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CONSPECTUS: Numerous disciplines, such as image recognition
and language translation, have been revolutionized by using
machine learning (ML) to leverage big data. In organic synthesis,
providing accurate chemical reactivity predictions with supervised
ML could assist chemists with reaction prediction, optimization, and
mechanistic interrogation.
To apply supervised ML to chemical reactions, one needs to define
the object of prediction (e.g., yield, enantioselectivity, solubility, or a
recommendation) and represent reactions with descriptive data.
Our group’s effort has focused on representing chemical reactions
using DFT-derived physical features of the reacting molecules and
conditions, which serve as features for building supervised ML
models.
In this Account, we present a review and perspective on three studies conducted by our group where ML models have been
employed to predict reaction yield. First, we focus on a small reaction data set where 16 phosphine ligands were evaluated in a single
Ni-catalyzed Suzuki−Miyaura cross-coupling reaction, and the reaction yield was modeled with linear regression. In this setting,
where the regression complexity is strongly limited by the amount of available data, we emphasize the importance of identifying
single features that are directly relevant to reactivity. Next, we focus on models trained on two larger data sets obtained with high-
throughput experimentation (HTE). With hundreds to thousands of reactions available, more complex models can be explored, for
example, models that algorithmically perform feature selection from a broad set of candidate features. We examine how a variety of
ML algorithms model these data sets and how well these models generalize to out-of-sample substrates. Specifically, we compare the
ML models that use DFT-based featurization to a baseline model that is obtained with features that carry no physical information,
that is, random features, and to a naive non-ML model that averages yields of reactions that share the same conditions and substrate
combinations. We find that for only one of the two data sets, DFT-based featurization leads to a significant, although moderate, out-
of-sample prediction improvement. The source of this improvement was further isolated to specific features which allowed us to
formulate a testable mechanistic hypothesis that was validated experimentally. Finally, we offer remarks on supervised ML model
building on HTE data sets focusing on algorithmic improvements in model training.
Statistical methods in chemistry have a rich history, but only recently has ML gained widespread attention in reaction development.
As the untapped potential of ML is explored, novel tools are likely to arise from future research. Our studies suggest that supervised
ML can lead to improved predictions of reaction yield over simpler modeling methods and facilitate mechanistic understanding of
reaction dynamics. However, further research and development is required to establish ML as an indispensable tool in reactivity
modeling.

■ KEY REFERENCES

• Wu, K.; Doyle, A. G. Parameterization of Phosphine
Ligands Demonstrates Enhancement of Nickel Catalysis
via Remote Steric Effects. Nat. Chem. 2017, 9, 779−784.1
In this study, we demonstrate that, when using a small set of
16 ligands in a Ni-catalyzed cross-coupling reaction, a
multiple linear regression model can be constructed with a
small set of steric and electronic ligand features.
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Received: November 18, 2020
Published: March 31, 2021

Articlepubs.acs.org/accounts

© 2021 American Chemical Society
1856

https://doi.org/10.1021/acs.accounts.0c00770
Acc. Chem. Res. 2021, 54, 1856−1865

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
N

O
TR

E 
D

A
M

E 
on

 M
ay

 2
8,

 2
02

1 
at

 1
4:

17
:2

1 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/page/achre4/data-science-meets-chemistry
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrzej+M.+Z%CC%87uran%CC%81ski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jesus+I.+Martinez+Alvarado"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+J.+Shields"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abigail+G.+Doyle"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.accounts.0c00770&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/achre4/54/8?ref=pdf
https://pubs.acs.org/toc/achre4/54/8?ref=pdf
https://pubs.acs.org/toc/achre4/54/8?ref=pdf
https://pubs.acs.org/toc/achre4/54/8?ref=pdf
pubs.acs.org/accounts?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.accounts.0c00770?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/accounts?ref=pdf
https://pubs.acs.org/accounts?ref=pdf


performance in a Pd-catalyzed aryl amination. Featurization
provided mechanistic insight.

• Estrada, J. G.; Ahneman, D. T.; Sheridan, R. P.; Dreher, S.
D.; Doyle, A. G. Response to Comment on “Predicting
Reaction Performance in C-N Cross-Coupling Using
Machine Learning”. Science 2018, 362, eaat8763.3

Technical analysis of the previously published random forest
model and its ability to predict reactivity for unseen molecules.

• Nielsen, M. K.; Ahneman, D. T.; Riera, O.; Doyle, A. G.
Deoxyfluorination with Sulfonyl Fluorides: Navigating
Reaction Space with Machine Learning. J. Am. Chem. Soc.
2018, 140, 5004−5008.4 A random forest algorithm was
applied to a HTE data set (740 reactions) to predict optimal
deoxyf luorination conditions with respect to the base and
sulfonyl f luoride.

■ INTRODUCTION
In chemistry, the origins of data-driven modeling can be traced
back to the Hammett equation (1937)5 and the development of
quantitative structure−activity and property relationships6−8

(QSAR/QSPR) that it inspired. The Hammett equation is a
linear free energy relationship (LFER) that relates chemical
structure, originally represented by quantitative experimental
parameters or descriptors, to reactivity. Subsequent develop-
ments included the use of multivariate as well as univariate
relationships and the incorporation of computationally
generated descriptors. While linear regression has been the
dominant algorithm used to relate structure to activity, other
machine learning methods, like clustering analysis (1972),9,10

neural networks (1973),11 and random forests (2003)12 have
also been explored shortly after their development. Never-
theless, the broad adoption of these more complicated
algorithms by the synthetic community has been limited. With
the growing availability of molecular properties data sets13,14 and
reaction data sets,15 and improved access to computing power,
ML techniques are receiving renewed attention with applica-
tions in retrosynthesis planning and reactivity prediction.16−23

In the field of organic synthesis, one must know not only the
forward sequence of steps to construct a molecule but also the
reaction conditions to execute each step with high yield and
selectivity. Because reaction space is highly dimensional,
identification of these conditions is both time- and resource-
consuming. More importantly, understanding the mechanistic
origins of chemical interactions in highly dimensional reaction
data (e.g., substrate and catalyst structure−reactivity relation-
ships) is challenging even for highly experienced chemists. Thus,
as a group, we became interested in using ML for predicting and
understanding reaction outcomes in multidimensional space.
Combined with the ongoing developments in the field, we
anticipate that these efforts will afford useful tools that can guide
the generation and use of data for reaction discovery, reaction
optimization, and the synthesis of complex molecules.
In the following sections, we present how data was collected

for our previous studies and how unsupervised ML may be used
to reduce bias in the generation of new reaction data sets. We
subsequently discuss the modeling results from three of our
supervised ML studies, augmenting them with analyses not
originally reported. We specifically focus on model selection and
comparisons, model training, and chemical interpretability of
the resulting models.

■ EXPERIMENTAL DATA

Experimental reaction data can either be data-mined from
publicly available databases15,24 or generated de novo. A
common challenge with the first approach is that the published
data can be incomplete or inconsistently reported.25 Impor-
tantly, available reaction data often explore a narrow scope of
conditions and are biased toward positive results, making it more
appropriate for tasks such as automated retrosynthesis. Never-
theless, we are working in collaboration with MIT, Google,
Merck, and Pfizer to address this limitation with the develop-
ment of an open access reaction database.26 On the other hand,
de novo generation of data sets allows for custom exploration of
the chemical space, but this approach is limited by experimental

Figure 1. Study of ligand dependence on aNi-catalyzed Suzuki−Miyaura cross-coupling. (A)Cross-coupling reaction between benzaldehyde dimethyl
acetal and para-fluorophenyl boroxine. (B) MLR reactivity model. (C) Definition of the cone angle and buried volume features.
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capacity. In our studies, de novo generated data has consisted of a
chemist selecting substrates and conditions for a given reaction
based on existing data, mechanistic understanding, and previous
experience, much in the same way that reaction optimization
and scope delineation is often conducted for a newmethod. This
can result in certain reactions being statistically overleveraged,
that is, having disproportionately large influence on model
parameters, if they happen to be isolated in the chemical space.27

A systematic approach to data set design using unsupervised
machine learning, such as clustering based on specific
featurization, offers an interesting alternative and is already
actively being explored by us and others.28−32

■ FEATURE ENGINEERING

Molecule representation for supervised ML can be broadly
categorized into nonlearned and learned representations.33 The
former encompasses deriving feature vectors from computable
descriptors, which have been the workhorse for QSAR/QSPR
studies.34 Efforts to obtain learned representations starting from
a simple input, such as a SMILES string or atom coordinates, and
transforming them using an algorithm are well under way.
Notwithstanding, the published learned representation ap-
proaches for predicting properties of individual molecules35,36

or reactivity37 have been restricted to the use of large data sets.
When experimentally generating a custom data set for a

specific transformation, the data set size accessible is insufficient
for a learned representation approach. Hence, we have used
density functional theory (DFT) computations to obtain
compact and comprehensible featurizations of substrates,
catalysts, and reagents, to facilitate finding reactivity relation-
ships in our data sets. A drawback of DFT-based featurization is
the high computational cost that depends on the level of theory
and basis set selection, as well as the size and flexibility of the
reaction components. Other static representations such as
molecular fingerprints38,39 or Mordred descriptors40 are
available as alternatives. They reduce computational cost,
potentially at the expense of interpretability and applicability
in small- to medium-size data sets owing to the large quantity of
features involved. A limitation of all nonlearned representations
is the supposition that the selected descriptors are sufficient to
model the data, a choice that often requires knowledge of
chemistry or a mechanism a priori.
As an example, in our group’s study of Ni-catalyzed Suzuki−

Miyaura cross-coupling of benzaldehyde-derived acetals with
aryl boroxines1 (see Figure 1), we found that selecting relevant

features was crucial to the success of the modeling effort.
Specifically, we were unable to obtain a good multiple linear
regression (MLR) model using only electronic or steric features
of the phosphine ligand. Initially, 13 phosphine ligands were
screened, including two new phosphines designed specifically
for Ni: the DinoPhos ligands TriceraPhos and TyrannoPhos.
We observed that the Tolman cone angle (θ),41 a steric feature,
was insufficient to explain the variance in reactivity on its own.
Through feature engineering, we found that addition of a second
steric feature, percent buried volume (%Vbur),

42 together with an
electronic feature, the minimum electrostatic potential (Vmin),
resulted in an improved model. The model was then successfully
validated with three out-of-sample (OOS) ligands not included
in model development.
Our featurization effort allowed us to contextualize the

DinoPhos ligands within a new steric regime, which we refer to
as remote steric effects. In this regime, there is minimal crowding
near the metal center but high crowding at the periphery. This
type of modeling pipeline, which involves computationally
generated and interpretable features followed by fitting a MLR
model, had been previously utilized to model enantioselectiv-
ity43−45 as well as catalytic activity46 by other groups. Our study
extends this pipeline to model reaction yield. Unlike modeling
enantioselectivity or catalytic activity, which directly measure
energy differences, there are multiple factors that contribute to
reaction yield. This may make the prediction task more
challenging. However, since yield measurements are more
accessible and prevalent, we believe that this type of modeling is
a worthwhile task. For example, because reaction yield is bound
between 0% and 100%, the MLR model may make unphysical
predictions, such as <0% or >100% yield, owing to an incorrect
assumption on the normality of the model residuals. However,
when data is not heavily skewed toward a single boundary, as is
the case in this data set, the resulting bias is typically negligible.

■ MODELING HIGH DIMENSIONAL HTE DATA SETS

We then sought to model multicomponent reaction data sets,
that is, data sets wheremultiple reagents and reactants are varied,
with ML. We designed two data sets focused on reactions of
value for the synthesis of bioactive compounds that were
amenable to HTE.47 The data sets included a Buchwald−
Hartwig (BH) amination data set2 generated in collaboration
with colleagues at Merck Research Laboratories comprising
3955 reactions that span four reaction components and a
deoxyfluorination data set4 with 740 reactions spanning three

Figure 2. (A) Buchwald−Hartwig amination data set. (B) Alcohol deoxyfluorination data set. A representative example from each reaction component
is shown in each data set.
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reaction components, Figure 2. For the BH amination, we
adapted the Glorius fragment additive screening approach48 by
evaluating the effects of isoxazole additives on different aryl and
heteroaryl halide couplings rather than coupling substrates
bearing isoxazole functionality directly. Both data sets were built
by exhaustively evaluating the combinatorial reaction space
defined by the components in each reagent category.
With these larger data sets, we set to explore the accuracy of

ML modeling in predicting reactivity for out-of-sample reagents
and determine whether the trained ML models could guide
mechanistic interpretation via their ability to select individual
features. Since multiple reaction components are varied
simultaneously in these data sets, to represent the reactions,
we concatenated individual feature vectors for each component.
The BH amination reactions were described with 120 DFT-
based numeric features, while the deoxyfluorination reactions
had 7 DFT-based numeric features and 16 binary features.
Recently, similar modeling studies on multicomponent reaction
data sets have also been performed to predict enantioselectiv-
ity,29 regioselectivity,49 and reactivity.50

Modeling HTE data sets is a special case of multi-input ML,
where features of substrates and conditions are combined to
make a yield prediction. An analogy, although imperfect, could
be made to rainfall prediction (yield prediction) in various
geographic locations (substrates) under different conditions:
time of year, humidity, and cloud coverage (base, solvent, and
catalyst). The predictions for nearby locations (similar
substrates) might be closely related, but they do not need to
be if, for example, a mountain range separates them (activity
cliff51). The same conditions can also have a different effect on
rainfall depending on the location. Therefore, an HTE reaction
data set requires a model that can efficiently approximate
reactivity with smooth surfaces and divide the chemical space if
such separations are justified by data. Therefore, we included
several universal function approximation algorithms, such as
random forests or neural networks, as candidates to model these
data sets.

■ MODEL SELECTION

To select an appropriate ML model, candidate models are
developed (trained) on training data and their generalization
error is measured on test data. Then, the model with the best
estimated generalization error is typically chosen. A common

approach is to split the data randomly to generate the training
and test sets.52 This approach was taken in our previously
published studies. However, with a random split of an HTE data
set, the training set sees every compound and its performance
multiple times while only leaving specific combinations of
reaction components to the test set. Such an estimate is
therefore an optimistic estimate of how the model would
perform on unseen (out-of-sample) molecules. If the goal is to
predict the yield for an unseen catalyst or to select the highest
yielding set of reaction conditions for a new substrate, a more
use-inspired test of generalization is valuable.53 Thus, building
on a valuable exchange with Chuang and Keiser,54 we have
turned to a different approach to estimate generalization error
with leave-one-molecule out cross-validation, and advocate that
the community do so as well because it is more representative of
a synthetic chemists’ use. In the following sections, we re-evaluate
model selection using the leave-one-molecule out cross-validation for
both HTE reaction data sets as follows:

• We designated the additive in the BH amination data set
and alcohol in the deoxyfluorination data set as the
reaction component fromwhich to leave a single molecule
out. For example, when an isoxazole is left out from the
BH amination data set, all 180 reactions that use that
additive comprise the validation set. Our data sets contain
22 isoxazole additives and 37 alcohols, creating 22 and 37
validation folds, respectively. In our modeling experience,
special care needs to be taken to build the model for each
fold independently from models for other folds to
simulate real-life scenarios. If model independence across
folds is not met, for example, features are fixed using the
entire data set, the cross-validation results are optimisti-
cally biased and do not correspond to the generalization
ability of the model.55 Therefore, the fold models
generally vary in their feature selections and how they
model the reactivity surface. This variance reflects the
stability of the overall modeling effort with respect to
small changes in training data, that is, substituting an
additive or alcohol with another one, which in turn
impacts model generalizability.

• ML algorithms under consideration are linear regression,
GLM (generalized linear model), SVR (support vector
regression), kNN (k-nearest-neighbors), RF (random

Figure 3. (A) Leave-one-molecule out cross-validation RMSE for the BH amination data set. (B) Leave-one-molecule out cross-validation RMSE for
the deoxyfluorination data set. Each point represents validation RMSE for a single additive or alcohol. The bars show 25%−75% interquantile ranges of
the RMSE distributions.
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forest), XGBoost, and a feed forward NN (neural
network).

• Two baseline models are also included in the comparison.
Since ML models always provide a numeric performance
estimate, the models can only be judged by comparing
their generalizability to other models. For our reaction
data sets, we built the following baseline models:

• ML model with a RF algorithm but with random
features that carry no physical information other
than labeling the molecules.3

• Non-ML naive model where a prediction for a
reaction yield is made by averaging yields of all
training set reactions that share the same substrates
and conditions, for example, when predicting a
deoxyfluorination reaction yield for a new alcohol,
but with a base and sulfonyl fluoride that has been
used for a range of alcohols, we average all reaction
yields for the same base and sulfonyl fluoride and all
alcohols from the training set.

Model hyperparameters were optimized using nested cross-
validation56 (See SI Table S1 for details), except for the naive
and linear regression models that have no hyperparameters. We
further analyze the leave-one-molecule out cross-validation
results, Figure 3, with statistical tests:57

• Models perform differently on the BH amination data
(ANOVA p-value < 5 × 10−5), while all models perform
similarly on the deoxyfluorination data (ANOVA p-value
of 0.8) indicating that for deoxyfluorination the general-
ization error does not significantly depend on the model
among the 9 candidates considered.

• For BH amination only the RF model performs
significantly better than either of the two baseline models
(paired Wilcoxon test p-values < 0.01).

These results indicate that the RF is the best model for the BH
amination data, consistent with our original study. For the
deoxyfluorination data set, where we did not evaluate other
models besides RF in the original study, there is no best model.

The prediction accuracy varies substantially between the test
molecules for both reaction data sets. For the RFmodel, the root
mean square error (RMSE) is between 5% and 25% for the
additives from the BH amination data set and between 9% and
41% for the alcohols from the deoxyfluorination data set. This
indicates that the yield cannot always be accurately predicted for
an arbitrary new molecule, prompting us to consider how useful
these models are for out-of-sample prediction and how can they
be improved. One hypothesis is that there might be an area of
chemical space in which the model works well. In Figure 4, the
prediction RMSE for each individual molecule is visualized using
the top two principal components of their molecular
featurization. For the BH amination additives, we qualitatively
identify a central region of feature space where prediction errors
are 8% or lower on average, while for the deoxyfluorination
alcohol set, no such region can be identified. For the
deoxyfluorination model, these observations suggest that either
the DFT-based featurization does not capture information that
relates structure to activity or the algorithm is not capable of
doing so with the available data. In the two data sets, we sampled
a comparable number of distinct compounds (22 isoxazole
additives for the BH amination and 37 alcohols for the
deoxyfluorination) to represent their respective chemical spaces.
However, the diversity and size of the alcohol chemical space
results in a much sparser alcohol selection as compared to
isoxazole additives selection in their chemical space. This likely
makes generalization to out-of-sample alcohols more challeng-
ing and may explain the limitations of the deoxyfluorination
modeling.

■ MODEL TRAINING

While the generalization error is a critical performance metric of
a MLmodel, it is also useful to verify how well the generalization
error corresponds to the model’s fit to the training data. The
proximity of the training fit is controlled with hyperparameters,
which are chosen to optimize the generalization error. However,
how well this hyperparameter tuning prevents overfitting
generally varies from algorithm to algorithm.

Figure 4. Leave-one-molecule out cross-validation RMSE with respect to molecular featurization. The explained variance in each principal component
is shown in parentheses. (A) BH amination data set additives. A region where the RMSE is below 8% is highlighted. (B) Alcohols in the
deoxyfluorination data set.
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As shown in Figure 5, the nested leave-one-molecule out
cross-validation did not prevent the models from overfitting.
The tree-based models, that is, RF and XGBoost, overfit the
most, while structurally simpler models, such GLM and kNN
overfit to a lesser extent. The naive model does not overfit;
however, no regression is used when obtaining this model’s
predictions. A large gap between training and validation
performance hinders the usage of the trained model surface
for mechanistic interpretation.
Our best performing RF algorithm employs tree bagging as

one of the means to prevent overfitting, that is, the individual
trees are fit to bootstrap samples58 of the training data. In a
reaction data set, however, a bootstrap sample exposes each tree
to all training molecules with high probability, although only a
subset of reactions. As illustrated in Figure 6, for the
deoxyfluorination data set, every alcohol is sampled multiple
times in a bootstrap sample. Reaction yields that share the same
molecule(s) are inherently correlated; therefore, the resulting
trees are expected to be correlated as well, which in turn
enhances overfitting.

An alternative formulation in which bootstrap samples are
taken over the sets of molecules can decorrelate the trees, though
no such implementation exists to date. Given that HTE reaction
data sets pose unique challenges to ML algorithms, as illustrated
in the above example, we believe researching new or modifying
existing algorithms to better model these data sets is of high
priority.

■ MODEL INTERPRETATION

For the BH amination data set, the prediction to an out-of-
sample additive using the DFT based featurization and the RF
model leads to a 2−6% (95% confidence interval) improvement
over the baseline RF model with random features. While an
improvement of this magnitude will not make the model more
useful for prediction, it is attributable to DFT-based
featurization and can be interpreted mechanistically. While the
RF prediction mechanism is difficult to understand, feature
metrics, such as Gini importance or permutation importance, are
often used as indirect measures of feature importance.59 In our
case, to study the importance of a molecular feature or a set of
features, we replace them with random numbers (noise them
up), to ensure that they are ineffective and repeat the cross-
validation with models trained on partially noised up feature
sets. From a chemists’ perspective, we are interested in whether
feature interactions across different reaction components play an
important role. Thus, we noise up all features from a single
reaction component, while keeping features of all other
components unchanged. The resulting RMSE increases are
presented in Figure 7A. Only noising up features of the additive
results in a significant drop in model performance, implying that
modeling interactions between components is not augmented
by DFT features as compared to random features in this data set.
We further noise up each of the additive features and measure

the increase of the cross-validation performance (see Figure 7B).
Individual feature’s contributions are small and mostly
insignificant; however, noising up a single feature does not
extract its total importance. This is due to correlations with other
features within the same reaction component. Among the
additive features, those describing the C3 atom, which in our
featurization is the carbon next to the nitrogen in the isoxazole
ring, achieve highest importance, particularly the C3 NMR shift.
We use a partial dependence plot60 to visualize marginal
dependence of the model, trained on all data, on the C3 NMR

Figure 5. Leave-one-molecule out training and CV error comparison. Color points represent mean training error; black points represent their
respective CV mean error. (A) BH amination data set validated over additives. (B) Deoxyfluorination data set validated over alcohols.

Figure 6. Number of occurrences of alcohols in a bootstrap sample
taken from the deoxyfluorination data set. A maximum number of
distinct reactions for each alcohol is 20 if every base and sulfonyl
fluoride combination is present.
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shift feature. In Figure 8, a step-like increase in yield is observed
for additives with C3 NMR shift >150 ppm.
Looking at the chemical structures, it is evident that additives

with C3 NMR shift <150 ppm primarily have a C3−H bond and
additives with C3 NMR shift >150 ppm have a fully substituted
C3. The fact that reaction poisons tend to have a C3−H bond
led us to propose and investigate a mechanism for isoxazole
decomposition via C3−H deprotonation. Namely, isoxazoles

bearing a C3−H could undergo a Pd-catalyzed Kemp-type
rearrangement to form α-cyano ketones and aldehydes after N−
O oxidative addition (Figure 8b). In our previous study, we
showed that in the absence of palladium, no isoxazole
rearrangement was observed, even upon heating. Importantly
via mass spectrometry and NMR analysis, we were able to
identify an oxidative adduct between palladium and benzo[d]-
isoxazole, suggesting that the adduct may be responsible for the

Figure 7. Leave-one-molecule out cross-validation RMSE increase resulting from noising up features. (A) All features of a single reaction component.
(B) Individual features of the additives. The bands are 95% CI of the paired Wilcoxon test with respect to the model with original features.

Figure 8. (A) Partial dependence of the BH amination activity model as a function of additive C3 NMR shift obtained with out-of-bag portion of the
random forest training data. Individual points represent individual additives. The shaded band corresponds to±2 standard error on the prediction. (B)
Kemp-type rearrangement in the presence of Pd for an example isoxazole that has a C3−Hbond. C3 position is indicated with a shadowed circle above.
(C) at-Bu-BrettPhos was used as the ligand. Reaction poisons were used to identify the source of detrimental reactivity. Note, all ligands studied
resulted in lower than 29% yield.
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isomerization process depicted in Figure 8. While it is unclear
whether solely the oxidative adduct or the subsequent
rearranged product results in a severe poison for the BH
amination, we found that the 3-ketobutyric methyl ester
derivative that would result from the Pd-catalyzed rearrange-
ment of additive 11 severely inhibits reactivity (Figure 8c,
entries 1−4). It is noteworthy that the partial dependence plot
did not explicitly suggest that the rearranged product was the
reaction poison. Therefore, while these observations may have
been identified independent of modeling, this analysis highlights
how ML can be used as a tool for developing an experimentally
testable hypothesis to gain some mechanistic understanding of
chemical processes.

■ CONCLUSIONS
ML is a rapidly developing field of research and its potential in
reactivity prediction is being systematically explored. In the
examples studied in our lab, we observe that ML can achieve
quite similar generalization accuracy using physics-agnostic
features as with quantitative physical features. In the BH data set,
we see statistically significant improvements in generalization
with DFT features indicating that it provides transferable
chemical insight and allowed us to learn about the underlying
mechanism. Nevertheless, in both the BH and deoxyfluorination
data sets, the generalization error as measured by more rigorous
and realistic tests than previously reported suggests that
improvement is still needed in increasing the reliability and
efficiency of ML tools in chemical over-the-arrow prediction.
We expect that progress will require improvements in areas such
as featurization and algorithm development.
Given the statistical aspect of ML modeling, we advocate that

results need to be clearly communicated with a focus on
generalization error comparisons to baseline models or non-ML
models.Model validations and hyperparameter tuning should be
performed with use-case motivated resampling, such as leaving
molecules out. Finally, model hyperparameters should always be
reported.
We hope that this work encourages others to research ML

techniques and evaluate their application to organic synthesis
problems. With advances in HTE and increased access to high-
quality data, we are optimistic that predictive and interpretable
reactivity models could become common place in many aspects
of organic synthesis.
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