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CONSPECTUS: Machine-readable chemical structure representa-
tions are foundational in all attempts to harness machine learning
for the prediction of reactivities, selectivities, and chemical
properties directly from molecular structure. The featurization of
discrete chemical structures into a continuous vector space is a
critical phase undertaken before model selection, and the
development of new ways to quantitatively encode molecules is
an active area of research. In this Account, we highlight the
application and suitability of different representations, from expert-
guided “engineered” descriptors to automatically “learned”
features, in different prediction tasks relevant to organic and
organometallic chemistry, where differing amounts of training data are available. These tasks include statistical models of stereo- and
enantioselectivity, thermochemistry, and kinetics developed using experimental and quantum chemical data.
The use of expert-guided molecular descriptors provides an opportunity to incorporate chemical knowledge, domain expertise, and
physical constraints into statistical modeling. In applications to stereoselective organic and organometallic catalysis, where data sets
may be relatively small and 3D-geometries and conformations play an important role, mechanistically informed features can be used
successfully to obtain predictive statistical models that are also chemically interpretable. We provide an overview of several recent
applications of this approach to obtain quantitative models for reactivity and selectivity, where topological descriptors, quantum
mechanical calculations of electronic and steric properties, along with conformational ensembles, all feature as essential ingredients
of the molecular representations used.
Alternatively, more flexible, general-purpose molecular representations such as attributed molecular graphs can be used with machine
learning approaches to learn the complex relationship between a structure and prediction target. This approach has the potential to
out-perform more traditional representation methods such as “hand-crafted” molecular descriptors, particularly as data set sizes
grow. One area where this is particularly relevant is in the use of large sets of quantum mechanical data to train quantitative
structure−property relationships. A general approach toward curating useful data sets and training highly accurate graph neural
network models is discussed in the context of organic bond dissociation enthalpies, where this strategy outperforms regression using
precomputed descriptors.
Finally, we describe how graph neural network predictions can be incorporated into mechanistically informed statistical models of
chemical reactivity and selectivity. Once trained, this approach avoids the expensive computational overhead associated with
quantum mechanical calculations, while maintaining chemical interpretability. We illustrate examples for which fast predictions of
bond dissociation enthalpy and of the identities of radicals formed through cleavage of a molecule’s weakest bond are used in simple
physical models of site-selectivity and reactivity.
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tional Study. J. Am. Chem. Soc. 2017, 139, 1296−1310.1
Experimental and computational catalyst descriptors are
developed for cyclopentadienyl complexes and applied to
predict reactivity, regioselectivity and diastereoselectivity in
dif ferent catalytic reactions.

• Brethomé, A. V.; Fletcher, S. P.; Paton, R. S. Conforma-
tional Effects on Physical-Organic Descriptors - the Case
of Sterimol Steric Parameters. ACS Catal. 2019, 9,
2313−2323.2 An automated workf low sof tware is
developed to obtain 4D (conformer ensemble) steric
parameters and applied to illustrate uncertainty in
regression models.

• St. John, P.; Guan, Y.; Kim, Y.; Kim, S.; Paton, R. S.
Prediction of homolytic bond dissociation enthalpies for
organic molecules at near chemical accuracy with sub-
second computational cost. Nat. Commun. 2020, 11,
2328.3 A graph neural network approach for organic
property prediction is developed, resulting in highly accurate
BDE predictions that are also used as descriptors in
mechanistic models for selectivity and reactivity.

1. INTRODUCTION
Data-driven chemistry is propelled by innovations in the
generation and curation of chemical data, the machine learning
algorithms used for regression and classification, and how
molecules are represented.4 Machine-readable chemical
structure representations were originally introduced to create
the first searchable computational databases of molecules and
reactions in the 1960s.5 They are now a central element of
chemical machine learning (ML). For decades, the develop-
ment of predictive quantitative structure−activity and
structure−property relationships (QSAR and QSPR) directly
from chemical structure has been an area of active research in
which the construction of expressive molecular feature
representations that inform the physical nature of the input−
output mapping is a central task.6 Feature vectors encode
information about molecular structure, in most cases, by
combining a series of physically meaningful molecular
descriptors that describe spatial, electronic, and energetic
properties. The use of “expert crafted” descriptors provides an
opportunity to incorporate chemical knowledge, domain
expertise, and physical constraints into any given machine-
learning approach while also potentially offering greater
interpretability to the chemist as a result.7

The featurization or embedding of discrete molecular
structures into a continuous vector space (i.e., as feature
vectors) is a critical phase undertaken before model selection.
Attempts to predict specific reaction outcomes such as
reactivity or selectivity are routinely faced with small data
sets on the order of tens to hundreds of examples. In these
cases, manual approaches to feature engineering that rely upon
specialized domain knowledge, such as a structural or
mechanistic hypothesis, and physicochemical descriptors tend
to achieve better results than more generalizable representa-
tions. Feature vectors derived from physical-organic parame-
ters that describe a molecule’s or substituent’s electronic (e.g.,
HOMO/LUMO energies, atomic charges, Fukui8 coefficients)
and steric (e.g., Tolman cone angle,9 Sterimol,10 buried
volume11) influence have been used in ML models to predict
the yields12 and diastereo-1 and enantioselectivities13 of
organic and organometallic reactions by Sigman,14 Doyle,15

and others including ourselves. The continued development of

physically motivated descriptors that succinctly and trans-
parently capture the subtleties of molecular stereochemistry,
conformation, and electronic effects is central to data-driven
approaches for organic reaction prediction, as the ability to link
a quantitative predictive model back to interpretable
descriptors can be used to derive new understanding and
mechanistic inferences.16−18

While manually engineered features may focus on describing
a specific type of molecule or reaction, more flexible, general-
purpose molecular representations such as attributed molecular
graphs19 can be used in combination with ML approaches to
learn the complex relationship between a structure and
prediction target. Deep learning approaches have proven to
be particularly well-suited to the representation of organic
structures, automatically learning “rich” features and improving
the accuracy of chemical property and reactivity prediction
over traditional hand-coded or molecular fingerprint repre-
sentations.20 In particular, the rise of graph neural networks
(GNNs)21 in modeling chemical properties has enabled “end-
to-end” learning on molecular structure: an ML strategy where
traditional feature engineering is replaced by a learned
molecular representation derived from an attributed molecular
graph. These approaches have led to best-in-class prediction
accuracies on a range of applications from total energies,
interatomic forces,22 and bond strengths,3 especially as the
amount of available training data grows.23,24

In this Account, we present an overview of how distinct
featurization strategies can be applied to organic and
organometallic chemistry, to predict reactivity, stereoselectiv-
ity, and chemical properties. In the case of small (<100)
reaction data sets, hand-crafted physicochemical descriptors
are shown to yield interpretable models such as multivariate
linear regressions (MLR) of catalytic enantio- and diaster-
eoselectivities. With larger data sets, such as those obtained
from high-throughput quantum chemical data sets, learned
representations with flexible GNNs can be trained to produce
excellent quantitative predictions of atomic or molecular
properties at low computational cost. This is illustrated for
organic bond dissociation enthalpies. Finally, we describe how
GNN predictions can be incorporated into mechanistically
informed statistical models of chemical reactivity and
selectivity. Once trained, this approach avoids the expensive
computational overhead associated with QM calculations and
maintains chemical interpretability.

2. MOLECULAR REPRESENTATIONS: FROM ONE TO
FOUR DIMENSIONS

While QSAR/QSPR models emerged largely in the context of
medicinal chemistry and drug discovery, attempts to relate
structure with catalytic activity and selectivity have emerged
more recently. Traditional cheminformatics representations
largely focus on 2D or topological molecular representations
that define the connectivity and bonding types of atoms in a
molecule. 2D molecular descriptors, such as topological
fingerprints, are simple to define and can be obtained without
geometry optimization. However, a number of features of
mechanistic relevance to reactivity and selectivity depend upon
a molecule’s 3D structure and conformation, including
electronic properties such as atomic and molecular charge
distributions, as well as other structure-dependent features that
capture a molecule’s steric influence, chirality, volume or
surface area. Quantum mechanically (QM) optimized
molecular coordinates (e.g., using density functional theory,
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DFT) can be used to obtain such descriptors, in addition to
other QM-computed properties such as thermochemical
values, molecular orbital energies, vibrational frequencies,
and noncovalent interaction energies. In QSAR vernacular,
3D-descriptors generally refer to those that map molecular
interactions to a prealigned grid of points, as in Comparative
Molecular Field Analysis25 (COMFA) and the more recently
developed Average Steric Occupancy (ASO) from Denmark.26

More generally, properties dependent upon 3D-structure, and
especially spatial/steric occupancies, have been described by
scalar parameters such as buried volume and higher dimen-
sional objects such as topological maps or multidimensional
Sterimol parameters, approaches pioneered by the Cavallo11

and Sigman27 groups, respectively. This hierarchy of molecular
representations used across organic chemistry is shown in
Figure 1.
The dependence of 3D or DFT-derived descriptors upon the

molecular geometry means that unlike 2D representations,
conformational dynamics are important to consider. Indeed,
the presence of multiple conformations may itself be an
important descriptor relating to catalytic proficiency.28 Thus,
in addition to featurization of the most stable conformer,
consideration of the full conformational ensemble may be
necessary to quantitatively encode macroscopic behavior.
Ensemble approaches have been referred to as 4D-QSAR.29

Spatial parameters may be sensitive to conformational behavior
and to the level of theory employed to generate an ensemble,
which led us to develop a software tool, wSterimol, to
automate conformer-sampling and featurization.2 With this, we
have been able to include estimates of parameter uncertainty
into regression models of stereoselectivity.

3. PERFORMANCE IN REGRESSION MODELS OF
REACTIVITY AND STEREOSELECTIVITY

Aspuru-Guzik, Balcells et al. have demonstrated the application
of topological descriptors to predict DFT-computed activation
barriers with high chemical accuracy.30 Around 2500 QM
transition structures (TSs) were obtained for the oxidative
addition of dihydrogen to varying IrL3X complexes with

varying ligand types (Figure 2).31 Ir-complexes were encoded
by full autocorrelation (FA) functions (using Kulik’s
MolSimplify32) concatenated with Morgan and RDKit finger-
prints, which encode the presence or absence of particular
molecular substructures.33,34 Regression with a Gaussian
process (GP) model gave excellent quantitative performance
(MAE = 0.6 kcal/mol, R2 = 0.95) while also identifying
important substructural motifs based on feature importance
that can be interpreted chemically. The application of
topological descriptors has also been applied to predict relative
reactivity of alkanes toward C−H abstraction by metal carbene
electrophiles.35

The 2D-descriptors can be complemented by DFT-derived
features that may be absent from the simpler representation,
such as atomic partial charges; the enantioselectivity of a key
synthetic step used to prepare an approved antiviral,
letermovir, was optimized with this featurization approach
and MLR by Sigman et al.36 The key asymmetric aza-Michael
addition step (Figure 3) is promoted by chiral triflamide
catalysts, in which varying aromatic substituents were studied
(initial data set of around 30 structures). One particular 2D-
descriptor (FX1sp3CX2sp207) was found to have a high
univariate correlation (R2 of 0.57) with enantioselectivity: this
is a substructural parameter between fluorine atoms seven
bonds away from an sp2-hybridized carbon atom, that encodes
steric effects. Combining this feature with those obtained from
electronic structure calculations, including Natural Population
Analysis (NPA) charges at C1 and C2 positions and isotropic
polarizability (polari) of the aryl-ligand, led to a multivariate
regression with excellent fit for training (R2 of 0.90) and
validation (R2 of 0.77) data sets. Mechanistic studies suggest
that two H-bonds are formed between Michael-acceptor
carbonyl and catalyst N−H groups in the key TS (Figure
3).37 The statistical model indicates the significance of
fluorine-substituents, which lock the catalyst in a stable
conformation and form stabilizing interactions with the
substrate’s aromatic ring. Consequently, the optimal enantio-
selectivity (90.4 %ee) was obtained by incorporating 2-
fluoro,4-trimethylsilyl aryl groups into the catalyst, structures

Figure 1. Hierarchy of molecular representations used to encode organic and organometallic structures.
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unlikely to be generated during traditional intuition-driven
screening.
DFT-derived descriptors are more expensive than topo-

logical features, however, mechanistic knowledge can be used
to target the collection of chemically relevant features, as in
Jensen et al.’s seminal QSAR study of ligand effects in olefin
metathesis.38 The use of QM-derived descriptors in ML
models has proven to be a powerful quantitative approach to
catalyst and ligand design along with the extraction of
mechanistic insight,39−42 and is also complemented by
transition state studies.43 We have found this approach to be
particularly useful in the development of predictive models for
asymmetric catalysis with chiral phosphoramidite ligands.
Mechanistic studies of Rh- and Cu-phosphoramidite com-
plexes performed in collaboration with the Fletcher and
Anderson groups (Figure 4) have led us to conclude that the
amine substituents of these ligands are able to interact directly
with transition metal via metal-arene interactions,44 imparting
both steric and electronic effects upon levels of enantiose-
lectivity. Catalyst descriptors derived from QM calculations
have proven necessary to capture these nuanced effects in
applying quantitative structure-selectivity relationships

(QSSR) to experimental phosphoramidite libraries comprising
30−40 ligand structures in several copper-catalyzed asym-
metric conjugate additions.45−47

In Cu-catalyzed asymmetric conjugate additions to β-
substituted cyclopentenones, an iterative workflow was
pursued in which new phosphoramidite ligands were prepared
in response to statistical analysis.46 While the ligand’s BINOL
backbone controls the sense of enantioinduction in this, and
related transformations, the level of selectivity can be fine-
tuned by altering the amino-substituents. Based on preliminary
observations that relatively electron-rich substituents gave
more promising enantioselectivities, both electronic and steric
features were investigated in developing a statistical model
(multivariate linear regression, MLR) with an experimental
data set containing around 20 ligands. DFT calculations were
used to obtain highest occupied molecular orbital (HOMO)
energies of amino-substituents, features that are more directly
relevant to metal-arene interactions than atomic charges, along

Figure 2. Application of topological fingerprints to predict activation
barrier heights.

Figure 3. Combined 2D-topological and DFT-derived electronic
features in enantioselectivity prediction.
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with multidimensional Sterimol parameters for these groups. A
positive correlation between ΔΔG‡ and the substituents’
HOMO energy and width was observed, which led to the
preparation of a second generation of phosphoramidite ligands
with extended and electron-rich π-systems as amino-
substituents. Accordingly, a phenanthrene-substituted ligand
gave the highest enantioselectivity of up to 92% ee (Figure 4).
Interpretation of this model was supported by analysis of
competing TSs, in which favorable coordination of the Cu-
center by an aromatic amino-substituent occurs more easily
when the enone substrate is oriented to form the major
enantiomer (Figure 5).
To correlate the effect of cyclopentadienyl ligand structure

with diastereoselectivity in Rh(III)-catalyzed cyclopropane
insertions developed by Rovis et al. (Figure 6), we combined
experimental macroscopic parameters (NMR chemical shifts
and coupling constants, redox potentials) with DFT-derived
catalyst descriptors.1 Python tools were developed to compute
cone angles and Sterimol parameters with different sets of van
der Waals radii that were used to capture steric demands across
a data set of around 20 ligands.48 We recorded minimum and
maximum values of cone angles to capture the unsymmetrical
nature of most of the cyclopentadienyl ligands, similar to the
way in which B1 and B5 Sterimol parameters bracket
anisotropic steric demands.
MLR models were obtained in which ligand sterics were

described by either the Sterimol B1 value or the minimum
cone angle value−these models performed similarly, consistent
with the substrate approaching the catalyst from its less
hindered side. Classically, kinks or breaks in univariate
correlations (e.g., Hammett plots) are indicative of a change
in mechanism for certain data set members. In this multivariate
correlation, the observation that the only indenyl ligand was an
obvious outlier prompted us to investigate competing
transition structures of the selectivity-determining step with
this catalyst (Figure 6).49 Slippage of the ligand binding mode,
from η5 toward η3 coordination, occurs predominantly in the

favored TS to accommodate the cyclopropane substrate and
contributing to an enhancement in selectivity.

4. LARGE QUANTUM CHEMISTRY DATA SETS IN
MACHINE LEARNING

End-to-end learning frameworks tend to outperform traditional
representation methods (e.g., hand-crafted features discussed
above) in the limit of large data sizes, such as those containing
the results of 105 or more QM calculations.50 The emergence
of these large data sets has been aided by the creation of public
computational results databases, such as QM9, ioChem-BD,
and the MolSSI QCArchive.51 The creation of these data sets
requires large-scale, high-throughput approaches to performing
QM calculations in which the (computational) chemist’s
traditional intuition and validity checks need to be codified and
embedded in the computational pipeline (Figure 7).
In creating a data set of around 290,000 bond dissociation

enthalpy (BDE) values52 we built a computational pipeline for
high-throughput DFT calculations that leverages a shared
database managed through PostgreSQL. The database is
initialized with realistic organic compounds from PubChem
which were automatically and exhaustively fragmented
homolytically. SMILES strings are used to index molecules
when the 3D structure is not critical, but care has to be taken
to ensure a consistent SMILES canonicalization. With a
completed, deduplicated database of closed-shell molecules
and radicals, DFT calculations were conducted by distributing
calculations across a range of compute processes. A key benefit
of a transactional database in managing calculation results is
that parallel read and write operations can be serialized, such
that rows containing molecule calculations that are in progress
are locked until the calculation is finished. Various convergence
checks (Figure 7) were automated to filter erroneous
calculations and structures.

Figure 4. Computational and statistical modeling studies have aided the optimization of chiral phosphoramidite complexes used in asymmetric
transformations.
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5. GRAPH NEURAL NETWORKS FOR PROPERTY
PREDICTION

Features used to encode structural elements in GNN
approaches are themselves optimized alongside the prediction
model. Initial atom (e.g., element, charge) and bond-level (e.g.,
bond order, element types of participating atoms) features are
assigned to an initial embedding vector that is iteratively
updated over a sequence of message-passing steps, where
information is exchanged between neighboring nodes and
edges. The model’s expressive power is similar to atom or
bond-centered fingerprints with a radius equal to the number
of message updates. In practice, the models often identify the
correct amount of information to share between nodes. Using
our data set of 290,000 QM-computed BDE values, we were
able to train a GNN with a mean absolute error (MAE) of 0.58

kcal mol−1 (vs M06-2X/def2-TZVP) for BDEs of unseen
organic molecules (Figure 8). An ML model using fixed
descriptors trained against 12,000 DFT values previously
recorded an MAE of 3.4 kcal/mol.53 Since the initial atom and
bond attributes can be supplied directly from the molecular
graph (e.g., with rdkit), predictions can be made from a
SMILES query in less than a second, including via a Web
server.54 This approach works clearly well for applications
where large amounts of data can be generated: the learning
curve in Figure 8 shows the improvement in predictive
accuracy as the training data is increased. For smaller data sets,
this approach may not improve on traditional embedding
approaches.
GNN-derived property predictions can themselves be used

in place of expensive QM calculations to obtain high-quality
features for statistical modeling. For instance, C−H BDEs are

Figure 5. Chiral phosphoramidite optimization in Cu-catalyzed
asymmetric conjugate addition aided by DFT-derived featurization
and statistical modeling.

Figure 6. Correlating diastereoselectivity to cyclopentadienyl Ligand
Properties in Rh(III)-catalyzed cyclopropane insertion.
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an indispensable component in building reliable models of
first-pass metabolism of small molecules by cytochrome P450
enzymes.55 A classifier was built using the relative strengths of
C−H BDEs (as obtained from the GNN model) to predict the
site of oxidative degradation, which classifies all bonds within a
certain energy tolerance from a molecule’s weakest C−H bond
as potential reactive sites (Figure 9). The true positive versus
false positive rates of this classifier were tabulated as the
tolerance energy was increased, known as a receiver operating
characteristic (ROC) curve. Our ML model gave nearly
identical ROC curves to full DFT calculations, with an area
under the ROC curve of 0.87 for ML and 0.86 for DFT
(higher is better).1

We have also applied ML BDE predictions to construct a
mechanistically inspired model of soot formation during the
combustion or organic compounds (Figure 10). The weakest
bond in each molecule identified by the GNN was used to
predict the identities of the two radicals formed upon
thermally induced homolysis, since the reactivity and stability
of these radicals is a major determinant of sooting tendency. A
QSPR model was developed for a set of 217 different fuel
molecules with measured yield sooting index (YSI) values.
Each molecule was represented by only two parameters: one

for each of the two radicals formed by cleavage of the weakest
bond. The cross-validated predictive accuracy of the new

Figure 7. ComputationalPipeline and data proceeding involved in
creating a large QM data set.

Figure 8. BDE prediction from a GNN approach (above); validation
error as a function of training set size (below).

Figure 9. Regioselectivity of C−H oxidation predicted by GNN-
derived BDE values.

Figure 10. Mechanistically derived sooting QSPR model for
combustion chemistry based on GNN-predicted BDE values.
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model achieved a weighted least-squares loss less than half that
of a recently developed group-contribution model on the same
data set.1

6. CONCLUSIONS AND FUTURE PERSPECTIVES
Diverse structural representations spanning the hierarchy of
dimensions have been instrumental in deriving statistical
models for organic reactivity, selectivity, and molecular
properties. Particularly in the limit of small data set sizes,
expert-guided descriptors encode the nuances of organic and
organometallic structures in a predictively useful and
interpretable way. As data set size grows, the flexibility of
more general representations such as graph neural networks
can be leveraged to obtain excellent predictive performance
and to rapidly generate descriptors for mechanistically
informed models. The development of new descriptors, their
adoption by the broader community, and evaluation for
different ML prediction tasks will be enhanced by the sustained
development of open source tools and libraries.
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