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We extend unsteady thin aerofoil theory to aerofoils with generalised chordwise porosity
distributions by embedding the material characteristics of the porous medium into the
linearised boundary condition. Application of the Plemelj formulae to the resulting
boundary value problem yields a singular Fredholm–Volterra integral equation which
does not admit an analytical solution. We develop a numerical solution scheme by
expanding the bound vorticity distribution in terms of appropriate basis functions.
Asymptotic analysis at the leading and trailing edges reveals that the appropriate
basis functions are weighted Jacobi polynomials whose parameters are related to
the porosity distribution. The Jacobi polynomial basis enables the construction of a
numerical scheme that is accurate and rapid, in contrast to the standard choice of
Chebyshev basis functions that are shown to be unsuitable for porous aerofoils.
Applications of the numerical solution scheme to discontinuous porosity profiles,
quasi-static problems and the separation of circulatory and non-circulatory contributions
are presented. Further asymptotic analysis of the singular Fredholm–Volterra integral
equation corroborates the numerical scheme and elucidates the behaviour of the
unsteady solution for small or large reduced frequency in the form of scaling laws.
At low frequencies, the porous resistance dominates, whereas at high frequencies, an
asymptotic inner region develops near the trailing edge and the effective mass of the
porous medium dominates. Analogues to the classical Theodorsen and Sears functions
are computed numerically, and Fourier transform inversion of these frequency-domain
functions produces porous extensions to the Wagner and Küssner functions for transient
aerofoil motions or gust encounters, respectively. Results from the present analysis
and its underpinning numerical framework aim to enable the unsteady aerodynamic
assessment of design strategies using porosity, with implications for unsteady gust
rejection, noise-reducing aerofoil design and biologically inspired flight.
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1. Introduction

The seminal works of Theodorsen (1935) and Sears (1941) continue to ground the modern
understanding of unsteady aerodynamic phenomena experienced by lifting bodies. Their
analyses considered the unsteady potential flow about an impermeable aerofoil: whilst
Theodorsen considered the effect of unsteady (harmonic) aerofoil motions, Sears was
concerned with the fluctuating pressure response of the aerofoil to an incident harmonic
gust. Both authors were able to derive closed-form analytic expressions for the unsteady
lift in terms of Hankel functions, which Garrick (1938) showed could be connected to
the indicial lift functions of Wagner (1925) and Küssner (1936) for impulsive aerofoil
motion or entry into a sharp-edged gust, respectively. The analysis of Theodorsen was
originally motivated by the need to predict flutter instability but has been used inter
alia to form the basis for predicting and comparing unsteady forces on flapping foils
(Garrick 1936; Jaworski & Gordnier 2012, 2015; Floryan et al. 2017) and to develop load
prediction methods relevant to rotorcraft blades (Loewy 1957; Peters 2008). The work of
Sears relates directly to aerodynamic gust responses and enables the prediction of acoustic
radiation from aerofoils encountering vortical sources (see Glegg & Devenport 2017),
where extensions to Sears’s analysis have included the distortion of the incoming gust
by the aerofoil (Goldstein & Atassi 1976), as well as the effects of mean aerofoil loading
(Scott & Atassi 1993), aerofoil shape (Kerschen, Tsai & Myers 1993) and finite Mach
number (Graham 1970; Leishman 1997).
Understanding, exploiting and extending the analyses of Theodorsen and Sears remains

a vibrant area of research. Recent work by Cordes et al. (2017) explored the limitations
of these aerodynamic transfer functions and found that, whilst the Theodorsen function
performed well against experimental data, the Sears function required the second-order
correction for gust distortion by the aerofoil provided by Goldstein & Atassi (1976)
and Atassi (1984). The discrepancies between these models were investigated in greater
detail by Wei et al. (2019), who concluded that the original Sears function may even be
used when there are considerable fluctuations in the streamwise velocity component. Of
particular note is the recent extension of unsteady potential flow to include viscosity via
triple deck analysis at the trailing edge by Taha & Rezaei (2019). This work presented a
viscous extension of the Theodorsen function to elucidate the role of viscosity-induced
lag that becomes increasingly important at large reduced frequencies. Extension of
the aerodynamic transfer functions from two-dimensional aerofoils to three-dimensional
wings is another popular research direction, which has been pursued with a variety of
possible methods (Bird et al. 2019; Yang, Li & Liao 2019). However, the original analyses
by Theodorsen and Sears and these subsequent investigations they have inspired involve
impermeable lifting surfaces that do not permit any flow seepage through the aerofoil or
wing. In the present work, we extend these classical unsteady analyses to consider aerofoils
with chordwise porosity gradients. In particular, we consider a linearised, unsteady
porosity law where the seepage velocity depends on the local values of the flow resistance
and effective fluid inertia of the porous medium, and on the local pressure gradient across
the aerofoil.
Porous aerofoils have received considerable attention over recent years due to their

apparent ability to reduce acoustic emissions (Geyer, Sarradj & Fritzsche 2010; Jaworski
& Peake 2013; Ayton 2016; Kisil & Ayton 2018). It is generally believed that porosity
at the trailing edge weakens the scattering of turbulence there and therefore reduces
sound production in a manner similar to turbulence noise suppression by an edgeless
perforated sheet (Ffowcs Williams 1972; Nelson 1982). However, the fluid loads on
perforated aerofoils are also affected by porosity and are expected to be aerodynamically
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poorer in comparison to impermeable aerofoils (Geyer et al. 2010; Iosilevskii 2011, 2013;
Hajian & Jaworski 2017). Recent experiments by Hanna & Spedding (2019) demonstrate
that porosity can also be aerodynamically beneficial by suppressing unwanted flow
phenomena that are dependent upon the Reynolds number of the configuration.
Consequently, aircraft designers seeking to use porosity as a noise mitigation strategy are
faced with the difficult task of balancing the aeroacoustic advantages of porous aerofoils
with their aerodynamic disadvantages.
With the goal to assess these aerodynamic effects, Hajian & Jaworski (2017) developed

an analytic formulation and solution for the steady aerodynamic loads on aerofoils with
arbitrary, realistic (specifically, Hölder continuous) porosity distributions to investigate
the impact of a chordwise variation in porosity. This analysis was later extended
to determine the unsteady forces on an arbitrarily deforming panel with generalised
porosity distributions (Hajian & Jaworski 2019). An analytical expression for the unsteady
pressure distribution was presented and evaluated for the special cases of uniform and
variable-porosity panels undergoing harmonic deformations, where the effect of the panel
end conditions was also investigated. Subsequent research used these unsteady loads to
show generally that the primary instability of porous panels with fixed ends is aeroelastic
divergence (Hajian & Jaworski 2020).
A comprehensive unsteady aerodynamic theory for lifting porous bodies is also

essential to predict aeroelastic stability and aeroacoustic emissions. The classical theory
of Theodorsen (1935) and its later extensions (Jaworski 2012) developed closed-form
expressions for the unsteady aerodynamic forces on a piecewise-continuous impermeable
aerofoil undergoing small-amplitude harmonic motions in a uniform incompressible
flow. These analyses separated the total fluid forces or moments into circulatory and
non-circulatory parts, which correspond respectively to the contribution of the unsteady
shedding of vorticity into the wake and the hydrodynamic reaction of the fluid to
aerofoil motion. These unsteady fluid forces also contribute fundamentally to the aerofoil
gust response problem (cf. Bisplinghoff, Ashley & Halfman 1996, pp. 281–293) and to
the aerodynamic noise generation from gust encounters (Atassi, Dusey & Davis 1993)
and vortex–structure interactions (Howe 2002). Therefore, an extension of the classical
unsteady aerodynamic response models to include the effects of porosity distributions is
desired.
The classical aerodynamic functions for impermeable aerofoils depend on the solution

of a singular integral equation for the vorticity or pressure distribution on the aerofoil,
which may be integrated to furnish the aerodynamic loads of interest. Schwarz (1940)
employed the integral inversion of Söhngen (1939) to produce an exact solution for
the pressure distribution and fluid loads on unsteady impermeable aerofoils. Hajian &
Jaworski (2017) determined an exact solution for steady aerofoils with chordwise porosity
gradients using conventional analysis methods (see Muskhelishvili 1946), as noted above.
However, the singular integral equation describing the generalised aerodynamics of
unsteady porous aerofoils with a wake cannot be treated by conventional analysis, and a
different mathematical approach is required. A new approach to circumvent the analytical
challenges of unsteady porous aerofoil modelling is the focus of the present research.
In complement to standard analytical approaches, there are many methods available

for the numerical solution of singular integral equations (Erdogan, Gupta & Cook
1973). Numerical solutions in terms of orthogonal polynomials were first considered by
Erdogan & Gupta (1972), who expressed the solution function as a series of weighted
Chebyshev polynomials. However, this numerical approach was limited to particular
endpoint behaviours until the generalisation by Krenk (1975) to Jacobi polynomials
allowed a broader class of endpoint zeros and singularities to be examined. In the present
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research, we adapt the approach of Krenk (1975) to a broader class of singular integral
equations, including the generalisation to discontinuous coefficients.
The expansion of the jump in surface pressure across the aerofoil into a series of

weighted Chebyshev polynomials has previously been applied to aerodynamic problems
for impermeable (Rienstra 1992) and permeable (Weidenfeld & Manela 2016) aerofoils.
The weighted Chebyshev expansion (also referred to as a Glauert–Fourier series) is
an essential feature of many reduced-order discrete-vortex models (Ramesh et al.
2014; SureshBabu, Ramesh & Gopalarathnam 2019). These models require a detailed
understanding of the pressure at the leading and trailing edges to predict the vortex
shedding behaviour correctly. In particular, the leading-edge suction parameter must
be accurately computed (Ramesh et al. 2014). In the present work, we show that the
Chebyshev expansion is unsuitable for porous aerofoils, and an expansion in terms of
weighted Jacobi polynomials is essential to capture the subtle solution behaviour at the
endpoints.
Further details relevant to the unsteady forces on porous aerofoils can be educed from

the asymptotic examination of the model equations in the low- and high-frequency limits.
The low-frequency limit produces a regular perturbation correction to the steady analysis
of Hajian & Jaworski (2017), where, for given reduced frequency k, the magnitudes of
the aerofoil circulation and unsteady lift coefficient each scale as a constant with O(k)
correction. However, the high-frequency limit yields a singular perturbation problem,
where two asymptotic expansions are sought in two overlapping regions about the aerofoil
that are matched in the spirit of Van Dyke (1964): an outer region along most of the
aerofoil, and an inner region confined to the vicinity of the trailing edge. We show
that, unintuitively, the scaling laws for unsteady aerofoil lift and circulation with respect
to reduced frequency are independent of the porosity: in the high-frequency limit, the
unsteady lift scales like k2, whereas the aerofoil circulation scales like

√
k. This fractional

scaling law arises from the singular nature of the asymptotic inner region near the trailing
edge.
The remainder of this paper is structured in the following manner. Section 2 presents the

mathematical model for a porous aerofoil undergoing unsteady motions, and a numerical
solution of the ensuing singular integral equation is presented in § 3. Numerical and
asymptotic solutions are then used in § 4 to draw physical insights regarding porosity
from a range of canonical aerofoil motions, and § 5 provides numerical confirmation of
the asymptotic scaling behaviours of the unsteady lift and aerofoil circulation with respect
to reduced frequency. Section 6 develops and discusses porous analogues of the classical
Theodorsen, Sears, Wagner and Küssner functions that must be computed numerically.
Finally, § 7 summarises the main findings of the research and outlines a number of possible
directions of future work. Useful identities for the Jacobi polynomials are catalogued in
appendix A, and the low- and high-frequency solution behaviours of porous aerofoils are
analysed asymptotically in appendix B. All results in this paper can be reproduced using
the computer codes that are publicly available at https://github.com/baddoo/unsteady-
porous-aerofoils.

2. Mathematical model

We consider a thin aerofoil immersed in a uniform, two-dimensional incompressible
flow. In the steady case, the aerofoil and incident flow are stationary, whereas in the
unsteady case the aerofoil and flow velocity field may be time dependent, as illustrated
in figure 1. In the latter case, the aerofoil sheds vorticity into a wake whose strength must
be determined. Additionally, the flow is irrotational away from the aerofoil and wake.
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Figure 1. Schematic diagrams of a porous aerofoil with mean camber profile yc (dashed lines) at angle of
attack α for (a) steady and (b) unsteady scenarios. Aerofoil porosity is illustrated by the colour gradient on the
aerofoils. In the unsteady case, the angle of attack and aerofoil surface profile may vary with time. A pitching
motion is illustrated as an example, and the unsteady wake shed from the trailing edge is illustrated by the wavy
line in (b).

Supposing a semi-chord length l, mean flow speedU and fluid density ρ, all physical terms
in the ensuing analysis are non-dimensionalised using l, l/U and 1

2ρU
2 as the length, time

and pressure scales, respectively.

2.1. Porous boundary condition
Along a porous aerofoil, the perturbation flow velocity on the aerofoil surface, w, is related
to the local seepage flow rate directed along the unit normal to the wing surface, ws, by

w(x, t) = ws(x, t) + ∂ya
∂x

(x, t) + ∂ya
∂t

(x, t), (2.1)

where the function ya(x, t) = yc(x, t) − α(t) defines the mean surface of the aerofoil
relative to the angle of attack. This linearised boundary condition assumes that the
deformation of the aerofoil mean line is small: |ya| � 1. Additionally, the aerofoil
thickness is assumed to be small. Aerofoils with small but non-zero thickness can typically
be handled with thin aerofoil theory (see § 4.2 of Van Dyke (1964) or Baddoo & Ayton
(2018)) but in this problem aerofoil thickness does not contribute to the pressure jump
across the chord. Thus, aerofoil thickness effects decouple from the hydrodynamic effects
of porosity. We therefore do not consider the effects of thickness further here. The seepage
velocity depends on the pressure jump across the aerofoil and on the local porous structure.
Porosity imparts non-dimensional hydrodynamic inductance ρe and resistance Φ due to
the viscous fluid–solid interactions of the flow within the porous medium. Combining
these effects yields the unsteady porosity boundary condition (Morse & Ingard 1986,
p. 254)

2ρe(x)
∂ws

∂t
(x, t) + Φ(x)ws(x, t) = −Δp(x, t), (2.2)

where Δp is the local difference of the surface pressure (upper minus lower). The
dimensional scalings used in this work identify the so-called effective density ρe =
me/V > 1, where me ≥ 1 is the effective mass or structure factor of the porous medium,
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and V is the fluid-to-solid volumetric fraction of the porous matrix (Bliss 1982;
Attenborough 1983). Similarly, the dimensionless flow resistance Φ is the pressure drop
per unit length per unit mean flow velocity through the porous aerofoil scaled by ρU/(2l).
Strictly speaking, ρe and Φ are also functions of frequency, although we do not consider
that detail here.
The linearised Bernoulli equation for unsteady flow enables the pressure to be expressed

as a function of the velocity potential φ as

p(x, y, t) = −
(

∂φ

∂x
+ ∂φ

∂t

)
. (2.3)

Applying (2.3) to y = 0±, x > −1, and taking the difference from the upper and lower
sides yields expressions for the pressure jump along the aerofoil and the wake

Δp(x, t) = −2
(

γa(x, t) + ∂

∂t

∫ x

−1
γa(ξ, t) dξ

)
, −1 < x < 1, (2.4a)

Δp(x, t) = −2
(

γw(x, t) + ∂

∂t

∫ x

1
γw(ξ, t) dξ + dΓ

dt
(t)

)
, 1 < x, (2.4b)

where Γ represents the circulation around the aerofoil. On the other hand, application of
the Plemelj formulae (Ablowitz & Fokas 2003) to the Biot–Savart law shows that the fluid
normal velocity on the wing, w, is related to the vorticity distributions on the aerofoil (γa)
and in the wake (γw) through the following singular integral equation (Bisplinghoff et al.
1996, (5-313a))

w(x, t) = 1
2π

−
∫ 1

−1

γa(ξ, t)
ξ − x

dξ + 1
2π

∫ ∞

1

γw(ξ, t)
ξ − x

dξ, −1 < x < 1, (2.5)

where the bar on the integral denotes the Cauchy principal value. Note that once γa
and γw have been determined, the full complex velocity field can be computed from the
Biot–Savart law. Combining (2.1), (2.2), (2.4a) and (2.5) yields the integral equation[

2ρe(x)
∂

∂t
+ Φ(x)

]{
1
2π

−
∫ 1

−1

γa(ξ, t)
ξ − x

dξ + 1
2π

∫ ∞

1

γw(ξ, t)
ξ − x

dξ − ∂ya
∂t

− ∂ya
∂x

}

= 2
(

γa(x, t) + ∂

∂t

∫ x

−1
γa(ξ, t) dξ

)
, (2.6)

for −1 < x < 1.
We further assume harmonic motions of reduced frequency k, so that we may write the

vorticity distributions and mean camber line as

γa(x, t) = γ̂a(x) eikt, γw(x, t) = γ̂w(x) eikt and ya(x, t) = ŷa(x) eikt, (2.7a–c)

where the real part is assumed. Since we do not allow any pressure jump across the wake,
we require the expression on the right-hand side of (2.4b) to vanish. Solving the associated
integral equation yields

γ̂w(x) = −ik eik(1−x)
∫ 1

−1
γ̂a(ξ) dξ = −ikΓ̂ eik(1−x), (2.8)

where Kelvin’s circulation theorem has been applied to enforce that the net circulation
of the aerofoil and its wake vanishes, and Γ̂ is the circulation around the aerofoil with
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the time dependence factored out. We also enforce the Kutta condition, namely that the
pressure jump vanishes at the trailing edge

Δp(1) = 0. (2.9)

Substitution of (2.7a–c) and (2.8) into (2.6) yields

Lγ̂a = fa(x) + Γ̂ fw(x), (2.10)

for −1 < x < 1, where we use the notation L to represent the singular linear operator

Lf � −ikψ(x, k)
∫ x

−1
f (ξ) dξ + 1

π
−
∫ 1

−1

f (ξ)

ξ − x
dξ − ψ(x, k)f (x), (2.11)

and

ψ(x, k) � 4
2ikρe(x) + Φ(x)

. (2.12)

The forcing functions fa and fw are defined as

fa(x) � 2
(
dŷa
dx

(x) + ikŷa(x)
)

, (2.13)

fw(x) � ik
π

∫ ∞

1

eik(1−ξ)

ξ − x
dξ. (2.14)

The subscript notations ‘a’ and ‘w’ are again employed here to symbolise that fa
corresponds to contributions from the mean aerofoil profile and its motions, whereas fw
corresponds to contributions from the unsteady wake. The problem is now to determine
the function γ̂a, from which the constant Γ̂ can be found via integration per (2.8).
The operator L consists of two parts: a Volterra part (the first term in (2.11)), and a

singular Fredholm integral part (the second and third terms in (2.11)). Accordingly, we
refer to (2.10) as a singular Fredholm–Volterra integral equation (SF–VIE). The literature
on these types of integral equations is apparently non-existent: the closest comparisons
that could be found by the authors considered only the case where the kernel is weakly
singular (Darwish 1999; Abdou 2003) and not the Cauchy principal value considered in
the present work. In particular, it is the presence of the Volterra part of L that precludes
the possibility of a solution using the classical singular integral equation methods of
Muskhelishvili (1946). Consequently, we now seek a numerical solution by expanding
γ̂a into an appropriate series of basis functions.

3. Numerical solution

We now introduce our numerical solution for the SF–VIE (2.10) that is central to the
unsteady aerodynamics of porous aerofoils. We motivate our approach to the unsteady
problem by first examining a numerical solution of the steady case.

3.1. Motivation – the steady case
We first consider the case where the field is steady (k = 0) and the wake vanishes, as
illustrated in figure 1(a). The SF–VIE (2.10) for the bound vorticity distribution becomes

1
π

−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ − ψ(x, 0)γ̂a(x) = 2

dŷa
dx

(x), −1 < x < 1. (3.1)

In the impermeable case (ψ ≡ 0), the typical solution approach is to expand γ̂a in terms
of weighted Chebyshev polynomials (Rienstra 1992). However, this approach dictates
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P.J. Baddoo, R. Hajian and J.W. Jaworski

the behaviour of the vorticity distribution at the endpoints. In particular, the vorticity
distribution is usually written as

γ̂a(x) = γ̂0

√
1 − x
1 + x

+
√
1 − x2

N∑
n=1

γ̂nUn−1(x), (3.2)

where Un are the Chebyshev polynomials of the second kind and γ̂n are coefficients to be
determined. Consequently, γ̂a possesses a square-root singularity at the leading edge and
a square-root zero at the trailing edge. This series necessarily satisfies the steady Kutta
condition at the trailing edge. However, as we will now show, this choice of basis expansion
leads to invalid results at the endpoints when the aerofoil is permeable.
By sending x → −1, we obtain the asymptotic behaviours

ψ(x, 0)γ̂a(x) ∼ ψ(−1, 0)γ̂0

√
2

1 + x
, (3.3a)

1
π

−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ ∼ Φ∗(x), (3.3b)

2
dya
dx

(x) ∼ 2
dya
dx

(−1), (3.3c)

where Φ∗(x) = o((1 + x)−1/2) according to Muskhelishvili (1946, (29.8)). Substitution
of these limits into (3.1) results in a contradictory equation where the left-hand side
scales like (1 + x)−1/2 whereas the right-hand side tends to a constant as x → −1.
Asymptotic analysis at the trailing edge generates similar contradictions. Consequently, the
Chebyshev expansion generates spurious results at both endpoints, and the γ̂n coefficients
for n > 1 must account for the contradiction, resulting in a slowly converging series. The
modification of the square-root behaviour at the endpoints due to porosity is embedded
in the partially porous aerofoil solution by Iosilevskii (2011, 2013) and is detailed in the
generalised porous aerofoil solution by Hajian & Jaworski (2017).
Suppose we do not explicitly enforce the square-root behaviour of γ̂a at the endpoints

and instead express γ̂a in the form

γ̂a(x) = wα,−β(x)γ̂ ∗
a (x), (3.4)

where wa,b represents the weight function

wa,b(x) � (1 − x)a(1 + x)b. (3.5)

The function γ̂ ∗
a (x) is Hölder continuous on x ∈ [−1, 1] and is finite and non-zero at x =

±1. The constants α and β in (3.4) are unknown and must be found as a part of the solution.
Using the new expansion (3.4), the limits (3.3a) and (3.3b) instead become

ψ(x, 0)γ̂a(x) ∼ ψ(−1, 0)γ̂ ∗
a (−1)

2α

(1 + x)β
, (3.6a)

1
π

−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ ∼ γ̂ ∗

a (−1)
2α cot(πβ)

(1 + x)β
+ Φ∗(x), (3.6b)

where nowΦ∗(x) = o((1 + x)−β). Accordingly, by matching the singularities in the above
two terms through (3.1), we obtain the following expression for β:

β = 1
π
cot−1 (ψ(−1, 0)) + nβ, (3.7)
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Unsteady aerodynamics of porous aerofoils

for nβ ∈ Z. A similar procedure at the endpoint x = 1 yields a similar expression for α

α = 1
π
cot−1 (ψ(1, 0)) + nα, (3.8)

for nα ∈ Z. Physically speaking, we require a finite force when integrating the surface
pressure round the leading edge, and that the Kutta condition holds at the trailing edge.
Accordingly, we restrict nα ≥ 0 and nβ ≥ −1. Consequently, we seek an expansion of the
vorticity distribution as a sequence of weighted Jacobi polynomials of the form

γ̂a(x) = γ̂0wα,−β(x) + wα,1−β(x)
∞∑
n=1

γ̂nP
α,1−β

n−1 (x), (3.9)

where Pa,b
n represents the nth Jacobi polynomial with parameters a and b. The Jacobi

polynomials are a classical family of orthogonal polynomials (Szegö 1939) and represent
a generalisation of Chebyshev polynomials. Some important properties of the Jacobi
polynomials are catalogued in appendix A. In the unsteady case, the presence of
an effective density in the porous boundary condition implies that the parameters α

and β may be complex valued. However, this scenario is not an issue, as Kuijlaars,
Martinez-Finkelshtein & Orive (2005) have established a theory for Jacobi polynomials
with generalised parameters.
Note that the inverse cotangent function in (3.7) and (3.8) decreases monotonically for

positive arguments. Therefore, the effect of porosity is to decrease the strength of both the
leading-edge singularity and the trailing-edge zero. In the large porosity limit, ψ → ∞,
the singularity and zero vanish and we have α = β = 0. Accordingly, the pressure jump
along the chord also vanishes in this limit.
We may now substitute our Jacobi polynomial expansion (3.9) into the singular integral

equation (3.1) and collocate at the Jacobi nodes to determine the coefficients γ̂n following
the procedure of Baddoo, Hajian & Jaworski (2019) to furnish a solution to the full
unsteady problem. This numerical technique is an example of a spectral method (Trefethen
2000), where the unknown function is expanded globally in terms of basis functions whose
coefficients are chosen by collocation.
Before we apply this strategy to the unsteady problem, we point out that an alternative

weight function should be used for higher-accuracy solutions. For uniformly porous
aerofoils with constant ψ , the remainder terms in the asymptotic expansions (3.6a) and
(3.6b) are regular. Accordingly, the Jacobi weight function (3.5) precisely captures the
behaviour at the endpoints. However, in the general case of non-constant-porosity profiles,
the weight function should be written more generally as

wα,β(x) = (1 − x)α(x)(1 + x)β(x), (3.10)

where α and β are regular at x = ±1 (Hajian, Jaworski & Grace 2018). Although a set of
orthogonal polynomials could in principle be constructed with the general weight function
(3.10) via Gram–Schmidt orthogonalisation, we find it more appropriate to use the weight
function (3.5) with the Jacobi polynomials due to the availability of many useful identities
(see appendix A) and practical ease of computation. Whilst our choice of weight function
precludes the possibility of spectral accuracy, only a few polynomials are usually required
to obtain a degree of accuracy that is finer than the size of other physical quantities that
are being ignored within the assumptions of the theoretical model.
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P.J. Baddoo, R. Hajian and J.W. Jaworski

3.2. Unsteady solution
We now adapt the steady solution (3.9) to the full unsteady problem (2.10). The SF–VIE
in the unsteady case is distinct from the singular integral equation of the steady case in a
number of ways. Firstly, the forcing term fw is not regular but possesses a logarithmic
singularity at x = 1. Secondly, the coefficient Γ̂ multiplying fw is unknown a priori
because it is proportional to the aerofoil circulation. Thirdly, the integral equation (2.10)
now contains a term of Volterra type. We will now adapt the solution approach in § 3.1 to
address these issues simultaneously.
We first address the fact that the forcing term fw is not regular as x → 1 in (2.10). In

particular, we have the logarithmic behaviour (Abramowitz & Stegun 1964)

fw(x) ∼ − ik
π
log(1 − x), as x → 1. (3.11)

For the asymptotic matching procedure at the endpoints, we therefore require that the left
side of (2.10) possesses a logarithmic singularity of the same strength of fw at x = 1. The
only way to generate this logarithmic singularity is through the principal value part of the
operator L (Muskhelishvili 1946). In particular, we require

γ̂a(1) = −ikΓ̂ . (3.12)

This behaviour may be alternatively derived by enforcing the Kutta condition and requiring
the pressure to vanish at the trailing edge in (2.4a). Accordingly, we adapt the expansion
in (3.4) and seek a solution of the form

γ̂a(x) = wα,−β(x)γ̂ ∗
a (x) − ik2β−1Γ̂ w0,1−β(x), (3.13)

where γ̂ ∗
a is a smooth function. We now note the leading-order asymptotic behaviours as

x → −1:

∫ x

−1
γ̂a(ξ) dξ ∼ (1 + x)1−β2α

1 − β
γ̂ ∗
a (−1), (3.14a)

ψ(x, k)γ̂a(x) ∼ ψ(−1, k)2α

(1 + x)β
γ̂ ∗
a (−1), (3.14b)

1
π

−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ ∼ cot(βπ)2α

(1 + x)β
γ̂ ∗
a (−1) + Φ∗(x), (3.14c)

fa(x) + Γ̂ fw(x) ∼ fa(−1) + Γ̂ fw(−1). (3.14d)

Consequently, we see that the Volterra part of the SF–VIE does not contribute to the
asymptotic behaviour at the leading edge, and the expression for β is the same as for the
steady case (3.7) with ψ(−1, 0) replaced with ψ(−1, k).
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Unsteady aerodynamics of porous aerofoils
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Figure 2. The real ( ) and imaginary ( ) parts of the first term of the Jacobi parameters α and β

as functions of porous medium resistivity Φ and effective density ρe for a range of reduced frequencies. The
values of Φ and ρe here are taken to be constant with respect to chordwise position so α and β values can be
determined by a value of ψ at the aerofoil endpoints in an application. In panel (a), ρe = 1 and k is 0 (purple),
1, 2, 3, 4 (green) and in panel (b) Φ = 1 and k = 0, 0.25, 0.5, 0.75, 1.

We now inspect the behaviour as x → 1 and track terms at higher orders to ensure the
correct asymptotic matching. In this limit, we obtain the behaviours∫ x

−1
γ̂a(ξ) dξ ∼ Γ̂, (3.15a)

ψ(x, k)γ̂a(x) ∼ ψ(1, k)
(

−ikΓ̂ + (1 − x)α

2β
γ̂ ∗
a (1)

)
, (3.15b)

1
π

−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ ∼ − ikΓ̂

π
log(1 − x) + const. + cot(απ)2−β(1 − x)αγ̂a(1), (3.15c)

fa(x) + Γ̂ fw(x) ∼ fa(1) − ikΓ̂
π

log(1 − x). (3.15d)

We note that the logarithmic singularities on the third and fourth lines cancel by virtue
of the Kutta condition. The unknown constant Γ̂ will be found through the collocation
procedure, so we must choose α such that the leading-order zero (proportional to (1 − x)α)
vanishes. Consequently, we again obtain the same expression for α as in the steady case
(3.8) with ψ(1, 0) replaced with ψ(1, k).
Varying the flow resistance Φ can have different effects on the Jacobi parameters α

and β, as illustrated in figure 2(a). For very large values of Φ, the Jacobi parameters are
close to 1/2 and the aerofoil is almost impermeable. As Φ is decreased, the real part of
the Jacobi parameters tends to one of three values: if kρe < 2 the real part tends to 0, if
kρe = 2 it tends to 1/4 and if kρe > 2 it tends to 1/2. Similar behaviour can be observed
as the effective density ρe is increased in figure 2(b). The parameters transition from a
lower value of approximately 0.1 to the impermeable limit of 1/2. This behaviour is due to
the branch point of cot−1(z) at z = i.
The behaviour at the endpoints motivates an expansion of γ̂a of the form

γ̂a(x) = −ikΓ̂w0,1−β(x)2β−1 + wα,−β(x)γ̂0 + wα,1−β(x)
∞∑
n=1

γ̂nP
α,1−β

n−1 (x). (3.16)
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P.J. Baddoo, R. Hajian and J.W. Jaworski

Recall that we do not know the circulation Γ̂ a priori because it must be determined as
part of the solution. However, integrating (3.16) yields

Γ̂ = −2 ikΓ̂ B(2 − β, 1) + γ̂021+α−βB(1 − β, 1 + α) + γ̂122+α−βB(2 − β, 1 + α),

(3.17)

where we have used (A4) to express the result in terms of the beta function, B. Rearranging
(3.17) then yields an equation for Γ̂ in terms of the first two coefficients of the Jacobi
expansion

Γ̂ = γ̂021+α−βB(1 − β, 1 + α) + γ̂122+α−βB(2 − β, 1 + α)

1 + 2 ikB(2 − β, 1)
. (3.18)

It proves convenient to express

Γ̂ = γ̂0Γ̂0 + γ̂1Γ̂1, (3.19)

so that the SF–VIE (2.10) may be expressed in the new form

Hγ̂a = fa(x), (3.20)

where the new, regularised operator H is defined as

Hγ̂a � Lγ̂a(x) − (γ̂0Γ̂0 + γ̂1Γ̂1)fw(x). (3.21)

It is straightforward to show that Hγ̂a(x) is bounded at the endpoints. This regularisation
improves the conditioning of the collocation matrix below.
We may now find approximate solutions for the coefficients γ̂n by a collocation

procedure. In particular, we truncate the infinite sum in (3.16) at N and collocate the
resulting (3.20) at the zeros of the Jacobi polynomial Pα,−β

N+1 . The result is an (N + 1) ×
(N + 1) system of linear equations for the coefficients γ̂n. When constructing the system of
equations, it is useful to note that the effect of the operator L on each individual weighted
Jacobi polynomial can be computed using standard functions. For example,

Lwa,bPa,b
n (x) = wa,b(x)

π
Qa,b
n (x) − ikψ(x, k)Ia,bn (x) − ψ(x, k)wa,b(x)Pa,b

n (x), (3.22)

where Ia,bn is the integral of the weighted Jacobi (see (A7)) and Qa,b
n is the associated

Jacobi function of the second kind (see (A5)). This result allows us to rapidly evaluate
the collocation matrix below. The system of equations for the coefficients γ̂n is given by
Aγ̂ = f a, where

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lα,−β

0,0 + Γ̂0(CL
0,1−β

0,0 − fw(x0)) · · · Lα,−β

0,N + Γ̂0(CL
0,1−β

0,N − fw(xN))

Lα,1−β

0,0 + Γ̂1(CL
0,1−β

0,0 − fw(x0)) · · · Lα,1−β

0,N + Γ̂1(CL
0,1−β

0,N − fw(xN))

Lα,1−β

1,0 · · · Lα,1−β

1,N
...

. . .
...

Lα,1−β

N−1,0 · · · Lα,1−β

N−1,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.23)

γ̂ =

⎡
⎢⎣

γ̂0
...

γ̂N

⎤
⎥⎦ , f a =

⎡
⎢⎣
fa(x0)

...

fa(xN)

⎤
⎥⎦ , (3.24a,b)
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Unsteady aerodynamics of porous aerofoils

x = c

�[ψ]

–1 1c
x

(b)(a)

Figure 3. Example of an aerofoil with a discontinuous porosity distribution, where the discontinuity occurs
at dimensionless chordwise position x = c. (a) Illustration of an aerofoil with a discontinuous porosity
distribution where the porosity variation along the chord is indicated by at colour gradient. (b) A representative
discontinuous porosity distribution. Note that the porosity along the forward section need not be constant.

and where C = −ik2β−1 and La,bi,j = Lwa,bPa,b
i (xj). We solve this system in the

least-squares sense using, for example, the backslash operation in MATLAB.
For low reduced frequencies that are typically of interest (k < 3), fewer than 10 Jacobi

polynomials are usually required to resolve the vorticity distribution. As the reduced
frequency increases, more polynomials are required to resolve an asymptotic inner region
near the trailing edge; we comment on this scenario further in appendix B.
We now present several extensions to our method, including the case where the

porosity distribution is discontinuous. The numerical method verifies the solution for
quasi-steady aerodynamics and establishes both the circulatory and non-circulatory
vorticity distributions for generalised unsteady aerodynamics of porous aerofoils.

3.3. Solution for discontinuous porosity distributions
The case of a discontinuous porosity profile is now considered. This scenario is motivated
in part by the investigation by Geyer & Sarradj (2014), who showed that, depending on the
porous material, aerofoils with porosity at the trailing-edge section only can still achieve a
noticeable noise reduction, while maintaining a certain level of aerodynamic performance
over a fully porous aerofoil. A schematic of a partially porous aerofoil is illustrated in
figure 3. When the discontinuity is located at x = c, the original SF–VIE (2.10) may be
partitioned into two integral equations

1
π

−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ − ψi(x, k)

(
γ̂a(x) + ik

∫ x

−1
γ̂a(ξ) dξ

)
= fa(x) + Γ̂ fw(x), (3.25)

where

ψi(x, k) =
{

ψl(x, k) for − 1 < x < c,
ψr(x, k) for c < x < 1.

(3.26)

Note that the subscripts l and r correspond the left and right sides of the discontinuity so
that ψl(c−, k) /=ψr(c+, k).
We require the pressure jump across the wing to vanish at x = c to ensure that there is

no discontinuity in the seepage velocity (2.2). In particular, asymptotic analysis close to
the discontinuity (Baddoo et al. 2019) reveals that, to leading order,∣∣∣∣γ̂a(x) + ik

∫ x

−1
γ̂a(ξ) dξ

∣∣∣∣ ∼ |x − c|λγ̂ ∗
a(x), as x → c, (3.27)

where

λ = 1
π
[cot−1(ψl(c−, k)) − cot−1(ψr(c+, k))], (3.28)
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and where γ̂
∗
a(x) is regular in −1 < x < c and c < x < 1 but may be discontinuous at

x = c.
These results reflect some physical characteristics of partially porous aerofoils. On one

hand, if the junction transitions from less permeable to more permeable (�[ψl(c−, k)] <

�[ψr(c+, k)]) then the pressure vanishes at c and the junction behaves as a second trailing
edge. On the other hand, if the junction transitions from more permeable to less permeable
(�[ψl(c−, k)] > �[ψr(c+, k)]) then λ < 0 and the pressure is singular at the junction.
Therefore, in this case the junction behaves like a second leading edge.
These observations motivate two separate expansions for γ̂a in the left and right regions

of the forms

γ̂l(τl) = γ̂l,0wλ,−β(τl) + 2β−1Πw0,1−β(τl) + wλ,1−β(τl)

∞∑
n=1

γ̂l,nP
λ,1−β

n−1 (τl), (3.29a)

γ̂r(τr) = 2−αΠwα,0(τr) + Λw0,λ(τr) + wα,λ(τr)

∞∑
n=1

γ̂r,nP
α,λ
n−1(τr), (3.29b)

where Π and Λ are constants, and we have introduced the rescaled variables

τl(x) = −1 + 2
(
x + 1
1 + c

)
, −1 < x < c, (3.30a)

τr(x) = 1 + 2
(
x − 1
1 − c

)
, c < x < 1, (3.30b)

so that −1 < τl, τr < 1. We now seek to express the constants Π and Λ in (3.29a) and
(3.29b) in terms of the unknown coefficients γ̂l,n and γ̂r,n. Beginning with the constant Π ,
we note the two relations

γ̂a(c) = Π and γ̂a(c) = −ik
∫ c

−1
γ̂a(ξ) dξ. (3.31a,b)

The latter expression may be evaluated using the expansion (3.29a) and the quadrature
formula (A4). A simple rearrangement then allows us to express Π in terms of γ̂l,0 and
γ̂l,1 as

Π = Π0γ̂l,0 + Π1γ̂l,1, (3.32)

where

Π0 = −ik(1 + c)2λ−βB(1 − β, 1 + λ)
1 + ik(1 + c)B(2 − β, 1)

, (3.33a)

Π1 = −ik(1 + c)2λ+1−βB(1 − β, 1 + λ)
1 + ik(1 + c)B(2 − β, 1)

. (3.33b)

We now seek to express Λ in terms of the coefficients γ̂l,n and γ̂r,n. By employing an
approach similar to § 3.2, it is straightforward to show that the new expression for Λ is

Λ = Λl,0γ̂l,0 + Λl,1γ̂l,1 + Λr,1γ̂r,1, (3.34)
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Unsteady aerodynamics of porous aerofoils

where

Λl,0 = Π0M(i/k + (1 − c)B(1, 1 + α)), (3.35a)

Λl,1 = Π1M(i/k + (1 − c)B(1, 1 + α)), (3.35b)

Λr,1 = M(1 − c)2α+λB(1 + α, 1 + λ), (3.35c)

M = −ik2−λ

1 + ik(1 − c)B(1, 1 + λ) . (3.35d)

We may now substitute the expansions (3.29a) and (3.29b) into (3.25). By collocating at
the Jacobi nodes on the forward and aft sections, we obtain a system of linear equations for
the unknown coefficients. During the procedure we encounter the Cauchy integral of the
weighted Jacobi polynomials without the principal value, which can be calculated using
(A6).
Although only a single discontinuity was considered in this example, any finite number

of discontinuities could be modelled using the same approach.

3.4. Circulatory and non-circulatory solutions
The solution to the full unsteady problem in § 3.2 may be separated into circulatory and
non-circulatory parts by writing

γ̂a(x) = γ̂ C
a (x) + γ̂ NC

a (x), (3.36)

where the superscripts C and NC denote the circulatory and non-circulatory contributions,
respectively. The circulatory part is sometimes referred to the wake-induced component
because it contains information about the effect of the downstream wake on the aerofoil.
Conversely, the non-circulatory part is sometimes referred to as the added mass component
as it represents the effects of the unsteady sloshing of the flow about the aerofoil. Recent
research into the origin of added mass led Leonard & Roshko (2001) and Eldredge
(2010) to postulate that its associated force may be represented solely by inviscid theory,
even in viscous and separated flows. Corkery, Babinsky & Graham (2019) confirmed
experimentally the ability of inviscid theory to represent added mass effects as a
non-circulatory component that depends only on body geometry and its motion, where the
circulatory terms in turn measure the viscous effects associated with the bound vorticity
and the wake. The circulatory and non-circulatory components combine to give the full
vorticity distribution on the aerofoil.
As its name suggests, the non-circulatory component is the solution to (2.10) subject to

the auxiliary requirement that its net circulation is identically zero,∫ 1

−1
γ̂ NC
a (ξ) dξ = 0. (3.37)

The problem of finding γ̂ NC
a subject to the SF–VIE (2.10) and to both the non-circulatory

condition (3.37) and the Kutta condition is generally ill posed. In other words, the
Kutta condition (2.9) cannot be applied to the circulatory and non-circulatory solutions
individually. As such, we permit singularities at the trailing edge in both γ̂ C

a and γ̂ NC
a .

These singularities are perfectly valid and appear in the impermeable case detailed in, for
example, Bisplinghoff et al. (1996, §§ 5 and 6). The Kutta condition for the full solution is
then enforced by specifying that these singularities are equal and opposite and Δp(1) = 0
when the circulatory and non-circulatory solutions are combined according to (3.36),
thereby connecting the bound circulation to the wake strength.
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It is simpler to derive the non-circulatory solution and then use the full solution and
(3.36) to determine the circulatory solution. Following the analysis of § 3.2, we seek an
expansion of the form

γ̂ NC
a (x) = Θwα−1,1−β(x) + wα,−β(x)γ̂ NC

0 + wα,1−β(x)
N∑

n=1

γ̂ NC
n Pα,1−β

n−1 (x), (3.38)

where the constant Θ is chosen so that the circulation vanishes

Θ = −γ̂ NC
0 B(1 + α, 1 − β) − γ̂ NC

1 2B(1 + α, 2 − β)

B(α, 2 − β)
. (3.39)

At this point a collocation scheme similar to the procedure described in § 3.2 can determine
the coefficients γ̂ NC

n .

3.5. Quasi-steady solution
The quasi-steady problem is equivalent to the steady problem described in Hajian &
Jaworski (2017) with the exception that the kinematic boundary condition is replaced
by the instantaneous unsteady boundary condition (2.1). Specifically, the quasi-steady
assumption augments the angle of attack due to aerofoil pitch or camber with the effective
angle of attack from heaving motions. With this modification, the singular integral
equation (2.6) becomes

1
π

−
∫ 1

−1

γ̂
Q
a (ξ)

ξ − x
dξ − ψ(x, 0)γ̂Q

a (x) = 2
(
ikŷa(x) + dŷa

dx
(x)

)
, (3.40)

where the superscript Q denotes the quasi-steady solution. This singular integral equation
may be solved analytically using classical techniques (Muskhelishvili 1946). The solution
is rendered unique by enforcing the Kutta condition, and the corresponding solution is

γ̂Q
a (x) = −2

1 + (ψ(x, 0))2

{
ψ(x, 0)

(
ikŷa(x) + dŷa

dx
(x)

)

+ Z(x)
π

−
∫ 1

−1

(
ikŷa(ξ) + dŷa

dx
(ξ)

)
dξ

Z(ξ)(ξ − x)

}
, (3.41)

where

Z(x) =
√
1 + (ψ(x, 0))2 exp

[
−
∫ 1

−1

j(ξ)

ξ − x
dξ

]
, (3.42)

with j(x) = (1/π) cot−1(ψ(x, 0)).
In special cases, such as uniformly porous aerofoils with simple camber descriptions,

the singular integrals in (3.41) can be calculated analytically, and the full solution can be
expressed in closed form. Otherwise, the solution (3.41) contains nested singular integral
equations that can be computed numerically using Gauss–Jacobi quadrature.

4. Unsteady pressure distributions on porous aerofoils

This section presents a representative set of unsteady aerodynamic results to showcase
the versatility of our numerical scheme detailed in § 3.2 for various porosity distributions.
Although the numerical scheme is valid for thin aerofoils of arbitrary camber-line shape,
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Figure 4. Magnitude of the unsteady pressure distributions for a porous aerofoil with continuous porosity
distributions undergoing harmonic motions with unit amplitude: (a) pitching about the leading edge with linear
reciprocal dimensionless flow resistance for k = 0.5; (b) heaving with parabolic reciprocal dimensionless flow
resistance for k = 0.1. ρe = 1.2 in both cases. The impermeable limit is indicated by the thick black line.

we focus on symmetric aerofoils undergoing simple pitching or heaving motions to
illustrate the effects of porosity on the pressure difference across the chord. We first
consider aerofoils with continuous porosity distributions and then consider aerofoils with
discontinuous porosity distributions. Here the porosity distribution (2.12) is described by
a chordwise function of flow resistivity Φ, and the effective density of the porous medium
is held fixed at the representative value of ρe = 1.2 (Bliss 1982).
Physical considerations demand that the analysis in this section is restricted to the

case where the leading edge is impermeable, i.e. ψ(−1, k) = 0. Since the pressure
gradient possesses a singularity at the leading edge, the seepage velocity also possesses
a singularity at the leading edge unless ψ vanishes at x = −1. Accordingly, to
obtain physically faithful results, we focus on cases with ψ(−1, k) = 0, although the
mathematical analysis remains valid in other cases.

4.1. Continuous porosity distributions
The numerical method in this work is amenable to any Hölder continuous porosity
distribution. Using (2.4a) and (A7) to construct the aerofoil pressure jump from
the numerical scheme, figure 4 compares the magnitudes of the unsteady pressure
distributions for aerofoils with linear and parabolic reciprocal flow resistance distributions
(cf. (2.12)) undergoing pitching or heaving motions of unit amplitude. The Kutta condition
is clearly satisfied at the trailing edge for all cases presented. Figure 4 indicates that
the introduction of porosity decreases the pressure jump across the aerofoil under both
pitching and heaving motions. As the porosity parameter ψ increases along the chord, the
pressure distribution decreases except in a small region localised to the trailing edge. This
reduction corresponds to a significant reduction in the unsteady lift. We also note the rapid
changes in pressure at the trailing edge x = 1, which is caused by the reduction in the
strength of the trailing-edge zero by (3.8). This behaviour is associated with the reduction
in vortex shedding at the porous trailing edge.

4.2. Discontinuous porosity distributions
The numerical method in § 3.3 is now applied to aerofoils with discontinuous porosity
distributions. Specifically, the numerical scheme is demonstrated for aerofoils with an
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Figure 5. Magnitude of the unsteady pressure distributions on a partially porous aerofoil undergoing
pitching or heaving motions with unit amplitude: (a) pitching about the leading edge with linear reciprocal
dimensionless flow resistance for k = 0.5; (b) heaving with parabolic reciprocal dimensionless flow resistance
for k = 0.1. The porosity distributions are plotted on a logarithmic scale in the figure insets, where ψ = 0 for
x < 0. The impermeable case is indicated by the thick black line. ρe = 1.2 in both cases.

impermeable leading-edge section for x < 0 and a constant-porosity section for x > 0.
Figure 5 plots the surface pressure jump for pitching motions at k = 0.5 about the leading
edge (x = −1) and heaving motions at k = 0.1. The seepage velocity is continuous across
the chord, as evidenced by the vanishing jump at pressure located at the junction x = 0.
Note that even a small amount of porosity is sufficient to enforce a zero pressure jump at
the junction.
For both the pitching and plunging cases and at different reduced frequencies,

the pressure jump along the permeable section decreases when the porosity is large.
Accordingly, the permeable section of the wing behaves effectively as an extension of
the wake: even if the pressure jump vanishes, such as in the orange curve in figure 5(b),
the vorticity distribution does not, by (2.4a). For these cases with an impermeable forward
section, the aerofoil solution for large porosity in the aft section is the same as the solution
of an impermeable aerofoil truncated at x = c, i.e. the solution attained as rescaling the
characteristic length scale by a factor of (c + 1)/2, or equivalently, using the mappings

x �→ (c + 1)x + (c − 1)
2

, ya(x) �→ c + 1
2

ya, k �→ c + 1
2

k. (4.1a–c)

5. Scaling laws for unsteady porous aerofoils

The asymptotic scaling laws derived in appendix B for porous aerofoils undergoing low-
or high-frequency motions are now verified by results from the numerical scheme for
pitching motions about the leading edge. Figure 6 plots the magnitudes of the aerofoil
circulation and the lift as a function of reduced frequency for various specifications of
non-dimensional flow resistance Φ(x) and effective fluid density ρe(x) of the porous
material. In all cases examined, the lift coefficient and circulation tend to constant
values in the low-frequency limit (k � 1). However, in the high-frequency limit (k 
 1),
figure 6(a,c) indicates that the aerofoil circulation scales as

√
k, whilst figure 6(b,d) shows

that the lift coefficient scales as k2. Moreover, the curves in figure 6(a,b) collapse at
low frequencies, indicating that the value of the effective density of the porous medium
is irrelevant in this regime. Conversely, the curves in figure 6(c,d) collapse at high
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Figure 6. Magnitude of the bound circulation Γ and lift L as a function of reduced frequency k for a range
of different dimensionless flow resistance distributions Φ(x) and effective densities ρe of the porous aerofoil.
The aerofoil pitches harmonically about the leading edge. In (a,b), Φ = (1 + x)−1 and ρe = 1 (blue), 2 (red), 3
(green) and 4 (orange). In (c,d), ρe = 1.2 and Φ = 2(1 + x)−1 (blue), 2 sec(πx/2) (red), 2/max(0, x) (green)
and exp(1/(x + 1)) (orange). The thick black line denotes the impermeable case.

frequencies, confirming that the high-frequency circulation is only a function of the
effective density of the porous material and the aerofoil mean line. These results confirm
that the asymptotic scaling laws with respect to reduced frequency are identical for porous
and impermeable unsteady aerofoils, where the details of the porosity distribution are
reflected only in the scaling coefficients.

6. Porous extensions of standard unsteady aerodynamic functions

The generalised unsteady solution procedure developed in § 3.2 permits the numerical
construction of porous analogues of classical unsteady aerodynamic functions. The effects
of the aerofoil porosity parameters on the Theodorsen and Sears functions are presented,
and the corresponding Wagner and Küssner functions are then determined.

6.1. Theodorsen function
The Theodorsen function (Theodorsen 1935) may be interpreted as the ratio of the
wake-induced (circulatory) lift LC to the quasi-steady lift LQ (cf. Taha & Rezaei 2019;
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Bisplinghoff et al. 1996, p. 279),

C(k) = LC

LQ
. (6.1)

This ratio can be expressed in closed form for an impermeable aerofoil as

C(k) = K1(ik)
K0(ik) + K1(ik)

for ψ(x, k) ≡ 0, (6.2)

where K0 and K1 are modified Bessel functions of the second kind. The lack of an
analytic solution to the SF–VIE (2.10) precludes the derivation of a similar expression
for the permeable case in terms of standard functions. However, we may use the
numerical solution presented in § 3 to compute the relevant circulatory and quasi-steady
lift quantities to construct numerically a porous extension to the Theodorsen function via
(6.1). Specifically, the wake-induced lift is computed by the numerical scheme in § 3.4,
whereas the quasi-steady lift may be determined analytically using the solution presented
in § 3.5. Results in this section are constructed using harmonically heaving motions and
a particular family of porosity distributions, although other motions and porosity profiles
can be examined using our numerical method.
The porosity profile (2.12) is set by two dimensionless properties of the porous medium,

flow resistance Φ and effective density ρe, each of which has different effects on the
relationship between the wake and quasi-steady lift. Figure 7 illustrates these separate
effects of Φ and ρe on the magnitude and phase of the porous extension of the Theodorsen
function, whose classical result for impermeable aerofoils (6.2) is indicated by the thick
black curves. The left column of figure 7 examines the effect of reducing the dimensionless
flow resistance of the porous medium. For these porosity configurations, the magnitude of
the Theodorsen function is larger than the traditional, impermeable Theodorsen function
at low reduced frequency; however, this trend reverses at high frequency, as illustrated in
figure 7. Given that aerofoil porosity cannot increase the magnitude of the quasi-steady
lift (cf. § 3.5), figure 7 implies that an effect of the dimensionless flow resistance is to
modify the wake-induced lift. This observation is consistent with the weakening of the
trailing-edge zero due to porosity at that position, as discussed in § 3.1.
The right column of figure 7 fixes the chordwise flow resistance distribution Φ(x) and

steps through a set of constant effective density values representative of the full range
of physically relevant values. The influence of effective density on the magnitude of
the Theodorsen function is marginal at low reduced frequencies, say, below k ≈ 1, as
would be expected of the term arising from the unsteady contribution of the aerofoil
boundary condition (2.2). The role of effective density becomes pronounced at larger
reduced frequencies, and the magnitude of the porous Theodorsen function decreases with
decreasing effective density.
Although the magnitude of the Theodorsen function is relatively insensitive to changes

in dimensionless flow resistance and effective density below k ≈ 1, the bottom row of
figure 7 demonstrates that the phase depends strongly on these parameters at lower reduced
frequencies and in a complicated way. The reduction of effective density increases the
maximum value of phase lag and the reduced frequency at which it occurs. Smaller values
of the dimensionless flow resistance of the porous medium lead to larger maximum phase
lag but lower reduced frequencies at these extrema. Viewed together, the phase lag of the
porous Theodorsen function is greater and has peaks at larger reduced frequencies than
the classical impermeable scenario. The phase angle of the Theodorsen function plays a
critical role in the energy transfer between the fluid flow and aerofoil motions, and the
above observations suggest that the porosity distribution of the aerofoil may be tuned to
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Figure 7. Complex, magnitude and phase plots of the porous Theodorsen function for a range of flow resistance
distributions (a,c,e) and effective densities (b,d,f ). The dimensionless flow resistance is given by the reciprocal
linear profile Φ = 1/(μ(1 + x)) so that the leading edge is impermeable in every case. On the left, μ ranges
from 0, 0.05, 0.10, 0.15, 0.2 (black to orange) and ρe = 1.5; on the right, the effective density takes values
∞, 4, 3, 2, 1 (black to green) and μ = 0.05. Thus, the black curve is the classical Theodorsen function for
impermeable aerofoils. In the complex plots, the points k = 0, 10−3, 10−2, 10−1, 1, 10 are indicated by � with
k = 0 representing the rightmost part of the curve.

shift the flutter boundary of an aeroelastic aerofoil in a desired way (Bisplinghoff et al.
1996, pp. 279–280).
Lastly, we note in the first row of figure 7 that the ratio between the wake-induced lift

and quasi-steady lift tends to a finite, real value with a large reduced frequency that will
depend on both the non-dimensional flow resistance Φ and effective density ρe of the
porous material.
However, caution should be exercised in the large-frequency limit, which is beyond

the realm of physical validity of the mathematical modelling employed in this paper: as
discussed by Howe (1979) and noted more recently by Weidenfeld & Manela (2016), the
present modelling assumptions for porosity are only valid when there is Stokes flow in the
pores passing through the wing, which is rendered invalid at large frequencies. We expect
that a higher-order (e.g. quadratic) porosity law would yield more physically meaningful
results at high frequencies; an exploration of such porosity models is beyond the scope of
the present work and is not pursued here.

6.2. Sears function
We now consider a uniform flow in the horizontal direction with a transverse sinusoidal
gust, as illustrated in figure 8. The gust convects at the free-stream velocity and has unit
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Transverse gust

Wake

Sound

Figure 8. The harmonic gust response problem considered by Sears (1941). A symmetric, stationary porous
aerofoil is subjected to an unsteady vertical sinusoidal disturbance convected at the velocity of the free stream,
resulting in unsteady wake generation. Acoustic waves are also generated that can be modelled using the Sears
response function.

–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

x

1/Φ

Figure 9. The (reciprocal) piecewise linear flow resistance profiles used to compute the porous Sears
function. The colours correspond to the curves in figure 10.

amplitude and reduced frequency k. The interaction between the harmonic gust generates
unsteady lift on the stationary aerofoil, as well as pressure perturbations that propagate to
the acoustic far field as sound waves. The unsteady lift response is described by the Sears
function (Sears 1941), which may be written in closed form for an impermeable aerofoil
as

S(k) = C(k)[J0(k) − iJ1(k)] + iJ1(k) for ψ(x, k) ≡ 0, (6.3)

where Jn are Bessel functions of the first kind of order n.
To construct a porous extension of the Sears function, the harmonic gust of unitary

amplitude enters the porous boundary condition (2.1) as

w(x, t) = ws(x, t) − eik(t−x). (6.4)

Therefore, the forcing function fa in the SF–VIE becomes

fa(x) = e−ikx, (6.5)

and we may apply the numerical scheme developed in § 3 to find the resulting total
unsteady lift: the Sears function. Whilst the Volterra part of the SF–VIE renders it
impossible to find analytic forms for the Sears function, our numerical scheme is
sufficiently fast and robust that we may produce an accurate approximation for a range
of porosity gradients.
We now explore the effects of aerofoil porosity distributions illustrated in figure 9 on the

Sears gust response function. Figure 10 presents the complex-valued information of the
porous Sears function analogue as a function of the dimensionless flow resistance Φ and
effective density ρe in the left and right columns, respectively. The porosity distribution
has a fixed value of unity at the trailing edge for all cases considered, and the permeable
length of the aerofoil is varied. We plot the unsteady lift normalised by the quasi-steady
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Figure 10. Complex, magnitude and phase plots of the porous Sears function for a range of flow resistance
distributions (left) and effective densities (right). The dimensionless flow resistance is given by a reciprocal
piecewise linear profiles illustrated in figure 9. The leading edge is impermeable in every case. On the left, the
colours correspond to the flow resistance profiles in figure 9 and ρe = 1.5; on the right, the effective density
takes values ∞, 4, 3, 2, 1 (black to green) and the flow resistance profile is given by the rightmost curve
in figure 9. The black curves represent the impermeable Sears function. The points k = 0, 0.1, 1, 2, 5, 10 are
indicated by � with k = 0 representing the rightmost part of the curve.

lift particular to the given porosity distribution, such that the Sears function asymptotes to
unity for vanishing reduced frequency. This quasi-steady lift follows from (3.41) with the
forcing on the right-hand side of (3.40) replaced by (6.5). Note that the phase comparison
in the bottom row of figure 10 involves a factor of e−ik that unwinds the Argand diagram
representation of the Sears function to more easily distinguish differences due to Φ

and ρe.
The results show that the magnitude of the porous Sears function increases with

decreasing flow resistance. However, the actual unsteady lift is smaller at a given
reduced frequency when compared to the impermeable case, as the Sears function must
be multiplied by the quasi-steady lift introduced in the normalisation. Changes in the
phase relative to the impermeable aerofoil limit are most pronounced in this porosity
configuration for reduced frequencies between O(10−1) and O(1) that lie in the typical
range of aerospace interest. Note the crossover in the porous Sears function phase curves
with the impermeable limit at a particular value of reduced frequency, which occurs for
variations in both the dimensionless flow resistance and effective density in the bottom row
of figure 10. Effective density variations do not lead to significant changes in the porous
Sears function for the cases considered here, where the deviation between the porous and
impermeable results in the right column of figure 10 depend on the dimensionless flow
resistance. At the limits of very small or large reduced frequency, the curves for the porous
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Sears function collapse to the classical impermeable result in terms of both phase and
amplitude.

6.3. Wagner function
With numerical solutions in hand for the porous Theodorsen and Sears functions, we
now turn our attention to time-domain aerodynamic responses. It is sufficient in this
linearised physical system to determine indicial functions, which are the aerodynamic
responses to impulsive system changes. Duhamel’s integral may then be used to construct
the aerodynamic response to an arbitrary aerofoil motion or gust field (Fung 1993,
pp. 277–280). Wagner (1925) first solved the canonical problem of the transient lift
experienced by an aerofoil whose angle of attack changes instantaneously from zero
to a fixed value; herein we develop the porous analogue to the so-called Wagner
function.
Recalling the non-dimensional scalings chosen in § 2, the linearised normal wing

velocity for an impulsive unit change in angle of attack modifies the boundary condition
(2.1) to

w(x, t) = ws(x, t) + H(t). (6.6)

Note that the Heaviside function H may be expressed in the frequency domain as

H(t) =
∫ ∞

−∞
eikt

ik
dk, (6.7)

where the path of integration passes below the pole at k = 0. Carrying through the analysis
of § 3.2 with boundary condition (6.6) furnishes the circulatory lift history due to an
impulsive change in angle of attack,

LC(t) = LQ
∫ ∞

−∞
C(k)
ik

eikt dk. (6.8)

The quasi-steady lift LQ corresponding to the asymptotic lift value at long times for a given
porosity profile is

LQ =
∫ 1

−1

4
1 + (ψ(x, 0))2

{
ψ(x, 0) + Z(x)

π
−
∫ 1

−1

dξ
Z(ξ)(ξ − x)

}
dx, (6.9)

where Z is defined in (3.42). The ratio LC(t)/LQ from (6.8) defines the Wagner function,

φ(t) =
∫ ∞

−∞
C(k)
ik

eiktdk. (6.10)

Therefore, the porous Theodorsen function analogue in the frequency domain from § 6.1
generates the associated time-domain Wagner function for impulsive aerofoil motions.
Figure 11 plots the porous Wagner function against convective time for the same ranges

of dimensionless flow resistance and effective density examined in figure 7, i.e. varying
the flow resistance in figure 11(a) and setting different constant effective density values in
figure 11(b). In each case, the Wagner function asymptotes to unity at large time, which is
anticipated from (6.10) by the fact that the Theodorsen function is unity at k = 0 regardless
of the porosity profile. Aerofoil porosity decreases the magnitude of theWagner function at
short times, whose precise value depends on the porosity parameters. Figure 11(b) makes
clear that effective density controls the short-time behaviour of the Wagner function and
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Figure 11. Porous extension of the Wagner function φ(t) for an impulsive change in angle of attack as a
function of convective time. The ranges of the dimensionless flow resistance Φ and effective density ρe of
the porous aerofoil are the same as in figure 7. The black curve indicates the classical Wagner function for
an impermeable aerofoil. In (a) the flow resistance ranges from high (black) to low (orange), and in (b) the
effective density varies from high (black) to low (yellow).
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Figure 12. Circulatory lift history due to an impulsive change in angle of attack of a porous aerofoil as a
function of convective time. The ranges of the dimensionless flow resistance Φ and effective density ρe of the
porous aerofoil are the same as in figure 7. The black curve corresponds to an impermeable aerofoil. In (a) the
flow resistance ranges from 0 (black) to high (orange), and in (b) the effective density varies from high (black)
to low (yellow).

has a marginal influence at large times. However, figure 11(a) indicates counterintuitively
that a smaller flow resistance of the porous aerofoil leads to a larger initial value of the
Wagner function, and a lesser flow resistance yields a faster approach to the quasi-steady
lift value. Additionally, figures 11(a) and 11(b) show that the late-time behaviour is
controlled by the flow resistance, whereas the early-time behaviour is controlled by the
effective density. These can observations can be interpreted in light of the asymptotic
solutions derived in appendix B. Therein, we show that, to leading order, the low-frequency
(long-time) lift depends only on the flow resistance of the porous medium, whereas as the
high-frequency (short-time) lift depends only on the effective density.
Figure 12 clarifies the roles of the porosity parameters by considering only the unsteady

circulatory lift, which is also the metric of practical interest. We show here that the
dimensionless flow resistance controls the rise time and asymptotic value of the circulatory
lift at long times, and the effective density governs the short-time aerodynamic response
only. Therefore, the effective density of the porous medium is the key parameter to reduce
the transient effect of aerofoil motion on the resulting unsteady lift, where the flow
resistance distribution may be set by steady aerodynamic constraints of a particular aerial
system.
In complement to the passive unsteady aerodynamic control that tailored porosity

distributions could provide, we note the possible predictive limitations that are tied to the
underlying linear assumptions of the flow field. Beckwith & Babinsky (2009) demonstrate
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experimentally that the impermeable Wagner function predicts well the lift history at
long times for small angles of attack, where measured early-time responses overshoot
the theoretical predictions due to delayed stall effects not present in the Wagner model.
Larger impulsive changes to the angle of attack lead to persistent nonlinear flow structures
that must be integrated into the aerodynamic lift model to improve its predictive capacity
(Pitt Ford & Babinsky 2014; Li &Wu 2015; Stevens & Babinsky 2017). However, unsteady
porous aerofoils may introduce important nonlinear flow features in real flows even at small
angles, and an experimental campaign beyond the scope of the present work is needed to
examine the relevant fluid mechanics of porous aerofoils and the predictive capability of
the present model.

6.4. Küssner function
The Küssner function (Küssner 1936) is the indicial aerodynamic response to a stationary
aerofoil encountering a sharp-edged gust. Like the relationship between the Theodorsen
function and the Wagner function, the Sears harmonic gust response function is connected
via the Fourier transform to the Küssner sharp-edged gust function, which can be used to
predict the aerodynamic response to arbitrary linear gusts by appeal to Duhamel’s integral.
The sharp-edged gust problem is carried out similarly to § 6.2 with boundary condition
(2.1) now given by

w(x, t) = ws(x, t) + H(x − t + 1). (6.11)

The frequency-domain representation of the Heaviside function (6.7) may be used again
to arrive at the transient total lift on the aerofoil,

L(t) = LQ
∫ ∞

−∞
S(k)
ik

eik(t−1) dk. (6.12)

Note the dependence of the unsteady lift on the Sears function S(k), into which all of the
information about the porosity distribution is embedded. The Küssner function is the ratio
L(t)/LQ of the unsteady lift to the quasi-steady lift (6.9),

ψ(t) =
∫ ∞

−∞
S(k)
ik

eik(t−1) dk, (6.13)

where the contour of integration passes below the origin.
Figures 13 and 14 illustrate the effects of the dimensionless flow resistance Φ and

effective density ρe of the porous aerofoil on the Küssner function and on the total
unsteady lift, respectively. The descriptions of Φ and ρe are the same as in figure 10, where
the porous Sears functions computed in § 6.2 generate the porous Küssner functions in
figures 13 and 14. The results in these figures differ by a factor of the quasi-steady lift that
depends on the flow resistance distribution, where accelerated rise times in figure 13(a) for
aerofoils with less resistance have instead slower actual rise times in the lift coefficient and
a smaller asymptotic lift value in figure 12(a), as discussed previously in the context of the
Wagner function. Figures 13(b) and 14(b) show that the effective density has a marginal
influence on the sharp-edged gust response. Therefore, the dimensionless flow resistance
distribution has the dominant influence on the porous Küssner function.
Comparisons between the impermeable Küssner function to both experimental and

computational simulations (Biler, Badrya & Jones 2019; Sedky, Lagor & Jones 2020) are
favourable for gust amplitudes of the order of or smaller than the free-stream velocity, i.e.
moderate to small gust ratios. Larger gust ratios can lead to signification deviations from
the linear theory, especially at long times due to large-scale vortex structures generated
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Figure 13. Porous extension of the Küssner function ψ(t) for a sharp-edged gust as a function of convective
time. The ranges of dimensionless flow resistance Φ and effective density ρe of the porous aerofoil are the same
as in figure 10. The black curve corresponds to the classical Küssner function for an impermeable aerofoil. In
(a) the flow resistance ranges from high (black) to low (orange) and in (b) the effective density varies from high
(black) to low (yellow).
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Figure 14. Circulatory lift history of a stationary porous aerofoil encountering a sharp-edged gust as a function
of convective time. The ranges of dimensionless flow resistance Φ and effective density ρe of the porous
aerofoil are the same as in figure 10. The black curve indicates results for an impermeable aerofoil. In (a) the
flow resistance ranges from high (black) to low (orange) and in (b) the effective density varies from high (black)
to low (yellow).

by the gust encounter (Perrotta & Jones 2017; Andreu-Angulo et al. 2020). One might
anticipate that the robustness of the Küssner function for gust encounters with significant
nonlinear flow features might carry over to porous aerofoils, whose response in short times
is similar to the impermeable case. Experimental unsteady lift measurements of porous
aerofoils that are beyond the scope of the present work would be necessary to assess this
claim and the effects of porosity on gust response in real flows.

7. Conclusions

A comprehensive unsteady aerodynamic theory is presented for lifting porous bodies.
The aerodynamic problem is modelled as a singular Fredholm–Volterra integral equation,
which is solved numerically using a new method developed in this paper. The foundation
of this method relies on the Jacobi polynomial solution technique; the bound vorticity
distribution is expanded as a series of weighted Jacobi polynomials whose parameters
are determined by asymptotic analysis at the endpoints of the aerofoil. The numerical
method therefore remains accurate at the endpoints, which is important when imposing
the Kutta condition and in the computation of the leading-edge suction. The aerodynamic
solution converges rapidly and is straightforward to implement for both continuous and
discontinuous porosity distributions.

913 A16-27

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

eh
ig

h 
U

ni
ve

rs
ity

, o
n 

26
 F

eb
 2

02
1 

at
 1

4:
09

:0
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
10

31

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.1031


P.J. Baddoo, R. Hajian and J.W. Jaworski

The new numerical scheme enables the porous extension of the classical works by
Theodorsen (1935) for harmonic aerofoil motions and Sears (1941) for harmonic gusts.
Specifically, the impermeable surface boundary condition is relaxed to include the effects
of chordwise gradients of the flow resistance and effective fluid mass of the porous
aerofoil. The porous extension of the Theodorsen function is investigated for a heaving
flat plate, where the porous results depart from the traditional impermeable solution
and approach a finite limiting value at large reduced frequency that depends on the
properties of the porous medium. The magnitude of the quasi-steady lift is reduced by
the introduction of porosity, although the relative change in circulatory lift depends on the
porosity parameters and the reduced frequency. Most notably, porosity augments the phase
lag of the Theodorsen function, which can be tuned as a function of reduced frequency
by the porosity parameters. Porosity also plays a significant role in the reduction of
unsteady lift in response to a harmonic gust, whose magnitude is also driven primarily
by the quasi-steady lift. The effects of porosity were seen to be most significant at
reduced frequencies of practical interest, and the classical Sears function is recovered
in the limits of large or small reduced frequency. The frequency-domain Theodorsen
and Sears function solutions furnish porous extensions to the Wagner and Küssner
indicial lift function for impulsive aerofoil motion and sharp-edged gusts, respectively.
Flow resistance within the porous aerofoil dominates the long-time behaviour of both
indicial functions. The effective density of the porous medium controls and diminishes
the initial impulsive lift of the Wagner function, but the Küssner function is insensitive to
this parameter.
An asymptotic analysis of the singular integral equation for unsteady porous aerofoils

is performed in appendix B in the limits of small or large reduced frequency. The
low-frequency limit recovers the steady solution of Hajian & Jaworski (2017), where
corrections to this result are of the order of the reduced frequency and may be found
by regular perturbation techniques. Consideration of the high-frequency limit requires
matched asymptotic techniques to determine the aerofoil circulation and unsteady lift
coefficient, which scale as the square root and square of the reduced frequency,
respectively. The effective fluid density of the porous boundary condition is essential here
to determine a solution to the associated singular perturbation problem. These scaling
behaviours are confirmed by the numerical scheme.
The analysis presented in this paper invites companion experimental studies for

validation and to suggest appropriate model refinements as required. The present work
restricts its attention to the linearised unsteady dynamics of the flow within the porous
medium. Whilst this approach is valid when the Reynolds number of the flow through
the pores is small, a higher-order quadratic model such as the Ergun (1952) model may
prove more appropriate in practice, especially near the leading edge where the pressure
jump across the aerofoil is large. The analysis of Wegert, Wolfersdorf & Meister (1987)
for steady flow through a cylindrical shell indicates that nonlinear porosity functions lead
to a nonlinear Riemann–Hilbert problem, which can be solved using an iterative technique
(Wegert 1990). Future work will be devoted to the adaptation of the current study to
more general, nonlinear porosity functions to improve the physical fidelity of the present
model, possibly through the formulation of an appropriate nonlinear Riemann–Hilbert
problem.
The numerical approach advocated in the present research is sufficiently fast and

accurate to be integrated into design optimisation routines. In particular, it is often
desirable to reduce aeroacoustic emissions with a minimal aerodynamic penalty (Jaworski
& Peake 2013, 2020). Initial assessment of this performance trade-off was explored by
Weidenfeld & Arad (2018) in the case of an elastic aerofoil, and optimisation of elastic
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Unsteady aerodynamics of porous aerofoils

aerofoil effects on unsteady propulsion by Moore (2015) found that the limiting case of a
torsional spring at the leading edge of the wing led to optimal thrust conditions. More
broadly, the inclusion of elastic effects is an important step forward in improving the
physical fidelity of the mathematical modelling that may also contribute to biologically
inspired problems in unsteady flows. For example, the Jacobi polynomial approach of the
present work may be adapted into the analysis of Tzezana & Breuer (2019) to consider
porous, compliant wings. Similarly, the study of emergent motions of fliers and swimmers
by Moore (2014) may also be extended to include porous planform effects by using the
numerical scheme developed here.
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Appendix A. Identities for Jacobi polynomials

This appendix compiles some useful identities for Jacobi polynomials. All of the relations
presented assume that a, b > −1. The Jacobi polynomials are normalised so that

Pa,b
0 (x) = 1. (A1)

Higher-order polynomials may be calculated using the recurrence relation

2n(n + a + b)(2n + a + b − 2)Pa,b
n (x)

= (2n + a + b − 1){(2n + a + b)(2n + a + b − 2)x + a2 − b2}Pa,b
n−1(x)

− 2(n + a − 1)(n + b − 1)(2n + a + b)Pa,b
n−2(x), (A2)

for n = 1, 2, . . ., where we have used the convention that Pa,b
−1(x) ≡ 0.

The Jacobi polynomials satisfy the general orthogonality relation∫ 1

−1
Pa,b
m (x)Pa,b

n (x)wa,b(x)dx = 2a+b+1

2n + a + b + 1
· G(n + a + 1)G(n + b + 1)

n!G(n + a + b + 1)
δmn, (A3)

where G(·) is the gamma function. In particular, when m = n = 0, we have∫ 1

−1
wa,b(x)dx = 21+a+bB(1 + b, 1 + a), (A4)

where B(·, ·) is the beta function.
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Analytic expressions of the finite Hilbert transform of the weighted Jacobi polynomials
are (Polyanin 1998, p. 797)

−
∫ 1

−1
wa,b(t) · P

a,b
n (t)
t − x

dt = πwa,b(x)Pa,b
n (x)

tan(πa)

− 2a+bB(n + b + 1, a) · 2F1

[
n + 1, −n − a − b

1 − a ; 1 − x
2

]
,

:= wa,b(x)Qa,b
n (x). (A5)

We also require the finite Hilbert transform when the principal value part is not assumed.
The identity for the zeroth Jacobi polynomial is (Grosjean 1986, (12) and (13))

∫ 1

−1

wa,b(t)
t − x

dt = 2a+b+1G(a + 1)G(b + 1)
G(a + b + 2)

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
x − 1

· 2F1

[
a + 1, 1

a + b + 2
; 2
1 − x

]
, |x − 1| > 2,

1
x + 1

· 2F1

[
b + 1, 1

a + b + 2
; 2
1 + x

]
, |x + 1| > 2,

(A6)

and the corresponding results for the higher-order polynomials can be obtained through
the recurrence relation (A2).
Finally, the indefinite integral of a weighted Jacobi polynomial is (DLMF 2019,

(18.17.1))

∫ x

−1
wa,b( y)Pa,b

n ( y)dy =

⎧⎪⎪⎨
⎪⎪⎩

−wa+1,b+1(x)
2n

Pa+1,b+1
n−1 (x), n > 0,

21+a+bB
(
1 + x
2

; 1 + b, 1 + a
)

, n = 0,

:= Ia,bn (x) (A7)

where B(·; ·, ·) is the incomplete beta function.

Appendix B. Asymptotic analysis

We now consider the asymptotic regimes of low- and high-frequency aerofoil motions
or disturbances. The low-frequency regime yields a regular perturbation problem that
is straightforward to analyse. In contrast, the high-frequency regime is asymptotically
singular, which requires the method of matched asymptotic expansions to resolve the
region near the trailing edge.

B.1. Low-frequency regime
At leading order, the low-frequency problem reduces to that of the steady problem
considered by Hajian & Jaworski (2017). The solution is given in (3.41) with k = 0.
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Unsteady aerodynamics of porous aerofoils

Accordingly, the effective density ρe vanishes and therefore does not play a significant
role at low frequencies. Additionally, the circulation and lift coefficient satisfy

CL = −2Γ̂ + O(k), (B1)

where the leading-order approximation of Γ̂ is given by integrating (3.41),

Γ̂ =
∫ 1

−1

(
−2

1 + (ψ(x, 0))2

{
ψ(x, 0)

dŷa
dx

(x) + Z(x)
π

−
∫ 1

−1

dŷa
dx

(ξ)
dξ

Z(ξ)(ξ − x)

})
dx, (B2)

which is independent of k. As such, when dŷa/dx �≡ 0, the circulation and lift tend to finite
values as k → 0. If dŷa/dx ≡ 0 then the aerofoil is an almost-stationary flat plate, so the
circulation and lift scale like k. Since the perturbation problem is regular, it is simple to
derive higher-order corrections to the leading-order solution, although that is not our focus
here.

B.2. High-frequency regime
The high-frequency (k 
 1) regime represents a singular perturbation problem; at leading
order, the SF–VIE becomes

− 2
ρe(x)

∫ x

−1
γ̂a(ξ) dξ + 1

π
−
∫ 1

−1

γ̂a(ξ)

ξ − x
dξ = 2 ik

dŷa
dx

(x) + Γ̂ fw(x). (B3)

The singular nature of this perturbation problem stems from the forcing from the wake, fw,
and imposing the Kutta condition results in a distinct inner region near the trailing edge.
The Riemann–Lebesgue lemma shows that

fw(x) = 1
π(x − 1)

+ o(1), as k → ∞ with x fixed, (B4)

so fw(x) = o(k). However, this scaling is not uniformly valid throughout the entire region
−1 < x < 1, as evidenced by the simple pole at x = 1 in (B4). In particular, expanding fw
near the trailing edge instead yields

fw(1 + x+/k) = ik
π

∫ ∞

0

e−iξ+

ξ+ − x+ dξ+ + o(k), as k → ∞ with x+ fixed, (B5)

so fw(x) = O(k) in this region. Therefore, there exists a inner region of length O(1/k)
near the trailing edge inside which the solution behaviour is distinct from that in the outer
region. Additionally, the forcing due to the aerofoil motion fa = O(k), so γ̂a itself must
also be O(k). These observations motivate two separate asymptotic expansions valid in
the outer and inner regions, respectively

γ̂a(x) =
n∑

j=−1

uj(x) + o(k−n), as k → ∞ with x fixed, (B6)

and

γ̂a(1 + x+/k) =
m∑

j=−1

ũj(x+) + o(k−m), as k → ∞ with x+ fixed. (B7)

These solutions are not unique since the circulation must still be specified. The circulation
is determined by matching the solutions across an intermediate region where they overlap.
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The standard tool of choice for matching is the rule given by Van Dyke (1964). In words,
Van Dyke’s matching rule states that the inner representation of the outer representation
must equal the outer representation of the inner representation. In mathematics, the
matching rule states that if

uj(1 + x+/k) = Smj (x+) + o(k−m), as k → ∞ with x+ fixed, (B8)

and

ũj(k(x − 1)) = S̃nj (x) + o(k−n), as k → ∞ with x fixed, (B9)

then
n∑

j=−1

Smj (k(x − 1)) =
m∑

j=−1

S̃nj (x). (B10)

Combining the inner and outer solutions, and removing the overlapping contribution,
generates a solution that is valid throughout the entire domain,

γ̂a(x) =
n∑

j=−1

(uj(x) + ũj(x+) − Snj (x
+)) + o(k−n), (B11)

where x+ = k(x − 1).
Therefore, the circulation has the asymptotic expansion

Γ̂ =
∫ 1

−1

n∑
j=−1

(uj(ξ) + ũj(ξ+) − Snj (ξ
+)) dξ+ + o(k−n). (B12)

B.3. Preliminaries of the leading-order solution
At leading order, the composite solution is

γ̂a(x) = u−1(x) + ũ−1(x+) − S−1
−1(x

+) + o(k). (B13)

Note that the superscript in S−1
−1 refers to the truncation of the outer solutions to O(k−1),

not the inverse of S−1. The leading-order contribution to the circulation is then

Γ̂−1 =
∫ 1

−1
(u−1(ξ) + ũ−1(ξ

+) − S−1
−1(ξ

+)) dξ, (B14)

where ξ+ = k(ξ − 1). The last two terms in the integral may be rewritten as

∫ 1

−1
(ũ−1(ξ

+) − S−1
−1(ξ

+)) dξ = 1
k

∫ 0

−∞
(ũ−1(ξ

+) − S−1
−1(ξ

+)) dξ+ + O(1), (B15)

such that the leading-order contribution to the circulation is

Γ̂−1 =
∫ 1

−1
u−1(ξ) dξ + 1

k

∫ 0

−∞
(ũ−1(ξ

+) − S−1
−1(ξ

+)) dξ+. (B16)
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Unsteady aerodynamics of porous aerofoils

Furthermore, we can show that Γ̂ = o(k). In inner variables, the Cauchy principal value
integral becomes

−
∫ 1

−1

u−1(ξ) − S−1
−1(ξ

+) + ũ−1(ξ
+)

ξ − (1 + x+/k)
dξ =

∫ 1

−1

u−1(ξ)

ξ − 1
dξ

+ −
∫ 0

−∞

ũ−1(ξ
+) − S−1

−1(ξ
+)

ξ+ − x+ dξ+ + o(k),

(B17)

where we have used

−
∫ 1

−1

ũ−1(ξ
+) − S−1

−1(ξ
+)

ξ − (1 + x+/k)
dξ = −

∫ 0

−2k

ũ−1(ξ
+) − S−1

−1(ξ
+)

ξ+ − x+ dξ+

= −
∫ 0

−∞

ũ−1(ξ
+) − S−1

−1(ξ
+)

ξ+ − x+ dξ+ + o(k). (B18)

Now, the SF–VIE for ũ−1 becomes, at leading order,

1
π

−
∫ 0

−∞
ũ−1(ξ

+)

ξ+ − x+ dξ+ = 1
π

−
∫ 0

−∞

S−1
−1(ξ

+)

ξ+ − x+ dξ+ + 2
ρe(x)

∫ 1

−1
u0(ξ) dξ − 1

π

∫ 1

−1

u−1(ξ)

1 − ξ
dξ

+ 2 ikya(1) + Γ̂−1
ik
π

∫ ∞

0

e−iξ+

ξ+ − x+ dξ+. (B19)

The above expression implies that Γ̂−1 = o(k), which we will now demonstrate by
contradiction. Supposing that, instead, Γ̂−1 = O(k), then the final term on the right-hand
side of (B19) would be O(k2). It would follow that ũ−1 = O(k2), which is an order of
magnitude larger than the outer solution since u−1 = O(k). It is not possible to match
solutions of differing integer orders of magnitude, and we therefore have a contradiction.
Accordingly, Γ̂−1 = o(k). Later, we will refine this assertion and show that Γ̂ = O(k1/2)
independently of the flow resistivity and effective mass of the porous material.
Combining this observation with (B16) shows that∫ 1

−1
u−1(ξ) dξ = 0. (B20)

In other words, u−1 is the non-circulatory solution to the high-frequency SF–VIE (B3).
We now present the solutions to the outer and inner problems, and then match these

solutions.

B.4. Outer problem

Noting that ũ−1(x+) ∼ S−1
−1(x

+) as k → ∞ with x fixed, the principal value integral
becomes

−
∫ 1

−1

u−1(ξ) + ũ−1(ξ
+) − S−1

−1(ξ
+)

ξ − x
dξ = −

∫ 1

−1

u−1(ξ)

ξ − x
dξ + o(k). (B21)

Accordingly, at leading order, the SF–VIE becomes

− 2
ρe(x)

∫ x

−1
u−1(ξ) dξ + 1

π
−
∫ 1

−1

u−1(ξ)

ξ − x
dξ = 2 ikŷa(x). (B22)
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Similarly to the full problem, the presence of the Volterra term in the above expression
precludes the possibility of an analytic solution. However, using similar arguments to § 3.4,
we see that u−1 has a square-root singularity at the trailing edge since it corresponds to the
non-circulatory solution. As such, u−1 may be expressed as

u−1(x) = u∗
−1(x)√
1 − x

, (B23)

where u∗
−1(x) is bounded as x → 1 and u∗

−1 = O(k). For example, in the impermeable case
we have

u∗
−1(x) = 2 ik

π
√
1 + x

−
∫ 1

−1

√
1 − ξ2

ŷa(ξ)

ξ − x
dξ. (B24)

Expressing the general solution in terms of inner variables and expanding yields

u−1(1 + x+/k) =
√

k
−x+ u∗

−1(1) + o(k). (B25)

Accordingly, we have

S−1
−1(x

+) =
√

k
−x+ u∗

−1(1). (B26)

The constant u∗
−1(1) must be determined numerically, but it is a function only of the

aerofoil shape and the effective mass of the porous material.

B.5. Inner solution
Noting that

−
∫ 0

−∞
dξ+√

ξ+(ξ+ − x+)
=

⎧⎪⎨
⎪⎩
0 if x+ < 0,

iπ√
x+ if x+ > 0,

(B27)

and using (B22) allows the inner problem (B19) to be simplified to

1
π

−
∫ 0

−∞
ũ−1(ξ

+)

ξ+ − x+ dξ+ = Γ̂−1
ik
π

∫ ∞

0

e−iξ+

ξ+ − x+ dξ+. (B28)

The solution to (B28) that is bounded at x+ = 0 is (Muskhelishvili 1946)

ũ−1(x+) = Γ̂−1 ik
√−x+

π2 −
∫ 0

−∞
1√

−ξ+(ξ+ − x+)

(∫ ∞

0

e−it+

t+ − ξ+ dt+
)

dξ+. (B29)

Using (B27) allows the inner solution to be expressed in terms of the error function as

ũ−1(x+) = −ikΓ̂−1 eix
+
erfc

(
e−iπ/4

√
−x+

)
. (B30)

From this form it is clear to see that the Kutta condition is satisfied, as ũ−1(0) = −ikΓ̂−1,
so Δp(1) = 0.
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Expressing the inner solution in terms of outer variables and expanding yields

ũ−1(k(x − 1)) = −iΓ̂−1

√
k

π(x − 1)
eiπ/4 + o(1), (B31)

so

S̃−1
−1(x) = −iΓ̂−1

√
k

π(x − 1)
eiπ/4. (B32)

B.6. Matching procedure
We now match the inner and outer solutions according to Van Dyke’s matching rule. At
leading order, the matching rule reads

S−1
−1(k(x − 1)) = S̃−1

−1(x). (B33)

Substituting (B26) and (B32) then yields the expression for the circulation,

Γ̂−1 = i
√

π e−iπ/4 u
∗
−1(1)√

k
. (B34)

Since u∗
−1(1) = O(k), it follows that Γ̂−1 = O(

√
k). Accordingly, the composite vorticity

distribution may be expressed as

γ̂a(x) = u−1(x) − ikΓ̂−1

( −eiπ/4
√−πx+ + eix

+
erfc

(
e−iπ/4

√
−x+

))
. (B35)

Therefore, for large k, the bound vorticity scales as O(k) per the dominant contribution
from the u−1(x) term. This result holds across the aerofoil except in the region immediately
local to the trailing edge where the matching term cancels the singularity of the outer
solution and the inner solution behaves like O(k3/2).
Using (2.4a) and integrating (B35) over the aerofoil shows that the leading-order

contribution to the pressure jump is given by the non-circulatory solution

Δp(x) = ΔpNC(x) + o(k2), (B36)

and the inner region at the trailing edge does not contribute at this order. Instead,
the pressure has an inner region at the leading edge that can be resolved using a
similar method. Per (2.4a), the non-circulatory pressure distribution ΔpNC scales like
O(k2), whereas the remaining term is subdominant for large k. We note that these
scaling behaviours with respect to reduced frequency k are identical for both porous and
non-porous unsteady aerofoils, where the only difference in the end results will be the
scaling coefficients.
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