms with Ny, (S), Ny, (S) < M4/n, I, contains
terms with N, (~S) > M /n and I3 contains the rest.
If Nyu (S), N (S) < M/,
1_[ y < )/ZMﬁ < e~ 2uM

i:5;=0#5;
J:8;=07#S;

Hence
Ly <e M N (0% yH N — PN PR (PR (S)
NmZqumzsnz:y
SBe—ZuM—(logn)z/Bp(()’ m, x, y)z
provided n > ng. Here we have used the bound (A.7).
If N, (S) > M./n, by Cauchy-Schwarz,
2 ~
20 < Z (02 4+ yHyNm — 2Ny PR (PR (S)
NmZLsSm:SIm:y
+ Z VZNm(S)+2Nm(S)]P>%X (S)]P’%X (S‘)
Sn=8n=y,Nu(S)>M/n

From (A.7), the first term is bounded by Be’(log”)z/Bp(O, m, x, y)%. The second term
equals

0,
Pp,2(0.m, x, y) > y 2 SOBEE(S)
Smn=Y,Nm (S)ZM\/E

= p,2(0,m, x, y)p(0,m, x, y) Z )/Zk]P’%X(Nm =k|Sy =)
k>Mn

< Be’Mz/Bpf,z(O,m,x, y).
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Here we have used Lemma 7.6. By symmetry, I3 < I»» has the same upper bound. Putting
the above estimates together, for © < 0, n > ng large enough and any M > 0,

I < (Be M =(oen?*/B 1 go=M/B) 2, (0, m, x, y).

Choosing M = (log n)z/(4B|u|), then

—(logn)? /B 2

I, < Be (Omxy)

Thus the assertion follows. O
proof of (A.7)
Y PO Q) =ESY [y 1S ) = 000 | P70 m k. ).
Su=Sn=y,Nu>L
Through summation by parts,
EC [ 100,218 S) = (00 0)| = DD EPEI NG = kIS S0) = (3
k=L

==& Y EPCIW, = KISy Sn)

k>L+1
= (3, ) + ELPCING > LI(Sw, Sn) = (0, ).

We require n > ng such that
203 (log(tn))? <(logn)®, & < e, 2Kn™¢ — 1/(2C;log(n1)) < —1/(4C7logn).

Here C7 is the constant in Lemma 7.8. From Lemma 7.8, for any k > L,

IP)(X,X)(Nm > kl(S}L’ Srzn) — (y7 y)) < e—k/(C7logm)+C7 logm < e—k/(2C7logm).

Hence

%_L]P’(X,x)(./\/—m = L|(Sy1n, S,%l) = (y,y)) <exp (L (2Kn—e 10, logm)))
< exp (—L/(4C7 logn)) <e~(oem?/B

Similarly,

A—g7") Y PN, = kI(S). S2) = (7. 1))
k>L+1
<CKn™ ) exp(—k/(4C;logn)) < B(lognmyn~<e~0en*/B < po(oen?/B,
k>L+1
[m}

Remark 7.9 Under the assumption E[|X; — E[X X;1°1 < Kn~¢, we can show that
E[pi(O, m,x,y)] = py 0, m, x, y)-l—o(l)pmx 172) (O m, x, y) through a similar argument
because the local time of higher dimension random walks decays faster. In particular, we have
El(px(0,m, x,y) — py(0,m, x, y)*)] = 0(1)p (0,m, x,y) forany 0 < o < 3.

max{1,y?}
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Appendix B

proofof Lemma 7.2 Form, x > 0, recall that P"** is the law of the symmetric simple random
walk starting at S,, = x. For (n, j) € Ny, define

qn.j =P%0(S, = j, Sp # jforall€ € [0,n — 1]z).

Asn =0, [0, —1]z is empty and gq,; = POO(Sy = j) = 8. For j € Ny, define the
generating function

o0
Fi(s) := an,js".
=0

Note that for j > 1, F;(s) = E*°[s*0)] with 7(j) := inf{n > 1| S, = j}. By the strong
Markov property, we have for ji, j» > 1, F; Fj, = Fj+j,. As Fp = 1, the equality also
holds for ji, j» > 0. In other words,

Z qky, j19k2.jo = 4n. ji+j2- (B.1)
ki+ka=n, ky,k2>0

Recall that for (n,z) € Ng x Z, T (n, z) = IP’O’O(S,, = z). From [19, Chapter 9], for any
n>j>1,

dn.j = %T(n, J)- (B.2)
From the reflection principle, it is straightforward to derive that for any n, j > 1,
PYO(S, = j, S¢ #Oforall € € (0,n)z) =gy ;.
By conditioning on the value of Sy, for any n > 1,
POO(S, =0, Sg #O0forall £ € (0,n)7) = gn_1.1-

Now we start to compute IP’%X (N, =0, S, = y). By the reflection principle, forany n > 1
and x,y > 0,

T(n,y—x)—T(n,y+x) y>1

0,x _ _ —
Py (Nn—O,Sn—Y)—{(T(n_l,l_x)—T(n—l,l-i-X))/Zy:O'

Assume j > 1. Foranyn > 1l and x, y > 0, PY-X (N, = J, Sn = y) equals

Z ]P)O,X(Sn =y, Sk,' =0fori € [Lj]Z!

0<ki<ky<..kj<n
Se #0for€ e [0,n— 12\ {ki. ka, ... k;})
_ Z PO (Sp, =0, S¢ # 0 for £ € [0,k — 1]7)
O<ky<kp<..kj<n
x PkiO(S, =y, S¢ #0fort e (kj,n)z)
i—1
> jl_[ pkuO(Skm =0, S #0for ¢ € (ki, ki+1)z).

i=1
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By the reflection and translation symmetry,

PO (S, =0, S¢ # 0 for £ € [0, ki — 112) =qi,
PRO(Sk,, =0, S¢ #0for € € (ki, ki+1)z) =qk—k;_1—1.1,
k- 0
PkiO(S, =y, Sy £0forf e (ki ={ Inkjy Y # 0,
( n y 14 7& ( J n)Z) Qn—kj—l,l y —0.
Hence for y # 0,

Jj—1
Po’x(Nn =j, S =y = Z ki, xqn—kj,y 1_[ qki—ki—1—1,1 = qn—j+1,x+y+j—1-

0<ki<kp<..kj<n i=1
Here we have used (B.1). From (B.2),

PN (Ny = j, Sp = y) = 2B"* (N, = j, Sy = )

2y +x+j—1 . .
e i A S ST ST

n—j+1
Similarly,
j-1
P* (N, = j, S, =0) = Z Gk xGn—k;—1.1 l_[ Qi —ki—1,1 = Gn—j x+j-
0<ki <kz<..kj<n i=
Thus

. . x+J . .
P%X(Nn =7, Sn :0) :[P’O,X(Nn =7, Sn :0) = ﬁT(n —],X+])

[m}

proof of Lemma 7.3 During the proof we use C to denote universal constants. Recall that for
(n,z) € Ng x Z, T(n, z) = P%0(S, = z). We first discuss the case 1/2 < |z|/n < 1. Under
the assumption of the lemma we have 27" < T'(n, z) < 1. Hence

271 )28 < 271 2n) 26/ OO T (0, 7) < 27N 2em) 1 2eM 2,

From the view of E(n, z) > n/8 as |z| > n/2, (A.2) follows for C large enough.
In the rest of the proof, we assume 0 < z < n/2. The case —n/2 < z < 0 follows by the
symmetry of 7 (n, z). From the Stirling formula, for any m > 1,

m! ~ Qam) Pmme™.
More precisely,
1< Qrm) Pm™e"  m) < C/m.

Therefore as n > 1 we have

" 2N\ TM2V2 a2
<2t Qg 12 (1- = n eCrm, (B.3)
(n+2)/2 n? 1+ 2
z i

3l
(3]

n 2\ —h/2-1/2 1
< ) > 2n+1 (27_[”)71/2 (] _ ) (
(n+2)/2 1+
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For any x > 1,

A+1/x)le<(U+1/x)  <e, e ' <A —=1/x)"< A—1/x)"te

2/ —
We deduce (1 — %)Z /2 < F/n (1 — %) " < 1,1 < o2/ @) (1 _ 5)2/2 -
n — n = = n

(1-2) 7 and 1 < /@) (14 2)7” < (14 2)7 Forany 0 < y < 1/2, we

n n
have | +y < eCVand 1 — y > ¢~ €Y. Therefore

2\ —1/2
o=CH i . =2/n) (1 _ %) <1
n
1 =< 612/(211) (1 - £>Z/2, 6‘12/(2n) (1 + £>7Z/2 SeCZ3/n2.
n n

—-1/2
Similarly, 1 < (1 - Z—i) < ¢CZ/7 Combining the above,

e—C(z4/n3—l/(n—z)) < 2—(n+1)(27_[n)1/26z2/(2n)( n ) < eC(z3/n2+z2/n2+l/n).
(n+2)/2

When 0 < z < n/2, we have bounds z*/n? < z3/(2n2), 1/(n — z) < 2/n and z2/n? <
z3/n* + 1/n. Hence for C, large enough,

< €C2E(n»Z).

e~ CE(2) 2—(n+1)(2ﬂn)1/2622/(2n)( )
- n+2/2)

Thus (7.3) follows as T'(n, z) = 27" ((H';)/z).

proofof Lemma 7.4 From (A.2),

T(n,z) < 2(2n)~2e=7/@W+ClzP [n?+Cafn

When |z| < n/(4C3), Ca|z|3/n? < z2/(4n) and the assertion follows by requiring C3 >
max{2(27)~/2¢€2, 4}. Also, if |z| = n then T'(n,z) = 27" and (A.3) holds for C, large
enough.

In the following, we assume 1/(4C>) < z/n < 1 —2/n. Denote a = z/n. Rewriting (B.3)

T(n.7) < 2Q2mn)~ /2 (1 _ az)—1/2 e~ @+C/n.
where

1 11—
+a1n(1+a)+ a

la) == 2

In(1 —a).

Since I(a) is non-decreasing, —nl(a) < —nlI(1/(4C3)) and e @ < ¢=/C Asq <
1—2/n, (1 —a®)~1/? < Ce€'o2" Hence

7«(,17 Z) < Cefn/C+C lognJrCl/n.
Thus (A.3) follows as we take C, large enough. O
proofof Lemma 7.7 Recall that

NSt sh =#{jel0.n =11z (5}, 5 = 0,0}
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Without loss of generality, we may assume n, kK > 3. Define inductively pg = 0 and

pi = min{j > pi1 | (5}, 57) = (0.0)}.

Then

k—1
Wo =k} ={p <n—1C[oj—pj1 <n—1).
j=1

As p1, 02 — P15 ... Pr—1 — Pr—2 are iid.

POOWN, = k) <P(py <n— DFL

By [19, Lemma 20.1], there exists a universal constant C such that

P(p; <n—1) <1—1/(Clog(n — 1)) < ¢!/(Clogr=1),

Hence

PO’(O‘O)(Nn >k < ek=D/(Clog(n—1))

and the assertion follows. O

References

17.
18.
19.

Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension
1+1. Ann. Prob. 42, (2014)

Barraquand, G., Borodin, A., Corwin, I.: Half-space Macdonald processes. Forum Math. Pi 8, E11 (2020)
Barraquand, G., Borodin, A., Corwin, 1., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and
half-line open ASEP. Duke Math. J. 167(13), 2457-2529 (2018)

Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225-400 (2014)
Borodin, A., Corwin, 1., Remenik, D.: Log-Gamma polymer free energy fluctuations via a Fredholm
determinant identity. Commun. Math. Phys. 324, 215-232 (2013)

Comets, E.: Directed polymers in random environments. Ecole d’Eté de probabilités de Saint-Flour, XLVI
(2016)

Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl.
1(1), 76 (2012)

Corwin, I., O’Connell, N., Seppéldinen, T., Zygouras, N.: Tropical Combinatorics and Whittaker func-
tions. Duke Math. J. 163(3), 513-563 (2014)

Corwin, I, Shen, H.: Open ASEP in the weakly asymmetric regime. Comm. Pure Appl. Math. 71(10),
2065-2128 (2018)

O’Connell, N., Seppiléinen, T., Zygouras, N.: Geometric RSK correspondence, Whittaker functions and
symmetrized random polymers. Invent. Math. 197, 361-416 (2014)

. Caravenna, F., Sun, R., Zygouras, N.: Polynomial chaos and scaling limits of disordered systems. J. Eur.

Math. Soc. 19, (2017)

Goodrich, F.C.: Random walk with semiadsorbing barrier. J. Chem. Phys. 22, 588-594 (1954)
Gerencsér, M., Hairer, M.: Singular SPDEs in domains with boundaries. Probab. Theory Relat. Fields
173, 697-758 (2018)

Huse, D.A., Henley, C.L.: Pinning and roughening of domain wall in Ising systems due to random
impurities. Phys. Rev. Lett. 54, 2708 (1985)

Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52,
609-626 (1988)

Janson, S.: Gaussian Hilbert spaces. Cambridge Tracts in Mathematics 129. Cambridge University Press,
Cambridge

Parekh, S.: Positive random walks and an identity for half-space SPDEs. arxiv:1901.09449

Parekh, S.: The KPZ limit of ASEP with boundary. Commun. Math. Phys. 365, 569-649 (2019)
Révész, P.: Random Walk in Random and Non-random Environments. World Scientific, Singapore (1990)

@ Springer


http://arxiv.org/abs/1901.09449

Intermediate Disorder Regime for Half-Space Directed Polymers 2403

20. Seppilidinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab.
40, 19-73 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Intermediate Disorder Regime for Half-Space Directed Polymers
	Abstract
	1 Introduction
	Outline

	2 Definitions of the Model and Miain Results
	2.1 Half-Space Polymers
	2.2 Stochastic Heat Equation with Robin Boundary Condition
	2.2.1 1-D Heat Equation with Robin Boundary Condition
	2.2.2 Stochastic Heat Equation with Robin Boundary Condition


	3 Heuristics and Ideas of Proof
	4 U-Statistics
	5 Estimates on Discrete Transition Kernel
	6 Proof of the Main Theorem
	7 Application to Log-Gamma Polymer Models
	Acknowledgements
	Appendix A. Proofs for Section 5
	Appendix B
	References




